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SECOND-ORDER SLENDER-BODY THEORY—AXISYMMETRIC FLOW !

By Miurox D. Vax Dyke

SUMMARY

Slender-body theory for subsonic and swpersonie
flow past bodies of revolution is ertended to a second
approcimation.  Methods are developed for handling
the difficulties that arise at round ends.  Comparison
is made with experiment and with other theories for
several simple shapes,

INTRODUCTION

Slender-body theory is the useful approximation
introduced into flutd mechanies by NMunk (ref. 1)
for calculating the lift of airships, and extended to
stender lifting wings in compressible flow by Jones
fref. 2).  For such problems concerned with lift,
its simplicity is sueh that the solution is inde-
pendent of Mach number, and is found merely by
solving Laplace's equation in two dimensions.

The theory becomes only slightly more compli-
cated when the thickness of a body is of concern.
Then the solution includes a logarithmice term
proportional to cross-scctional area that varies
with Mach number, as was shown by Ward (ref.
3) in the case of supersonic flow past general
stender shapes. The analogous result for subsonic
flow was found independently by Keune (ref. 4),
Heaslet and Lomax (ref. 5), and Adams and Scars
(ref. 6).

Beeause stender-body theory is so simple and
useful, 1t is natural to attempt to improve its
accuracy by including nonlinear effeets m higher
approximations.  Thus, for bodies of revolution
in supersonic flow, Lighthill (ref. 7) found the
sccond-order slender-body solution for the cross-
flow due to incidence, and Broderick (ref. 8)
atiacked the flow at zero angle of attack. Re-
cently Lighthill has outlined the second approxima-
tion for supersonic flow past general shapes (ref.
9).  The only application to noncircular shapes is

tupersedes NACA Technieal Note 4281 by Milton DL Van Dyke, 1968,

the solution for the elliptic cone at zero incidence
(ref. 10). These four references constitute the
literature on this subjeet, aside from papers by
Adams and Sears (vef. 6), Legras (ref. 11), and
Keune (ref. 12), who ignore nonlinear effects and
seek only a closer approach to the full linearized
solution,

The present paper is devoted to second-order
slender-body theory in subsonie as well as super-
sonic flow, and is restricted to badies of revolution.
These are the simplest and most practical shapes,
and serve to illustrate the methods that will be
required later in treating bodies of genceral cross
seetion.  Only zero angle of attack is considered
hecause Lighthill’s treatment of the crossflow at
supersonie speeds is entirely satisfactory, and could
readily be extended to subsonic speeds. On the
other hand, Broderick's solution for the present
problem of zero incidence at supersonic speeds is
so cnormously more complicated than necessary
that it could probably never be applied to any
shape except the cone,

The formal theory set forth here is relatively
simple, being comprised in equations (1) to (13).
Clomplications appear, however, in the case of
stagnation points, to which a considerable portion
of the paper is devoted. Tt is shown that real
difficulties arise only for round noses, and that
for subsonic flow they can be overcome by com-
parison with the known solution for a paraboloid.
Only the region spanned by the body is con-
sidered, though the flow upstream and down-
stream could be treated in the same way.  The
second approximation, like the first, depends upon
an integral that 1s the counterpart for slender
bodics of revolution of the “airfoil integral’” of
subsonie thin-wing theory (ref. 13).

This investigation was begun in 1953, mspired
by a suggestion of Max. Heaslet, to whom the

1
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author is indebted also for subsequent helpful
discussions.  Some of the main results were pre-
sented at colloquia at the University of Man-
chester and Fort Halstead in 1954 and 1955,
Completion has been delayed by the search for a
method of treating round noses, which was only
recently found (ref. 14).

FORMAL SECOND APPROXIMATION
RESUME OF SECOND-ORDER PROBLEM

Consider a uniform  subsonic or supersonic
stream flowing past a slender bady of revolution
at zero angle of attack (fig. 1).  The question of

Fraure 1.-—-Notation for body of revolution.

just how smooth and slender it must be will be
considered later, but the nose (and, in subsonic
flow, also the tail), if not pointed, is assumed to be
no blunter than round.

Vorticity affeets the flow only in the sixth ap-
proximation, and below that the veloeity dis-
turbances induced by the body (referred to the
speed {7 of the free stream) are the gradient of a
perturbation potential &, Linearized theory is

concerned with a first approximation ¢ that
satisfies the Prandtl-Glauert equation,
2 ¢r_
-\ Jerrt ‘r”rr+",:—“ (1)

(Principal symbols are defined 1 appendix A.)
If one attempts to improve the linearized solution,
the second approximation ¢ must satisfy the
iteration equation (ref. 15)

2 QS,_ 2] « 'Y*l A T2
(=Mt +E=01 [z ( 5 M
+1_:\IJ) ‘P.r‘Prz+2‘Pr‘P.rr "IL‘Prz‘PnJ (:-4)

_! J _ e
2y gty g
gp(l‘,l'):
_ J T

The boundary conditions are that the perturba-
tion potential vanish radially far from the body
(nctually at the bow wave in supersonie flow),
and tha the flow be tangent at the surface. To
first- and second-order accuracy, this tangeney
conditio 1 18

o, =1 at r=R(r) (3a)
o=+ ) R’ at r="R{r) (3b)

With the veloeity potential determined, the pres-
sure coeffictent is given to second order by

( vpi - E(l’z"’ ¢r2* {1 “[2)S0r2’% “1[299:‘30}'% 1“‘12¢rl (4)

In the slender-body approximation the first
term in equation (1) can be negleeted, exeept
msofar as 1t appears in the distant boundary
condition.  Similarly, for second-order slender-
body theory, various terms in equation (2) can
be omitied (ref. ). However, this simphfication
18 unnecossary here because a particular integral
of equat on (2) itself is known; and it would actu-
ally complicate the distant boundary condition.

RESUNVE OF FIRST-ORDER SLENDER-BODY SOLUTION

Stender-body theory is a further simplification
beyond linearization that deseribes the flow only
in the immediate vicinity of the body  more
preeisely, within a distance from the axis of the
order of the loeal body radius. [t can therefore
be extrscted from the linearized solution by a
limiting  process.  Similarly, the
slender-body  theory sought here represents the
first twoe terms of an asvmptotic series, and can
be extracted from the full second-order solution.

For tae first-order slender-body  solution we
adopt th e procedure of Keune (ref. 4) and Heaslet
and Lormax (ref. 5) as being simpler and more

second-order

physical ¥ appealing than the methods of Fourier

and  Lanlace transformation.  The appropriate
solution Hf the linearized equation (1) that vanishes

far from the body is

B=+1—217 for subsonic flow

{5a)

B=yAM* -1 for supersonic flow (5b)
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This may be regarded as resulting from a distri-
bution along the axis of the body of sources of
strength proportional to a function F(r) that is
to be determined from the tangeney condition.
Differentiating and integrating with respeet to
rogives ®

AXISYMMETRIC FLOW 3

1) o5 J F(g) sinh—! B'Edé (6a)

o' rr)
‘r—Hr .
_OO;J F(&) cosh™t {B}-E de (6h)

Then approximating asvimptotically for small » in the integrand (and also in the upper hmit for

supersonie flow) gives, near the body,

i I'Vt i . ] 2 r— E‘
—3 oy ) (&) sgn (wr—¢) In S

b D YO i
_aa;- J Py n 28 g iy
This is the result of Heaslet and Lomax (ref. 5).
Alternative forms of the integrals that are a
great deal simpler for either analytical or numerical
evaluation were given by Schultz-Piszachich (ref.
16).  Excluding an infinitesimal neighborhood of
the point r=¢ from the range of integration,
carrying out the differentiation indicated in equa-
tions (7), adding and subtracting a logarithmic
term, and then allowing the excluded neighborhood
Lo vi amxh leads to

r .
Flnyln —- B S
2V(r—a)(b—u)
()
ela,r) =< +2 J.r—WE\ 4) dE (8a)
. Br AT
oy o [ )

The superiority of these forms is elear if /() is a
polynonual; then the integrands in equations (8)
are simply polynomials, whereas those in equations
(7) contain logarithms.

Imposing the first-order tangeney condition of
equation (3a) now determines the source strength
() in terms of the body radius R(r) as

F)= R R (o)

Henee the first-order slender-body solution has the
form

e=F(r)n r-GL) (9a)

2 If the body has pointed ends (so that F=0 there), the procedure can be

simplified, and it ix only necessary o integrate by parts. However, we
contemplate treating round ends also, at least in subsonic flow .,

dE=F(xr) In —'l—‘)ﬂo J F(g) sgn (r—g) In le—glde (7a)

-2 J Fie) In (r—t)dt (7h)
where
Flry= R (r) (9b)
f]"(.r) In — = ‘3 R
2\°(J‘—(l)(b—.1')
vh [«
Q)= 4! J = HE dE (%)
"o B e
LIy ) e . O o)

The pressure coefficient on the surface of the body
1s given by

(', =—2F"(5)In R(r)+G' (r)]—R*(x)  (10)

SECOND APPROXIMATION

The slender-body solution of equation (9a) is
clearly a solution of Laplace’s equation in the cross
plane, which is the Prandtl-Glauert equation (1)
with the term (1—23M?%)¢,, omitted (excepl insofar
as it is implicit in the boundary condition far from
the body). This linear term must therefore be
taken into account in the second approximation
in addition to the nonlincar terms on the right-
hand side of the iteration equation (2). Hence
the slender-body iteration equation is

bt &= aetar 21 ar

+1 *;\[2)<p;¢”+290r¢n +¢r2¢zr] (11)
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A particular integral for the linear term on the
right, which vanishes far from the body,
‘)), 3

s given

— 1 1=MHre =M= 1) Inr-- G —=F77)

A particular integral for the nonlinear terms is

known to be given by (ref. 15)

ol

=\I* l:(l"’ Inr4+G") (1" Inr+tG

1AL
Az [99: W+7_§' \[)

yi 1 ME N L
1y i )i

The complete second approximation is the sum of
these two particular integrals, plus a complemen-
tary solution that will have just the form of the
first approximation, equations (9). lHenee the
second-order slender-body solution for the pertur
bation potential is

Sy — (o ) Inr 4 (GHg) 4 (L

— U n e G —F) A [(/"' In»

e 1 £ ‘
+d) (e (1+A\ﬁ)—— o (12a)
where
r v+ 1 A2 -
N=——n= oA (12b)

Here f(o) is the second-order inerement in source
strength.  Imposing the tangency condition of
equation (3b) determines it as

Jl)y= (1 =2MHFF In R—MNFF’

3
a

U= MEFG - MG L

1

g (1 A\[)I”(F”lnll{ o

—yF) (20

&

3 This result van also be obtained by retaining secondary as well as leading
ferms of the expansions in any of the conventional derivations of slender-body
theory.,  If the Heaslet-Lomax method is followed, it is necessary to differ-
entinte and integrate with respeet to r, as in going from eyquations (5 to (61,
{wo more times inorder (o avoid divergent integrals,

Then g() is related to f{r) in the same way that
() sty Fr):

(" B8 fla —/(ED
fir)l )
) "2\‘(.,-—(”(1;4.,)+2 . = ¢t
12r[)
glr) = <
. B ) —J(E)
flr) 1112(\1_“)—%-1‘ P d¢
(12¢)

However, it will be seen later than this formal
result fails at round ends.  The proper expression
for ¢ for round ends will be given i equation (40)
for incompressible flow and equations (52) for
subsonie flow,

On the surface of the body the expression of
cquations 4y for the pressure coefficient ean be

simplified, using  the tangeney  conditions  of
cquatiors (3), to

Y s )/)

(—l)s:‘—‘ ry (42— A ‘Pf]

+ (M=), MR (13)
SLENDER-BODY INTEGRALS
The second-order, like the first-order slender-
body sol ition, is seen to require only the evaluation
of the “lender-body integrals”

AT A
AR Ef L('Iljtéi(g)»dg {subsonic)  (14a)
JHF (= Tl I dt  (supersonic)  (14h)
P

and thew first three derivatives with respeet to

», whicl involve integrals of the same form:

Iy i 4 i
I,f"zj (. — (g /E+1 (: —Fa) +L(3 1
° —ﬂ .L

(15a)

I A R EO R ¢ Flry—Fla) .

cte.

Note tiat only a single integral is actually
involvec, since the subsonic one is related to the
supersotic one by

D{FC) = F @) 5 F )}, ale<lb (16)

However, it is convenient to list both.
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As with the analogous airfoil integral of subsonie
thin-wing theory, these integrals can be evaluated
analytically for a wide variety of functions. A
short table is given in appendix B,

TRANSONIC APPROXIMATION

It will be seen in later examples that the
analyvtic form of the second approximation s
rather complicated even for simple shapes. A
further approximation that wvields considerable
analytic simplification and a remarkably elegant
result is that of the transonie small-disturbance
theory. In that approximation one retains of
the nonlinear terms only the one that is dominant
near Mach number unity, so that the full equation
of motion is simply

(l *4\12,) d’rr_}' (blr#’(?;r’* (,/'7‘

1) 9., (17)
In plane flow the accuracy is improved by keeping
a factor Af? in the right-hand term, but a test
with the exaet solution for cones in supersonic

SLENDER-BODY THEORY

“AXISYMMETRIC FLOW )

flow suggests that the advantage does not persist
in axisymmetric flow. The effeet of retaining
the M?is simply to change (y+1) to M*(y-+1) in
all that follows.

If one attempts to solve this simplified equation
by iteration on slender-body theory, the second
approximation is, from equations (12),

dlrr)=F+1Inrd+(G+g

N ],,f o Je! . ’ !
+2(}\12-1)1(1 Inr+4-G7) (18a)
where
=R (]8[))
fo— U e (18¢)
2Ny '

and G(r) and g(r) are related to £(r) and f(r) by
equations (9¢) and (9d) and (12d) and (12¢).

This result can be simplificd because the two
second-order terms in Ino# cancel. The second-
order increment in velocity potential is thus found
to be a funetion only of », given by

v+l [ F)—=FE FayFiry FboFy 1 Fa | 1 F? (b -
M=) U g (9('5*””’:,-_7{'"“" P e s s ELERL
Ab=eTe= 1T R — (e /(
Lyt L a) VA

e, J .r—s F(8)de+ ] M1 (19b)
Here a correction for round ends that will be approximation of transonic small-disturbance
devived later (egs. (52)) has been ineluded in the theory, by
subsonic case as the last two terms in the bracket C,—=—2¢,— " (20)

of equation (19a). A corresponding correction
should probably be found also for the supersonic
case; if so, equation (19h) does not apply to a
round nose and the last term might as well be
omitted.

This incremental potential may be regarded as
representing a plane wave standing normal to the
body axis whose amplitude is independent  of
radius  within the slender-body  approximation
(although it of course attenuates at distances
large compared with the local hody radius, where
that approximation fails). It can be shown that
this result holds also for bodies of general cross
section, where F(r) In equations (19) is A" (r)/27
if AA(r) is the cross-sectional area.

The surface pressure coefficient is given, in the

Near round ends in subsonie flow the first-order
pressure coellicient s infinite like »7') and the
second-order increment like 7% (so that neither
is integrable for drag). The same is true for a
romd nose in supersonie flow (exeept that, as
just remarked, the second-order increment given
above may not be even formally correct).

If round ends are exeluded,
sonic flow is integrable, and
Increment 1s given by

9 v+l Kb
[’ b

5 B F (6 (1,] 210)

"W -bl,
»J J

the drag in super-
the sccond-order

O o
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Just as in plane flow past an airfoil, this may be
cither positive or negative, according as the body
is fatter near its nose or tail. For if round tails
are also exeluded, setting £7(e) >F(—r) shows that
reversing the direction of flow changes the sign of
the drag increment of equation (21a).  This
means, i particular, that the supersonie drag
merement i zero for a body with fore-and-afi
svmimetry.

The corresponding expression for subsonic flow
(with round ends excluded so that the drag is
integrable) is

_ *hooh Ry e
;Z\zlr)'z:”ly_{'xifj J 1 ('T L;(g. Fr ) I da
(211

This differs from the second term in equation
(21a) only in having the absolute value signs.
As a consequence, however, it can be shown that
this drag inerement is zero in conformity with
1Y’ Alembert’s prineiple.

Oswatitseh and Berndt have shown (ref. 17)
that the transonie small-disturbance approxima-
tion together with the slender-body approxima-
tion implies a similarity rule for surface pressures
on aftinely related axisymmetrie bodies of thick-
ness ratio 7, according to which

« (VAR
by fo M - -

g = e[ Y ] (22)

T (y+-1)7?
Here 2 1s some function of the transonie similarity
parameter (M —1)/(y++1)7%  The present theory
gives the first two terms in an asvmplotic expan-
sion of the function P for large values of its argu-
ment.

EXAMPLES IN SUPERSONIC FLOW

RESTRICTIONS ON BODY SHAPE

Tt is implied in the slender-hody approximation
(as in lincarized theory) that the velocity dis-
turbances induced by the body are everywhere
small.  This imposes serious limitations on the
smoothness of the body, even in the first approxi-
mation.  Thus for bodies of revolution not only
must the slope 27 be small and continuous, but
the curvature /277 as well.  Supersonic noses must
be at least pointed (£ small), and supersonic

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

tails and subsonic noses and tails must actually
be cusped (f7=0)

[t is woll known in thin-wing theory that the
conditio s for linearization may he violated loeally
without destroving the wvalidity of the solution
as a whole.  This is true also of the first-order
slender-body  approximation.  One  can  permit
discontinuities in curvature and even slope, and
pointed and even round subsonie ends, provided
one atteches no significance to the result close to
the resulting singularity in pressure, or subse-
quently corrects the solution loeally by techniques
that have been developed for discontinuities in
slope in supersonic (ref. 18) and subsonic flow
(ref. 19) and for subsonice ends (ref. 20).  (Round
supersonic noses can probably also be permitted,
and could be corrected locally if the exact solution
were known for supersonie flow past a paraboloid
of revolution.)

In the second approximation of slender-body
theory (just as in thin-wing theory) the restrie-
tions b2 ome more severe, and the remedies cor-
respondingly  more complicated, and it s no
longer «hways true that the formal solution is
correct except locally. These  difficulties  are
greater for subsonic flow beeause not only are the
hodies of interest usually blunter (round noses
being the rule), but also the restrictions arve
greater (pointed noses being exceluded, whereas
they are admitted in supersonie {low since no
stagnation points appear).

Consequently, application of the present theory
to examples of subsonic {flow will bhe postponed
until nose corrections have been discussed.  To
illustrate the theory, a fow examples will now be
given for supersonic flow,  No difficulties appear
if the c¢ads are pointed, the meridian curve is
elsewher» analyvtic, and one does not Iinquire too
closely i1to the details of the flow near a pointed
tail—where the flow is actually subsonic and, in
any casc, the veal flow is determined by viscosity

CONE

Consider o cone whose slope is 8 (fig. 2), so that
the body is deseribed by =38z, With the origin

These re:trictions are somewhal more severe than those suggested hy
Ward (rel. 283, He permits discontinuities in curvature and pointed sub-
sonie ends, 1t it is readily verified that these both lead to logarithmically
infinite surfa e pressures.
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I'1GuRe 2.

-Supersonic flow past cone.

of coordinates at the vertex (@=0), the slender-
hody potential of equations (9) is

(,oxr~63.1<ln~+l) (23a)

Then equation (12¢) gives
flay— st 2ar—n) Iy SraeNtary |
(23h)

and  equations  (12) second-order

perturbation potential

give as the

I)’r

¢ (r)=8r ( ln +1 )+6‘.:'{A\[° In?

—[(ZUL

1;a+ ( lﬁ+1)_‘\1‘-'(.\f+1

The surface pressure coeflicient is, from equation
(13),

2
(7, =8 (" lll’];“—1>+54[;lg ]n-m

Y T & -
—(5M*—1) 1117—),—6—%.3;‘[2‘7\—{—»;1—-3[ +§ (23d)

which is the result first Broderick
(ref. 8).

Broderick has compared the first- and second-
order slender-body solutions with the exact re-
sults (ref. 22) for various cone angles.  Two cases
are reproduced in figures 3 and 4, and the second
approximation is seen to vield considerable im-
provement for moderate cone angles at speeds
below the hypersonic range.  Also shown are the

924097—60— 2

given by

THEORY -

SANISYMMETRIC FLOW 7

081‘

i

First-order slender-body
Second-order slender-body — — == — —
Full second-order
Exact (ref 22)

06 -

Frauvre 3. -Pressure on cone of 3° semivertex angle
(v - 1405,
5
g First-order stender-body  eovceerciminins
\ Second -order slender-body == = e ==
Co Full second-arder —_———-
s Exact (ret. 22) —_—

cone of 15° semivertex

4.—Pressure on
(v =1.405).

Ficure angle

results of the second-order theory that does not
involve the further approximation of slender-
body theory (ref. 15). The slender-body simplifi-
cation is seen to reduce the numerical accuracy
at high Mach numbers. The reason is that,
roughly speaking, linearized theory and its second-
order counterpart assume only that the thickness
ratio 7 is small, whereas the slender-body approxi-
mation implies also that Br is small (ref. 23).
The latter is a more serious restriction at Mach
numbers appreciably in excess of 2. In the
subsonic range, on the other hand, g cannot
exceed 1, so that the slender-body simplification
does  mot  significantly  reduce the numerieal
aeeuracy.
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The corresponding result in the transonte small-
disturbance approximation is found from equa-
tions (9 and (19), or simply by discarding all
second-order terms in  equations (23) except
those involving N and setting 3=1. The result
for surface pressure cocflicient is, in the similarity
form of equation (22),

M

( B2
ULI _pl. 2
(Y+1)6_2

=2In2—-1)+4- I

(24a)

This seties has been extended to a third approxi-
mation in unpublished work, giving

Y

Cy ,
S».‘_,»'+~z In (B8)=(2In2—1)

(VD N[+ D
D[R] e

Exact numerical solutions of the transonic small-
disturbance problem have been ealeulated by
Oswatitsch and Sjédin (vef. 24).  The comparison
of these results shown in figure & giv s an idea

2Or
£ xact ref. (24)
15k \
Thlrd‘ 8
M
i
[Z2¢]
Al
I
o~
§ 10
5
+ Second
~
<O
o -
< T~ S——
) =
kst order theory
| I Shock detachment (1.37)
— Sonic just behind shock (1.38)
| L | J
¢] 2 4 [3) 8

M2y +1)82

Frevre 5. -Correlation by transonic similarity rule of

pressure on cone: y=7/5.

of the extent to which the present theory can
penetrate into the transonic range.

As indicated in figure 5, detachment of the bow
shock wave and attainment of sonic flow just
behind the shock are both associated with a spe-
cific value of the transonie similarity parameter.
However, this is not true (in contrast to planc
flow) of the “upper critical Mach number” at
which sonic flow is attained at the surface. This
means that the limit of convergence of the small-
disturbance series (such as eq. (24b)) cannot be
associatad with the first appearance of a subsonic
zone in an otherwise supersonic flow field.

PARABOLIC SPINDLE

The analytic form of the second approximation
grows complicated for shapes other than the cone,
except in the further approximation of tran-
sonic small-disturbance theory.

Fravar 6. Supersonie flow past parabolic =pindle.

The analytic complexity of the full second
approximation will be illustrated for the spindle
formed by revolving a parabolic are (fig. 6}
Let it Te of unit length, with semivertex angle 6
(so tha: its thickness ratio 15 §;2) and choose
the origin of coordinates at the nose. Then the
body 1s described by

Rry=6r(1—ur) (25)
The firs t-order slender-body solution of equations
(9) is

¢

- [ (1—a)(1—2s) In {’:’+1~2 .,-+—1_v; .,-‘-'] (26)

The second approximation is found using equations
(12) torether with the integrals of appendix B.
Rather tedious computation gives as the surface
pressur coeflicient
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2

g2 o —
(', =38 |: {(1—6r+6% In —— T

—=3) (1= [Ly(0) + 3 In? (1 —0) ) 5-3.53° (1—2020(1—r) + 72221 —2) In?

2
F203 M —24) 04 (333311 M 22+ 2271 M*—333)* +4(99—76 M%) '] In (1
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1+161—22J]+64{"[(1 —2M3+6(TA—4)r(1—r) —30(5M?

- (1) (-5

|l

—4)(1+2r) ~5(54\12—3)(1—251— 31724250 (L—u) In (1—) 202 N[l—l.).l(l~J) +472(1— 1)

+<”M 41 )+[ 2704l +‘>1 ()1‘\[].1-1-[18(19“ 3202 In Ba+ 1

+[‘>>0(.> Mg +6‘ - \1] *—}—[170(3—0‘1[)1

Here Ly(2) is Euler's dilogarithm, defined by
n *1
R ] MO=H e j In¢ g (271)
n=l JO

Keune and Oswatitsch (ref. 25) have encountered
this function in their integral equation theory
for slender bodies of revolution in transonic flow.
They give a short table and references to further
tables of which Powell’s (ref. 26) is the most
useful.  In accord with the second-order simi-
larity rule (ref. 27), the surface pressure coofficient,
bas the general form,
::TZI’(J';Ifr)

' . M

aakal I XS R b AN ,)+('Y+1)7;7 ps )
(28a)

where 7 is the thickness ratio.  More specifically,
it has the form appropriate to smooth slender
hodies of revolution

(=7 (P Inr4+P,) +-r“[(p“+;\[‘-’p21) In? r
. . LM
+ (1112+X‘I'P22) In T+ s+ M pa+ (y+ 1) 7;?1‘3]
(28b)

Enormous simplification results from the ap-
proximation of transonic small-disturbance theor Y.
The second-order effect is then given by equation
(19a) as

___]( 1.) {fl‘ '3_4_/J4+v_f)

(29)

3227

)
L(ll;_si M 1(,()1] } (97a

B
Hence second-order effects alter the pressure
coefficient at any point by
Ay Cy=—2A,,== ";_{— ! S 1504020 944" -+ 4744
(30)

which is plotted in figure 7. Adding the first-order
contribution gives, on the Surfm'v,
— 14 160 -224° ]

2o 1) 4720~ 1)9]
(31)

C, = ["(1-—62 +62%) In ———
y+-1
i (5) -

Here the second-order term has been rewritten to
make clear that it is symmetric about the middle
of the body, as indicated in figure 7, and so con-

tributes nothing to the drag.

Ba(l

1.0
AZCp
Y+ 4
M2
SH
O \i/i | | | \y

Firavre 7. -Second-order increment in pressure on spindle.

Figure 8 compares this simple result with
Drougge’s measurements of pressure on g para-
bolic-are spindle of thickness ratio 1/6 at Af=1.15



10 TECHNICAL REPORT R 47

(ref. 28). It is remarkable that the first and
second approximations give successively more
accurate values in the region of subsonic flow,
which is of considerable extent because the free-
stream  Mach number is somewhat below the
value (1.18) for detachment of the bow wave.

& Sonic point for isentropic flow
N\ Sonic point behind normal shock

S
o0
A
First-order theory-
Second-order 1heory-Jl
3 L 1 1 | L
0 .2 4 6 8
x/1
Fiovre 8. Pressure on parabolic spindle with r—1/6 at
M==1.15.

SUBSONIC FLOW

It has already been pointed out that only under
rather severe restrictions on body smoothness will
the second-order slender-body solution be uni-
formly valid over the entire surface of the body.
Tn particular, it fails at least locally near stagna-

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

tion poirts, and these can scarcely be avoided in
practice for subsonic flows.  We therefore con-
sider to what extent the formal solution breaks
down— nd how it can be corrected  for subsome
flow past a body that has sharp (conical) or
round, rather than cusped, ends, but elsewhere
satisfies the smoothness requirements. (Viola-
tions of the restrictions elsewhere than at the
ends— for example, at discontinuities in slope--
could be treated by analogous methods; see refs.
18 and 19.)

FAILURE AT SUBSONIC ENDS

Just ss in plane flow (ref. 20) it turns out that
the formal sccond-order solution for a body with
stagnation points may have one of three degrees of
validity:

1. Valid except near stagnation points where
it predicts infinite surface speeds
2. Tnvalid everywhere, but finite except near
rtagmation points
3. .nfinite everywhere
These three cases are successively more serious
(and ar: accordingly associated with successively
greater blunting), except that the second is more
insidious than the third beeause it gives no warn-
ing.

The distribution of these three cases with respeet
to nose bluntness and Mach number is compared
in the following table with the corresponding
results for airfoils. A regular trend is apparent,
bodies heing at least as critical as airfoils, with the
one exception of sharp noses in subsonic flow.

1
1. Valid except near stagnation points,

" 2. Invalid everywhere, but finite exeept at |

staguation points. ‘

3. Infinite everywhere,

Bodies (nsing ¢)

sSharp, M =0
Sharp, M >0! ‘

Round, M =0 ‘

Round, M >0

‘ Airfoils
T T
| Using ¢ } Using ¢

Sharp, M==0
Round, M =0

sharp, M=0
sharp, M0
Round, M =0 |

|
Sharp, M >0 \

Round, M >0 w‘

Round, M >0

JR . —_— - - i

1 Except for this one case, placement in the first category has been definitely established by actual worked examples (using the Janzen-Rayleigh method)

In this exceptional case, the placement is based instead on the absence of algebraic singularitics, which might have to be modified by the source cigensolutions
diseussed below, from the secend-order solution given below for the spindle. It would be well however, to confirm this classification by carrying out the Junzen-
Rayleigh solution for a conical tip,
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There, however, the difficultics of case 2 do arise
in the various components of the solution but
happen to cancel in the net result.  (Fur thermore,
the corresponding airfoil problem could be put
into case 1 by manipulating, by partial Integration,
the integrals involved in th(- second-order theory. )

In the first case, local failure oceurs because the
true speed is proportional to z€ near a sharp nose

and to \/—_;—z near a round nose (where z is the
z+e

distance into the nose and e is proportional to the
body thickness), but the slender-body expansion
forces these into the formal series

2€=1+4¢1n z4+0(e)

\/P‘je’:] —i— Socey

which are not uniformly valid near z=0. Ree 0g-
nition of this source of the singularities permits
one to formulate simple rules for rendering the
formal solution uniformly valid, with the aid of
the correet solution for some sunpl(‘ body having
the same nose shape (refs, 20 and 13).

In the sccond case listed, the over-all failure
results from singular cigensolutions - extrancous
solutions that satisfy the second-order equation
and the slender-body boundary conditions. They
enter beeause of the inexactness of the slender-
body tangeney condition near the nose. The
eigensolution is a point source located at the st -
nation point if one works with the velocity poten-
tial (and a dipole if one works with the stream
function).  In plane flow there are at least three
simple wavs to exclude false cigensolutions, but
unfortunately none of them is applicable in axi-
symmetrie flow. First, the source eigensolution
can be excluded in plane flow by working with the
stream function (which imposes a condition on
mass flow that would be violated by an extrancous
source).  THowever, Stokes’ stream funct ion, which
should exclude source eigensolutions in the same
way for axisyvmmetrie flow, fails for other
to vield the correet second approximation (ref. 29).
dipole eigensolution ean
simply be deleted as inadmissible plane flow,
and the remainder is the correct solution.  In axi-
symmetric flow, however, the true slender- body
solution may contain a term indistinguishable from

reasons

S(‘('()H(l, lll(‘ souree ot

H24077—-60-—-3

"AXISYMMETRIC FLOW 11

an cigensolution.  Third, there exists a similarity
rule that relates surface quantities on a single plane
airfoil in subsonie flow to those in the (onvspond-
ing incompressible problem (ref. 13), which is
free of eigensolutions. No such rule exists for
bodies of revolution, however, nor does the diffi-
culty disappear at zero Mach number. Indeed,
it is only for round noses in incompressible ﬂow
that cigensolutions arise (see preceding table);
and they can therefore be handled by comparison
with the known solution for incompressible flow
past a paraboloid of revolution.

In the third case listed, divergent integrals arise
in the second approximation. They can be as-
signed a finite interpretation only by solving the
problem by another approximation—ecither the
Janzen-Rayleigh expansion in powers of M2, or the
full sccond-order theory without the slender-body
approximation. The Janzen-Rayleigh solution is
uniformly valid near the stagnation point, and the
second-order slender-body  solution ean be ex-
tracted from it using the second-order similarity
rule (ref. 27). The full second-order solution
mvolves source eigensolutions, but they can be
eliminated by requiring conservation of mass
within a large contour that lies everywhere far
from the region of nonuniformity at the nose.
(This eannot be done with the slender-body solu-
tion beeause it is not valid far from the body.)
Both these procedures have 1ecently been earried
out for the paraboloid of revolution, with identical
results (ref. 14). Tt will he shown here how any
other round-nosed body can he treated with the
aid of that solution.

SHARP ENDS—THE PARABOLIC SPINDLE

Sharp-ended bodies in subsonic flow have stag-
nation points, but the formal second approxima-
tion, like the first, is correet except very near the
tips (case L of the preceding table). It can he
corrected even there by simple rules (ref. 200,
However, the region is so minute (being of eXpo-
nentially >11)alll order in the body thickness) that
the correction is usunll_\' of no practical significance
and will be ignored here.

As an example; consider again the parabolic-are
spindle.  Beeause symmetrical bodies in subsonie
flow induce symmetrie disturbances, it is con-
venient to choose the origin at the middle (fig. 9).
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§ The slender-body solution of equation (9) is

) P ')
o= rf.r[ (1—s%) In~ 13; H‘ o l'] (33)

Froure 9.- -Subsonic flow past parabolie spindle,

The second approximation 1s found from equations

The spindle of thickness 7 is desceribed by .
! > ‘ (12) and appendix B. The result for the stream-

R@y=r(1—+% (32) wise veloeity component on the surface is
Yorasta—s)(2in T )+ B 44504 (w2 + 2 In? 2
= (=307 N T 450 = 2
U ) ) Br \‘ \12 4 Br \1
, R T B T \ 14
4202 — 1207415 (4 In® 1 ;r‘)_)_H1:)(.%7”‘”1)1,__(21 —41M% ] In Tffl—
. —ar 12 —r
5y 61 " g 615 797 137 494
(2= M) — (2713250 )2 oy (T M M)
[(‘z 5 -2 “+(‘2 2 \1—,+;s 24 "
BHN -41{ ) 1049 .t)‘) -

(PP n) (g ey M mm) } (34)
The pressure vcoetlic ient can be cateulated from (28).  The maximum velocity, which oceurs on
equation (4), and has again the form of equations the middle of the spindle, is given by

WUinax 2 2 A o 2 55 61 AN 1 4
~'",i:l+-r'(‘lln—f———3)+r4 1082 ln=————(—?)———) A )1 = f( - Jl)+-ii ” M| G
{ S B pr N2 pr
Again, enormous simiplication results from the
approximation of transonic small- disturbanee the- sl Second-order theory~
ory. The second-order effect is then found from
L‘quzm(m\ (19) to be the same in subsonic as n A
supersonie low. Tt is therefore given by equations Firet-order « ///
29) and (30), with 2 replaced by (14-x)/2 because 04 ) ' Keune 8
of the difference in coordinates, and e by 27 Oswanfsen
Hoenee the surface pressure coeflicient is given by B
,é fo) = | | 1
, ro. 2 ) , 3 4 5
(', 2 Ll}{.x'-— 1) (" ln ——- 7,——&) 24 “] 3
5— —
1 0y e e -04
lfr 3 =347 -H4TsY) (36) 04
—Ar
The spindle in subsonie flow has been treated in
-o8l-
the transonic small-disturbance upplt)\mmtlon
also by Keune and Oswatitse b (ref. 25), who solve
an approximate integral equation numerically. |
Their result for the perturbation velocity on a -2
14.6-pereent- -thick *])““”(‘ at M =090 (which is Fiqure 10 Pressure on parabolic spindle with 7

nearly the eritical Mach number) is shown in 0.146 at M=0.90.
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figure 10 to compare reasonably well with the
present result.®  In particular, their curve crosses
that of linearized theory twice on cach half of the
body, as the second-order solution does (fig. 7).

Drougge (ref. 28) has tested a parabolic spindle
truncated by a support sting (cf. fig. 8). If the
base lies at x=b (fig. 9), the first-order slender-
body solution gives

( I,:QT" [(3."“~ 1) In QZ—#(HII)(I’——JF

)= 31—y 11a% b ‘*b'] (37)

b—u

The algebraic singularity at the corner (r=b)
should be corrected by the techniques of references
19 and 20. In the second approximation the
corner introduces divergent integrals (Just as a
round  nose  does). This difficulty  has  been
avoided by using the second-order inerement for
the complete spindle (the second term in eq. (36)),
which should be a satisfactory approximation
away from the corner. The result 15 compared
in figure 11 with the measured pressures at M=
0.85, and the second-order terms are seen to m-
prove the agreement.

o]

7+

2/p,

6F
First-order theory—

5 1 | i 1

o] 2 4 6 .8
x/1

Fraure 11, -Pressure on parabolie spindle with 7=1/6

at M =0.85.
INCOMPRESSIBLE FLOW PAST PARABOLOID

Consider now the case in which eigensolutions
may invalidate the second approximation every-
where.  According to the preceding table, this
ase (case 2) can oceur only for round noses in
s Keune and Oswatitsch solve eqnation (17) with (y+1) replaced by M*

(1= (1 =A%), where M*2=(y 4+ 1 M224-(y— 1D M2 this change has there-
fore been made also in eqiration (36} in caleulating the curve in figure 10,

ANISYMMETRIC FLOW 13

incompressible flow.  We consider, therefore, first
the prototype of round-nose bodies, a paraboloid
of revolution.  With the nose at the origin, it may
be described by y=+2pr, where p is the nose
radius (fig. 12).  Although the infinite paraboloid

r=y/2px

Froure 12, Notation for paraboloid of revolution.
has properly no thickness ratio (or is an ellipsoid
of zero thickness ratio), v'p formally assumes that
role.  From equations (9) the first-order slender-
body potential is found to be, aside from an irrele-
vant constant (which ineludes the “infinite con-
stant”” — (p/2)In b of cq. (9¢))

- In r
A P x

(:38a)
Then from equations (12) the formal second ap-
proximation is found to be

{38h)

Here the second-order term is actually incorreet.
The exact perturbation potential for the paraboloid
in incompressible flow is known (e.g., from scpara-
tion of variables in parabolic coordinates) to be

q’:‘lz pln2 [r\/’<l—~‘12 pk)2+/"~'-‘(’_r_w

.

r

1 »r 1
=5 ol 4o (
(39)

Thus the formal solution of equation (38b) is seen
to be in error by a term p*f4r, which affects the
pressures everywhere.

This term is an cigensolution for the slender-
body problem, because it satisties trivially the equa-
tion. é,,-Fé,/r="0 without affecting the slender-
hody tangeney condition of equation (3a). More-
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over, it has the proper behavior at infinity, be-
cause it is in fact the slender-body representation
of a point source located at (or within a distance of
order p of) the origin,  Thus the exact perturba-
tion potential for a point source of strength p/4
located on the axis at r=Fkp is

y
‘l’:-l p* - E— P 100", pir?)
7 (r—kp)ttrt 4 r

Alternatively, the cigensolution may be regarded as
representing a second-order uncertainty in the lo-
cation of the nose.  For replacing x in equation
(38b) by r—(p/2) yields the correct result of equa-
tion (39).

EIGENSOLUTIONS AT ROUND ENDS IN INCOMPRESSIBLE

FLOW

The  extrancous eigensolution arises in  the
formal solution for the paraboloid because of the
inexactness of the tangency condition near the
nose; consequently, just the same error will arise
for any other body having a round nose of the
same radius. That is, the formal second-order
slender-body potential will be too small by an
amount
paf
M=)
where p, is the radius of the nose, loeated at
r=a. A corresponding error will arise at a round
rear end, where the eigensolution is the slender-
body representation of a sink rather than a source.
Henee, the formal solution of equations (12) can
be corrected by calenlating g(r) not from equation
(12d) but from

. | 1 (" () —f(5)
gir) fle) In + ) C
ey

2vtr ay(h-
1 pu! th )
— (40
+4(.r—~(l b )

This modification gives a solution that is valid
to sccond order except within a distance of the
order of the radius from either round end, wheroe
singularities remain. That s, removal of the
spurious eigensolution by means of equation (40)
reduces the difficulty from case 2 of the preceding
table to ease 1. For example, the surface speed
on a paraboloid of revolution is found, either from
equation (39) or simply from Munl’s rule (ref. 30)
that the speed on any ellipsoid subjected to in-

dt

compressible flow along an axis is the projeetion
of the maximum velocity, to be

q r 172 )
AN [ - 41
Lo to] i
Expanding this formally for small p yields
e ley 3
TR (41b)

and this is also the result of the present theory,
the first two terms being the usual slender-body
result, and the third the second-order increment
after removal of spurious eigensolutions. The re-
maining singularities are such that even in first-
order theory the integral for drag caleulated from
surface pressure is divergent (though this is not
a serious difficulty beeause the drag is known to
be zero).

RULES FOR RENDERING SOLUTION VALID NEAR ROUND ENDS

IN INCOMPRESSIBLE FLOW

The singularities remaining at » round nose can
be eliminated, and a uniformly valid approxima-
tion obtiined by applying simple rules to the
formal sclution.  Derivation of these rules re-
quires a Lnowledge of the exact solution for sone
body that matches the one under consideration
near its nose. The paraboloid of revolution is the
prototype of round-nosed axisvmmetrie bodies, Nt
was shown in reference 20 that the ratio of the
exaet solu tion for the paraboloid (eq. (41a)) to its
formal series expansion (eq. 41h)) serves as a
multiplic: tive correetion factor for any round-
nosedd bodv. This rule renders the solution correet
to seeond order ® for uncambered airfoils (to which
it also apolies), but only to first order for bodies
of revolution.

A second-order rule for bodies was derived (ref.
20) by considering the exact solution for an
ellipsoid (>r hyperboloid), which matches the nose
more clos ly than does a paraboloid. It should
be pointec out that in this ease one cannot stmply
use the retio of the exact solution to its formal
expansion because this would introduce a spurious
stagnatior point at the remote end of the ellipsoid.
What one actually requires is the exact solution
for a semi-infinite body that matches the nose to

G As pointed catin reference 20, the order of terms is counted in stueh o way
that disturbances in veloeity or pressure are always of first order  Thus 1
first-order term is only of 0(z2In 71 near the middle of 4 slender hody, but is
O(1) near a stagi ation point.
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the required order, and this can be extracted from
the solution for the ellipsoid.
The result is that for a body of revolution
having a round nose at =0, described by
P=Ir)=2px— B’ (42a)
the formal sccond-order slender-body  solution
“g," for surface speed is converted into a uni-
formly valid second approximation 7, by the rule

UES AN (hﬁ_A ) p_3
Ui\ U 72U N Mora
(42b)

where “‘q," is the first-order part of “¢,”

A body with two round ends can be treated
by applying this rule twice, shifting coordinates
so that in equations (42) r is always measured
into the end.  The result can be simplified some-
what to the following. For a body having round
nose and tail of radii p, and p, located at r=u
and r=4b:

[N S !
U VN (48
] ) ¥ " 1 "
§(>‘a+‘>\b) "[l]* S‘()\a o) )
(42¢)
N PN S
©2r—a) 4777 olb—r) T3

Corresponding rules for treating surface pres-
sure directly have been given for airfoils (ref. 13),
and could readily be deduced also for bodies.
Rules for treating sharp ends have been given in
reference 20; but, as discussed in connection with
the spindle, the region of nonuniformity is so
small as to be of no practical significance.

EXAMPLE: INCOMPRESSIBLE FLOW PAST ELLIPSOID

Consider
incompressible flow.

a slender ellipsoid of revolution in
With axes chosen as shown

Ficure 13, -FElliproid of revolution in subsonic flow.
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in figure 13. the cellinsoid of thickness ratio 7 is
deseribed by

r=R(r) =7y 1—a? (43)

Cquations (9) and (12) give

F(.I')i—TQJ' 3
Fr)=r2r(In 241 —s?—1) (442)
. 2 1
f(w):—r’(ln e
T & J
The radii of the nose and tail are p,=p,= 72, so
that equation (40) gives
. 201 P
]L~(J-):T"(1n S5 ) o (n 241 —aF—1)
. T <
1 xr )
__2 i 1:[‘5 1441))

Then from equation (12a) the second-order slender-
body solution for the perturbation potential is

=r? l:l -+ 73(111 f-l—%)] xr (ln 2 l:"r—-—-l )

g (1; . 7 1 O
It can be verified that this is the asymptotic ex-
pansion, to this order, of the known exact solution
for flow past an ellipsoid.

The streamwise velocity component and result-
ant speed on the surface are found to be

) > 9
'[',%;’2:]#“1'2(\]]1: >+r'[ln~' l):+f In ;
1 ax?

+ A,:I (45a)
(1 —u*

,—l-{»r [111-—— ]—} ]+r[ln-——
11 2 3 1 1 1 N
__2—-1"_7«_5]11; - g(l—.l*}z:l {45b)

Applying the rule of equation (42¢), with p,—p,=
H,=#,=7 gives the uniformly valid result for
surface speed (or pressure coefficient)

L_ 7
7=Vl

1472 (ln—-— )-{—r*ln (ln:)——j-

l:l+r e ‘{>+.) i_ ‘ljz):]'-’

(46a)
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The exact vesult is

Loy 75(‘( *h -

¢ " 1+T —risec och - j (46h)

“ﬁm Ei

As an extreme test, the approximate and exact
values are compared in the following table for an
ellipsoid of thickness ratio r=1/3:

L 0 0.4 0.8 0.9 0.95 0.98 1 1

i
QU [1.122 1,110 {1,025 (0. 924 [0. 788 0. 584
/U7 10 114 1103 1018 | . 918 | . 782 | . 580

\

i

. 1

| AR

0
0

SUBSONIC FLOW PAST PARABOLOID

The remaining case to be disposed of is that of
subsonic flow past a round nose. This is case 3
of the table on page 10, in which the formal second
approximation leads to divergent integrals.  This
will be illustrated for the paraboloid (fig. 12); and
comparison with the known correct solution will
again provide appropriate corrections,

The first-order stender-body solution for the
paraboloid is found to be independent of Mach
number, so that it is given by equation (38a).
However, the potential is indeterminate to within
an additive constant which was dropped there but
must now be retained for purposes of the com-
parison.  Hence the slender-body  potential is
written to include an arbitrary constant K as

o—p (; In ’7+A) (47)

In the second approximation, cquation (12¢)
gives as the inecrement in source strength
f(l‘):—'lnlzp"’l (48a)

: 4 £
and difficulties appear because this is not integra-

ble at the nose. The function g(r) of equation
(12d) may be written formally as

3
.«z(r)=§ r* (l 4”G+ o’{”t> (48b)

If € is here regarded as small, all difficulties have
been concentrated into an integral over a short
portion of the nose. The integral diverges so that
it is meaningless as it stands, nor can any a priori

NATIONAL AERONAUTIC
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significar ce be assigned to it as a finite part. The
proper it terpretation is rather to be found from
comparison with the known solution.

The formal second approximation of equation
(12a) thus becomes

1 z 1,
o=p (K'—E In p)—g B8p =

1 J1 /71 £ 4rt
+Z 3"[2;7‘ [} <2 In ;‘}+2" In EZZ“
on— 2K ‘%)—]i’] (48¢)
= J0

whereas the correet result has been shown to be
(ref. 14). aside from an irrelevant constant,

7.2

2
=3 oln 20l gt (220

_\[ [( :Pi’

These two expressions agree if the divergent in-
tegral is interpreted according to

"]n —{—n)——i' 49)

J ‘LE_,(U, n +1n 8”‘+4K (50)

EIGENSOLUTIONS AT ROUND ENDS IN SUBSONIC FLOW

Consider now the general ease of a body having
a round nose of radius p, at r=—« and a round tail
of radius p, at =5b. The second-order inerement
1o source strength () will consist of a regular
function fx (&) plus the singular terms

7o 1, Py pa -
f(l)_‘ijlﬁ(-b—jl‘_ **) (.)l)

These g.ve a divergent integral jo dE/E at either

end of the body.

Each of these integrals can be interpreted accord-
ing to equation (50) In terms of the corresponding
radius p. or p, and a constant K, or K, that can
be determined from the first-order solution. The
result is that in place of equation (12d), the func-
tion g(zx is given by

B 1 ["'f*(f)—.f*(SJ
y=fz) In R REAS et LA L)
‘(}(J) f z) 2. l(.l—(l)(b—.l 2. [ lf—ﬂ (E
Lo f oi [of B 8p; (r—a)* .
—i-gi\[ {I-—(Ll:z(‘\IQ n)—l—ln b—a) +4Ix,,]

. +4[’,,]} (52a)

8pp (b—
[ (MZ —n —Hn g;(b



SECOND-ORDER SLENDER-BODY

where
) — . 1 12 ’ Ph Pf -
f* (l)—f(l)—"ijl (b—’l‘ ;_’*{;) (v)-.)tl))
. . 1 1 e
[\,,;—_lllll[p— G(r) +;)~ln (.r~(1):| (52¢)

Ay==lim
ol

——GJy+1n'_n] (52d)
P
As U tends to zero this reduces (o equation (40).
As in incompressible flow, this modification ren-
ders the solution valid 10 sceond order except
within a distance of the order of the radius from
either end.  (Case 3 of the table on page 10 has
been reduced to case 1.)  The surface speed again
contains singularities like (r—a)~'in the first-order
terms and (z—ae)~* in the second-order terms (ef.
eq. (41b)). These can be eliminated, and the solu-
tion rendered uniformly valid, by a rule corre-
sponding to equations (42).  Derivation of the
second-order form of this rule makes use of the
formal solution for the ellipsoid, which must there-
fore be found first.

EXAMPLE: SUBSONIC FLOW PAST ELLIPSOID

Consider subsonic flow past the slender ellipsoid
of revolution of figure 13. According to equations

(99, the first-order source strength F'(r) Is un-
glry= — l:(.l\I*-l) In ﬁ——}— MOi—1)— :I(]n

=5 \[-’H(ln ™ ].,_J.--i-

THEORY-
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changed from the incompressible value of equation
(44a), and G(x) is modified only by insertion of a
factor B, so that

Flr)y=—r%r

Q)= rir (1 n ?w%—,:ri_ 1)

The coefficients of the constant terms in (I(x) at
the ends are, from equations (52¢) and (h2d),

(530}

K,=K,=1-+In 55 (53b)
..r‘v‘..

Equation (12¢) gives as the formal second-order

inerement in source strength

flry=+%r [(2;\[2— 1 In Ef—}—;\ﬁ(n—— ])-—ll—:,
Br 2

1 ,
+S A2t i _J;_l-' (53 c)

The quantity in brackets is the fi () required in
equation (52a), and the remainder is the singular
terms of equations (51) and (52h) that lead to
divergent integrals.  The integral in equation
(52a) is trivial (being a multiple of the first-order
one), with the result that

l 0 g A
l) [3 T 1—
In 1+ In

. oy () In (1—0) 50
_)*—Il) l:‘l“'+4 A‘[ T 1-~',l' = *:I (v)‘)(l)

Finally, equation (12a) gives as the second-order slender-body perturbation potential

, . _ 2 ‘ 1 241
¢fr~’{ 1—7? I:(2J/~'¥ D) In -4 M —1 )—_,]}.r <1n
Br 2

—;13 Bt ]i‘,’_-_)-i—ll" [:(ln -\71:17

e

t
L
N
—
=
=
=
P
»‘r—l“




18 TECHNICAL REPORT R-47--NATIONAL

As a partial eheek, it may be noted that this result conforms to the second-order similarity rule (ref.
On the surface of the ellipsoid

d—at 11 +J] In 2
(1—a%)? 2 . 8

31— Hut

NI a2 t Sua” 420t )
L= = A ,%,_ 54
(l—ﬂ“)“ 3 4—{—-” +2 V2 l - } (H4n)

Differentiating gives the veloeity components.

u s 2
(',|+T (ln 5

1+~" o In (1+a) In(l—s)
+V[" N 2= T ~4
—é)—{—f‘{ﬁ*’ln"’-——}— M
e[l e, In () In
FME| e M2 T a0

AERONAUTICS
! )+ g In? 2_+ VA2
gl T 81 B RYAF

e U —

AND SPACE ADMINISTRATION

—_

27).

3—urt

)
] In -

(1—7%)

177 f)_i%rl .y;A 2J‘ . l_
. ).! 41 .‘

4 (1—r?

501 b, 15
+8‘ (1’_12’)2-}—;_; M

The maximum speed in the flow field (aside from spurious %iuguluritivs at the ends of the ellipsoid
that are to be removed) oceurs at the surface in the middle, and 1s

q"‘“‘ =147 (ln E")T—-l‘)-i—r‘ [ﬁ‘-’lnﬁ ;T——{-( RV A ——7) ln s + M? u—, -\ (———: In ’):I (55)

This agrees with the result of Schmieden un(l
Kawalki (ref. 31) except for the coeflicient of M e
which they give as —5/4 instead of —(§— 1in 2).
They work with the perturbation form of M()l\vs
stream function rather than the veloeity potential,
which facilitates imposing the condition of tangent
flow at the body (particularly since they impose
the condition exactly, and only later extract the
slender-body series).  However, they retain onty
linear and quadratic terms in the cquation of
motion. The cubic term M?¢.%¢,, in equuti(m (11)
vields a second-order effect, and the same is true
of some quartic as well as (ubl(' terms when one
works with Stokes’ stream funetion.  Further-
more, the linearized equation for the stream fune-
tion is not correct to first order except in the
slender-body approximation and in any case does
not form a proper basis for iterating to find the
second approximation (ref. 29). Thus for super-
soni¢ flow past a circular cone, Schmieden and
Kawalki’s procedure was found to yield the
second-order slender-body sofution correct except
for the term in M?27*.  This is presumably true in
general, so that the disagreement in that term
found here for the ellipsoid might have been an-
ticipated. The present solution prediets a maxi-
mum speed slightly higher than Schmieden and

Kawalki’s, which does not appear unreasonable
in view of their comparison with the Janzen-
Ravleigh solution to order A° for a sphere, in
which their speed was somewhat low.

In the transonie small-disturbance approxima-

tion, the surface pressure cocfficient s given
simply by
2 1 -
(', =— 2(‘.lel~ -
P e [
y+1 78 1= )11+‘)J -
o Tre (56)
9 1A (1—r

RULES FOR RENDERING SOLUTION VALID NEAR ROUND
ENDS IN SUBSONIC FLOW

As in incompressible flow, the ratio of the exact
solutior for a paraboloid to its formal series ex-
pansior serves as a first-order multiplicative cor-
rection factor. Thus it has been shown (vef. 14)
that the slender-body solution for surface speed
is convorted into a uniformly valid first approxi-
mation by the rule

2
Q( . u)( 0’ (57)

where ((2x/p, M) is the speed ratio on a para-
boloid of revolution of nose radius p at Mach
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number 7. Although @ has not been found
exactly, it can in principle be determined to any
desired degree of accuracy by the Janzen-Rayleigh
method.  In reference 14 this has been done
including terms in 72 and numerieal values have
heen tabulated.

Singularities remain if this fiest-order rule is
applied to the second-order solution. A second-
order rule is required ; and its ferm can be dedueed
with the aid of the preceding solution for the
ellipsoid.

Replacing & by rfe in equations (53) to (56)
gives the solution for an ellipsoid whose length is
2¢ rather than 2 (ef. figure 13).  Then for small
values of the distance z=r-+¢ measured from the
nose, the surface speed s found from equation
(54b) to have the form

¢ . -

g, G 25
U _1+T|: 4::+(~l“ Br 8)_*_" ’ :I

M2 e? Birte 3 347 1y ¢t
+T[4 2l ;+(a>+ _4‘”"):"2

1 2 1\ ¢ _—
_<\4]“[3T+: 2) :—}— . :I {(h7a)

The parameters p and % of equation (42a) are
related to the present ¢ and —7 by p=r% and
A=+, and in those terms the above expression
becomes

“([2”,* _ p i 4 _5' ,
,,,(,v,,7]+l: 43«}—(‘2 ]nﬁzlf 8),/5’4(7. . ]

[ Lw St =) ?,

]
V1 -
( 1[16“—}— ‘)) ‘-:p-|~ .. :I (57b)

This expansion could be used 1o form a second-
order rule, but the result is simplified by first
determining the corresponding expansion for a
general body, and then choosing a simple special

Case,

re

~ .2

[ SAE ]+{” at 3”+(ﬂ,_+
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Tt is elear that, corresponding to equation (57h),
the solution for any round-nosed body deseribed
by equation (42a) will, near its nose, have the form

(i! _17'7[—4 —*—lll :]+[‘l P l ﬁp

H( ot ar— \/ n)’ ("’+/.’2(:)J (5%a)
3208 z* z

Here (7 1s a constant, and 12; and 2, are regular
funetions of z between which a relation will now
be found.  Although equations (57h) and (58a)
ate both singular at =0, their rtio must be
regular, l)i\'i(ling the latter by the former and
expanding gives

, 5 1 4
- I:Hl(:') ,;_,( Y In BJ“) /2 :|
| a3 e
—{—{[4/.,(~) (' " .//] :+}

and this s regular at =0 only if

3 .1, -
Y/ & ) H¥
16 /)’—}—4 12,(0) (58h)

There is a particular body for which equation
"’S) has the simplest form, namely that for which
(2)=1y(2)=0, so that

AN RN,

+( 3 _*_; A

25 \[n)

j 4 p 5
6 A :iI (59)

Note that exeept for the term in -# this is just
the sccond-order slender-body solution for the
pataboloid.

Now suppose that the exact solution is known
for any body  having  presceribed
values of p and Then the ratio of it to its
formal series expansion serves as a sccond-order
multiplicative correction factor.  Hencee a uni-
formly valid second approximation 18 given by

semi-infinite

exaet solution “a

M=

‘I"'II‘ p2 3 [11 0, - {
4 ) :“_[](A) /))+ 4 :I +l"“ } SeTni-

infinite
boly

(60a)
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Dividing both the series for “g,”/{7 and that in makes them regular at =0, and gives, after
the denominator of the bracket by equation (59)  expansion,
s exaet solution s .
[[? = r.. 0 N o P {(Il’i
| ll’|(:)+{ L+ [la’,(:) (0 ] } (0 T4z U
4 semi-
infinite
body
A2 Mn 3 0]
P T ) , 01
+(4 Moy T +u K
This rule may be written finally as 7
/E '_: q) o g Al = 1 3 \[ " .
4 /\Q Ca( w2 :
i J 4 I: 4: i + 4 In 5o 32 8‘ i+ ‘”—{— A’ (60¢)

where Q(2:/p, -#; M) stands for the first bracket
in equation (60b).  Note that the terms in the
bracket are just those required o cancel all
singularities in g,/

,[;_,7:(2 I:Z('rﬁ”r)v A, ‘\[] () [Q(b s By \[]{ (1-,
[ Pu
A},[: . p112 ‘_(l—(l) 'p(!—’h
_|_>4 (J—(I)E In 6Pu (b—u)*
+JF(

MIXED RULES BASED ON THE PARABOLOID
v/

The function Q2z/p, -#; M) required in the
above rules could in principle be determined to
any desired accuracy by the Janzen-Rayleigh
approximation. However, the practical details
appear almost insurmountable except in the
special case of the paraboloid, for which A =.
(The next section shows that even the solution
for the paraboloid has not vet been carricd far
enough to yield reasonable accuracy at high Mach
numbers)) It is therefore worthwhile to simplify
the rules so as (o base them on the solution for

the paraboloid.
Ter [ 20—, 2(h— ] (/, ’ ’
[,_Q[ d 7M}Q[ ar

’ \[ p
+ Ph . 7(1 177 [7 i ,’ff
bh—

1—(1)

bl

Pu
l'—

i
T3

( Pa_

A combined rule for two round ends is again
found by applyving the rule twice in succession
and simplifving insofar as possible.  The result

13
' P Py ) 7“’(11”
1—( +b > U
bi 4 ] Pa o
) r—da —J
3 pu th 3 -%upu A’npn)
S {
b )l: (r—a )‘ (bf.r)“:l—*_ 16 .l'*u (60d)
If 4 s to be replaced by zero in the argument

of (}, it must be omitted elsewhere in equations
60). Tlenee the rule for a single round edge,
correspending to equation (60¢), is

R
*‘(-——ln .)p ‘[ “) ] (61la)

the counterpart of equation (60d) for
two round edges is

[y

‘_m

i
,,pA .-
4;

1
327

Likewis

({2
-(J—(l Py 2(b—ur)
T -
B, -+ b—r)t T B,
3 F‘u2 phfiq
“1> + A2 —8>[: 1—(I)Z+U)# )2]} (61h)

7As M— 0 this reduces not to the rule of equation (421) but to an equally valid alternative,
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These rules give a result that s, of course, cor-
rect 1o second order except near the ends. It s
correet only to first order within a distance of the
order of the radius p from the ends.  Finally,
is completely adid  within a mueh smaller
neighborhood of the ends of the order of 4%
{which is proportional to the sixth power of the
thickness ratio for a body of unit length).  The
reason is that the bracket in equation (61a) has
not been completely freed of singularities, but
retains a term —3:%p/162 (which is cancelled in
the original rule of eq. (60e)). For most practical

in

1) [2”‘.*,’ D, A\/] [P A\[:|{I’ (1
[ T T .

I
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purposes this distance 18 so minute as to be
altogether negligible, and (as mdicated by the

subseripts) these mixed rules can be regarded as
yvielding a solution valid to first order near the
ends and to second order

elsewhere.

EXAMPLE: UNIFORMLY VALID SOLUTION FOR ELLIPSOID

These rules can now be applied to the formal
solution of equation (54h) to find a uniform ap-
proximation for the ellipsoid.  Using the com-
bined rule of equation (60d) gives as the uniform
second-order solution

)

I:(l——\l)ln- AVE ]n +\1 h—ie \1]}

The last bracket has of course been freed of singu-
larities, but in addition it is scen to be a constant,

independent of ». This simple feature is the

counterpart, for second-order subsonie flow, of
Munk’s rule for incompressible flow past an

Te1 ) [:2(1#:,.;)_; M] 0 [gu ”]{ L 111
{ = L2 =

+ l:('l —M In?

and the remaining nose singularity is evident.
Its effect may be illustrated in the case of incom-
pressible flow. At a distance of one radius from
the nose (which would be 0.02 of the length for a
20-percent-thick ellipsoid), cquation  (63)

ur_ 2[00 oy 218
vy :;[HT (~l“ r 1(;,)]

/16 instead of —13/16,

eives

The exact solution has —12

showing that the result is valid only to first
(though nearly to sccond) order.  Again, at a

distance of only #p=7" from the end (0.0008 of
the length), equution (63) gives

qar_ 13 5

[’ 1(-\ 1+

The exaet solution lacks the factor 13/16, but the
feading term in the pressure coefficient is never-

ellipsoid, according (o which the surface veloeity
is just the projection of the maximum veloeity.

Using imstead the mixed rule of equation (81h)
vields

=)

9
ET+ M ln

~

+ 1/ n—

el ]\,

theless given correetly as unity, so the result is
regarded as being correet first. order.  This
ceases (o be true only at distances of the order of
A from the end, which is 0.000032 of the length
for a 20-percent-thick ellipsoid.

to

COMPARISON WITH EXPERIMENT

Matthews (ref. 32) has measured pressures over
the front half of an ellipsoid of revolution of thick-
ness ratio 1/6 up to Mach numbers of 0.940 (the
measured eritical  Mach number 0.916).
The ellipzoid was supported from the by a
sting but, according to first-order
theory, the sting affects the pressure coelfficient
over the front half by less than 0.003,
The pressures measured at M =0.900

being
slender-body

which is
negligible.
theory

are compared with first- and second-order

in figure 14.
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Formal first—order

)

/

{ Formal second-order — - —— —
/ Uniform second-order
; E xperiment (ref 32} ]
|

2 |

-I Nose radius

3=

Pressure on ellipsoid  of revolution with

r— 16 ot M —0.000.

Ficune 14

Over the middle of the body the experimental
alues agree closely with the second approxima-
tion, which is seen to be a significant improvement
over the first. Near the ends, however, the experi-
mental values lie between the predictions of
second-order theory with and without the applica-
tion of the mixed The reason for this is
believed to be simply that the values of @, the
surface speed on a paraboloid, used in the rule are
maceurate. They were takenfrom theJanzen-Ray-
leigh approximation including only terms in M*

rule.

NATIONAL AERONAUTIZS AND SPACE ADMINISTRATION

(table 11 of ref. 14), which is almost certainly in-
adequaze at M=0.900. Indeed, the present theo-
retical results are believed to be sufficiently trust-
worthy that one can work backwards to extract
experimental values of @ for the paraboloid from
the measurements on  ellipsoids.  The result is
shown in figure 15 in comparison with all existing

theories.

[Re}

6
q .
2 / Janzen-Rayleigh °
a /
I Slender-body ; first-order ceeereninenenns
I second-order — — —
2F I Extrocted from experiment(ret. 32) o
|
O -’— L 1 { 1 | )
H I 2 4 5 ) c T
I “/p
.
-2t

Speed ratio on paraboloid of revolution at
M=0.90.

Froure 15,

Ames Rrsearcen CENTER
NATIO VAL ABRONAUTICS AND SPACE ADMINISTRATION
Mor rery Fiewp, Canir., May 28, 1954
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APPENDIX A

PRINCIPAL SYMBOLS

abseissa of nose of body

abscissa of tail of body

(M—1)12

bluntness of nose (see eq. (42a))

constant in equations (58)

pressure coefficient

half-length of body

drag

source  strength  in
theory, 1Y

second-order inerement in F

term independent of » in slender-
body potential

sccond-order inerement in Gr)

subsonic slender-body integral (see
oq. (140))

supersonic  slender-body
(see eq. (14h)

arbitrary constant

constant term in slender-body poten-
tinl (see cqs. (47) and (52))

length of body

Euler’s dilogarithm

free-stream Maeh number

y+1 AP

S22 A

supersonie counterpart of »,
v+1 AP

2 AM—]

slender-body

integral

general functions in similarity rules
(see eqs. (22) and (28))

speed  on surface of semi-infinite
round-nosed body, referred to free-
stream speed

local speed of flow

rading of meridian curve of body of
revolution

Ry, R,

7

(Y

.

8

Y

A,

&

€

A

p

P

$

@

¢
(e
()
( )x
()
()
( )2,!
( Vomax
(s
(")
Y
()
&(( )H

regular functions

radius in evlindrical polar coordi-
nates

free-stream speed

streamwise veloeity component

streamwise coordinate

abscissa measured from round end
mto body

(I—Are

adiabatie exponent

second-order inerement

initial slope of sharp-nosed body

small parameter

(See eq. (42b))

nose radius of round-nosed bodv

free-stream density

thickness ratio

full veloeity potential

first-order perturbation velocity po-
tential

second-order perturbation  veloeity
potential

SUBSCRIPTS AND SUPERSCRIPTS

associated with nose
associated with tail
value on surface of body
first-order value
second-order value
mixed second- and first-order value
maximum value
regular part (see eq. (52h))
singular part (sec eq. (51))
derivative
uniformly valid value
formal value

23



APPENDIX B

SHORT TABLE OF SLENDER-BO)Y INTEGRALS

The integrals appearing in the slender-body
solution were denoted in equations (14) by

YR FD
o “"-E.

PR = dg  (subsonic)

(B1a)

.y !'v(,,‘l.) o 1{,(5)‘
a 'l.ig

dg  (supersonic) (B1h)

ik = |

.
In the supersonic case the notation is designed to
emphasize the different roles played by« in the
integrand and in the upper limit of integration.
The subsonic integral can be expressed in terms
of the supersonic one by

I0EF (e —sen (r—a)JJ i { F(r)

Fsgn (b—r)J3i )} (B2)

of which equation (16) is a special case.

For the purposes of shifting the origin of ab-
scigsas, 1 is convenient to relate the general super-
sonic integral to that for some standard value

24

of the lower limit a, say zero. The desired ex-

pressicn is easily seen to be'!
JHFW ) =Ji 7 { Fleta)} (B:3)
(fombining these last two results gives a useful
expression for the general subsonic integral in
terms of the standard supersonic one; for a <r <b,
TP ) =Jd5 Flrta); +J57 {Fr4b) ) (B4)
A short table of the subsonic and supersonice
slender-body integrals is given below.  The limits
of integration have been taken as a——1,b=1 for
the stbsonie case and a=0 for the supersonic.
Results for other ranges of integration can be
extraced using the two relations above (eqs.
(B3) rud (B4)). Values of the subsonie integral
arce given only for the span of the body, that is,
for —1<s<1. The table was checked where
possible using equation (B4).

! The racaning ol .IU’-“l Fiz+n | in conjunetion with the following table
ix that o1 ¢ looks up F(r+a) in the column laheled Fery and in the corres-
ponding - olumn labeled Jureplaces.o by fr—ad
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