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SUMMARY

A detailed description is giren of a method oJ

approximating solutions to the integral equation that

relates oscillatory or steady llft and downwash dis-

tributions on finite wings in subsonic flow. The

method oJ solution is applicable to general plan

_forms with either curved or straight leading and
trailing edges. _][oreover, it "is directly applicable

to control surfaces such as all-morable tails but

modifications are needed to apply it to controls in

general. Applications of the method involve evalua-

tions of numerous integrals that must be handled by

numerical procedures but systematic schemes of
eraluations have been adopted that are well suited

to the routines oJ automatic digital computing ma-
chines. These schemes of evaluation ha_,e been in-

corporated in a program.for an [B3I 704 electronic

data processing machine. With this machine, a

pressure distribution together with such quantities as

section or total b_ft and moment coeyScients or general-

ized .forces can be determined .for a given value oJ

frequency and 3[ach number and`for several (four or

rice) modes o`f oscillation in about _ minutes of ma-
chine time. In the case of steady downwash condi-

tions corresponding quantities can be obtained in

about 2 minutes of machine time.

In order to illustrate applications of the method,

results of seceral calculations are presented. Tn

these illustrations total`forces and moments are com-

pared (1) with results of analytic procedures `for a

circular plan`form with steady downwash conditions,

(2) with results of other theories and with experl-

ment`for a rectangular plan Jorm o`f aspect ratio 1 at a
uni`form angle _ attack, and (3) with some e_'peri-

mental results .for a rectangular plan `form off aspect

ratio 2 undergoing pitching and flapping oscilla-
tion,% Also included in the illustrations are re,_ults

of flutter calculations compared with experimental

results for an all-mocable control surface of aspect

ratio 3.50 and for a cantilevered rectangular plan
.form o`f a,_pect ratio 5.04.

INTRODUCTION

The equations that provide a basis for most of

the existing theoretical aerodynamics of lifting
surfaces result from a linearization of boundary-

value problems for velocity potentials. The
linearizations, of course, involve restrictions in

addition to that of neglecting viscosity, which is

required in formulating the potential equations in

the first place, but these restrictions are generally
necessary in order to simplify the problems to

tractable forms. A main advantage gained through
linearization is the principle of superposition,

inherent to linear differential equations, which

means not only that a given problem may be

broken down into a category of different problems,

which separate such parameters as thickness,

camber, and angle of attack, but, more signifi-
cantly for present purposes, that the ]inearizcd

boundary-wdue problem can be converted to an

integral equation; furthcrnmre, the linearized

differential equation is satisfied not only by the

velocity potential but Mso by the pressure or a

pressure potential so that the integral equation

can be formulated on the basis of either a velocity
potential or a pressure potential.

Even with the simplification and advantages

gained through linearization the lifting-surface

problem for oscillating wings lms been explicitly

solved for only a very few special wing plan forms.

These are the wing of infinite aspect ratio (rcfs. 1 to

3), the wing for which the flow normal to all edges

is supersonic (ref. 4), the wing of vanishingly small
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aspect ratio (refs. 5 and 6), and, for an incompres-

sible fluid, tile wing of circular plan form (refs. 7 to

9). Not only do these few solutions constitute

a small category but the prospects of obtaining

explicit solutions for more general or arbitrary

phm forms are extremely dim. In view of com-

puting equipment t.hat is now available, however,
t.here exists an excellent possibility of obtaining

solutions appropriate to any plan form by approxi-

male or numerical procedures that are s'gis-

factory for engineering purposes. A reliable

concept on which to base these procedures under-

lies such developments as those of Falkner (ref. 10)

and h[ulthopp (ref. 11) relating to steady finite

wings and tltat of Possio (ref. 12) relating to

oscillating wings of infinite aspect ratio.

This concept pertains to the boundary-wdue

problem for the pressure potential when expressed

as an integral equation that relates a prescribed
downwash distribution to an unknown lift distil-

bution. It is simply that from a knowledge of

the few known explMt solulions to the lifting-

surface problems the general character of the lift
dislrilmtion for various conditions can be sur-

mised; hence, by assuming that its general char-
actor is l<nown, the m_known lift, distribution can

be replaced by a sum of appropriately chosen

modes of lift functions, eaeh mode being weighted

by a conslan! coefficient that must yet be deter-

mined. Employing this concept or procedure
then allows the known downwash distribution to

be expressed as a sum of definite integrals with the
unknown coefl3cients appearing as factors of the

integrals. The definite integrals, however, are
extremely unwMdy and, in general, can be evah;-

ated only by approximate or numerical methods;

it is in this regard that various lifting-surface

methods, based on the concept under discussion,

have their basic differences (i.e., in regard to the
scheme or method by which integrations are

numerically accomplished). Falkner's procedure,

whieh has been extended to an oscillating finite

wing in an incompressible medium in rcferenee

13 and to an oscillating finite wing in a compress-

ible medium in reference 14, involves the use of
certain numerical integrating schemes which,

although relatiwqy simple to employ, depend in

part on two-dimensional aerodynamic considera-
tions and are difficult to assess with regard to

accuracy. In Multhopp's procedure, which has

been considered for the oseillating case in refer-

enees 15 to 19 and others, more straightforward

integrating schemes are used than are employed

in Falkner's method but 3IuMmpp's nwthod, as

he implies, is devised on the basis of a compromise

between accuracy of results m_d computing effort,

required. It. must be recalled, however, that both
the Falkner and Multhopp methods were formu-

lated at a time when high-speed computing equip-

meat was in an embryonic state of dewqopment.

Fortunately, with present-day computing equip-

ment, it is seldom necessary to sacrifice accuracy

of results for savings in labor of calculation.

In the present report a method is described in

which straightforward integrating schemes that
are well suited to the routines of high-speed

digital computing machines are employed. The

integrations can be made as accurate as desired;

the accuracy can be easily assessed by simply

changing the density of steps. The ntethod
applies to wings with oscillatory downwash condi-

tions as well as to wings witlt steady-state down-

wash conditions. It also applies, with appropriate

modifieations in chosen modes of lift and regions

of integration, to supersonic speeds as well as to
subsonic speeds; however, only subsonic speeds

are considered herein. The procedure is applieable

to general i)hm forms with either curved or straight

le_lding and trailing edges. Althougl_ it is readily

applicable to control surfaces such as all-mowd)lc

tails, modifications would tie needed to apply it.

to controls in general.
A brief discussion is presented of the inte_'al

equation under study; tim terms of the equation
are examined and put in convenient forms, and

h suitable working form of the equation is obtained.

The numerical processes involved in handling

this working form of the integral equation are
discussed in detail. Still left untreated are some

problems concerning the optimum number and
location of control points and the de_ee of con-

vergence of the process. Results of applying the
procedure are given for a variety of plan forms
and conditions. These hielude determinations of

aerodynamic forces and moments for some special
conditions and applications to some flutter

problems.

a

anm

SYMBOLS

aspect ratio, 41_/S
spanwise loading fimction in lift dis-

tribution (eq. (13))
velocity of sound, ft/sec
weighting factor in ;t.07)
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b local wing semiehord, ft

b0 wing root semiehord, ft

C_.qj, C._r.q_ complex total lift and pitching-
moment coefficients associated

with jth mode of oscillation; for

example, CL._j= (CL.q),+ i(CL._)_

[CL.@ICM.qj[ magnitudes of comt)lex lift and
pitching-moment coefficients; for
example,

lc ,d=4i(c .),]%[((:l,,,) ,1:

F(v) complete chordwise integral in work-

ing form of integral equation (eq.

(28))
Fp complete chordwise integral at sta-

tion p (eq. (35))

f,@) chordwise integral which involves
nth chordwise term in lift distrilm-

tion (cq. (29))

H(x,y,t) vertical displacement of wing surface,

positive (to_m, ft

h_(x,y) shape function of vertical displace-
ment in jth mode

/_(k,_]y-_I) modified Bessel function of first kind
of first order

I_,[m[m,[_v portions of spanwise inlegral (eq.

(32))
K_(k,_Iy--_I) modified Bessel fimction of second

ldnd of first order

K[M,k,xo, kernel function of integral equation,

s(y--_)] ft -2

_"[M',k,xo, modified kernel function (eq. (16))

,(y-n)l
Ko(M,k,O,v) modified kernel function in terms of

angular ehordwise coordinate 0

(see eq. (24))

k reduced frequency, booa/V

L total lift, positive down, lb

V 2

L_(kx]y--v]) modified Struve function of first m'der
L(O,,7) nondimensional lift. function (eq.

(10))
l wing semispan, ft,

late) ntt, chordwise pressure mode ex-
pressed in _ernls of angular chord-

wise variat)le 0 (eq. (12))

l',_(_) nth chordwise pressure mode ex-

pressed in algebraic form (eq. (14))
3[ Math number

M.

_p(_,,7,t),
@(o,,7,t)

S

8

t
V

'_(x,y)

x,_
X0_X--

Y,Y
z

0 --'_,,t'l __112

total pitching moment, positive nose

up, ft-lb

V 2

M.=p Z- She 52jb-oqj C.,_,_j

local pressure difference between top

and bottom surfaces of wing, posi-

tive down, lb/sq ft

generalized coordinate of jth degree
of freedom (as a subscriI)t, qj re-

placed by a denotes pitching, qj

rel)laced 1)3" ¢ denotes flapping, and

qj replaced by x _ denotes parabolic

camber deformation), _y_t, ft

area of wing surface, sq ft

ratio of wing semispan to root semi-

chord, l/bo

time, see

velocity of airstream, ft/see
amplitude function of prescribed

downwash, w(x,y,t)=g_(x,y)e _', ft/
see

ehordwise eoordina, tes referred to be

spanwise coordinates referred to 1
vertical coordinate (sketch 1)

spanwise interval between integra-

tion stations in region of span

which contains control point

_" semispan of region which contains

control point (sketch 4)

0 angular chordwise variable (eq. (7)
and sketch 2)

A angle of sweep of quarter-chord line,

measured from perpendicular to

stream direction, positive clock-

wise, deg

Tip chord
h taper ratio, Root chord

u model mass ratio (mass of nlodel

divided by mass of air in a circular

cone with local diameter equal to
local chord of model)

_t_(_),_,_(_), coordinates of leading edge, trailing
_,,,(n) edge, and midchord line, respec-

t ivdy
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p air density, slugs/eu ft

¢ generalized coordinate of angular dis-

placement in flapping oscillation;

z/H.p'x
usedhe,'ein, t.n- )

,pz.qj,,pM.qj phase angles between lift or pitching
moment and disp]aeemen! associ-

ated with jth mode of oscillation,
(leg; for example,

_,_.,j = tan-' (G._)_
(G,.,3_

w angular frequency, radians/sec

ws angular frequency in jth mode, ra-
dians/sec

Indices:

i,r imaginary and real components

j nmde of vibration under considera-
tion

n,m ehordwise and spanwise pressure

modes, respectively, in aerody-
namic quantities (see eq. (13))

x 2 indicates parabolic camber deforma-
tion

o_ indicates pitching

q, indicates flapping

THE INTEGRAL EQUATION RELATING LIFT AND
DOWNWASH

The linearized bounda_=value prol)h,m of de-

termining the forces on a wing with either oscil-
latory or steady downwash conditions can be

readily reduced to a problem of solving an inte_'al

equation that relates downwash and lift distribu-

lion. The purpose of this section is to introduce

this equation and to cast it in a desirable working
form.

PLAN FORM AND COORDINATE SYSTEM

Since the integral equation is derived in various
publications (e.g., in refs. 20 and 21), tire equation

will not be redcrived here but will t)e simply stated
in terms of dimensionless coordinates that are

pariieularly conveIfient for use in applications

pertaining to flutter. In keeping with linear

theory, the wing is considered as a plane impene-
trable surface S that lies nearly in the xy-plane as
indicated in sketch l. In accordance with the

common practice in analytical flutter studies of

defining disI)laeements and forces as positive

downward, the z-axis is taken to be positire

downward. Furthermore, the x,y,z coordinate

system and the surface S are assunled to move

in the negative x-direction at. a uniform velocity

[/_ ---

Zy, Zr_

/

. bOX ' bO(

t

z

Sketch 1.

V. It is remarked that the direction of the

z-axis differs from that employed in other treat-

meats (e.g., r(,f. 21) of the integral equation and
its kernel function. This difference will be seen

to h, ad to changes in sign in the kernel and in the

relation between dm_mwash and displacement

when this procedure is compared with tire treat-

ments in references 14, 22, and 23.

THE INTEGRAL EQUATION

With tire considerations mentioned in the pre-

ceding section, a convenient form of the inte_al

equation (obtained, e.g., fi'om eq. (1) of ref. 21)
may be formally written in terms of the unknown

pressure distribution Ap(_,S,t) as

w(x,y,t) bol f]V --47rpI "2 z

f _ te (n) --Ap (_,n,t)K[M,k,xo,s(y--n)] d_ d, (l)
dtQe(n)

where w(x,y,t) is the vertical velocity or down-

wash at. any point (x,y) on t.he wing, p is the fluid

density, and K[M,k, zo,._(y--,7)] is tire kernel

function of the integral equation. The quantit.y
Kj4_'pI (having the dimension of feet per second

per pound) is the mathematical expression for the

contribution to the downwash induced at. any

point (x,y) due to a unit force acting at any ot.lrer

point. ((,'7). In reference 21, K has been reduced
to forms suitabh, for numerical evaluation. In

equation (1), k is the reduced frequency boco/V; xo
denotes the quantity x--( in which x and f are
dimensionless ehordwise variables referred to the

root semiehord b0; y and n are dimensionless span-

wise variables referred to the semispan l, a con-

venient reference length in dealing with the span-
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wise integration (note that: this differs from the

usage of ref. 21 in whietl y and _/ are referred to

b0); ,_ is the ratio of semispan to root semichord

1�be; and _(_) and _,(_) are the chordwise co-

ordinates of the leading and trailing edges, re-

spectively.

A solution to the integral equation for a given
plan form, a known mode of oscillation, and a given

set of stream conditions requires a determination

of tile pressure distribution which will satisfy the

edge conditions appropriate to tile plan form and

flow regime under consideration and which, when

multil)lied by tile kernel function and integrated

over the plan form, will yield the downwash distil-

button corresponding to the mode of oscillation.

No means of solving the integral equation in an

exact analytic sense has yet been found and it has
therefore been necessary to resort, to approximate

or numerical procedures.

As stated in tile introduction, a. reliable concept

on which to base an approximate solution to the

integral equation involves expressing the unknown

lift distribution as a sum of appropriately chosen

modes of lift functions, each mode being weighted
by a const an t coefficient which must be determined.

Employing this concept, then allows the known

downwash distribution to be expressed as a sum

of definite laterals with the unknown coefficients

appearing as factors of these integrals. Once the

definite integrals are evaluated, the unknown co-

efficients can be readily (letermined by simple
collocation.

In order to cast equation (1) in a useful working
form it is convenient to consider first some desired

forms of the various ingredients of the equation,
namely, the downwash distribution, tile lift dis-

tribution, and the kernel function.

FORM OF DOWNWASH DISTRIBUTION

In order to obtain a desired form of the down-

wash distribution for use in equation (1), it is

assumed that the system under consideration is

undergoing a displacement H(.c,y,t) which may
bc represented by a superposition of either natural
or assumed modes of vibration so that

H (x,y,t)=h_ (x,y) q, (t) +h2 (x,y) q2 (t) +...

+hj(x,y)qj(t)+... (2)

where, for sinusoidal oscillations,

qj(t)='_f _t (3)

specifies tile magnitude of the displacement in

the jth mode, o_is the frequency of oscillation, and

hj(z,y) gives tile shape of the nmde.

The downwash w(x,v,t ) associated with the dis-
placement H(x,y,t) is given by

w(x,y,t) I/V b + b l lI (x,y,t)\ (4)5?/

or, with the use of equation (2),

w(_'t)=(_" + ik) [ h'(x'y) -q'(t)bo

+h2(x,y) q2(t)+.. "l (5)
be _1

In apt)lieation, each mode shape appearing in
equation (5) will be ]mndle(l separately. For con-

venienee the downwash associated with tim jth

mode may be defined as

V +ik h j(x,y) -q ) (6)

FORM OF LIFT DISTRIBUTION

The choice of the lift functions selected to ex-

press the unkno_l_ pressure distribution shouhl,

of course, be made with discretion because the

more compatible these functions are with the

actual loading the fewer will be required. As a

guide in selecting modes of lift, the character of
the lift distribution, at least in the neighborhood

of the wing edges, can be surmised from a knowl-

edge of the few exact solutions to lifting-surface

problems. For subsonic flow, the pressure or lift

distribution on a wing should tend to zero along

tra ilil_g edges and edges parallel to the stream
direction as lira _, where _ is the distance to the

t--)'0

wing edge. At the leading edge, the pressurc or
1

lift should behave as lira -w. A summation of

modes that satisfies these conditions and is otherwise

perfectly gene_'al is employed, for example, in refer-
ences 10, 13, and 14 and is used in the present

development.

Before introducing this summation of nmdes,
it is convenient to introduce an angular ehordwise

variable 0, shown in sketch 2.

The functions _(_), _,n(_), and _t_(_) in
sketch 2 represent equations of the leading edge,

midehord line, and trailing edge, respectively. It
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box, bo_

/y, l_

Sketch 2.

is noted that they may apply to plan forms with

curved edges as well as to those with straight

edges. The chordwisc coordinate _ may be ex-
pressed in terms of _,,01), b/be, and 0 through the
relation

b
_=_- _ocos e (0< o_-<_) (7)

Note that. _,_ and b/bo can be readily expressed in

terms of _,(n) and _,,(_/) as

g= j

The assumed pressure distribution of references

10, 13, and 14 employs the angular chordwisc
variable 0 and is of the form

wtmre

"_(Ln,t) =Ap(O,n,t) =4rpV 2_ L(O,n) q(t)-_o (9)

be _ 2 0
L(O,n)=_/1--n [ (aoo+vao_+n ao.2+ ...) eot_

+ (alo+van+v_a12+ . . .) sin 0+ . . .

4
--_-_ (a,o+ _a,a+ , a_2+ • • .)sin nO+ . . .]

(10)

in which the coefficients a,,, are unknown weight-

4
ing factors to be determined. (The factor@ of

sin n0, not employed in the cited references, is

used here for convenience.)

Equalion (10) can be written more concisely

by grouping the chordwise and spanwise pressure
modes to obtain

L(O,71)=_I,(O)An(V) (11)

in which

10(0)=cot (,=0) }
1.(O)=24_sin_O (n> 1)

and in which

(12)

.,1,(,7) =-(1-,_(a.o+,Ta., +... + n"a,,,+...)

= _/i-,? _ ,7"a,,. (_3)

Note tlmt in dealing with symmetric h)a(ling,

only even powers of n are retained in equation

(13); in dealing with antisymmetric loading, only

odd powers of v are retained. For either sym-
metric or antis3mnnetric loading, as will be ob-

served in the collocation procedure to be used, it

is necessary to consider control points on only one

wing panel.

It is remarked further that equations (7), (8),

and (12) may t)e used to obtain the following

corresponding algel)raic forms of the ehordwisc

pressure modes:

-(14)

and so forth. For application to the special case

of surfaces with straight leading and trailing edges,

the following definitions of 8z_ and 8,_ in terms of

the span-to-e]mrd rat io s, the taper ratio X, and the

sweep angle of the quarter-chord line A may be

[
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_,_=--l+lyi (,v tan A*-]-_ -_)

Equalion (9) and lhe assochiled def]nilhms

conslilule a useful form of tim assumed pressure

distril)ution. In order to proceed toward a

working form or equation (1), it remains to con-
sider the form of the kernel function.

FORM OF KERNEL FUNCTION

A satisfactory working form of tile kernel

function is obtained fi'om the expression for this

modified kerm,l function h" is defined as

]
2.eel6:

¢.ro 2-F_2._.2(y_ ,7)

7

function llllli is given by equalion (D8) of refer-
ont'e 21. For h, tev considerations it is convenient

Io have the kel'm,l function expressed in a sop-
araled form as

K ..... ,, K[M,k,zo,,<y--n)]

wliero ]'¢ (lenoles a modified feral of lilt' korno]

funclhm oi)lainod liy exlra, cling t'rom 1-_ l]io farlor

1

b02s2(y_ l#)i, As nlay be |toted, lhis faclor can

give Fist, loa second-order singularity all(|, ]lolice,

noeessilale lisp of the concept of l]lo "finile part

of infinilo inie_als" in inlegralions involving Hie

kernel funvlon For lile oscillalory ca.m, lho

<7,',(z,+z-<)+ 2 z,,.I:j--,I[I,(t-.<tz ,!)-L,(z-.,.l:z-,l)]+

' ['°--""°'+'-<'-°>], }
,a_sl__nl ' " "e "

d o _'I+r 2

where Kt and I, are modified Bessel funelions and

Lx is a modified Slruvo fuJietion, For the sleady"

case (k=0) the modified kernel fuliclion _ is
defined as

07)
2'0

0
K[M, ,.re, sty n)] = 1 +_(ro2+5_s=-(-y_ n)2

Examination of K shows tha.l, it eonlains no

infinite singularities but does possess one finite

singulariiy when xo---y--,l=O. This singularity
h,ads go no special difficulty, however, since it can

1)(, ]landled by making use of the following liniiiing
forms of It:

i

lhn K[M,k,x,,s(y--,7)]=2e _'o
Y--_I )0

lim K[_ll, k,.ro,._(y-- r/)]=O
y--q_.O

(1S)

Equation (15) and lhe associated definilions of

equations (16), (17), and (18) constitul, o the
desired working form of tile kernel function for

06)

use in lilt, hliegral equation. (Nolo thai in lhe

definilion of lile kernel tile sign differs fl'Olll thai

given in ref. 21. "Pills is a consequence of the

eonvenlion used heroin lhal forces are posilive
downward.)

Before relurning to the inleg'ral equation it is

dosirabh, Io discuss moans of evahlaiing some o£

l]ie funclions which appear in equation (16).
Firsl, lhe inlegral will lie Irealed; lhen, lhe Bcssol

function K,(k,,'!y-nl) and the combined function

will be discussed.
i

The integral in K.--It has not boon possible Io

evaluate the inlegn'M which appears in equa.llon

(16) in a,n exact analytical sense. Although tills
inlogral is of a. simple lype for numorh'al inlegra-

lion, ils evaluation can become tinle consuming

or burdensome, particularly w]lon the upper limit
becomes large. Ill the presenl procedure an

approximate, bul accurate, alternative approa(.]l
|ins been adol)ted.

By examination of equallon (16) it may tie soon

that if xo>:lD'ly--ll[, the upper linlil of the

integral is positive, bul if,0<.W.gv--,i, l.]io upper

536273 60 2
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limit is negative. For present 1)urposes it. is

desirabh_ {o express lhe i lllegral in a htl'm siieh
flint the integ'ration exten(|s only over positive

ranges, q'he integral is t]lus expressed as

(1.q)

find

_ii d - a 7"
-- e-n"qv-,i'dr (.ro_lI._'!!/-:,D (20)

_I1 + r 2

where

•TO •

r_','l.v- nl

d = 3 [ _'J-'o_+ Dt2s2(y - v) _
n-',_'lv-_1

lind

With these forms, the approach is to approximate

a part of the integrand by the following expres-
sion, whMl applies for all positive values of r:

r--L--- = I -- 0. I 01 e- °'a29_-- 0.899e- 1-_7r

--0.09480933e -2'9°' sin rr (21)

Tile expressions which result when equation (2l)

is substiluted inlo equations (19) and (20) are
readily inte_at)le hi closed form. The results

have been ineorporaled hl{o the conipulhlg pro-

grfini of lhe present procedln'e and need not be
wriilen here.

Tile apprnxhnalion given b 3 equalion (21) has

the same value as r il{_ (he lwo liniits r=0

and r--- co. 'I'1., mnxinulm doviaiion (if the npprox-

inlaiion fr(illl the value (if r is Mioul 0.24
_q + _:

pereenl hi {,he vicinity of r= 1.5.

The Bessel and Struve functions. For vahles

of k._ly-ill>O the modified Bessel function

tQ(k.,"ty _l) is evahiated byuse of series expressions

contained in a computing routine provided through
an organization enlh,d SIIARE made up of users

of the IBM 704 and 709 electronic dala process-

ing machines. _llqmn k._ly--llt=0 the product

ks',y-- n[IQ(k._!?l ,[) has a limiting value of unity.

Tlie eonltfined quantity I1--Ll con lie replaced

by a <h.finile integral, a convenient form of wili<'li

is ol)lained fi'onl a generiil expression for Iw L.

given in l'eferollCO 24 (p. 425). For the speda,l
ease v=l this definile inlegral is

L (z...,.h_--,I) -- L, @.,'IV-,I)

2/cs!y-- nl ["i2-- " e -kslv-'lle°s " Sill2a floe
/

_2ksly-,_l f_ ---_./1-- re e-ksl_-'_>dr
T¢

(22)

Earlier of tile integrals in flits equation can be

readily evaluated lay numerical integTntion meth-
otis lo any desired degree of aeeliraey or, alter-

nalively, an approximalion lo the integrand can

be used wllich is integral)h, in closed form. q']le

]aller procedure has been employed in the pr0senl,

program been,use it. is more eeonon)iea] of comput-

ing lime and is believed to be suMeiently aeellraie..
It has led to the following expression:

I_ (k,[y-nD - L, (ksly- ,ll)

2ks[y--'q I{ 1.0085 z'slv-nl-- _-. 1.3410+ l.OO50 k2s:(y__)2

+[7--0.$67o ]c,_ly-- n]

" 1._Tlo__ )A (2a)

The error of this approximation reaches a maxi-

mum of about 0.4 percent in the vieinily of

){'sly-- _1---4 and is less for both smalh,r and larger

vahles of the argument,. The overall effect of
this error in l he whole problem is minor.

An idea of the general cliaraeter of llie kernel K
can lie ]llld liy examining the curves shown in

figure 1. In this figure /lie real and inmgiimry

paris of K are plotted againsi./cx0 for sevel'a.l con-

slant va,hies of k._,lyii;], q'he partieuhu" vahles

shown are for n ._Iavll lnnnl)er of 0.S. The signifi-
canL features of these curves are tile finile discon-

tinui__ty at k._'ly vl=kx0=0 and the rapid variations
in K near /*'xo=O especially for small vnhles (if

k.,'[y- hi. ,is will be seen, this 1)eha,vior of t.he
kernel neeessila(es special handling of the chord-

wise integrntions over a range of values of k,_'[y- r/[

near y -_=0.
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/,,/ ..

/ J
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L J ___.i ' I I --_ -- _ J-...... I
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kx 0

(a) Real part.

FIC, VRn 1.--Variation of modified kernel function -K(3f, k,xo,s]y-_ D with kxo

for various valu(,s of ksly-_[. /1/=0.8.

WORKING FORM OF THE INTEGRAL EQUATION

The desired working form of the inlegral equa-

lion (eq. (l)) is readily obtaine(l ])y employing Ihe
various ingredienls in the forms arrived at in the

preceding sections. By making use of the dream-

wash as expressed by equation (5), the lift dis-

tribulion as expressed by equation (9), and the

kernel function as expressed by equation (15), t lie

inh,gral equation may ])e written for the jt]_ mode
of oscillation as

_fib ff_, bo Lj(e, ,7)K'e(M, k, 0, ,7)

sin ed0 (24)

where

"-_(3l,]c,O,,) K [31,k, (ae-- b,,+ _ cos O), ,_(y-- n) ]

As was remarke(l earlier, the presence of the

1

second-order singularity (y_rl) 2 necessitates the

use of the concept of the finite part of infinite inie-

grals indicated in equation (24) by the not,lion "[i"

The concept, as here enq)loyed, is discussed, for
example, in refi'renees 11 and 25. Thus, the value

of the improper inle_'al £b F(n) (In(y__rl) = for a<y<b is

obtaine(t from the folh)wing linfiI:

,_bF(n)dn ,. V f_-' F(n)<hl
,1_, 3 ___=llIll / / )2

b F(n)d,

Equalion (24) togefller with equation (25) con-

sfitutes the desired working form of lhe integral
equation. The subscripts j on the modal function

h and on the lift, function L in equation (24) indi-

cate that a solution for the pressure distribution
must be obtained for each individual mode of

oscillation. In tim discussions to follow, Otis will
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l(bl
-2.0 L_ 1 • 1. J l __ l _____L ____ 1 ___ I

-i.O -.8 -,6 -.4 -.E 0 ,2 ,4 .6 .B 1,0

kx 0

(b) hnaginary p'u't.

]TIC;L'RE I. Concluded.

be understood to be the ease and the subscripts

will be dropped.

SOLUTION OF THE INTEGRAL EQUATION

When ll,e expression for L(O,_) given by eq_m-

lion (10) or (l l)is substitute(l into equation (24),

ihc downwash is expressed as the following sum of

definite integrals:

(x,y) _ - n_<ln

(y-,7)'

f[ -/,,(0)K0(M,k,0,n) sin OdO (26)

The next problem, then, is one of devising a prac-

tical scheme for accurately evaluating the inte-

grals.

The scheme of integration which has been de-
vised is simple in principle but because of the

n'tany operations and parameters involved, it rep-
resents such a task of calculation that it is feast-

bit, only wit]) tim use of high-speed eompuling

equipment. It is well suited for such equipment,

however, and oncc it is programed the approximate

lift. dis! ribu tion or its various in tegra./ed propev!ies

can be generated for a series of given mode sha.pes

in a very fl,w minutes,

In discussing the procedure it is convenient to

separate the chordwise and spanwise inl(,gral
operations and Io write equallon (26) as

IV} IC l?O

_(x,y) :['i F(n)dn (2r)
I7 3--1 (Y--/./)2

F(,_)=_ 2E a,,,,,7°'_/i--,7%(,7) (2S)

The function f,,(n) in equation (28) is the chord-
wise integral and is defined by

,,(,7)=j,, l,,(o)K_(M,k,o,,l) sin odo (29)

_v,ttva_ow OF ru_ cno_mrtsE _NTEaRA_.

The integrals defined by equation (29) involve

no infinite singularities and can therefore t)e readily

evalualed by numerical means to an 3" desired de-

gree of accuracy. ]n selecting specific integra.tion
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procedures to be employed, the characteristics of

the integrand shouhl, of course, be kept in mind
and provision should be made for handling certain

special situations. Specifically, proper aceoun(

must be taken of the finile discontinuity in the

kernel function ai x0=-y--rj=0, indicated by equa-

tion (18), and of the rapid variation in the kernel
near z0=0 for small values of k._'[y--,l[, imlieated

in figure 1.
In the present procedure these eharaeteristics

of the kernel arc taken into account by performing

the ehordwise integration in two steps for certain

ranges of values of lcsly--rl!. For this purpose

equation (29) is written as

f,(,7)= fo°_l,/O)__o(AI, lc,o,rl) sin Od O

+ _fl,,(O)-Ro(3l, k,O,,7) si,,OdO (30) ___o

' where 0_ denotes the value of 0 which corresponds "°-4

to xo=0. The value of 0_ lo be used in equation

(30) can be obtained fronl equation (7) as
-g

C 30,=cos -_ g,, (_,_-_) (31) 2

By closely spa.eing 0w inWgralion siations in

each integral of equalion (30) in the vicinity of
the end point 0_ (as is done, e.g., in a Gaussian I_v. o

procedure), tile rapid variation in the kernel %
can be more accurately handled.

An appropriate range of values of kslg-n I over -:-z

which t,o employ the two-parl ehordwise integral

(eq. (30)) can be arrived at by examining plots
like those of fi_re 1. In the present procedure -4

equation (30) is being handled by two 10-point

Gaussian integrations in lhe region k,_,]y--_71<0.3. .I
For larger values (>f k._'I!/-rtl, the ehordwise

integrals are being evaluated by use of equalion

(29), with a, sit@e lO-poin! C,a,ussian into_'ntion. l_ o
The computing program of the present procedure

is extremely flexible with regard lo the number
of integration stations enq_l(>ye<l and can 1)e easil,,"

" ,_._-.I
modified.

One remark concerning the application of

equation (30) to swept configurations is perhaps

pertinent. When a control point is near a leading --_.o
or tra.iling edge, it. is possible for the line _:=x

or a%=0 to intersect the edge widdn tl_t' range of

values in which lhe two-part chordwise inlegra-

tion is used. In this event the argument of the

inverse cosine in equation (31) will exceed ± 1.0.

In the computing program of the present procedure

provision is made for (esting the argumenl of the
inverse cosine and for performing lhc <'hordwise

integratim_ in one pa,'t, by use of equation (29),
b

wl,erever _ I_,_--xl>l.0.

Some sample values of cho,'dwise integrals

ohtained by the present procedure are drown in

figure 2. The figure shows {lie products of the

factor x'l--r/2 an(l lhe chordwise integrals f,)(n),

Fie, urn.: 2.--Variati(m of chordwise inlegrals f,,(r_) (e(l. 29)

wilh _ for a control point at _=0.5 on a swept tapered

wing. 3I=0.8.1; k _0.3; A=3.3.
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f,@), and fi(v), defined 1)y equations (29) and
(30). These products are shown as fimetions of r/

for a tapered wing with straight edges. Note
tim! for tl,is case there is a dis(.ontinuity in slope

of the curves at v==0 which is (h,c to tim faefor

bo/b in the lift fun(.tion L(O,,1). This fa(qor is the

ratio of root chord to local chord and, for the

type of plan form lrealed, is disconlim)ous in

slope at the wing root.
It is remarked that in earlier unpublished

versions of the present procedure the chordwise

integrals have been expressed in terms of the

algebraic form of the chordwise pressure mo<les

7.(_), defined by equation (14). The first mode

_0(_) contains a singularity at the lea(ling edge

which ca,,be handled by subt,'aetionand addition

in the integq'and of the eor,'esponding chordwise
iniegral. This is a straightforward step but it

leaves th(_ integTand with infinite slope at llte

point where the singularily existed. As is well

known, for integration of such shapes, closely

spaced inlt,gralion stations in the vieimly of the
infinite sh>I)e are needed to approach exact results.

Use of the an_m,hu' variable O, together with

Gaussian integration procedures, should yichl

more accurate results for a given llllnlber ¢)f

integration stations.

THE SPANWISE INTEGRATION

In order to accomplish the spanwise integration

it is convenienI to divide the wing into several
regions as indiealed in sketch 3.

/4"- ¢

1 I I
-{ 0 +I

_7

Sk,'tch 3.

Region I extends from _=--1 to v--0 and is

employed to take into account a possible discon-

tinuity in slope at. 7=0 which may arise from the

factor both as indicated in the preceding section.

Region III extends a short distance i" on each side
of y, that is, from v=y-t" to v=yq-L The

in(egrand of equation (27) for tiffs region contains

1

the second-order singularity (y_v)_; hence, this

region is int(nded to facilitate the evaluation of

the finite part of the improper integral. Region II

simply fills the gap between regions 1 and II1 and

is at)so,'bed into region lII in cases for which the

control point is in the neighborhood of v--0.

Region IV fills the gap between region III and

v= 1.0 and is absorbed into ro_on IlI in eases for

which the control point is near a wing tip. Note
that the function F(v) in regions I anti IV is

characterized by an infinite slope at the wing tips

which arises from the factor-_--r/L

In conformity with the four regions just dis-

cussed, the spanwise integral e'm be written as

f.' _--F(n)(t_--I, 1 Iu+l,,,-k l, v (32)

V(] I el'e,

" F(+),I+ (33a)I,.- ., (,.,_n)_

f7 _ F(v),&IH= (',l-v):
(3:',)

.t' _+r F(v)d, (33e)
Ira:J( t (y_,_)2

i _[" F(,7)d, (33d>xv--

Firsl, tl_e ewduation of the integrals I_, Im and

/-_v will be discussed. Then, the integral Ira,

which contains the singularity,, will be treated.

The integrals I_, In, and /-iv are not singular
and can be readily evaluated by mmlcrical means.

In the present; procedure the function /7(,7) at

each talcum'alien station within a particular region

is evaluated from equation (28), divided by the

appropriate value of (g--v) =, and weighted by the
integrating factor for the station. Thus, the

integral/',, fl>r example, is expressed as

^T Y(v,)
I_ =>-_ A, (34)

.=, (y-_,)_

where the constants A, are tile inlegraling faelors

and r/, indicates the coordinates of the integrating

stations appropriate to the N-point integration

rule being used.

With regard to appropriate values of N, it is

remarked that in the present procedure the span-
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wise integrals are also handled by Gaussian inh,-

gralhm rules. The mmlber of inlegr'lihm slalions

employed varies from region to region and depends

on the spanwise position of lhc control Imints _md
on aspect ratio. For aspect ratios of the order of 4

or less, region I is being handh, d hy a I0-point rule

regardless of control-point loealion; region II is

being handh,d by from a 3- to a 10-point ruh,, the

number increasing as the control poin{ is moved

outboard; in region IV, even though the control

point may be well curl)card, at leas{ a 5-point rule is
used to handle the aforemcniioned turin{t(, slope al

the tip and the number of points is increased to 10

as the control pc{hi moves inboard. For wings of

much higher aspect ratio the number of points used

in all illree of the regions s]muhl be increased.

As in the case of Ihe clmrdwise integrals, the span-

wise-inlegration scheme of /lie present procedure

is very flexible with regard Co the number of
inlet'alien steps emph)yed and {he nmnl)er can

be easily changed.

The integral Ira, which involves the singulariiy

at _I=Y, is evaluated by employing a polynomial

to approximate F(_) over tile region of integration.

This procedure permits the singular parts of Ini to

be completely isolated and easily handled. In the
present scheme F(_) is represented by a sixth-

degree polynomial that is read{l,, _ determined by
use of Lagrange's inierpolation formula and is

lk (--I.)' (,7--y+36)(n--y+2_)(n--y:t-$)
F(,7)--_ p:,, p!(6-p)! ,7-y+ (3-p)_

X(n-y)(n--y-$)(n--y-25)(v y--36) Fp+,

(35)

where _ is the slat{on inierval (c3=_'/3) and F_,+I

denoles the value of the chordwise integral at sta-

tion p+l. These quaniities are indi('aled in
skeleh 4.

F,

F3 r_

r, _-2 t % _-(

Skt'L('h .1.

In order t.o accomplish the integration use is

made of the iden|ity r/=y--(y-rl) so that the

iniegra] Im can be wrillen as

, f_, f¢ l"('o)dn
6,,=;J ,_ r (y_,7)_

1 fu+i" [:/,,(?/-n)" t _<O,i-n)'_+&M?/-n) _
-Sgdu _

1
-Fg g_,Od- ,7)+ &hi,In + J_ YI I _7

.(,v+_ dn (36)
+g_ J_ __ (y-n) '_

where each term q is a eerlain linear combination of

lhe ordinates of F(n) an(l can be found by use of

equation (35). For the present discussion only

the Emil comb{hal{on of the ordinates of F(n) is of

importance and the expressions for g need not bc
wrillen,

The noialion (_ in eflualhm (36) is meant to

imply that a Cau(.hy principal value of an inte-

gral is to bc taken. For bile inlegral involved the

Cauehy principal value is

=lim {log 35--1og E--log (--3_)

+log (--_)]=0 (37)

The last iniegral in equation (36) involves {he

singularity and is t.o 1)e evahmtcd 1)y use of the

eoneeI)t of {.tie finite part of infinite inlegrals.

IIenee,

,£_+_ dn .. V i"_-' dn k [_+_ dn 27
,F _2_J iln i i
J'>rfy-n) ,->0LJu-a_(y-n) 2 Ju+, (y---n) _ d

/ 1 IU-, 1 f_r+_ 2", --2
=liin -- + ....

.>(,/?/-_7_-_, y-.,,+. ,) 3_

(3s)

The non,_ingular inlet'ill in equlltion (36) yiehls

1 ['u+l"
_ 3 .-_ [_,_,,(y-,_)' + ag, (v- ,7)"

+ _'g=(y-,_)'+ __g_(y-,D + a'o,]<t,7

2 (729go+135924-45g,) (39)

Thus, combining equations (37), (38), and (39)
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gives the int(,gral Im as

2 ,.,
Im =_ (, 29._,,,,-_-135g,+450,--5gc+ ) (40)

This resuh may be expressed in terms of the
ordinates /v, /,',,, . . f) <)f F(-q) as

!
Im _-_-_0_ (I 3F, +72F_q 49.5F:_-- 1,360F,. t 495F:,

-}-72F6 F ] 3F?) (41)

The complete spanwise integral is given by the

sum of the results indicated by equation (34) for

It, Im and [_v and given by equation (41) f<)r Ira.
This sum expresses the downwash at the control

petal under eonsideralion as a linear algebraic
equation with the weighting factors a ..... as un-
knowns.

In eli(letto de(ermine the "valuesof the unknown

weighting factors a, .... the siml)les( procedm'e is to

select jus( as many control points as there are un-
knowns a,d 1o form and solve the set of sintul-

(aneous equations relat('d to these points. This is
an area where fm'ther work eouhl be (lone in deter-

mining whether there is an optimum number of

control points for a given problem or w]wtber

something like a least-squares approach migh! be
useful. These questions are not settled hero; some
furtl)er remarks on the need for mmwrieM research

are given in the next section.

REMARKS ON THE METHOD

The pro'pose of this section is to indicate briefly
some areas in which the need fi)r further explora-

tory calculations and <[evelopnwnts exists and to

provide some remarks on the use of the present

program.

AREAS FOR FURTHER NUMERICAL RESEARCH

AND DEVELOPMENT

The development of the m<,tho<l presented

herein has h, ft untreated some queslions and

problems which may arise in al)plieations and

considerations of the pro<'edure. Among these

are the questions of optimum numbers or locations

of ('ontrol points or of the number of pressure
modes necessary 1o assure sat isfacto_ T results for

a given ease.

[Tnf<)rlunately, it, is not possible, at h,ast at

this time, t() give firm answers of general appli-

cability to such questions, tit appears unlikt,ly
that a general optimization of either co/re'el-point

location or number of pressure modes is feasible

but that each plan form and downwash <list rilmtion

must b(, considered as a s<,parate probh,m, l( is

hoped that for general qpplica(ions optimization

will not be necessary t)ut/hat satisfactory accura-

cies can be obtained by employing a relalivoly
few pressure modes al<mg with a wel]-s("_tterod

pal tern of conlrol petals.

A great deal seems to hinge on the accuracy uith
which the (,hose. lift f.m'tions represent the ael mfl

lift distribution for a particular probh,m. As the

functions chosen to represent the lift become more

and more realistic, the locations of control points

should become less sig.ifieant. The lift functions
employed in the present procedure are chosen with

a hope that the forms employed are at least near

enough to reality to allow control points to be

scattered in a pattern which is a dequa, te f<w

representing the downwash (list ribtd ions en-
cotmiered. Ai)l)lieations of the procedure to the

circular (or elliptical) plan form, for which some

results of analyii(, methods exist, might serve as
the basis for studies of such questions.

While the computing program as it now exists

is directly appli(_able to controls such as all-

movable tails, there is a need for modifications

and extensions tltat will make it appIieable to
controls in general. This would involve the

determination of appropriate lift. flmetions for

handling various edge conditions which may be

involved in control problems.

More experience is needed in apt)lying the
procedure to problems involving higher modes of
oseillalion and the associated higher frequencies.

Presumably, for such problems, greater numbers of
control points and lift functions wouhl be needed.
This, of course, implies an increase in the order of

the matrices to be handled and may lead to for-
maiion of less well conditioned or even poorly
conditioned mat rices.

Some study is also needed to determine lh<,
benefits, if any, of the application of metht.ls of

weighting, such as h, asI squares, that might
permit evalmttion of the unknown eoeMeients

from a large number of control pot,is rather than
from the minimum number required.

COMPUTING PROCEDURE

As me.tioned previously the procedure described

herein has been programed for the IBM 704

eh,etronic data i)rocessing machine. As presently
programed, provision has been made for the
inclusion of either three or four ehordwise lift

functions, together w-ith eitlwr three or four
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spanwiselift.functions,in the series given by equa-

tion (10). This pro_aming permits direct use of
either 9, 12, or 16 control points.

The progTam proceeds in two steps: In one step
the surface integrals associated with each control

point and, thus, tile coefficient, matrix of tim

unknm_-ns in the problem are generated; in the

second step the coefficient matrix is inverted and

combined with a number of sets of specified

downwash conditions to obtain the weighting
factors a,m associated with each downwash con-

dition. The two steps are separate so that should

it be desired to apply, for examph,, a least-squares

approach, as many equations as desired can be

generated and an appropriate means of solving
them provided.

In most of tile calculations performed thus far,
the usual practice has been to include three

chordwise terms and three spanwise terms of

equation (10) and to use these with just 9 control

points. Usually the control points have been

placed at or near the )_-, }_-, and /_{-chord stations

and at approximately the 0.2-, 0.5-, and 0.8-
semispan stations. In the calculations described

herein for the circular plan form, a very limited

number of control-point variations ]lave been

attempted. Calculations have been made with 9

control points located as just deserihed and with

9 control points arrayed as recommended in
reference I1. Calculations have also been made

with ]2 control points by adding 1 control point
at each of the three span stations used in the 0-

point calculations and hy distributing the points
chordwise in the manner recommended in refer-

ence 11. ]n this limited study, results obtained

for all coefficients varied by less than 2 percent,
The calculations consume about 25 seconds of

machine time per control point when the numeri-

cal integrations are carried out with about, the
number of integration steps indicated in gl_e text.

Thus, about 4 minutes are required for the calcu-
lations with 9 control points. This time includes

both prepare steps described in this section and
involves the application of about five sets of

downwash conditions in the second step.
The basic information provided by the comput-

ing program is a set of values of the pressure
weight.ing factors a=,_ for each prescribed down-

wash distribution. The program can be readily
extended by the introduction of appropriate inte-

grating matrices, and with very little increase in
machine time, to yMd any desired int.egrated

property of the pressure distribution such as see-
tion or total lift and moment coefficients or the

generalized forces required for flutter analysis.

NUMERICAL APPLICATIONS

In order to illustrate applications of the method,

results of several calculations arc presented.

(Some of the results are taken from ref. 26; other

results are as yet unpublislwd.) In the illustra-

tions total forces and moments are compared (l)

with reslflts of a imlytic procedures for a circular

plan form with steady downwash conditions, (2)
with results of other theories and with experi-

ments for a rectangular plan form of aspect ratio 1

at a uniform angle of attack, and (3) with some

experimental results for a rectangular plan form

of aspect ratio 2 undergoing pitching and flapping
oscillations. Also included are results of flutter

calculations compared with experiments for an all-
movable control surface of aspect ratio 3.50 and

for a cantilevered rectangular plan form of aspect
ratio 5.04.

THE CIRCULARPLAN FORM

Of the few plan forms for which analytical
methods of treatment have been developed, one is

the circular plan form. A compilation of results

for the total lift and pitching moment on a circular
plan form in steady incompressible flow is given

in reference 9. The present procedure has been

applied to this configuration with two distribu-

tions of downwash. These arc for (1) an unde-

formed surface at constant angle of attack, de-

fined by h(z,y) =z, and (2) a surface with parabolic

camber deformation, defined by h(.r, y)=X_.
2

Total lift. and pitching-moment coefficients and
the location of the center of pressure have been
obtained by the method presented herein and com-

pared with results listed in reference 9 fi'om the

various analytic procedures. For the undeformcd

surface at constant angle of attack the results are
as follows:

Source

Kinner (ref. 27) .....
Sehade and I_rienes

fief. 7) ...........
Van Spiegel fief. 9)__
Present method .....

CL, a

1.8174

1.7984
1.7902
1.7910

CM,ot

m

0.9358

.9318

.9326

.9389

Center of
pressure,
percent
chord

from lead-
ing edge

24. 75

24. 60
23.95
23. 80
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For tilt, surfa¢'e with pm'at)olic camber deforma-

tion the following results have been obtained:

_ollrce

Kinner (ref. 27)___
Schade aml

t(rienes (ref. 7)__
Van Spiegel (ref. 9)_
Present method___

CL, x 2

0. 935O

.9436

.9326

.9443

Cenior of

pre._._urc,
Ci,x_ percent

chord
from lead-

ing edge

--0. 4376 26. 60

--. 4382 26. 80

--. 4388 26. 45
--. 4463 26. 40

The results of the present method differ by less

than 2 percent from the results of the analytic
procedures. All the results of the amtlytic pro-

cedures have been obtained by summing the first
few terms of infinite series and, hence, are not
exact. Were more terms of the series laken, or

more significant figures carried in the calculations,
the last figure shown (and possibly the last two
figures) of the results of the analytic procedures

might (.hange.

THE RECTANGULAR PLAN FORM OF ASPECT RATIO 1

In reference 28 results h'om various theories

have been collected and compared with an extrap-

olated experimental result for the total lift and
center of pressure for a rectangular wing of aspect

ratio 1.0 at a constant angle of attack. One of

the tabulated results, obtained by use of the initial

computing program cf the present procedure,

agreed peony with the experimental result. In

the initial program ehordwise integrations were

performed by use of Simpson's rule with rather

widely spaced intervals. In addition, the chord-
wise lift distribution was expressed in algebraic

form _md the leading-edge singularity was ex-

tracted analytically. Such usage generally results

in a small loss of accuracy arising from the infinite

slope of the integrand at the leading and trailing

edges. In this ease there seems to have been a

sensitivity to the loss of accuracy. The current
computing program employs improved integration

techniques and yields _ considerably better result,

as shown by the following comparison with some

of the results of the various procedures listed in reference 28:

Source

Experiment (extrapolated) (rcf. 28) ..........
Jones (zero-aspect ratio) (ref. 29) ............
L:_wrence (ref. 30) .........................
Hsu (ret'. 19) ..............................
Present method (initial program) ............
Present method (current program) ...........

CL,q I

Center of

pressure,
percent

chord

16. 00
0

17. 00
14.37

8. 79
17. 21

THE RECTANGULAR PLAN FORM OF ASPECT

RATIO 2--COMPARISON OF THEORETICAL

AND EXPERIMENTAL AIR FORCES

The results of tt nuinber of experiments on

simulated two-dimensional wing models (wings

with end plates) are in good agreement with

theoretical two-dimensional oscillating air forces,

but relatively few experimental prog'rams have
been earned out to measure the air forces on oscil-

lating finite wings. Among the few which do exist

is a systematic series of tests on rectangular semi-

span wing models of aspect ratio 2. Two modes

of oscillation have been studied: one, a pitching

oseilb_tion about an axis along the ntidehord, and

the other, a flapping oscillation about an axis

inboard of the wing root and paralM to the stream

direction. The tests were conducted by two

coordinated techniques with semiNgid spring-

mounted models. One technique was to force the

model to oscillate; then, the resonant frequency
was determined, the power input to the oscillator

was obtained, and the lift. forces were measured

with strain gages. These values were compared
with tare values determined from a resonant oscil-
lation under vacuum conditions. The other

technique was to oscillate the mode at its resonant

frequency, cut off the applied force, and record

the decay of the motion. By testing over a range
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of airspeed, results were obtained over a range 3.0
of reduced frequency.

The pitching wing.--The experimental results

for a midchord location of the pitch axis, obtained 2.5

in reference 31, are presented in figure 3 and are

compared with theoretical results for the kernel- u_-2.o
ftmetion procedure. Figure 3(a) gives the ampli- -
tude and phase angle of the total lift coefficient

CL,, plotted against the reciprocal of k, the ire- 1.5

dueed frequency, and includes a sketch showing
the semispan model, the pitch axis, and the tunnel

I.O
wall. Figure 3(b) gives the amplitude and phase

angle of the total pitching-moment coefficient
O-

Cv,,. Also given along I the abscissas of figures
3(a) and (b) are the test X[ach numbers corre-

sponding to various wdues of 1/k. The theoretical

curves were obtained by using the appropriate _ -Io
Mach Immber. The agreement of theory and ex-

periment is generally good but the results in figure _"
3(b) show appreciable scatter in the data. -2o

The flapping wing.---In figure 4 the results from

reference 22 for a flapping mode of oscillation are

shown. Amplitudes and phase angles for the -30 °
total lift coefficient CL._ and the total pitching-

5-
O Experiment, reference 31

(torsion spring A)

4

5

22C

200

180
0

A4 _ .200 .575 .550
3)
__ 1 I .I

I 2 5
Ilk

(a) Totzt] lift coefficient.

FIGURE 3.--Comparison of theoretically

-- Theory

O O

O

I __J I__ __J __

Pitch

O0 J_ oxis

0 _-_ Tunnel wall

oO

0

.690
I J

4 5

•rod experi-

mentally determined lift and t)itching-moment coeffi-

cients (amplitudes and i)hase angh,s) plotted against

1/k for a rectangular wing of aspect ratio 2 oscill'tting
in pitch about midchord.

J

0 Experiment, reference 31

(torsion spring A)

-- Theory

0 0 0
0 0 0

0 0 0

0

___I __± I I

0 0 0 0

OO

b) M _.200 .3:5 .550 .690.... L 1
1 2 3 4

I/k

(b) Total I)itching-moment coefficient.

FIGURE 3.--Con('hld('d.

moment coefficient CM.+ (midehord axis) appear
in fgures 4(a) an(l] 4(b), respectively, plotted

against the reduced fi'equeney k. Figure 4(a) also

includes a sketch of the semispan model, tunnel
wall, and the flapping axis behind the hmncl wall.

The test Maeh number ranged only up to 0.41 and,
therefore, the theoretical curves were determined

on the basis of 3[=0. The agreement of the-

oretical and experimental coefficient, amplitudes

is good and the phase-angle agreement ranges from
good to fair. A eonsiderable decrease in scatter

of the experimental data in comparison with the

data of figure 3 is evident and is believed to be

the result of improved experimental technique
and instrumentation achieved over a period of
time.

COMPARISON OF THEORETICAL AND EXPERIMENTAL

FLUTTER RESULTS

A numl)er of applicaiions of the kernel function

procedure ]lalv0 been made in calculating flutter

boundaries, 1)ut relatively few published compari-
sons with experiment have been made availal)le.

One such comparison appears in reference 23 for
45 ° della semispan model mounted as a cantilever
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2.0-- O
O Experiment_ reference 2_2

-- Theory
1.6

-- 1.2 OJ

-i_ .s- o

0 t I I I i I

v

--Tunnel wall
O

o o
O

O /....-.--

.2 .4 .6 ,8 1.0

k

(a) Total lift coefficient.

FIGURE 4.--Campier|son of theoretically and experi-

mentally dctcrndned lift and l)itching-momcnt coeffi-

cients (amplitudes and phase angles) plotted against k

for a rectangular plan form of aspect r'ttio 2 undergoing

a fl_u)ping oscillation.

Axis of
)scillotion -

O-

.g -40

9-

{0)
--80 --

0

{.0-

,8

--.6

@

0 ExperimenI_ reference 22
-- Theory, M =0

I I L I I

at its root and tested at ,11r=0.85. In this study

the theoretical boundary was found to be slightly
conservative compared with the experimental
boundary. _Mmther comparison of theory and
experiment, indicated in reference 26, is based on
a series of flutter experiments carried out in the
Langley S-foot transonic pressure tunnel. The
model, shalom schematically at the top of figure 5,
was a swept, tapered, all-movable control surface
with an aspect ratio of 3.50. In figure 5 the

V

flutter-speed ratio _ and frequency ratio _/_

are plotted against M. The model mass ratio g
equals the mass of the model divided by the mass
of the air in a truncated circular cone with the

local diameter equal to the local chord of the model.
Tim mass ratio g is included in the flutter-speed
ratio because wind-tunnel density had to be grad-
ually dmnged in order to obtain fl,tter at different
X[ach numbers on the same model. Tim second

•4 F

3 _ .3

l

o Experiment

-- Theory

Unstable

o_
o _

Stable

__ l__.__J_ I J._

IO0

BO

60

_" 40

20

0 0 0
0

0

(bl
I l t I

.2 .4 .6 .B

k

(b) Total pitching-moment coefficient.

F rnL'mE 4.--Concluded.

I
1.0

.6 F-

k
t

!
.4L - _ ....

.6

0

1 __l 1 • I
.8 l.O 1.2

M

]PlGLrltE 5.--Theoretically determined flutter-speed ratio

V
and flutter-frequency ratio oa/¢o2 plotted against

M and compared with two flutter experimenis on an all-

mov:tble control-surface model. (See ref. 26.) A=20°;

A =3.50; X=0.15.
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natural frequency _a is used because the second
natural mode most nearly resembled a pure pitch-

ing mode. The theoretical results shown were
obtained by using three natural modes. The speed

ratio is unconservative by a few percent in com-

parison with the two experimental points shown;

the_ flutter frequencies agree quite well.
Another comparison between theoretically and

experimentally determined flutter characteristics

is shown in figure 6 for a cantilever-mounted ree-

tangular wing of aspect, ratio 5.04. The experi-

mental data in this figure represent a portion of

the results of a series of tests presented in referenee

32. In figure 6 the stiffness-altitude parameter

and frequency ratio w/w.a are plotted against

AI. For the configuration of this example, the

second natural mode of frequency we is essentially
a pure torsion mode. The theoretical results

shown were obtained by using the first three un-
coupled modes of n uniform cantilever beam. For

the range of %l-aeh number over which comparisons
are made, the theoretical values of the stiffness-

altitude parameter agree very well with the ex-

perimental values; the them'elieal values of the

fluth, r-frequency rat io are within 10 percent of the

experimental v_Iues.

CONCLUDING REMARKS

2.0

1.6

1.2

&
_of .s

.4

.6

.4

.2

0

-- Theory _ __ _ _

, I ¢I
....... _1 .... ,,- _.__q

...... A

I
i

i

-- --r_ _ ___A ......

i

I

-- -- --F---

--1-- I-

!
.2

!

' 1 i
.4 .6 .8

M
1,0

FmVaF, 6. ---Theoretictdly determined _tiffn('ss-altitudc

parameter-b°w_ and flutter-frequency raiio _,,%_
a

plotted "tganist 3I and compared wilh flutter experi-

ments on n eantil,,ver-mounted rectangular plan form of

,'a._pect ratio ,,| of 5.0,t.

A detailed description has been given of the
numerical procedure employed in a solution of

the integral equation which relates oscillatmT or
steady lift, "rod downwash distributions on finite

wings in subsonic flow. The procedure, which
has been programed for the IBN[ 704 electronic

data processing mac]fine, is applicable to general

plan forms with eilher curved or straight leading

and trailing edges. W]file, as developed, the pro-
eedure is readily applicable lo control surfaces

such as all-nmvable tails, modifications are needed

to apply it to eonlrols in general.

The procedure has been applied to a number of

examples, some of whicll deal with the determina-

tion of integrated aerod3mamic forces and moments
and some of which deal with applications to flutter

problems. Integrated forces and moments ob-

tained for a circular plan fm'm are compared with

results of analytical procedures for some steady

downwash conditions; the results differ hy less

than 2 percent. Integrated forces and moments
for reelangular pl.m forms are compared with ex-

periment or with other theories for steady flow
and for pitehing and flappingos('il]ations. In each

instance the results are in generally good a_'ee-
ment.

The ttulter examl)h,s include eoml)nrisons of
calculations with experiments for an all-movable

control surface and fro" a rectangular wing of aspect
ratio 5.04, both at high subsonic speeds. For both

examples the theoretical results agree well with

the experimental results.

LANGLEY I_ESEARCII CENTERt

_ATIONAL AERONAUTICS AND SPACE ADMINISTRATION 2

LANGLEY FIELI)_ VA., June 2, 1959.



20 TECHNICAL REPORT R--48--NATIONAL AERONAL'TICS AND SPACE ADMINISTRATION

L

.=

REFERENCES

1. Theodorsen, Theodore: GeDeral Theory of Aerody-

namic Instability and the Mechanism of Flutter.

NACA Rep. 496, 1935

2. Thnman, R., and Vail de Vooren, A. I.: Theory of the

Oscillating Wing With Aerodynamically Balanced

Control Surface in a Two-Dimensional, Subsonic,

Compressible Flow. Rep. F.54, Nationaal Lucht-

vaartlaboratorium (Amsterdam), June 1949.

3. Possio, Camille: The Aerodynamical Action on an

Oscillating Aerofoil a_ Supersonic Speed. Rep. No.

7668, British A.R.C., May 3, 1944. (From Acta,

Pont. Acad. Sci., vol. I, no. 11, 1937, pp. 93-106.)

4. Garrick, I. E., and Rubinow, S. I.: Theoretical Study

of Air Forces on an Oscillating or Steady Thin Wing

in a Supersonic Main Stream. NACA Rep. 872,

1947. (Supersedes NACA TN I383.)

5. Garrick, I. E.: Some Research on High-Speed Flutter.

Third Anglo-American Acre. Conf., Sept. 4-7, 1951

(Brighton, England). R.A.S., 1952, pp. 419-446J.

6. Merbt, H., and Landahl, M.: Aerodynamic Forces on

Oscillating Low Aspect Ratio Wings in Compressi-

ble Flow. KTH Acre TN 30, Div. Acre., Roy.

Inst. Tech. (Stockholm), 1953.

7. Schade, Tit., and Krienes, K.: The Oscillating Circular

Airfoil on the Basis of Potential Theory. NACA

T._I 1098, 1947.

8. Kochin, N. E.: Steady Vibrations of Wing of Circul.tr

Pl:m Form. Theory of Wing of Circuhr Plan Form.

NACA TM 1324, 1953.

9. Van Spiegel, E. : Theory of the Circular Wing in Steady

Incompressible Flow. NLL TN F.189, N'_tionaal

Luchtvaartlaboratorium (Amsterdam), Jan. 1957.

10. Falkner_ V. M.: The Calculation of Aerodynamic Load-

ing on Surfaces of A_y Shape. R. & M. No. 1910,

British A.R.C., Aug. 1943.

11. Mullhopp, H.: Methods for Calculating the Lift Dis-

tribution of Wings (Subsonic Lifting Surface

Theory). Rep. No. Acre. 2353, british R.A.E.,

Jan. 1950.

12. Possio, Camille: Aerodynamic Forces on an Oscillating

Profile in a Compressible Fhfid at Sub-sonic Speed.

Air .Ministry Translation :'70. 830, British A.R.C.,

Nov. 24, 1938. (From Volume Commemorative del

XXV Annuale del Labor.ttario di Aeronautica del R.

Politecnico di Torino. Turin 14-17, Oct. 1937, pp.

152-169.)

13. Lehrian, Doris E.: Calculation of Flutter Derivatives

for Wings of General Plan-Form. R. & M. No. 2961,

british A.R.C., 1958.

14. Runyan, IIarry L., and Woolston, i)onald S.: Method

for Calculating the Aerody,mmic Loading on an

0scillqting Finite Wing in Subsonic and Sonie Flow.

NACA Rep. 1322, 1957. (Supersedes NACA TN

3691.)

15. Garner, It. C.: Multhopp's Subsonic Lifting-Surf-tee

Theory of Wings in Slow Pitching Oscillations.

R. & -_'[. No. 2885, British A.R.C., 1956.

16. Allen, D. J.: The Application of Multhopp's Subsonic

f,ifting Surface Theory to the Calculation of tile

Aerodynamic Forces Acting on a Wing of Finite

Aspect R'_tio Oscillating in Arbitrary Elastic Modes

With Control Surface Freedom. Design Dept. Rep.

No. 1191, lIawker Aircraft, Ltd. [Kingston-on-

Thames, England], June 1953.

17, Richardson, a. R.: A Method for Calculating the Lift-

ing Forces on Wings (Unsteady Subsonic and Super-

sonic Lifting Surface Theory). Tcch. Office Rep.

No. 165, Tile Fairey Aviation Co., Ltd. (ltayes,

England), Apr. 1955.

18. Jordan, Peter F.: A Method for Determining Three-

Dimensional Flutter Coefficients for Wings of Arbi-

trary Planform in Incompressible Flow. WADC

Tcch. Rep. 57-228, ASTIA Doe. No. AD 142309,

U.S. Air Force, Jan. 1958.

19. IIsu, Pao-Tan: Flutter of Low-Aspect-Ratio Wings.

Part I--Ca]cu|ation of Pressure Distributions for

Oscillating Wings of Arbitrary Phmform in Subsonic

Flow by the Kernel-Function Method. Tech. Rep.

64-1 (Contract No. NOa(s) 55-771-c), Aeroelastie

and Structures Res. L'tb., M.I.T., Oct. 1957.

20. Kiissner, tI. G.: General Airfoil Theory. NACA TM

979, 1941.

21. Watkil_s, Charles E., Runyan, Harry L., and Woolston,

Donald S.: On the Kernel Function of the Integral

Equation Relating the Lift and Downwash Distribu-

tions of Oscillating Finite Wings in Subsonic Flow.

NACA Rep. 1234, 1955. (Supersedes NACA TN

3131.)

22. Woolston, Donald S., Clevenson, Sherman A., and

Leadbetter, Stunner A.: Analytical and Experi-

mental Investigation of Aerodynamic Forces and

Moments on Low-Aspect-Ratio Wings Undergoing

Flapping Oucillations. NACA TN 4302, 1958.

23. Woolston, Donald S., and Sew'ill, John L.: Use of the

Kernel Function in a Three-Dimensional Flutter

Analysis With Application to a Fluiter-Te,_ted

Delta-Wing Model. NACA TN 4395, 1958.

24. Watson, G. N.: A Treatise on the Theory of Bc_sel

Functions. Second ed., The Macmillan Co., I944

25. Mangler, K. W.: hnproper Integrals in Theoretical

Aerodynamics. Rep. No. Acre. 2424, British R.A.E.,

June 1951.

26. Cunningham, ]Ierbert J., and Woolston, Donald S.:

Developments in the Flutter Analysis of General

Plan Form Wings Using Unsteady Air Forces From

the Kernel Function Procedure. Prec. Nat. Spe-

cialists .Meeting on Dynamics and Acroelasticity

(Fort Worth, Texas), Inst. Acre. Sci., Nov. 1958,

pp. 27-36.

27. Kinner, W.: Die krcisfOrmige Tr'_gflgchc auf potential

thcoretischer Grundlage. Ing.-Archiv, Bd. VIII,

Iteft 1, Fell. t937, pp. 47-80.

28. Ilsu, Pao-Tan: Some Recent l)evclopments in the

Flutter Analysi_ of Low-Aspect-Ratio Wings. Prec.

Nat,. Speciali._ts .M'ceting on Dynamics and Acre-

elasticity (Fort Worth, Texas), Inst. Aero. Sci., Nov.

1958, pp. 7-26.

29. Jones, Robert T.: Properties of Low-Aspect-Ratio



AERODYNA_[IC FORCES ON OSCILLATING OR STEADY FINITE WINGS AT SUBSONIC SPEEDS 2]

Pointed Wiags at Speeds Below and Above the

Speed of Sound. NACA R('p. 835, 1946. (Super-

sedes NACA TN 1032.)

30. Lawrence, tI. R.: The Lift Distribution on Low A_pect

Ratio Wings at Subsonic Speeds. Jour. Aero. Sci.,

vol. 18, no. 10, Oct. 1951, pp. 683-695.

31. Widmayer, Edward, Jr., Clevenson, Sherman A., and

Leadbetter, Sumner A.: Some _[easuremcnts of

Aerodynamic :Forces and Moments at Subsonic

Speeds on a Rectangular Wing of Aspect R'_tio 2

Oscillating About the Midchord. NACA TN 4240,

1958. (Supersedes NACA RM L53F19.)

32. Doggct t, Ytobert V., Jr., Raincy, A. Gcraht, and Mor-

gan, IIomcr G.: An Experimental Investigation of

Aerodynamic Effects of Airfoil Thickness on Tran-

sonic Flutter Characieristics. NASA TM X-79, 1959.

US. GOVERNMENT PRINTING OFFICE:f960




