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SUMMARY

Panel methods are numerical schemes for solving (the
Prandtl-Glauert equation) for linear, inviscid, irrotational
flow about aircraft flying at subsonic or supersonic
speeds. The tools at the panel-method user’s disposal are
(1) surface panels of source-doublet-vorticity distributions
that can represent nearly arbitrary geometry, and
(2) extremely versatile boundary condition capabilities
that can frequently be used for creative modeling. This
report discusses panel-method capabilities and limitations,
basic concepts common to all panel-method codes, differ-
ent choices that have been made in the implementation of
these concepts into working computer programs, and var-
ious modeling techniques involving boundary conditions,
jump properties, and trailing wakes. An approach for
extending the method to nonlinear transonic flow is also
presented.

Three appendixes supplement the main text. In
appendix A, additional detail is provided on how the basic
concepts are implemented into a specific computer pro-
gram (PAN AIR). In appendix B, we show how to evalu-
ate analytically the fundamental surface integral that
arises in the expressions for influence-coefficients, and
evaluate its jump property. In appendix C a simple exam-
ple is used to illustrate the so-called finite part of

improper integrals.
1. INTRODUCTION

Panel methods are numerical schemes for solving (the
Prandtl-Glauert equation) for linear, inviscid, irrotational
flow at subsonic or supersonic free-stream Mach numbers.
Currently, panel-method codes are the only codes com-
monly in use that are sufficiently developed for routinely
analyzing the complex geometries of realistic aircraft. The
objective of this report is to give the reader some idea of
what panel methods can and cannot do, to describe their
common roots, to describe the differences between
various specific implementations, and to show some
example applications. In addition, recent progress in
solving nonlinear transonic flow problems by combining
portions of panel-method technology with other numerical
techniques, is described. This material is followed by
three appendixes that contain additional details: appendix
A describes how the basic ideas common to all panel
methods are actually implemented in a specific code;
appendix B shows how to evaluate some of the integrals
that arise in the influence-coefficient equations; and
appendix C discusses the so-called finite part of improper

integrals.

There are fundamental analytic solutions to the
Prandtl-Glauert equation known as source, doublet, and
vorticity singularities. Panel methods are based on the
principle of superimposing surface distributions of these
singularities over small quadrilateral portions, called
panels, of the aircraft surface, or to some approximation
to the aircraft surface. The resulting distribution of super-
imposed singularities automatically satisfies the Prandtl-
Glauert equation. To make the solution correspond to the
desired geometry, boundary conditions are imposed at
discrete points of the panels. (Mathematicians refer to
these discrete points as collocation points; panel-method
users refer to them as control points.)

Panel codes are often described as being lower-order
or higher-order. The term lower-order refers to the use of
constant-strength singularity distributions over each panel,
and the panels are usually flat. Higher-order codes use
something of higher order than constant, for example, a
linear or quadratic singularity distribution, and sometimes
curved panels.

Panel methods were initially developed as lower-
order methods for incompressible and subsonic flows
(e.g., refs. 1, 2; see ref. 3 for a review of panel methods
existing through about 1976). The first successful panel
method for supersonic flow became available in the mid-
1960s (refs. 4, 5). This was also a lower-order method,
and is variously referred to as the constant-pressure panel
method, or the Woodward-Carmichael method.

The panel methods for three-dimensional subsonic
flow allowed the actual vehicle surface to be paneled,
whereas the Woodward-Carmichael method was more
severely restricted in the placement of the panels. For
example, the wing was a planar array of panels, the body
(fuselage) volume was modeled with a line distribution of
source and doublet singularities (resulting in a body-of-
revolution) and the body boundary conditions were
imposed with a cylindrical “interference” shell of wing-
type panels. This representation was later extended to
include multiple wing-body components (ref. 6), but was
still restricted to the planar panel representation. These
two extremes of actual-surface models and mean-surface
models (Woodward-Carmichael) are illustrated in fig-
ure 1.

The mean-surface model used in the Woodward-
Carmichael panel method was a consequence of numerical
stability problems that arose in supersonic flow. The con-
stant-strength, elementary horseshoe vortex singularity
distribution (producing a constant pressure over each
panel) often produced unstable numerical behavior (the
solutions would “blow-up”) when a panel was inclined to




a supersonic flow. The method worked only when all the
panels were kept parallel to the free-stream flow. This
required that angle of attack, wing thickness, camber, and
twist be simulated through the boundary conditions; that
is, it was necessary to have the panels generate flow per-
pendicular to themselves and thereby turn the flow
through the desired angles, as is done in classic thin-wing
theory. As a consequence of this restricted geometric
model, several new approaches to the supersonic problem
were pursued in the 1970s.

The first of these was also due to Woodward; it
evolved into the series of computer programs known as
USSAERO (ref. 7). For fuselage panels, USSAERO uses
constant-strength source singularities. Wing panels use
clementary horseshoe-vortex singularities whose strength
distribution varies linearly in the chordwise direction and
is constant in the spanwise direction. Although this repre-
sentation gave an improved modeling capability, numeri-
cal problems would still often occur when the wing panels
were inclined to a supersonic free-stream flow.

Another approach, developed by Morino and his
associates, uses a superposition of constant-strength
sources and doublets on hyperboloidal panels. The con-
stant strength doublets produce a velocity field that is
identical to that produced by line-vortex elements, having
the same strength as the doublet panel, placed head to tail
around the panel perimeter (a so-called ring-vortex panel).
This method is available in the computer program called
SOUSSA,; it too is unable to handle the steady supersonic
case (ref. 8, pp. 2-20; private communication, L. Morino,
Feb. 1981).

The key to eliminating the numerical stability prob-
lems associated with supersonic flow, was to use doublet
distributions that were continuous over the entire surface
of the aircraft. This approach, using quadratic doublet
distributions (equivalent to linear vorticity distributions)
was first used in the PAN AIR code (refs. 9-14) and its
pilot code predecessor (ref. 15). It has since been imple-
mented in the European version of PAN AIR, called
HISSS (ref. 16). The continuous-doublet distribution
eliminates the appearance of spurious line-vortex terms at
the panel edges, which was the cause of the numerical
stability problems in the earlier approaches.

Within the limitations of the Prandu-Glauert equa-
tion, the higher-order singularity distributions used in the
PAN AIR and HISSS codes allowed the actual-surface
paneling models, long in use for subsonic flow, to also be
used for supersonic flow. It also had a very beneficial side
effect: the numerical solutions turned out to be much less
sensitive to the size, shape, and arrangement of the panel-

ing than in earlier methods, including the subsonic-only
methods. Partly for this reason, continuous quadratic dou-
blets were incorporated into the subsonic-only MCAERO
code (ref. 17). These advantages did not come free how-
ever. The higher-order distributions require much more
analytic work to derive the influence-coefficient equa-
tions, and demand many more arithmetic operations than
the simpler lower-order (constant-strength) methods,
which results in significantly higher run costs.

It was subsequently discovered that for subsonic
flow, setting the perturbation potential to zero at the inte-
rior side of panels, in conjunction with the original lower-
order singularity distributions, also reduced the solution
sensitivity to variations in panel layout. This led to a
renewed interest in the lower-order methods, resulting in
the VSAERO (refs. 18, 19) and QUADPAN (refs. 20, 21)
codes. QUADPAN was later revised to handle the super-
sonic case by changing its constant-strength doublets to
continuous linear doublets.

2. WHAT PANEL METHODS CAN AND
CANNOT DO

Panel-method-based computer programs are currently
the workhorse codes for predicting the aerodynamics of
complete configurations. Representative aircraft examples
that have been analyzed with panel method codes are
shown in figure 2. Although such codes are routinely used
to analyze very complicated geometries, they do so at the
expense of ignoring much fluid physics. The equation that
panel codes solve is the Prandtl-Glauert equation. For
steady subsonic flow this equation is usually written as

V20 =(1-M2)oss + dyy + 65, =0 )
and for supersonic flow it is sometimes multiplied by -1,
~V20=(MZ - 1)0xx — Oy~ 0,,= 0 @

where M, is the free-stream Mach number and ¢ is the
perturbation velocity potential.

For subsonic free-stream flow, equations (1) and (2)
are elliptic, being similar to Laplace’s equation. Such
equation types have the property that any disturbance at
some point is felt everywhere in the flow field (although
the effect usually dies out rapidly with distance). For
supersonic free-stream flow the equations are hyperbolic,
with the x-derivative term behaving like time in the wave
equation. Solutions for the supersonic case are
fundamentally different, disturbances having restricted



zones of influence (or in Von Karman’s words, zones of
“silence,” or “forbidden signals™; ref. 22). The dis-
turbances only propagate downstream, along rays defined
by the Mach cones (characteristic surfaces), reflecting off
downstream geometry and interfering in a wave-like
manner with other disturbances.

The Prandtl-Glauert equation is the simplest form of
the fluid-flow equations that contain compressibility
effects (i.e., the effect of Mach number on fluid density).
It is obtained from the more general Navier-Stokes equa-
tion by (1) neglecting all the viscous and heat-transfer
terms; (2) assuming that the flow is irrotational, thereby
admitting the introduction of a velocity potential; and
(3) discarding all nonlinear terms. This restricts the flow
to be inviscid, irrotational, and linear. Often, the flow is
also assumed to be steady. Physically, these restrictions
mean that important flow behavior such as separation,
skin-friction drag, and transonic shocks are not predicted
with panel methods. Items that are predicted include drag-
due-to-lift (often called induced drag for subsonic flow,
and vortex drag for supersonic flow), and wave drag.

Wave drag is predicted because the Prandtl-Glauert
equation admits solutions that approximate the weak-
shock solutions of shock-expansion theory (ref. 23,
Pp. 215, 216). A simple example is the supersonic flow
over a thin wedge (fig. 3(b)). For small wedge (deflection)
angles, the shock is attached at the wedge leading edge,
forms at an angle very nearly to that of the Mach angle,
and the flow remains supersonic on the downstream side
of the shock. The limiting case for these weak shocks, in
which the shocks form at exactly the Mach angle, is pre-
dicted by the Prandtl-Glauert equation.

The absence of any explicit viscous effects causes
subsonic flow solutions to be non-unique unless a Kutta
condition at sharp trailing edges is somehow imposed
(ref. 24, pp. 80, 81). This is done with the addition of
some type of wake panels that trail downstream from
lifting-surface trailing edges (fig. 3(a)), causing the flow
to separate smoothly from these edges and allowing the
potential to jump (be discontinuous) across the wake.
Most panel methods require the user to assume the shape
and position of the wakes. For a simple wing body this
poses no difficulty, the wake position being relatively
unimportant. However, for multiple-lifting-surface config-
urations, the wake placement is important since it affects
the flow experienced by downstream geometry. A few
codes iteratively solve for the wake shape and location.

Because panel methods are able to treat complete
configurations, they have often been used in combination
with other methods to approximately account for addi-

tional physics neglected by the Prandtl-Glauert equation.
One fairly common practice is to include the presence of
the wing boundary layer (ref. 25). The basic idea is to use
the pressure distribution from the panel-code solution as
input to a boundary-layer code and compute the displace-
ment thickness. This incremental thickness is then repre-
sented in a second run of the panel code. This is usually
done in one of two ways, as illustrated in figure 4
(ref. 25). The first is to actually recompute the wing
surface coordinates and the new wing-body intersection
by adding the displacement thickness to the actual wing
geometry. An alternative approach is to use “blowing,” in
which the source strengths of the wing panels are adjusted
such that each panel ejects (or sucks) enough fluid to
cause the resultant flow field to be approximately
displaced by the displacement thickness. For either
approach, the resulting change in actual or apparent wing
shape has two effects: it reduces the effective camber of a
cambered wing and it increases the wing thickness. For a
specified angle of attack, the primary acrodynamic effect
of these changes is a reduced lift owing to the reduced
camber. The second, but usually less important effect, is a
slight increase in lift owing to the increased wing
thickness.

Another example is the coupling of panel codes to
propulsion codes. In reference 26, the PAN AIR code is
coupled to a parabolized Navier-Stokes propulsion code.
The purpose was to account for the viscous, high-energy,
exhaust-flow effect on the aecrodynamic flow about the
complete aircraft.

Panel-method codes have also been built to model the
flow separation that occurs off highly swept wings with
sharp leading edges (refs. 27, 28). In these codes, wake
panels emanate from the wing leading edge, as well as
from the trailing edge (fig. 5). Iterative techniques are
used to solve for the correct shape and position of the
leading-edge wake panels. The criteria to be satisfied are
(1) that the Kutta condition be enforced and (2) that the
entire wake surface be a stream surface (i.e., no flow
crosses it, and it supports no pressure jump).

3. COMMON ROOTS OF PANEL METHODS

As indicated in section 2, panel methods rely on sur-
face distributions of sources, doublets, and vorticity. We
will see later that doublet and vortex distributions are
related. Since surface vorticity is a vector and a doublet is
a scalar, it is often easier to work with doublets than with
vorticity, and then compute the vorticity from the doublet-
strength distribution. Most higher-order panel-method
codes take this approach.



It can be verified by direct substitution, that the fol-
lowing expressions, called unit point sources and dou-
blets, respectively, satisfy the Prandt-Glauert equation
(egs. (1) or (2)).

Point source:

Hr0)= ®

Point doublet:

oBia)=#-Farrtroa T

where the so-called hyperbolic distance R is given by

R= \/ (xq- "P)2 +52[(YQ - YP)2+ (2o- ZP)Z] (Sa)

where

Br=1-M2 (5b)

In these expressions, point P is the influenced point in
space having coordinates Xp = (xp, yp.Zp) and point Q is
the influencing point Xq = XQ»YQ»2q) at'which the unit
point source or doublet is located (see fig. 6). There is an
elemental area dSQ associated with the doublet, and the
doublet axis is normal to this area. (Recall from elemen-
tary fluid mechanics that a doublet can be thought of as a
source-sink pair approaching each other along an axis.
~ This definition of a doublet produces the same result as
€q. (4).) The subscript Q on the scaled gradient operator
means that the derivatives are to be taken with respect to
the coordinates of point Q, not point P.

For incompressible flow, R becomes simply the geo-
metric distance between the two points P and Q. Equation
(3) then tells us that a point source at Q produces a distur-
bance at P that diminishes inversely as the distance
between the two points. The meaning of equation (4) is
not so obvious until one works out the expression indi-
cated by the dot product. If one chooses the Xyz coordi-
nate system at point Q as shown in figure 6, then the unit
normal i equals the unit vector k and equation (4)
becomes simply

~sin@ (6)

D_
¢p R2

This form clearly shows the directional properties of a
point doublet and reveals that a doublet disturbance dies
off at least as rapidly as the inverse of the distance
squared.

Since the Prandtl-Glauert equation is a linear partial
differential equation, sums of the source and doublet
solutions are also solutions. Thus, panel methods are usu-
ally thought of as superposition methods, and, hence, are
restricted to linear problems. There is a more general
approach, however, that, while containing superposition
as a special case, can also be used to solve nonlinear prob-
lems. In section 6 we will take a look at how panel-
method technology can be combined with other tech-
niques to solve the nonlinear full-potential equation, so it
is advantageous to look at this more general approach,
known as Green’s third theorem (ref. 29, p. 21, eq. (7).

In reference 29, the derivation corresponds to incom-
pressible potential flow; in reference 30, this is general-
ized to the compressible case. The result is the following
identity:

br j L["(*Q)Ko(io,ip) +1(%q)Kyu(%q.%p) iSq
+J‘ .”Iv(wq’)Ko(i:ip)dv -

where

Ku(Ro.p) = £ 4P (%0)
Ko(%3p) = 1 05(%)

dV =dx dy dz
. ®)
0'=A(n-i'v)

H=A¢

W= (B20,v,w) = (B205,0y.9,) = Vo

In the above equations & is the source strength and |
is the doublet strength at any point Q, on the surface S,
which in our case will be all (for subsonic flow) or part
(for supersonic flow) of the aircraft surface and wakes.
These strengths are equal to jumps (discontinuities) across
the panels of certain flow properties. The source strength
equals the jump in the normal component of the mass-flux
vector w. The doublet strength equals the jump in



potential, and the gradient of the doublet strength equals
the jump in tangential component of velocity. The values
of these strengths are the (as yet unknown) amplitudes of
the source and doublet singularity solutions appearing in
equations (3) and (4). Here, these source and doublet
solutions, when multiplied by a constant k1, are denoted
as Kq and Ky, respectively (K is used to denote that the
singularities are called kernels). For M., < 1, k = 4, and
S is the entire surface of the aircraft and wake(s). For
Mo > 1, k = 2x, and S is that portion of the aircraft
surface and wake(s) that lies in the upstream Mach cone
emanating from the influenced point P.

Equation (7) shows us that the velocity potential at
point P is related to the source and doub]et distributions
on S, and to the spatial distribution of V2 ¢ in the volume
V bounded (wetted by) both sides of S. If ¢p is con-
structed according to the surface integral terms in equa-
tion (7), that is,

op= ” [oK o+ 1K, JiSq ©)
S

then, because equation (7) is an identity, it follows that

J. J.LWZQ))KG dv=0 (10)

Since K is a function of the arbitrary point P, V2¢ must
be zero. Thus, construction of ¢p according to equa-
tion (9) implies that equations (1) and (2), the Prandtl-
Glauert equation, has been satisfied throughout V.

Equation (9) is the basic starting formula for panel
methods using sources and doublets. If the source and
doublet strength distribution is known (we will see how
this is done later), then the velocity at point P is obtained
from equation (9) by differentiating with respect to the
coordinates at P, that is

sz VPQ)P:IJ‘S[O'epKU-FuePKp}iSQ (11)

Equations (9) and (11) are used to generate influence-
coefficient equations that relate source and doublet
strengths at particular points Q on the surface S to the
potential and velocity at field points P. The basic idea is to
break S into a collection of panels X and to assume a
functional form for o and [ over each panel. For example,
a constant-strength source-doublet panel with index j is
given simply by

o(%;)=o(&.m) = (12a)

n(%))=m&m) =2 (120)

where the unknown constants l% and le) are called source
and doublet singularity parameters, respectively, for panel
j, and (§,m) are local surface coordinates associated with
the panel.

Once the functional form for o;(§,M) and p;(€,n) are
specified, equations (9) and (11) can be integrated over
each panel (a nontrivial task) so that ¢p and Vp are
expressions involving only the unknown singularity
parameters. If P is made a control point (a panel point at
which a boundary condition will be imposed) with index i,
equations (9) and (11) give the potential and velocity at
that point in terms of (as influenced by) the source and
doublet distributions of the single panel j (see fig. 7). Note
that the fixed point P and the variable point Q of the ana-
lytic formulation correspond to control point i and panel j,
respectively, in the discretized implementation. Summing
the effects from all the panels on the aircraft surface gives
the potential and velocity at control point i in terms of the
total number (N) of singularity parameters.

If v;;denotes the velocity at control point i, owing to
the source-doublet distributions at panel j, then the veloc-
ity at point i owing to all N panels is

N

Vi=Vot+ Y ¥ (13)

If the panel associated with control point i is to be a solid
(impermeable) panel represented by a zero normal com-
ponent of the total velocity, then the boundary condition is

N
Vi-ﬁi= \7‘,‘,+Z_\7ij 'ﬁi=0 (14)
j=1
Thus, for control point i, we have

N

ZVij-ﬁi - V.- as)

=t

and since the Vij are known (from eq. (11)) in terms of the
N singularity parameters, equation (15) can ultimately be
expressed as the single equation



