TECHNICAL REPORT R-48

—_—

A SYSTEMATIC KERNEL FUNCTION PROCEDURE
FOR DETERMINING AERODYNAMIC FORCES
ON OSCILLATING OR STEADY FINITE
WINGS AT SUBSONIC SPEEDS

By CHARLES E. WATKINS, DONALD S. WOOLSTON,
and HERBERT J. CUNNINGHAM

Langley Research Center
Langley Field, Va.




|



TECHNICAL REPORT R-48

A SYSTEMATIC KERNEL FUNCTION PROCEDURE FOR DETERMINING
AERODYNAMIC FORCES ON OSCILLATING OR STEADY
FINITE WINGS AT SUBSONIC SPEEDS

By CaarLeEs E. Warkins, Doxarp S. Woorstoy, and HERBERT J. CUNNINGHAM

SUMMARY

A detailed description is given of a method of
approximating solutions to the integral equation that
relates oscillatory or steady lift and downwash dis-
tributions on finite wings in subsonic flow. The
method of solution is applicable to general plan
forms with either curved or straight leading and
trailing edges. Moreover, it is directly applicable
to control surfaces such as all-movable tails but
modifications are needed to apply it to controls in
general.  Applications of the method tnvolve evalua-
tions of numerous infegrals that must be handled by
numerical procedures but systematic schemes of
evaluations have been adopted that are well suited
to the routines of automatic digital computing ma-
chines. These schemes of evaluation have been in-
corporated in @ program for an IBAM 704 electronic
data processing machine. With this machine, a
pressure distribution fogether with such quantities as
section or total lift and moment coefficients or general-
1zed forces can be determined for a given value of
Sfrequency and Mach number and for several (four or
Sive) modes of oscillation in about 4 minutes of ma-
chine time. In the case of steady downwash condi-
tions corresponding quantities can be obtained in
about 2 minutes of machine time.

In order to llustrate applications of the method,
results of several calculations are presented. In
these wllustrations total forces and moments are com-
pared (1) with results of analytic procedures for a
circular plan form with steady downwash conditions,
(2) with results of other theories and with experi-
ment for a rectangular plan form of aspect ratio 1 at a
uniform angle of attack, and (3) with some experi-
mental results for a reclangular plan form of aspect
ratio 2 undergoing pitching and Aapping oscilla-
tions. Also included in the illustrations are resulls

of flutter calculations compared with experimental
results for an all-movable conirol surface of aspect
ratio 3.50 and for a cantilevered rectangular plan

Jorm of aspect ratio 5.04.

INTRODUCTION

The equations that provide a basis for most of
the existing theoretical acrodynamics of lifting
surfaces result from a linearization of boundary-
value problems for velocity potentials. The
linearizations, of course, involve restrictions in
addition to that of neglecting viscosity, which is
required in formulating the potential equations in
the first place, but these restrictions are generally
necessary in order to simplify the problems to
tractable forms. A main advantage gained through
linearization is the principle of superposition,
inherent to lincar differential equations, which
means not only that a given problemi may be
broken down into a category of different problems,
which separate such parameters as thickness,
camber, and angle of attack, but, more signifi-
cantly for present purposcs, that the linearized
boundary-value problem can be converted to an
integral equation; furthermore, the linearized
differential equation is satisfied not only by the
velocity potential but also by the pressure or a
pressure potential so that the integral equation
can be formulated on the basis of cither a velocity
potential or a pressure potential.

Even with the simplification and advantages
gained through linearization the lifting-surface
problem for oscillating wings has been explicitly
solved for only a very few special wing plan forms,
These are the wing of infinite aspect ratio (refs. 1 to
3), the wing for which the flow normal to all edges
is supersonic (ref. 4), the wing of vanishingly small
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aspect ratio (refs. 5 and 6), and, for an incompres-
sible fluid, the wing of circular plan form (refs. 7 to
9). Not only do these few solutions constitute
a small category but the prospects of obtaining
explicit solutions for more general or arbitrary
plan forms are extremely dim. In view of com-
puting equipment that is now available, however,
there exists an excellent possibility of obtaining
solutions appropriate to any plan form by approxi-
mate or numerical procedures that are satis-
factory for engincering purposes. A reliable
concept on which to base these procedures under-
lies such developments as those of Falkner (rel. 10)
and Multhopp (ref. 11) relating to steady finite
wings and that of Possio (ref. 12) relating to
oscillating wings of infinite aspect ratio.

This concept pertains to the boundary-value
problem for the pressure potential when expressed
as an integral equation that relates a preseribed
downwash distribution to an unknown lift distri-
bution. Tt is simply that from a knowledge of
the few known explicit solutions to the lifting-
sutface problems the general character of the lift
distribution for various conditions can be sur-
mised; henee, by assuming that its general char-
acter is known, the unknown Iift distribution can
be replaced by a sum of appropriately chosen
modes of lift functions, each mode being weighted
by a constant coeflicient that must yet be deter-
mined. Employing this concept or procedurce
then allows the known downwash distribution to
be expressed as a sum of definite integrals with the
unknown coceflicients appearing as factors ol the
miegrals.  The definite integrals, however, are
extremely unwieldy and, in general, can be evalu-
ated only by approximate or numerical methods;
it is in this regard that various lifting-surface
methods, based on the concept under discussion,
have their basic differences (i.e., in regard to the
scheme or method Dby which integrations are
numerically accomplished). Falkner’s procedure,
which has been extended to an oscillating finite
wing in an incompressible medium in reference
13 and to an oscillating finite wing in a compress-
ible medium in reference 14, involves the use of
certain numerical integrating schemes  which,
although relatively simple to employ, depend in
part on {wo-dimensional acrodynamic considera-
tions and arc difficult to assess with regard to
accuracy. In Multhopp’s procedure, which has
been considered for the oscillating case in refer-

ences 15 to 19 and others, more straightforward
integrating schemes are used than are employed
in Falkner’s method but Multhopp’s method, as
he implies, is devised on the basis of & compromise
between accuracy of results and computing effort
required. Tt must be recalled, however, that both
the Falkner and Multhopp methods were formu-
lated at a time when high-speed computing equip-
ment was in an embryonic state of development.
Fortunately, with present-day compuling equip-
ment, it is seldom necessary to sacrifice accuracy
of results for savings in labor of calculation.

In the present report a method is deseribed in
which straightforward integrating schemes that
are well suited to the routines of high-speed
digital computing machines are employed. The
integrations ean be made as aceurate as desired;
the accuracy ean be casily assessed by simply
changing the density of steps. The method
applies to wings with oscillatory downwash condi-
tions as well as to wings with steady-state down-
wash conditions. Tt also applies, with appropriate
modifications in chosen modes of lift and regions
of integration, to supcrsonic speeds as well as to
subsonic speeds; however, only subsonic speeds
are considered hierein.  The procedure is applicable
to general plan forms with either eurved or straight
leading and trailing edges.  Although it is readily
applicable to control surfaces such as all-movable
tails, modifications would be nceded to apply it
to controls in general.

A Drief discussion is presented of the integral
equation under study; the terms of the equation
are examined and put in convenient forms, and
a suitable working form of the equation is obtained.
The numerical processes involved in handling
this working form of the integral cquation are
discussed in detail. Still left untreated are some
problems concerning the optimum number and
location of control points and the degree of con-
vergence of the process. Results of applying the
procedure are given for a variety of plan forms
and conditions. These include determinations of
aerodynamic forces and moments for some special
conditions and applications to some flutter
problems.

SYMBOLS
A aspect ratio, 422/S
A.(n) spanwise loading function in lift dis-
tribution (eq. (13))
a veloeity of sound, ft/sec

Ay weighting factor in A,(n)
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local wing semichord, ft

wing root semichord, ft

complex total lift and pitching-
moment coefficients  associated
with jth mode of oscillation; for
example, CL,qj:(OL.q,),‘{”i(pL,qj),

magnitudes of complex lift and
pitching-moment. cocfficients; for
example,

1Cot | =[O0 FH[(Coa) T

complete chordwise integral in work-
mg form of integral equation (eq.
(28))

complete chordwise integral at sta-
tion p (eq. (35))

chordwise integral which involves

nth chordwise term in lift distribu- -

tion {eq. (29))

vertical displacement of wing surface,
positive down, ft

shape function of vertical displace-
ment in jth mode

modificd Bessel function of first kind
of first order

portions of spanwise integral (eq.
(32))

modifiecd Bessel function of second
kind of first order

kernel function of integral equation,
ft=2

modified kernel function (eq. (16))

modified kernel function in terms of
angular chordwise coordinate 4
(see eq. (24))

reduced frequency, bgw/1”

total lift, positive down, 1b

Ve 7
LZP?S;b—D OL,qJ

modified Struve function of first order

nondimensional lift function (eq.
(10))

wing semispan, ft

nth chordwise pressure mode ex-
pressed in terms of angular chord-
wise variable 8 (eq. (12))

nth chordwise pressure mode ex-
pressed in algebraic form (eq. (14))

Mach number

M,

Ap(En,t),
Ap(6.q.1)

q,(t)

I?
W(z,y)

€

I():I‘E
Y

B:y‘ll — A2

total pitching moment, positive nose
up, {t-Ib

Mo=p 88,52 L0
i a—P7 QJZ‘b—O M,qy

local pressure difference between top
and bottom surfaces of wing, posi-
tive down, 1b/sq ft

generalized coordinate of jth degree
of freedom (as a subseript, ¢, re-
placed by o« denotes pitching, ¢,
replaced by ¢ denotes flapping, and
g; replaced by 22 denotes parabolic
camber deformation), G« ft

area of wing surface, sq ft

ratio of wing semispan to root semi-
chord, /b,

time, sec

veloeity of airstream, ft/sec

amplitude function of preseribed
downwash, w(x,yt) =1 (x,y)et*, ft/
see

chordwise coordinates referred to b,

spanwise coordinates referred to {
vertical coordinate (sketch 1)

spanwise interval between integra-
tion stations in region of span
which contains control point

semispan of region which contains
control point (sketch 4)

angular chordwise variable (eq. (7)
and sketch 2)

§,=cos™? [%Q (Em_'r)]

A

Ele(n)xstc(ﬂ)y
Em(ﬂ)

angle of sweep of quarter-chord line,
measured from perpendicular to
stream direction, positive clock-
wise, deg

Tip chord

taper ratio, Root chord

model mass ratio (mass of model
divided by mass of air in a circular
cone with local diameter equal to
local chord of model)

coordinates of leading edge, trailing
edge, and midchord line, respec-
tively
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P air density, slugs/cu ft
¢ gencralized coordinate of angular dis-
placement in flapping oscillation;

. I,
as used herein, ¢=tan~! 3[;‘5)

phase angles between lift or pitching
moment and displacement associ-
ated with jth mode of oscillation,
deg; for example,

(27 .llj!QQ\l 4y

(CL-V ) i

-1 /i

o, = tanT TE—

( I“qj)r

w angular frequency, radians/sec

w; angular frequency in jth mode, ra-
dians/sec

Indices:

1,r imaginary and real components

J mode of vibration under considera-
tion

n,m chordwise and spanwise pressure

modes, respectively, in aerody-
namic quantitics (see eq. (13))

x? indicates parabolic camber deforma-
tion
o indicates pitching
¢ indicates flapping
THE INTEGRAL EQUATION RELATING LIFT AND
DOWNWASH

The lincarized boundary-value problem of de-
termining the forces on a wing with cither oscil-
latory or steady downwash conditions can be
readily reduced to a problem of solving an integral
equation that relates downwash and lift distribu-
tion. The purpose of this section is to introduce
this equation and to cast it in a desirable working

form.
PLAN FORM AND COORDINATE SYSTEM

Since the integral equation is derived in various
publications (e.g., in refs. 20 and 21), the equation
will not be rederived here but will be simply stated
in terms of dimensionless coordinates that are
particularly convenient for use in applications
pertaining to flutter. In keeping with linear
theory, the wing is considered as a plane impene-
trable surface S that lics nearly in the zy-plane as
indicated in sketch 1. In accordance with the
common practice in analytical flutter studies of
defining displacements and forces as positive
downward, the z-axis is taken to be positive
downward. Furthermore, the a,y,z coordinate
system and the surface S are assumed to move
in the negative z-direction at a uniform velocity

- b, boé

Sketceh 1.

V. It is remarked that the direction of the
z-axis differs from that employed in other treat-
ments (e.g., ref. 21) of the integral equation and
its kernel function. This difference will be seen
to lead to changes in sign in the kernel and in the
relation between downwash and displacement
when this procedure is compared with the treat-
ments in references 14, 22, and 23.

THE INTEGRAL EQUATION

With the considerations mentioned in the pre-
ceding section, a convenient form of the integral
equation (obtained, e.g., from eq. (1) of ref. 21)
may be formally written in terms of the unknown
pressure distribution Ap(g,m,t) as

wiep0_ b [
Vo 4npl* )

ftem) —
[ S D KOs = ldedn (1)
where w(x,y,1) is the vertical velocity or down-
wash at any point (z,7) on the wing, pis the fluid
density, and K[M, ko, s(y—n)] is the kernel
function of the integral equation. The quantity
K/4rpV (having the dimension of feet per second
per pound) is the mathematical expression for the
contribution to the downwash induced at any
point (z,%) due to a unit force acting at any other
point (§,7). In reference 21, K has been reduced
to forms suitable for numerical evaluation. In
equation (1), k is the reduced frequeney bew/V7; o
denotes the quantity z—¢ in which x and £ are
dimensionless chordwise variables referred to the
root semichord by; y and 5 are dimensionless span-
wise variables referred to the semispan [, a con-
venient reference length in dealing with the span-
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wise integration (note that this differs from the
usage of ref. 21 in which % and # are referred to
by); s is the ratio of semispan to root semichord
U/by; and £,.(y) and &.(») are the chordwise co-
ordinates of the leading and trailing edges, re-
spectively.

A solution to the integral cquation for a given
plan form, a known mode of oscillation, and a given
set of stream conditions requires a determination
of the pressure distribution which will satisfy the
edge conditions appropriate to the plan form and
flow regime under consideration and which, when
multiplied by the kernel funetion and integrated
over the plan form, will yield the downwash distri-
bution corresponding to the mode of oscillation.
No means of solving the integral equation in an
exact analytic sense has yet been found and it has
therefore been necessary to resort to approximate
or numerical procedures.

As stated in the introduction, a reliable concept
on which to base an approximate solution to the
integral equation involves expressing the unknown
lift distribution as a sum of appropriately chosen
modes of lift functions, each mode being weighted
by a constant coeflicient which must be determined.
Employing this concept then allows the known
downwash distribution to be expressed as a sum
of definite integrals with the unknown coeflicients
appearing as factors of these integrals. Once the
definite integrals are evaluated, the unknown co-
cfficients can be readily determined by simple
collocation.

In order to cast equation (1) in a useful working
form it is convenient to consider first some desired
forms of the various ingredients of the equation,
namely, the downwash distribution, the lift dis-
tribution, and the kernel function.

FORM OF DOWNWASH DISTRIBUTION

In order to obtain a desired form of the down-
wash distribution for use in equation (1), it is
assumed that the system under consideration is
undergoing a displacement I{(x,y,f) which may
be represented by a superposition of either natural
or assumed modes of vibration so that

I (ry, =k (r,y) @ () +h (0, ) 2 () +. .
Fhs () g+ (2)

where, for sinusoidal oscillations,

q;(t)=q,e’* (3)

specifies the magnitude of the displacement in
the 7th mode, w is the frequency of oscillation, and
hy(x,y) gives the shape of the mode.

The downwash w(x,y,t) associated with the dis-
placement I{x,y,1) is given by

o) =(f o) Mm@

or, with the use of equation (2),

w(.r,y,t) (a +M> I:h (r ) 2D 91 (t)

+ha(r,y)

q:(1)
b, T

1 @

In application, each mode shape appearing in
equation (5) will be handled separately. TFor con-
venience the downwash associated with the jth
mode may be defined as

PAID (L) e B2 @

FORM OF LIFT DISTRIBUTION

The choice of the lift functions selected to ex-
press the unknown pressure distribution should,
of course, be made with discretion because the
more compatible these functions are with the
actual loading the fewer will be required. As a
guide in sclecting modes of 1ift, the character of
the lift distribution, at least in the neighborhood
of the wing edges, can be surmised from a knowl-
edge of the few exact solutions to lifting-surface
problems. For subsonic flow, the pressure or lift
distribution on a wing should tend to zero along
trailing edges and edges parallol to the stream

direction as lim +, where € is the distance to the
0

wing edge. At the leading edge, the pressure or

. 1 .
lift should behave as lim —=. A summation of

0 VE
modes that satisfies these conditionsand isotherwise
perfectly general is employed, for example, in refer-
ences 10, 13, and 14 and is used in the present
development.

Before introducing this summation of modes,
it is convenient to introduce an angular chordwise
variable 8, shown in sketch 2.

The functions &.(n), &(), and &.(3) in
sketeh 2 represent equations of the leading edge,
midchord line, and trailing edge, respectively. It
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ly,ln

Sketeh 2.

is noted that they may apply to plan forms with
curved edges as well as to those with straight
edges. The chordwise coordinate ¢ may be ex-
pressed in terms of £.(n), b/b, and 8 through the
relation

ft—Lcoss  (0=0<m) @)

be

i\*ote that £, and b/b, can be readily expressed in
terms of &.(q) and £,.(y) as

£m=£te _; Ele

(8
_b_ Ete Elc
b, 2

~ The assumed pressure distribution of references
10, 13, and 14 employs the angular chordwise
variable ¢ and is of the form

_ ] t
Ap(gm,t)=Ap(8,n,t) =4mpV* b%L(O,n) “quo) 9)
where

L(em) 2%\/1—n2[(a00+ﬂaol+ﬂ2aog+ o) COtﬂg
+((hv+")a'u+"l2alz+ L.siné+ ...

(ano+nan1+nan2+ . .)sin né+- . :]
(10)

in which the cocflicients a,, are unknown weight-

2""

(The factor = of

sin n8, not employed in the cited I‘(‘fOI‘CﬂCCS, is
used here for convenience.)

Equation (10) can be written more concisely
by grouping the chordwise and spanwise pressure
modes to obtain

ing factors to be determined.

Lom=2

25L:(0)<Aam) 1)

in which

LO=cot] (=0

(12)
1,(0)= “'22,1 sinng (n=1)
and in which
‘"1"-(77):'\/1_nz(a‘n0+7/anl+ e +77ma'nm+ .. )
:\/1—7722'7'"%:" (13)

Note that in dealing with symmetric loading,
only even powers of 5 are relained in equation
(13); in dealing with antisymmetric loading, only
odd powers of n are retained. For cither sym-
metric or antisymmetric loading, as will be ob-
served in the collocation procedure to be used, it
is necessary to consider control points on only one
wing panel.

It is remarked further that equations (7}, (8),
and (12) may be used to obtain the following
corresponding algebraic forms of the chordwise
pressure modes:

M%sM@:V%5£
L =1, (g)__b\ (b) ) Lo

zz(e)zig(g)zé (%ﬂ)z(sm—é)\/ (;’—j;&d

and so forth. TFor application to the special case
of surfaces with straight leading and trailing edges,
the following definitions of &, and &, in terms of
the span-to-chord ratio s, the taper ratio :, and the
sweep angle of the quarter-chord line A may be
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useful:
Eie=—14]y| (s tan A—{——]g—)t
=1yl [ tan 2 =20
Equation (9) and the associated definitions

constitute a useful form of the assumed pressure

distribution. Tn order to proceed toward a

working form of equation (1), it remains to con-
sider the form of the kernel function.
FORM OF KERNEL FUNCTION

A satisfactory working form of the kernel

function is obtained from the expression for this

modified kernel function A is defined as

function that is given by equation (D8) of refer-
ence 21, Tor Iater considerations it is convenient.
to have the kernel function expressed in a sep-
arated form as

T{[J[,k,ru,s(?/hn)] (] r))
b(]2$2 (:'/_ 7’)2 )

KMk xgs(y—n)]=

where K denotes a modified form of the kernel
function obtained by extracting from K the factor
1
b2 (y—n)*
give rise to a second-order singularity and, henee,
necessitate use of the concept of the “finite part
of infinite integrals” in integrations involving the
kernel function. For the oscillatory ease the

As may be noted, this factor can

RIMErys@—n]- om0 —ilsly—n| 4 ksly— ] K\ (ksly—n) + 72” Tesly—=n|[ 1 Gesly—n))— Lilksly—n)) ]+

ik S
P [ru—M\"Iu’+ﬁ?-"(v-n)?]
xo€

where K, and 7, are modified Bessel funetions and
L1 is a modified Struve function.  For the steady
case (=0) the modified kernel function K is
defined as

— Gl
K[M,0, 1y, s(y—n)]=1 1 B =) (17)

Examination of K shows that it contains no
infinite singularities but does possess one finite
singularity when r¢=y—5=0. This singularity
leads to no special difficulty, however, since it can
be handled by making use of the following limiting
forms of K:

lim KMk o, (y—n)]=2¢ 0 (re>0)

-0
¥—n - (18)
lim KM ,x0,5(y—1)]=0 (1,0
y—n—0

Equation (15) and the associated definitions of
equations (16), (17), and (18) constitute the
desired working form of the kernel function for

336273 -60 2

— iksly—n] j

1 S —
T L MR |

T

i L (16)

use in the integral equation. (Note that in the
definition of the kernel the sign differs from that
given in ref. 21. This is a consequence of the
convention used herein that forces are positive
downward.)

Before returning to the integral equation it is
desirable to discuss means of evaluating some of
the functions which appear in equation (16).
First, the integral will be treated; then, the Bessel
function K, (ksly—3]) and the combined function
1y (ksly—nl) — Ly (ks|ly—n]) will be discussed.

The integral in K.—1It has not been possible to
evaluate the integral which appears in equation
(16) in an exact analytical sense.  Although this
integral is of a simple type for numerical integra-
tion, its evaluation can become time consuming
or burdensome, particularly when the upper limit
becomes large. In the present procedure an
approximate, but accurate, alternative approach
has been adopted.

By examination of equation (16) it may be seen
that if 2, >Msjy—n|, the upper limit of the
integral is positive, but if #o<Ms|y—y|, the upper
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limit is negative. For present purposes it i3
desirable to express the integral in a form such
that the integration extends only over positive
ranges. The integral is thus expressed as

a-d
J:, \/1;:155 eiksty=alr Jo (.r.,>:\f,\']]/7771) (19)

d-a
f e dr (Al 20)
u Y

Jo

Bsly - 7l

a—

and

Myrd+ 85 (y—n)®
d=
Bsly—nl
With these forms, the approach is to approximate

a part of the integrand by the following expres-
sion, which applies for all positive values of 7:

T

Vitr

221]_0'101‘5‘0‘329'*0.899@“"40677
—0.00480933¢ 2% gin 77 (21)

The expressions which result when equation (21)
is substituted into equations (19) and (20) are
readily integrable in closed form. The results
have been incorporated into the compuling pro-
gram of the present procedure and need not be
written here.

The approximation given by equation (21) has

;
the same value as

Y ]—{'T
and r= ». The maximum deviation of the approx-

= al the two limits 7=0

. . T .
imation from the value of == 1s about 0.24
viaT

percent in the vicinity of r=1.5.

The Bessel and Struve functions. - For values
of ksly—4/>0 the modified Bessel [unction
K (ks'y - n))is evaluated by use of series expressions
contained in a computing routine provided through
an organization called SITARE made up of users
of the TBM 704 and 709 clectronic data process-
ing machines. When ksly—2{=0 the product
ksly-— n|Ki(ksly- n}) has a limiting value of unity.
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The combined quantity I,— /7, ean be replaced
by a definite integral, a convenient form of which
is obtained from a general expression for I,—1L,
given in reference 24 (p. 425). For the special
case v=1 this definite integral is

I, (ksly—n)) — Ly (ksly—ml)

D)
M f e W alcos a giny do

Jf?!J 7| f

Either of the integrals in this equation can be
readily evaluated by numerical integration meth-
ods 1o any desired degree of accuracy or, alter-
natively, an approximation to the integrand can
he used which is integrable in closed form, The
latter procedure has been employed in the present
program because it is more economical of comput-
ing time and is believed to be sufficiently anccurate.
Tt has led {o the following cxpression:

I (ksly—n))— Ly (ksly—n])

2ksly—ml [ 1.0085 ksly—n]
T oor 1.3410-+1.0050 k2s*(y—n)?

+| §—0-8675 kxly—n]

0.46484 0.9159 ksly—n[° ] e
( 1.34104- k&2 2(./ 7)? ) e * ] (23)

~k3]y 7 ‘r([T

The error of this approximation reaches a maxi-
mum of about 0.4 percent in the vieinity of
Es|y— n|=4 and is less for both smaller and larger
values of the argument. The overall effect of
this error in the whole problem is minor.

An idea of the gcnoml character of the kernel K
can be had by examining the curves shown in
figure 1. In this figure the real and imaginary
parts of K are plotted ugambt kx, for several con-
stant values of ksjy—al. The particular values
shown are for a Mach number of 0.8. The signifi-
cant features of these curves are the finite discon-
tinuity at ksly - n|=kz,=0 and the rapid variations
in K near kr,=0 cspecially for small values of
ksly- ml.  As will be seen, this behavior of the
kernel necessitates special ]mndhntf of the chord-
wise integrations over a range of values of ks[y- 7|
near y- n=0.




AERODYNAMIC FORCES ON OSCILLATING OR STEADY FINITE WINGS AT SUBSONIC SPEEDS 9

20—
ks|y -l
o]
el ——— o
. -_—-— .30
—--— 50
—---— 80
1.2+
P
=
]
A,
w gl
S
-
2
Ix
4l
Of= e ——
\‘F——\______,—
-
(0}
-4 . 1. A i !
-1.0 -.8 -6 -4 -2

(a) Real part.

Figure 1.—Variation of modified kernel funetion
for various values of ksly—n|.

WORKING FORM OF THE INTEGRAL EQUATION

The desired working form of the integral cqua-
tion (eq. (1)) 1s readily obtained by employing the
various ingredients in the forms arrived at in the
preceding sections. By making use of the down-
wash as expressed by equation (5), the lift dis-
tribution as expressed by equation (9), and the
kernel function as expressed by equation (15), the
integral equation may he written for the jth mode
of oscillation as

Br,) (2 +zk> hy, )

dn
f b, (y— f L0,V EKs(M, k,8,7)
sinf8de (24)

where

7 (M,ic,e,n):R[M,k, (r—e,,¢+bﬁ cos 0): s (Zl—n)]
0

As was remarked carlier, the presence of the

f(x‘[,k,.’l‘o,s']j—?}l) with kIO
AM=038,

. . 1 .
sccond-order singularily =" necessitates the
-"

use of the concept of the finite part of infinite inte-
grals indicated in equation (24) by the notation f

The concept, as here omploy(\d, is discussed, for
example, in references 11 and 25. Thus, the value

of the improper 1nlvﬂ'mlf (4 (n) o ; for aly<b is

obtained from the following llmlt.

L2 F(n)dn v=¢ F(n)dn
=tim| [0

RO
° Fip)dyg 2
+fw<y E e”’)] (25)

Equation (24) together with equation (25) con-
stitutes the desired working form of the integral
equation, The subscripts 7 on the modal function
k and on the lift function 7 in equation (24) indi-
cale that a solution for the pressure distribution
musi be obtained for each individual mode of
oscillation. In the discussions to follow, this will
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Fraure 1.-

be understood to be the case and the subscripts
will be dropped.

SOLUTION OF THE INTEGRAL EQUATION

When the expression for L(8,9) given by cqua-
tion (10) or (11) is substituted into equation (24),
the downwash is expressed as the following sum of
definite integrals:

_
Logmy1—n’dn

wy) _ {

T2 2 J:,, ()—1)°

J"f 1.(0)Ks (M,J,0,7)singde (26)
0

The next problem, then, is one of devising a prac-
tical scheme for accurately evaluating the inte-
grals,

The scheme of integration which has been de-
vised is simple in principle but because of the
many operations and parameters involved, it rep-
resents such a task of caleulation that it is feasi-
ble only with the use of high-speed computing
cquipment. Tt is well suited for such equipment,

Coneluded.

however, and once it is programed the approximate
lift distribution or its various integrated propertics
can be gencrated for a series of given mode shapes
in a very few minutes.

In discussing the procedure it is convenient to
separate the chordwise and spanwise integral
operations and to write equation (26) as

E(Jr,..?/);f‘ F(n)dy @7)

vV o Jay—n?
where

F(ﬂ) zzn) ; anrnnm\!mﬁfﬂ (”’) (28)

The function f.(n) in equation (28) is the chord-
wise integral and is defined by

foln)—= f L OROME 8 singds  (29)

EVALUATION OF THE CHORDWISE INTEGRAL

The integrals defined by equation (29) involve
no infinite singularities and can therefore be readily
evaluated by numerical means to any desired de-
gree of accuracy. In seleceting specific integration
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procedures to be employed, the characteristics of
the integrand should, of course, be kept in mind
and provision should be made for handling certain
special situations.  Specifically, proper account
must be taken of the finite discontinuity in the
kernel funetion at rg=y—5=0, indicated by cqua-
tion (18), and of the rapid variation in the kernel
near xy=0 for small values of k«]y—y|, indicated
in figure 1.

In the present procedure these characteristics
of the kernel are taken into account by performing
the chordwise integration in two steps for certain
ranges of values of ksly—9l. For this purpose
cquation (29) is written as

A _
fu(n)=f 12(0) Ko(M 1 ,8,m) sin 80
0
+f LB (M 0,m) sin0d0  (30)
b

where 6, denotes the value of 8 which corresponds
to #,=0. The value of 8, to be used in equation
30) can be obtained from cquation (7) as

f#l,=cos™! l:b% (gm—x)] (31)

By closely spacing the integration stations in
cach integral of equation (30) in the vicinity of
the end point 6, (as is done, e.g., in a Gaussian
procedure), the rtapid variation in the kernel
can be more accurately handled.

An appropriate range of values of ksly—n| over
which to employ the two-part chordwise integral
(eq. (30)) can be arrived at by examining plots
like those of figure 1. In the present procedure
equation (30) is being handled by (wo 10-point
Gaussian integrations in the region ksly—y/<0.3.
For larger wvalues of ksly—gl, the chordwise
integrals are being evaluated by use of equation
(29), with a single 10-point Gaussian integration.
The computing program of the present procedure
1s extremely flexible with regard to the number
of integration stations employed and can be casily
modified.

One remark concerning the application of
cquation (30) to swept configurations is perhaps
pertinent.  When a control point is near a leading
or trailing edge, it is possible for the line f=r
or 1,=0 to intersect the edge within the range of
7 values in which the two-part chordwise integra-
tion is used. In this event the argument of (he

inverse cosine in equation (31) will exceed +1.0.
In the computing program of the present procedure
provision is made for {esting the argument of the
inverse cosine and for performing the chordwise
integration in one part, by use of equation (29),

wherever 51)— |&m—] >1.0.
)

Some sample values of chordwise integrals
obtained by the present procedure are shown in
figure 2. The figure shows the products of the

factor \'T—7* and the chordwise integrals fo(n),
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Freure 2.—Variation of chordwise integrals f,(3) (eq. 29)
with 7 for a control point at =0.5 on a swept tapered
wing. MW=0.84;%k-0.3; 4=3.3.
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fi(m, and fi(n), defined by cquations (29) and
(30). These pmdm(x are shown as functions of %
for a tapered wing with straight edges. Note
that for this case there is a discontinuity in slope
of the curves al =0 which is due to the factor
b,/b in the 1ift funetion 7.(8,n). This factor is the
ratio of Toot chord to local chord and, for the
{ype of plan form treated, is discontinuous in
slope at the wing root.

It is remarked that in ecarlier unpublished
versions of the present plou\(luro the chordwise
integrals have been expressed in terms of the
algebraic form of the chordwise pressure modes
7,(8), defined by equation (14). The first mode
() contains a singularity at the leading cdge
which can be handled by subtraction and addition
in the integrand of the corresponding chordwise
integral. This is a straightforward step but it
leaves the integrand with infinite slope at the
point where the singularity cxisted.  As is well
known, for integration of such shapes, closely
spaced integration stations in the vieinity of the
infinite slope are needed to approach exact results.
Use of the angular variable 6, together with
Caussian integration procedures, should yield
more accurate results for a given number of
integration stations.

THE SPANWISE INTEGRATION

In order to accomplish the spanwise integration
it is convenient to divide the wing into several
regions as indicated in sketeh 3.

-1 0] +1
7
Sketeh 3.
Region T extends from p=—1 to =0 and is

employed to take into account a possible discon-
tinuity in slope at =0 which may arise from the
factor bo/b as indicated in the preceding section.
Region 11T extends a short distance ¢ on each side
of y, that is, from =y—¢ to n=y+¢ The
integrand of equation (27) for this region contains

the sccond-order singularity o )2, hence, this

region is intended to facilitate the evuluation of
the finite part of the improper integral.  Region T1
qlmpl\ fills the gap between regions T and T1T and
is absorbed into region TIT in cases for which the
control point is in the neighborhood of »=0.
Region IV fills the gap between region ITT and

7=1.0 and is absorbed into region ITT in cases for
\\}11(}1 the control point is near a wing tip. Note
that the function F(y) in regions I and IV is
characterized by an infinite slope at the wing tips
which arises from the factor 4/t —9%

In conformity with the four regions just dis-
cussed, the spanwise integral can be written as

v
s AT AE T TR
= ’7)
where
B AL e
e )Ly (33a)
#8 F(n)dn .
Tu= 331
11 \[) (y_n>2 (; ))
v+ T ] .
#f (y— v;)ﬂz (33¢)
v Fn)dn
= — 33d
v v+t y—m)* 33d)
First, the evaluation of the integrals 7y, Ip;, and

Iiv will be discussed. Then, the integral Ju,
which contains the singularity, will be treated.

The integrals 7;, Iy, and I;y are not singular
and can be readily evaluated by numerical means.
In the present procedure the function F(n) at
cach integration station within a particular region
is evaluated from equation (28), divided by the
appropriate value of (y—7)?%, and weighted by the
integrating factor for the station. Thus, the
integral Ty, for example, is expressed as

N
=234 F("”))z (39)
where the constants A, are the integrating factors
and g, indicates the coordinates of the integrating
stations appropriate to the N-point integration
rule being used.
With regard to appropriate values of N, it is
remarked that in the present procedure the span-
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wise integrals are also handled by Gaussian infe-
gration rules.  The number of integration stations
employed varies from region to region and depends
on the spanwise position of the control points and
on aspect ratio.  For aspeet ratios of the order of 4
or less, region I is being handled by a 10-point rule
regardless of control-point location; region 1T is
being handled by from a 3- to a 10-point rule, the
number inereasing as the control point is moved
outhoard; in region IV, even though the control
pointmay be well outhoard, at least a 5-point rule is
used to handle the aforementioned infinite slope at
the tip and the number of points is increased to 10
as the control point moves inboard.  For wings of
much higher aspect ratio the number of points used
m all three of the regions should be increased.
As in the case of the chordwise integrals, the span-
wise-integration scheme of the present procedure
is very flexible with regard to the number of
integration steps employed and the number can
be casily changed.

The integral Iy, which involves the singularity
at 9=y, is evaluated by employing a polynomial
to approximate F(y) over the region of integration.
This procedure permits the singular parts of 7,y to
be completely isolated and ecasily handled.  In the
present scheme F(y) is represented by a sixth-
degree polynomial that is readily determined by
use of Lagrange’s interpolation formula and is

z“\l (=17 (g—y+38)(n—y428)(n—y- o)
= pl(6—p)! =Y+ (3—p)é

XM=y (n—y—8)(n—y—28)(n—y—38) F, 4,
(35)

F(n)—

where § is the station interval (§=¢/3) and F,,,
denotes the value of the chordwise integral at sta-

tion p+1. These quantities are indieated in
sketeh 4.
fa
P s
£ ¢ ° Fq
3
7
r-4 y s+

Sketeh o,

In order to accomplish the integration use is
made of the identity 9=y—(y—=») so that the
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integral 7;;; ean be written as

L[ K0
M )t

1 v+t
~ gaf ; [go(y—m)* 801 (y—n)+ 8295 (y—1n)?
oy

+8* g (y— n)+5"</u/n+ Us f
v-tY—"n

Hodn
+J6f ¢ (y—n)? (36)

where cach term g is a certain linear combination of
the ordinates of F(5) and can be found by use of
equation (35). TFor the present discussion only
the final combination of the ordinates of F(y) is of
importance and the expressions for g need not he
writien,

The notation Sf‘ in equation (36) is meant (o

imply that a Cauchy principal value of an inte-
gral is to be taken.  For the integral involved the
Cauchy principal value is

fﬁ”ﬂ' dn :]im(f”_( ([—n+fy+36 _(177_
vyt Y1 e y-38Y "M vie Y—7
=lim[log 36—log e—log (—35)
>0
+log (—¢]=

The last integral in equation (36) involves the
singularity and is to be evaluated by use of the
concept of the finite part of infinite integrals.
Henee,

\/l/ﬂ i [ fwrﬂ& (,7,7 Q:I
fy r(J n)"’ 5 J 350 n)2 vie G—m)® e

0 (37

] —e ‘l u+3s 2 _2
—]1111(
eONY T Ny-35 Y Nype € D
(38)

The nonsingular integral in cquation (36) yields

1 vt
=6 [g0(y—n)* -89 (y—n)®

8" v-¢
+52.‘72(Z/—77)2+53!]3<?/““'7)‘|‘5494]‘[7I
=2 (1200,1- 1350, 4450 (39)

Thus, combining equations (37), (38), and (39)
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gives the integral Iy, as

2 . ) _
Lu=5; (729901359, +45g,—5g0) - (40)
This result may be expressed in terms of the
ordinates I, Fy, . F;of F(n) as

1

,;006(]3F1+72F2+495F‘3~ 1,360F - 1495 F;

L72F, H13F) (4D

hin=

The complete spanwise integral is given by the
sum of the results indieated by equation (34) for
1., Iy, and Iy and given by equation (41) for Jur
This sum expresses the downwash at the control
point. under consideration as a lincar algebraic
equation with the weighting factors a,, as un-
knowns.

In order to determine the values of the unknown
weighting factors @q,, the gsimplest procedure is to
seleet just as many control points as there are un-
knowns and to form and solve the set of simul-
tancous equations related to these points. This is
an arca where further work could be done in deter-
mining whether there is an optimum number of
control points for a given problem or whether
something like a least-squares approach might be
useful. These questions are not settled here; some
further remarks on the need for numerical research
are given in the next section.

REMARKS ON THE METHOD

The purpose of this section is to indicate briefly
some areas in which the need for further explora-
tory calculations and developments exists and to
provide some remarks on the use of the present
program.

AREAS FOR FURTHER NUMERICAL RESEARCH
AND DEVELOPMENT

The development of the method presented
herein has left untreated some cquestions and
problems which may arise in applications and
considerations of the procedure.  Among these
are the questions of optimum numbers or locations
of control points or of the number of pressure
modes necessary to assure salisfactory results for
a given case.

Unfortunately, it is not possible, at least at
this time, to give firm answers of general appli-
cability to such questions. It appears unlikely
that a general optimization of either control-point
location or number of pressure modes 1s feasible

but that cach plan form and downwash distribution
must be considered as a separate problem. Tt s
hoped that for general applications oplimization
will not be necessary but that satisfactory aceura-
cios can be obtained by employing a relatively
few pressure modes along with a well-scattered
pattern of control points.

A great deal seems fo hinge on the accuracy with
which the chosen lift functions represent the actual
lift distribution for a particular problem. As the
functions chosen to represent the lift become more
and more realistie, the locations of control points
should become less significant.  The lift functions
employed in the present proeedure are chosen with
a hope that the forms employed are at Ieast near
enough to reality to allow control points to be
seattered in a pattern which is adequate for
representing  the downwash distributions  en-
countered.  Applications of the procedure to the
cireular (or clliptical) plan form, for which some
results of analytic methods exist, might serve as
the basis for studies of such questions.

While the compuling program as it now exists
is directly applicable to controls such as all-
movable tails, there is a need for modifications
and extensions that will make it applicable to
controls in general.  This would involve the
determination of appropriate lift funetions for
handling various edge conditions which may be
involved in control problems.

More experience is needed in applying the
procedure to problems involving higher modes of
oscillation and the associated higher frequencies.
Presumably, for such problems, greater numbers of
control points and lift functions would be needed.
This, of course, implics an increase in the order of
the matrices to be handled and may lead to for-
mation of less well conditioned or even poorly
conditioned madrices.

Some study is also needed to determine the
benefits, if any, of the application of methods of
weighting, such as least squares, that might
permit evaluation of the unknown cocfficients
from a large number of control points rather than
from the minimum number required.

COMPUTING PROCEDURE

Asmentioned previously the procedure described
herein has been programed for the IBM 704
cloctronie data processing machine.  As presently
programed, provision has been made for the
inclusion of either three or four chordwise Iift
functions, logether with either three or four
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spanwise lift functions, in the series given by equa-
tion (10). This programing permits direet use of
cither 9, 12, or 16 control points.

The program proceeds in two steps: In one step
the surface integrals associated with each control
point and, thus, the cocfficient matrix of the
unknowns in the problem are generated; in the
second step the coefficient matrix is inverted and
combined with a number of sets of specified
downwash conditions to obtain the weighting
factors a,,, associated with each downwash con-
dition. The two steps are separate so that should
it be desired to apply, for example, a least-squares
approach, as many equations as desired can be
generated and an appropriate means of solving
them provided.

In most of the calculations performed thus far,
the usual practice has been to include three
chordwise terms and three spanwise terms of
equation (10) and to use these with just 9 control
points.  Usually the control points have been
placed at or near the ¥%-, - and ¥-chord stations
and at approximately the 0.2- 0.5-, and 0.8-
semispan stations. In the caleulations deseribed
herein for the ecircular plan form, a very limited
number of control-point variations have been
attempted. Calculations have been made with 9
control points located as just deseribed and with
9 control points arrayed as recommended in
reference 11, Caleulations have also been made
with 12 control points by adding 1 control point
at cach of the three span stations used in the 9-
point calculations and by distributing the points
chordwise in the manner recommended in refer-
ence 11, Tn this limited study, results obtained
for all coefficients varied by less than 2 pereent.

The calculations consume about 25 seconds of
machine time per control point when the numeri-
cal integrations are carried out with about the
number of integration steps indicated in the text,
Thus, about 4 minutes are required for the caley-
lations with 9 control points. This time includes
both program steps described in this seetion and
involves the application of about five sets of
downwash conditions in the second step.

The basic information provided by the comput-
ing program is a sct of values of the pressure
weighting factors a,, for ecach preseribed down-
wash distribution. The program can be readily
extended by the introduction of appropriate inte-
grating matrices, and with very little increase in
machine time, to yield any desired integrated

property of the pressure distribution such as sce-
tion or total lift and moment cocfficients or the
generalized forces required for flutter analysis.
NUMERICAL APPLICATIONS

In order to illustrate applications of the method,
results of several calculations are presented.
(Some of the results are taken from ref. 26; other
results are as yet unpublished.) TIn the illustra-
tions total forces and moments are compared (1)
with results of analytic procedures for a circular
plan form with steady downwash conditions, (2)
with results of other theories and with experi-
ments for a rectangular plan form of aspect ratio 1
at a uniform angle of attack, and (3) with some
experimental results for a rectangular plan form
of aspect ratio 2 undergoing pitching and flapping
oscillations. Also included are results of flutter
calculations compared with experiments for an all-
movable control surface of aspect ratio 3.50 and
for a cantilevered rectangular plan form of aspect

ratio 5.04.
THE CIRCULAR PLAN FORM

Of the few plan forms for which analytical
methods of treatment have been developed, one is
the circular plan form. A compilation of results
for the total lift and pitching moment on a circular
plan form in steady incompressible flow is given
in reference 9. The present procedure has been
applied to this configuration with two distribu-
tions of downwash. These are for (1) an unde-
formed surface at constant angle of attack, de-
fined by £ (z,y) ==, and (2) a surface with parabolic

2
camber deformation, defined by A(r, ) =:T2—-

Total lift and pitching-moment cocfficients and
the location of the center of pressure have been
obtained by the method presented herein and com-
pared with results listed in reference 9 from the
various analytic procedures.  For the undeformed
surface at constant angle of attack the results are
as follows:

Center of
pressure,
Source Cr,a Cr.a pereent,
chord
from lead-
ing edge
Kinner (ref. 27).____ 1. 8174 | 0. 9358 24,75
Schade and Krienes
(ref. Ty ____. 1.7984 | 9318 24, 60
Van Spicgel (ref. 9)__| 1. 7902 | . 9326 23. 95
LPresent. method_ ____ 1.7910 [ . 9389 23. 80
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For the surface with parabolic camber deforma-
tion the following results have been obtained:

Center of
pressure,
percent
chord
from lead-
ing edge

Source Cp .2 Car .t

Kinner {ref. 27)___. 0.9350 | —0. 4376 26. 60

Schade and
Krienes (ref. 7)__| . 9436 -, 4382 206. 80
—. 4388 26. 45

Van Spiegel (ref. 9). . 9326
—. 4463 26. 40 J

Present method_ .| . 9443

The results of the present method differ by less
than 2 percent from the results of the analytic
procedures.  All the results of the analytic pro-
cedures have been obtained by summing the first
fow terms of infinite series and, hence, are not
oxact. Wore more terms of the series taken, or
more significant figures carried in the calculations,
the last figure shown (and possibly the last two
figures) of the results of the analytic procedures
might change.

THE RECTANGULAR PLAN FORM OF ASPECT RATIO 1

Tu reference 28 results from various theories
hase been collected and compared with an extrap-
olated experimental result for the total lift and

~ center of pressure for a rectangular wing of aspect

ratio 1.0 at a constant angle of attack. One of
the tabulated results, obtained by use of the initial
computing program of the present procedure,
agreed poorly with the experimental result. In
the initial program chordwise integrations were
performed by use of Simpson’s rule with rather
widcly spaced intervals. In addition, the chord-
wise lift distribution was expressed in algebraic
form and the leading-edge singularity was ex-
tracted analytically. Such usage generally results
in a small loss of accuracy arising from the infinite
slope of the integrand at the leading and trailing
edges. In this case there scems to have been a
sensitivity to the loss ol accuracy. The current
computing program employs improved integration
techniques and yiclds a considerably better result,
as shown by the following comparison with some

of the results of the various procedures listed in reference 28:

l

. Center of

Source Cr.q, pressure,

percent
l chord

Txperiment (extrapolated) (ref. 28) - cemeona-- 1. 400 l 16. 00

Jones (zcro-aspect ratio) (ref. 20) e 1. 570 ] 0

Lawrence (ref. 30) - oo ccmcmommommmmem o m o 1.400 ;  17.00
o (ref. 19) « oo e 1. 497 ] 14 37
Present method (initial program) . .. ------- 1. 310 8. 7¢
Present method (current program). .- ----- 1. 453 I 17. 21

THE RECTANGULAR PLAN FORM OF ASPECT
RATIO 2—~COMPARISON OF THEORETICAL
AND EXPERIMENTAL AIR FORCES

The results of a number of experiments on
simulated two-dimensional wing models (wings
with end plates) are in good agreement with
theoretical two-dimensional oscillating air forees,
but relatively few experimental programs have
been carried out to measure the air forces on oscil-
lating finite wings. Among the few which do exist
is a systematic series of tests on rectangular semi-
span wing models of aspect ratio 2. Two modes
of oscillation have been studied: one, a pitching
oscillation about an axis along the midchord, and

the other, a flapping oscillation about an axis
inboard of the wing root and parallel to the stream
dircetion. The tests were conducted by two
coordinated techniques with semirigid spring-
mounted models. One technique was to force the
model to oscillate; then, the resonant frequency
was determined, the power input to the oscillator
was obtained, and the lift forces were measured
with strain gages. These values were compared
with tare values determined from a resonant oscil-
lation under vacuum conditions. The other
technique was to oscillate the model at its resonant
frequency, cut off the applied force, and record
the decay of the motion. By testing over a rangé
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of airspeed, results were obtained over a range
of reduced frequency.

The pitching wing.—The experimental results
for a midchord location of the piteh axis, obtained
in reference 31, are presented in figure 3 and are
compared with theoretical results for the kernel-
function procedure. Figure 3(a) gives the ampli-
tude and phase angle of the total lift coefficient
Cr.« plotted against the reciprocal of %, the re-
duced frequency, and includes a sketeh showing
the semispan model, the pitch axis, and the tunnel
wall. Figure 3(b) gives the amplitude and phase
angle of the total pitching-moment coefficient
Cyr,a. Also given along’ the abscissas of figures
3(a) and (b) are the test Much numbers corre-
sponding to various values of 1/k. The theoretical
curves were obtained by using the appropriate
Much number. The agreement of theory and ex-
periment is generally good but the results in figure
3(b) show appreciable scatter in the data.

The flapping wing.—In figure 4 the results from
reference 22 for a flapping mode of oscillation are
shown. Amplitudes and phase angles for the
total lift coefficient €}, and the total pitching-
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(a) Total lift coefficient.

Freure 3.—Comparison of theoretically and experi-
mentally determined lift and pitching-moment cocffi-
cients (amplitudes and phase angles) plotted against
I/k for a rectangular wing of aspeet ratio 2 oscillating
in pitch about midechord.
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(b) Total pitching-moment coefficient.

Fravre 3.—Concluded.

moment coefficient (% s (midchord axis) appear
in figures 4(a) andj 4(b), respectively, plotted
against the reduced frequeney k. Figure 4(a) also
includes a sketch of the semispan model, tunnel
rall, and the flapping axis behind the tunnel wall.
The test Mach number ranged only up to 0.41 and,
therefore, the theoretical curves woere determined
on the basis of M=0. The agreement of the-
oretical and experimental coefficient amplitudes
is good and the phase-angle agreement ranges from
good to fair. A considerable deerease in seatter
of the experimental data in comparison with the
data of figure 3 is evident and is believed to be
the result of improved experimental technique
and instrumentation achieved over a period of
time.

COMPARISON OF THEORETICAL AND EXPERIMENTAL

FLUTTER RESULTS

A number of applications of the kernel function
procedure have been made in caleulating flutter
boundaries, but relatively few published compari-
sons with experiment have been made available.
One such comparison appears in reference 23 for a
45° delta semispan model mounted as a cantilever
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Frorre +—Comparison of theorctically and experi-
mentally determined lift and pitching-moment cocffi-
cients (amplitudes and phase angles) plotted against k
for a rectangular plan form of aspeet ratio 2 undergoing
a flapping osecillation.
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Frevre 4.—Concluded.

at its root and tested at M=0.85. In this study
the theoretical boundary was found to be slightly
conservalive compared with the experimental
boundary. Another comparison of theory and
experiment, indicated in reference 26, is based on
a series of flutter experiments carried out in the
Langley 8-foot transonic pressure tunnel. The
model, shown schematically at the top of figure 5,
was a swept, tapered, all-movable control surface
with an aspeet ratio of 3.50. In figure 5 the

flutter-speed ratio L/_ and frequency ratio w/w,

bowsy/

are plotted against 7. The model mass ratio p
equals the mass of the model divided by the mass
of the air in a truncated cireular cone with the
local diameter equal to the local chord of the model.
The mass ratio g is included in the flutter-speed
ratio because wind-tunnel density had to be grad-
wally changed in order to obtain flutter at different
Mach numbers on the same model.  The second

o Experiment

—— Theory
.4r
i Unstable
JS, |
.. 3(\,; .3;_ O\
AN o
L Stable
" e L 1 L.
6~ o
!
3|3N 5
,4L A 1 1 ! i 1
6 .8 1.0 1.2

M

Tigurg 5.—Theoretically determined flutter-speed ratio

— —fr > wati ) in«
Doy and flutter-frequency ratio w/w; plotted against

M and compared with two flutter experiments on an all-
movable control-surface model.  (See ref. 26.) A=20°;
A=3.50; A=0.15.
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natural frequency w, is used because the second
natural mode most nearly resembled a pure pitch-
ing mode. The theoretical results shown were
obtained by using three natural modes. The speed
ratio is unconservative by a few pereent in com-
parison with the two experimental points shown;
the flutter frequencies agree quite well,

Another comparison between theoret ally and
experimentally determined flutter characteristics
1s shown in figure 6 for a cantilever-mounted rec-
tangular wing of aspect ratio 5.04. The cxXperi-
mental data in this figure represent a portion of
the results of a series of tests presented in reference
32. In figure 6 the stiffness-altitude parameter

T
T 0 Experiment
16— ||~ Theory
L2 f—f—o»>F 4 —
S
o S R S B S
&
8 e —
4._‘ —_—— — _—t ——f—— 1 | |
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— OJ
S — 4 —
4 \P{
N bt —¥*\—
> . IS N ]
(o} 2 4 .6 8 1.0
M
Fraure €, ~Theoretically determined stiffness-altitude

Dow, .
parameter —'(f\ﬁ and flutter-frequeney  ratio /w3

plotted aganist M and compared with flutter experi-
ments on a eantilever-mounted rectangular plan form of
aspeet ratio A of 5.01,

b%u'—z v and frequency ratio ww, are plotted against
L. For the configuration of this example, the
second natural mode of frequency w, is essentially
a pure torsion mode. The theoretical results
shown were obtained by using the first three un-
coupled modes of a uniform cantilover beam. For
the range of Mach number over which comparisons
are made, the theoretical values of the stiffness-
altitude parameter agree very well with the ex-
perimental values; the theoretical values of the
flutter-frequency ratio are within 10 pereent of the
experimental values,

CONCLUDING REMARKS

A detailed description has been given of the
numerical procedure employed in a solution of
the integral equation which relates oscillatory or
steady Tift and downwash distributions on finite
wings in subsonic flow. The procedure, which
has been programed for the TR 704 eleetronic
data processing machine, is applicable {o general
plan forms with either curved or straight leading
and trailing edges. While, as developed, the pro-
cedure is readily applicable 1o control surfaces
such as all-movable tails, modifications are needed
to apply it to controls in general.

The procedure has been applied to a number of
examples, some of which deal with the determina-
tion of integrated acrodynamic forces and moments
and some of which deal with applications to flutter
problems.  Integrated forces and moments ob-
tained for a eircular plan form are compared with
results of analytical procedures for some steady
downwash conditions; the results diffor by less
than 2 pereent. Integrated forces and moments
for rectangular plan forms are compared with ex-
periment or with other theories for steady flow
and for pitching and flapping oscillations.  Tn cach
instance the results are in generally good agree-
ment.

The flutter examples include comparisons of
caleulations with experiments for an all-movable
control surface and for a rectangular wing of aspect
ratio 5.04, both at high subsonic speeds.  For both
examples the theoretical results agree well with
the experimental results.

LaNGLEY RESEARCH CENTER, )
NATIONAL AERONAUTICS AND Spacs ADMINISTRATION,
LancLEY TreLD, Va., June 2, 1959,
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