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SUMMARY 

An exact,  full-potential-equation (FPE) model for  the  steady,  irrotational, ho- 
mentropic and homoenergetic flow of a  compressible, homocompositional, inviscid 
fluid through  two-dimensional planar  cascades of airfoils  was  derived,  together with 
its appropriate boundary conditions. 

A computer program, CASBD, was developed that  numerically  solves an arti- 
ficially time-dependent form of the  actual  FPE.  The governing equation was dis- 
cretized by using type-dependent, rotated  finite  differencing and the  finite area tech- 
nique. The flow field  was  discretized by providing  a  boundary-fitted,  nonuniform 
computational mesh. The  mesh was generated by using  a  sequence of conformal 
mapping, nonorthogonal coordinate  stretching, and local,  isoparametric,  bilinear 
mapping functions. The discretized  form of the  FPE was solved iteratively by using 
successive  line  overrelaxation. The possible  isentropic  shocks  were  correctly cap- 
tured by adding explicitly an artificial  viscosity in a  conservative  form. In addition, 
a  four-level,  consecutive,  mesh  refinement  feature  makes CAS2D a  reliable and fast 
algorithm for  the  analysis of transonic,  tw+dimensional  cascade flows. 

INTRODUCTION 

This work is an extension of the  author's  doctoral  research  (ref. 1). 
The purpose of this report is to give instructions to potential users of the com- 

puter  program CASBD. These  instructions refer to  the  possible  applications and re- 
strictions of CASBD. The  basic  assumptions of the  theory used to develop CAS2D are 
also detailed. 

The simplest (although, still exact)  mathematical model of the fluid flow is the  full 
potential equation (FPE).  Expressed in the two-dimensional  Cartesian  coordinate 
system (fig. l), the  FPE can be written as  

where a is the  local  speed of sound and cp is the velocity  potential function (V = Vq). 
This equation represents a continuity equation for  the steady,  irrotational, homen- 
tropic flow of an inviscid,  homocompositional, compressible fluid. The  conditions for 
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its validity are  that no sources of entropy  production exist and that  the flow is adia- 
batic. This can be  seen  from  Crocco's  formula 

where V = uGX + v6 is the velocity  vector; H, the  total enthalpy; T,  the  absolute 
temperature; S, the entropy; and 
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the  irrotationality condition. 
h practice, this means  that  the flow is uniform (irrotational)  at  upstream infinity 

and that all the  viscous  effects a re  .confined to a narrow,  nonseparated boundary-layer 
region.  The flow at downstream  infinity should also be uniform  in  accordance with 
the steady-flow inviscid  theory. 

In actual  viscous flows the  vorticity  created  at the solid boundary is convected and 
diffused  downstream,  where it forms a wake. The  velocity  deficit  in  the wake rapidly 
disappears.  Therefore it is reasonable  to  assume  that  the  downstream infinity is only 
a few chord  lengths from  the  trailing edge. 

The discontinuities  possible  in  the solution of FPE are  isentropic shocks. They 
do not represent  physical shock waves (ref. 2) because  they do not satisfy Rankine- 
Hugpniot  jump conditions. Nevertheless they are  of approximately correct  strength 
and at  approximately  the  correct position if the Mach number just ahead of the dis- 
continuity is less than about 1. 3. 

The results obtained by this two-dimensional analysis  are not directly applicable 
to three-dimensional,  potential,  rotating flows through a cascade of blades.  The rea- 
son is that  the  Coriolis  force  does not exist in two-dimensional,  potential, cascade 
flows. 

ANALYSIS 

Transonic,  Full  Potential Equation 

The  continuity  equation for  steady flow  with no sources or sinks in the flow field is 

where p is the  local fluid density and V is the  local fluid  velocity  vector 
+ 
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+ v = u6, + v6 Y 

For continuous, hornentropic flow of a homocompositional  fluid the  relation 

a2 P 

is valid, where h is the  local  static enthalpy and a is the  local  speed of sound 

a2 = (:) 
isentropic 

After  premultiplying equation (4) by a / p  and taking  into  account equation (6), we get 2 

In general 

where  the  total enthalpy H must be  constant  throughout  the flow field in order  to  pre- 
serve  the  irrotationality condition (eq. (2)). 

Then equation (8) becomes 

where 

2 

The continuity  equation (10) can  be  written  in its quasi-conservative scalar form 
(ref. 3) as 
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or in its fully  conservative  scalar  form as 

With introduction of the  velocity potential,  equation (10) becomes  the full-potential 
equation 

Equation (14) is a quasi-linear,  second-order  partial  differential equation of the 
mixed (elliptic-hyperbolic) type. Its canonical form (ref. 4) is 

where  the  superscript H designates  upstream  differencing and the  superscript E 
designates the central  differencing  that should be  used  in  the  discretization of equa- 
tion (15). Here, s is the  streamline  direction and 

q = ( u   + v )  2 2 2  
(16) 

For  the  finite  difference evaluation of the  derivatives,  the flow field and the gov- 
erning equations were  transformed into a rectangular (X, Y) computational space 
(fig. 4). The transformation  matrix is 

Then the modified contravariant  velocity components are  
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where D = det[J1 and 

[BI = VI- [J 3" 1 T  

Consequently the fully conservative  form of the continuity  equation (eq. (13)) becomes 

where 

and 

The quasi-conservative form (ref. 3) becomes 

The principal  part of the full-potential form (ref. 4) of the continuity equation 
(eq. (14) or (15)) transforms into 

E E + sxy., E xy +...(.;&x - .,E-> + RYY (., H YY - V, YY 
sxx'p, xx + sYY'p, YY E )  

where  the  superscript H designates  upstream (or backward)  differencing and the 
superscript E designates  central differencing.  The  coefficients of this equation a re  
as  follows: 
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2 U2 Sxx= a DBll - - 
D 

2 V2 Syy = a DB22 - - 
D 

D 

Rxy = - %!!.! 
D 

For a  locally  subsonic flow all  the second derivatives wil l  be evaluated by central 
differencing. Upstream  differencing (as indicated in eqs. (15) and (22)) is a  numer- 
ical  attempt  to  simulate  the  exact shape of the  upstream-facing domain of depend- 
ence of the  locally  hyperbolic  full-potential equation. It can be shown (ref. 5) that 
this  procedure  introduces  a  numerical  truncation  error  called  artificial  viscosity, 
which is proportional to cp, sss.  

form 
This  artificial  viscosity  term was added to equation (20) o r  (21) in a  conservative 

where 
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The conservative  form of RVISC assures  the unique position and strength (ref. 2) of the 
possible  isentropic  discontinuities in the solution of the governing equation. 

Boundary Conditions 

The boundary conditions for equation (14) (or (15)) that  are valid in the  present 
analysis of a  two-dimensional cascade flow are  the following: On the  airfoil  surface 
the condition is 

-* 

V ~ J  * V F  = 0 
4 

where F = F(x, y) is the equation of the  airfoil contour  line. At axial  infinities (x = 
fco) the flow is assumed  to be uniform. The upstream boundary condition is incor- 
porated  in  the  special  form of the  potential function (ref. 4). 

where a-m and a- are  the  angles between the  free  stream and the x axis  at  the 
upstream and downstream  infinities,  respectively. The term G(x, y) is a  so-called 
( 7  reduced potential" describing  the  disturbances with respect to the free  stream at 
upstream infinity. All the  velocities have been normalized with respect  to  the mag- 
nitude of the  free-stream  velocity  vector at  upstream infinity. Hence the boundary 
condition at  upstream infinity (x = -00) is 

(v, x)-m = cos 

That is, 
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(G)-03 = Constant 

where the  arbitrary constant is taken as  zero. 

spatially positioned  boundaries (corresponding to the lines cd and ab in fig. 1) 
represent  the  physical  fact  that  the  velocity  vector is a  periodic function in a  cascade 
flow 

Conditions that should be applied  along the  identically shaped and periodically 

According to the  definition of the velocity  potential 

where 

and because 

it follows that 

3 

de = dx + dy Y 

Lb=-Ld 

or 

(34) 

(3 5) 
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Because (xd - xa) = 0 and (yd - ya) = h, it follows from  equations (27) and (28) that 
the boundary  conditions  along  the  periodic  boundaries are 

c ( r Y )  = G k Y  +h)  (39) 

The  global mass  conservation is expressed as (fig. 2) 

h-,P-,q_, cos 0-a - h,p,q, cos as, - (40) 

where p is density and q is the magnitude of the  velocity  vector.  Because p-, = 1 
and q, =1, 

if h-, = h,. Hence 

By using a simple Newton-Raphson iterative technique 

the value of  q, can be easily  determined. Then the boundary  condition at the down- 
stream infinity  becomes 

For lifting flows the  potential function  becomes  multivalued. This  problem  can be 
resolved by inserting an arbitrarily shaped  cut of zero  thichess in the flow field in 
such  a way that it connects  the  airfoil with the  infinity (fig. 1). This  cut is conven- 
iently  assumed to leave  the  trailing edge.  The finite discontinuity  in the velocity po- 
tential Acp at the  trailing edge is equal to  the  circulation r of the  velocity  field. 
This constant  discontinuity  should be preserved (i. e., there should  be no jump  in  the 
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static  pressure)  at  every  pint of the  cut  all  the way to the  downstream  infinity.  The 
exact  value of r can  be  calculated  from  the input  data and the  value of  q, (eq. (33)). 

NUMERICAL  METHOD 

Computational Mesh Generation 

The computational mesh (fig. 3) was  generated by using  a  conformal  mapping 
function of the form 

It conformally  maps  a unit circle with a slit in  the  middle  (ref. 6) whose endpoints are 
situated at !Z = rtm onto the  cascade of slits in the i? = x + iy plane. 

The slits are spaced 27r cos p apart, where p is the  stagger  angle of the  cascade 
of slits (fig. 4). The unit circle with a slit in  the Z = 5 + iq plane can be 1 1  unwrapped" 
by using  elliptic  polar  coordinates  (ref. 7): 

5 = m  cosh ue cos ve  (47) 

7 = m  sinh u sin ve e (4 8) 

The resulting (ue, ve) plane  can be transformed  to  the  rectangular,  computational (x Y) 
domain with the help of a nonorthogonal shearing  transformation (fig. 4) of the  general 
form 

lh the  case of  an airfoil of nonzero  thickness and arbitrary  camber,  the domain 
outside  the  airfoil  in "w = x + iy  space will map onto a  nearly  circular domain in the 
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z = 5 + iq plane. The  consequent  introduction of elliptic  coordinates  will not help to 
eliminate  the  problem of mesh nonorthogonality, and one side of the computational 
rectangle will be an irregular line. 

The shape of the  mesh  cells  at axial infinities (fig. 3) was  determined  explicitly 
(ref. 1) in order to make  the  application of the  proper boundary  conditions  (eqs. (3l), 
(39), and (44)) easier. 

Finite  Area Method 

A uniform orthogonal  mesh  in  the (X, Y) computational space  remaps into a non- 
orthogonal  mesh in the (x, y) physical  space (fig. 3). The  local,  bilinear,  isopara- 
metric mapping functions of the  general  form 

b='x b (1 +-%)(I + - )  
P P 4 P  

where 

and b stands  for x, y o r  G(x, y), will map  each unit square  mesh  cell  from  the (X, Y) 
computational rectangle (fig. 5) into  a corresponding  distorted  mesh  cell in the (x, y) 
physical plane. 

The mass flux balance  must be satisfied within each  auxiliary  control  cell (ACC), 
which is represented  as a shaded  region in figure 5 and centered around each  mesh 
point. This cell is formed  from  parts of the  four  neighboring  elementary  mesh  cells 
(EMC). Each EMC was separately mapped from  the (x, y) space  to  the (X, Y) space. 
Therefore  the value of the  desired  parameter  at  the  center of each  mesh  face of that 
ACC (points N, S, E, W) is evaluated as an arithmetic mean (ref. 3) of the  four  separate 
results  that  are calculated on the  basis of the  local mapping  functions in each of the 
four neighboring EMC's. 

Artificial  Time Concept 

An attempt to solve  the  steady,  full-potential  equation - as  an asymptotic  solution 
of the  exact,  physically  unsteady,  full-potential equation for long times - would be 
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very uneconomical because of the  small  time  steps  required by the  numerical  stability 
considerations.  Instead it is customary to use an artificial time-dependent  equation 
(ref. 4) of the  form 

This time-dependent process does  not  model the  true  time evolution of the flow. 
The major advantage of this technique, however, is that  the  consistency and accuracy 
of the  numerical method used in determining  the  transient  solutions  are  irrelevant - 
the  consistency  being  finally  achieved  asymptotically when the solution no longer de- 
pends on time. 

Artificially  time-dependent  differencing  was  used in a way suggested by Jameson 
(ref. 5), who considered  iteration  sweeps  through  the computational  field as  successive 
intervals in an artificial  time. Using the  successive line overrelaxation (SLOR) tech- 
nique requires  introduction of a temporary or provisional  value of the  potential q at 
every  mesh point on the  line along which SLOR is to be applied. The definition of such 
a term is 

where w is the  overrelaxation  factor (ref. 4), q. is the new value of the  potential 
(i. e., one that will  be  obtained as the  result of the  current  iteration sweep), and q? 
is the old value of the  potential (obtained after  the  previous  iteration sweep). Accord- 
ing to the  numerical  stability  analysis  (ref. 5), factor w has values less then 2 when 
the flow is locally  subsonic and equal to 2 when the flow is locally  supersonic. 

+ 
1, j 

1, j 

The generation of the  artificial  time  derivatives is illustrated in the following ex- 
ample. It is easy (refs. 4 and 1) to check that 

represents 
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and that  the  expression 

represents 

where  the  superscripts  E and H represent  the  central and upstream differencing, 
respectively. 

The vector of the  corrections (cj} to  the  potential cp was determined  from 

[ 61 {cj} = {Rj} (59) 

where  the  tridiagonal [ 61 matrix of coefficients  was  determined  from  equations (22), 
(23), and (54). The vector of residues  was  determined  from equations (21) and 
(24) 

COMPUTER  PROGRAM 

General  Description 

The computer  program CAS2D consists of 10 routines and a  separate input data 
operation (fig. 6 ) .  The input data are  discussed in detail in the following section. 

The subroutine MAIN is the  principal  part of CAS2D in the  sense  that  all  other 
routines are called  from  that routine. MAIN reads  the input data and rotates  the  air- 
foil to its actual  stagger angle. This  routine  also  calculates  the length of the  central 
slit in the  circle-plane (fig. 4) and interpolates  the  symmetrically  spaced points on the 
unwrapped surface of the  airfoil  in  the (ue, ve)  plane (fig. 4). Furthermore MAIN cal- 
culates  (iteratively)  the flow parameters  at downstream infinity. It also  determines 
the  exact  value of the circulation I? (eq. (45)). Routine MAIN also  tests  the conver- 
gence rate of the  iterative  process by comparing  the value of the  expression (I?+' 
- rn)/rn with the  prespecified  convergence-rate input parameter  called CONVER. 



Subroutine CONMAP iteratively  performs  the point-by-point conformal  mapping 
(eq. (46)) from  the (x, y) plane  onto  the  circle-plane (E, v)(fig. 4). Furthermore 
CONMAP "unwraps" the  circle and calculates  the  elliptic  polar  coordinates ue and 
ve (fig. 4). 

Subroutine SPLIF fits a cubic  spline  throu&  the  lower boundary of the computa- 
tional domain in  the (ue,  ve) plane, which corresponds to the  surface of the  airfoil. 

(ue, ve) plane at points  that a re  equidistantly  spaced in the X-direction in the (X, Y) 
computational  plane with respect  to  the  image of the  upstream infinity (X = 0; Y = 0). 
This is a  necessary  step in obtaining  a grid that is periodic in the  vertical  direction  in 
the (x, y) plane. 

Subroutine  INTPL interpolates  the  values of the  elliptic  polar  coordinates in the 

Subroutine REMAP analytically  determines  coordinates of the  mesh points in the 
physical plane; that is, REMAP performs  a  backtransformation  process  from  the 
(X, Y) plane to  the (x, y) plane. 

The mesh points  defining the  axial  infinities should be positioned  along the  line 
x = Constant (fig. 3 and eq. (31)). Because of the way that  the  potential jump r is  
enforced across  the  cut,  the  points  at x = fco should be equidistantly  positioned in the 
y direction with respect  to  that cut (fig. 3). 

Subroutine XYINF determines  the  coordinates of the  axial infinity  points  explicitly 
because  they  cannot  be  obtained  from  the  conformal mapping. XYINF also  determines 
the  coordinates of points in the  imaginary rows and columns  outside  the  actual compu- 
tational domain. 

Subroutine XSWEE P iteratively  performs  the  actual flow calculation by using  the 
SLOR technique. XSWEEP uses type-dependent rotated  finite  differencing (eq. (22)) 
and the  artificial  time concept in order to evaluate  coefficients of the t r idiasnal  cor- 
rection  to  the  potential  matrix. The residues  are evaluated by using  the  finite area 
technique  (eqs. (20) o r  (21)). The artificial  viscosity is added explicitly in conserva- 
tive form (eq. (24)). The  form of finite  differencing (i. e. , the fully conservative 
scheme (eq. (20)) versus  the  quasi-conservative  scheme (eq. (21)) is indicated at  the 
beginning of each of the two versions of the XSWEEP routine.  The  choice of the ver- 
sion of the XSWEEP routine  that should be used depends on the  user. Both versions 
give practically  identical  results  for  the  moderately shocked flows. At the  same  time 
the  fully  conservative  version  takes about 50 percent  more execution time. 

Subroutine BOUND applies boundary and periodicity conditions after  each complete 
sweep  through the flow field  performed by  XSWEEP.  BOUND is also  called  after  each 
mesh  refinement. 

Subroutine CPMACH calculates  a Mach number at  every  mesh point in the flow 
field and prints a Mach number  chart  after  the  iterative  calculation  process  has con- 
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verged on the  final grid. CPMACH also  calculates and prints out  values of the iter- 
atively  obtained Mach number,  density,  and flow angle at  the  downstream infinity, 
which can be compared with the  exact  values obtained from MAIN. 

If the  iterative  calculation  process is to be repeated on the next finer  mesh, sub- 
routine MESH is called. MESH doubles the  number of mesh  cells in each  direction 
(X and Y )  and interpolates  the  values of the  reduced  potential G(x, y) (obtained on the 
previous grid) onto the new grid,  thus  creating an improved initial  guess  for the iter- 
ative  process on that  refined  grid. 

Input 

The first card of the input data  contains an arbitrary  text with up to 80 characters 
describing  the  airfoil or the  test  case. The actual input parameters, which specify 
the flow and geometry, are  given as' real  numbers. 

The second card contains XCELL, YCELL, and PMESH, where 

XCE LL  number of mesh  cells on surface of airfoil  for  coarse  grid. The number 
of mesh  cells  must be an even number;  the  suggested  minimum  value is 

XCELL = 16. 

YCELL 

PMESH 

number of elliptic  layers of mesh  cells enveloping airfoil,  that  is, half 
the  number of mesh  cells between two neighboring blades  (for  coarse 
grid). The  suggested  minimum value is 

YCELL = 4. 

total  number of grids used. The present  version of CASZD is capable of 
calculating on a coarse grid and three consecutively  refined grids. 
Hence the maximum  allowable  value is 

PMESH = 4. 

The third  card  contains ALPHAl, TWIST, and ALPHA2, where 

ALPHAl, angle, a+, (in degrees) between x-axis and free  stream  at u p  and 
ALPHA2 downstream  infinity,  respectively (fig. 1) 

TWIST stagger angle, p (in degrees) between x-axis and airfoil  chord  line 
(fig. 1) 
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The fourth  card  contains PITCH, R01, and ROZ, where 

PITCH gap-chord ratio, h/c (fig. 1). The iterative  determination of certain 
parameters in the  mesh-generating  routines  might fail for  small  values 
of PITCH because of the computer-dependent accuracy.  Therefore it 
is suggested  that CAS2D be used for  cascades with 

PITCH > 0.65 

R01, R 0 2  radii  (dimensionless) of airfoil  at  leading and trailing edges,  respectively, 
For theoretically  zero  radii with respect  to  chord length, use 

R 0 1  = 1. *lo- 4 

ROZ = 1. 

The fifth card  contains FMACH,  CONVER,  and  AR, where 

FMACH Mach number M-, of free  stream  at  upstream infinity. The maximum 
allowed value is 

FMACH = 0.99 

This value should be lowered if it produces a  shock  that has a Mach 
number just ahead of it greater than -1.3. 

RLX overrelaxation  factor (eq. (54)) on coarse  grid  for  case of locally sub- 
sonic flow. The suggested value is 

RLX = 1 . 7 5  

This  value will be automatically  increased by 4 percent on each con- 
secutively  finer grid. In the  locally  supersonic flow, the  relaxation 
factor is automatically taken as 

AR 

RLX= 2. 

ratio of inlet  area to exit area of blade-to-blade passage (fig. Z ) ,  
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The input parameter AR should provide  the  appropriate value of the 
downstream Mach number. For an airfoil with a closed  trailing edge, 
use 

AR = 1. 

If the airfoil  has an open trailing edge  extending to downstream  infinity 
(e. g. , shockless  airfoils obtained from  the design method of ref. 8), 
the  approximate  value of AR could be  calculated  from  the known thick- 
ness 6, of the  trailing edge, 

The sixth input card contains TITR1, TITR2, and  TITR3, where 

TITR1, maximum  number of iterations on each of the first three  grids, re- 
TITRB, spectively.  These three  parameters  are important  because  they 
TITR3 serve  as a  convergence  criterion  in  the  case of nonlifting  flows 

(I' e 1. The  suggested  values  that will provide results with 
engineering  accuracy are 

TITRl = 150. 

TITR2 = 60. 

TITR3 = 30. 

In the  case  that PMESH = 4, the  maximum  number of iterations on the 
fourth  grid will be automatically  taken as TITR3/2. 

The seventh input card contains POINTS, GAMMA, and COWER,  where 

POIN Ts number of input mesh  points on surface of airfoil. For a nonsymmetric 
airfoil, POINTS must  be an odd number (counting  the trailing-edge 
point  twice). For a symmetric  airfoil only an even number of points 
defining its lower  surface should be given as input (counting the  trailing- 
edge and leading-edge  points  once only). The maximum total number 
of input points in the  present  version of  CASZD is 

POINTS = 129. 
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Note that  the  number of the input points on the  airfoil  lower  surface 
does  not  have to be  the  same as the  number of the input  points on its 
upper surface.  Before  preparing  the input data it might be helpful to 
consult the four  examples shown in  the appendix. 

GAMMA ratio of specific  heats of working  fluid 

CONVER circulation rate of convergence criteria in case of lifting flows 

The  suggested input value is 

CONVER = 1. 

The x' and y' coordinates of input points on the  surface of an airfoil  in  the  cas- 
cade are  given on the rest of the input cards  starting with the eighth card.  These co- 
ordinates will be normalized with respect  to  the  airfoil  chord length. The input co- 
ordinate  system (x', y') could be  arbitrarily positioned with respect  to  the  airfoil 
(fig. 7). 

The input points are numbered in the  clockwise  direction  starting  from  the 
trailing-edge point. The  numbering  must end  with the  same  trailing-edge point for a 
nonsymmetric  airfoil and  with the leading-edge point for a symmetric  airfoil. The 
coordinates are printed on input cards in such a way that x' coordinates of all the input 
points are  given in  the first column, followed by the  corresponding y' coordinates in 
the  second column (see appendix). 

output 

The results of the CASBD computer  program  appear in printed  form only. There 
are  no output files stored in the  computer. 

First, the  printout  gives  the  name of the  program,  the  name of the  programmer, 
and the name of the  airfoil or test  case as specified on the  first input data  card. 

The four columns that  appear next show normalized d and y' coordinates 
prerotated  to a zero  stagger  angle (in the first two columns) and as they appear 
after rotating  the  airfoil  for  the value of stagger  angle TWIST (in the last two 
columns). 
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Next, the  values of the flow parameters at the  downstream  infinity are given. 
They are obtained from an iterative  procedure involving the input flow parameters 
and the  mass conservation  principle. 

It is possible to monitor the iterative  process by using  the following parameters, 
which are printed after each  complete  iterative sweep  througb the flow field. These 
parameters are 

ITER number of iteration sweep just completed 

IR, JR  coordinates of point where  residue had largest absolute  value 

MAX  RESIDUE maximum  residue (eq. (20) or (21) plus (24) in flow field.  Its loca- 
tion is at the point (Et, JR). 

IC, J C  coordinates of point where  correction to potential had maximum ab- 
solute value 

MAX- CORRECT maximum  value of calculated  correction to  potential. This correction 
was introduced at the point (IC, JC). 

CIRCULATION value of circulation 

RELAX. COEF value of relaxation f a c 6 r  RLX used in last iteration sweep (eq. (54)). 

ISTG number of leading-edge  stagnation point. From that point the next 
iteration  sweep will start  proceeding  along  the  airfoil suction 
surface to the  trailing edge and then again from ISTG along the 
pressure  surface to the  trailing e d e .  In such  a way the  problems 
of marching  upstream in the  locally  supersonic flow  and the con- 
sequent  introduction of negative artificial  viscosity are avoided. 

N S U P  total  number of supersonic points in flow field 

When the  absolute value of the  normalized convergence rate 

becomes  smaller  than CONVER, the  iterative  process on that  particular  grid will 
terminate. For r = 0 (when the flow is nonlifting) the  iterative  process on each  grid 
will  terminate  after ITER = ITRMAX on that  particular  grid. The printout will then be 
continued by listing  the following values on the  blade  surface: 

X x' coordinate of point on airfoil  surface. (The airfoil  has been rotated by the 

Y y1 coordinate of point on airfoil  surface 

stagger angle TWIST. ) 
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XNORM d coordinate  normalized with actual  chord 

C P  coefficient of pressure 

P - P-, c =  
p 1  - P - , L  2 

2 

DENS local  density  normalized with respect to density  at  upstream infinity 

MACH local  value of Mach number 

Q/QINF ratio of local  speed to speed at  upstream infinity 

If PMESH was given as different  from PMESH = 1 in the input data,  subroutine 
MESH will refine  the  basic  mesh so that  the new mesh  will have  twice as many mesh 
cells in the X and Y directions  as  the  previous  mesh. The printout will continue 
with a  listing of ITER, IR, JR, . . , , etc., on that new mesh. 

Finally, when the  last  iteration sweep is completed on the last specified  mesh, 
the  chart of the Mach numbers (multiplied by 10) in the  entire flow field will be printed. 
The first horizontal  line of numbers  ranging  from j = 2 to J = MAXY corresponds to 
the  elliptic  mesh  layers enveloping the  airfoil.  Here J = 2 corresponds  to  the  mesh 
layer along the  periodic boundary; MAXY corresponds  to  the  mesh  layer along the 
surface of the  airfoil. 

The first column of numbers on this  chart  designates  the  number of the  mesh 
point, with I = 2 corresponding  to  the  (lower)  trailing-edge point. The Mach number 
chart will be  deleted from  the  printout if the Mach number at upstream infinity is 

The Mach number  chart is followed by the  values of the Mach number,  density, and 
free-stream angle at downstream  infinity  calculated after  the end of the last  iteration 
sweep on the  final  grid. They are  followed by the  final results of the  calculation,  a 
list of the flow parameters on the  airfoil  surface and the C -distribution  chart. 

P 
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RESULTS 

The  computer  program CAS2D was tested  four  times. All calculations  were  per- 
formed on three consecutively  refined  grids  measuring 24 x 6, 4 8  x 12, and 96 x 24 
mesh  cells,  respectively. The relaxation  parameter used on the  coarse grid was 
RLX = 1 . 6 5 .  The  convergence  criterion  for  the  circulation  rate was CONVER = 

1. on the coarse grid.  The  maximum  allowable numbers of iterations on the 
three  grids were specified as  

TI'I'R1 = 120.  TITR2 = 60. TITR3 = 30. 

The remaining input parameters  for each test  case  are  summarized in table I. 
The last column in  that  table  gives  references  that  provide  results widely accepted as 
being  exact. A private communication from D. A. Caughey of Cornel1  University  pro- 
vides the  results  for an isolated NACA 0012 airfoil in free  air.  Figure 8 shows that 
these  results  are in excellent  agreement with the  results obtained by using CASBD for 
PITCH = 3 . 6  (the  nonlifting incompressible  test,  test  case 1). 

Figure 9 gives the  comparison between the  second test  case,  the  lifting incom- 
pressible  test, and the  results of reference 9. The agreement is again excellent  des- 
pite  the  fact  that  the  airfoil used is cusped. Figure 10 compares  the nonlifting tran- 
sonic,  shocked test  case,  test  case 3, with the  results obtained by D. A. Caughey. 
There is practically no difference between the  results of the fully  conservative and 
quasi-conservative  schemes  for  shocks of that  strength.  This is in excellent  agree- 
ment with the  theoretical  analysis  performed by Caughey (ref. 10). 

The fourth test case was done on a shockless  cascade of airfoils obtained by J. 
Sanz of Langley Research  Center (ICASE)(private  communication), who used a com- 
puter code developed by Bauer,  Garabedian, and Korn (ref. 8).  This  airfoil had an 
open trailing edge  extending to downstream infinity. After  the  trailing edge had been 
rounded (closed),  the  proper flow parameters  at the downstream  infinity were ob- 
tained by using AR = 1.023  in  the input. The agreement between the results of  CAS2D 
and the results of Sanz are  very good (fig. 11). The  discrepancy of results near  the 
trailing edge is a consequence of the  geometric modifications in that region. 

Lewis Research  Center, 
National Aeronautics and Space  Administration, 

Cleveland, Ohio, March 5, 1980, 
505-32. 

21 



APPENDIX - LIMITATIONS OF CASZD  CODE 

Each user should be aware of certain  limitations  in  the CASBD code. A gap-chord 
ratio less then  approximately PITCH = 0.65 often leads to problems  associated with 
the mesh generation  routines.  Keeping the  stagger  angle TWIST within the range 

45' < TWIST < -45' 
I 

avoids large  mesh  distortions when PITCH is small.  The Mach number at upstream 
infinity, FMACH, must be less than unity,  and airfoil  camber should  not  be excessive. 
Four example cases of input data are  shown in figures 12 to 15. 

The format in which the input should be given is as follows: 

Card Format 

20 A4 
2 to 7 

2F10.6 8 to end 
9X, E12.5, 7X, E12.  5, 7X, E12. 5 
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TABLE I. - INPUT DATA FOR FOUR TEST CASES 

Test 
case 

Airfoil 

1 

(cusped) 
Gostelow 2 

NACA 0012 

3 

Jose Sanz 4 

NACA 0012 

(shockless) 

aprivate communication from D. 

bprivate coinmunication from J .  
University. 

Mach number 
of free  stream 
at upstream 

infinity, 
FMACH 

0.001 

Angle between 
free  stream 
and x axis at 

upstream infinity, 
ALPHA1 , 

deg 

0 I 

Stagger 
angle, 
TWIST, 

deg 

0 

free  stream 
and x axis at  
downstream 

infinity, 
ALPHAZ , 

.Ool I 53.5  1-37.5 I 30.0249 

. 8  

.711 

0 0 0 

30.81 -. 09 -9.32968 

Gap-chord 
ratio, 

PITCH, 

3.6 

.990157 

3.6 

1.02824 

, A. Caughey of 

Sanz of ICASE, 

Sibley School of Mechanical 

Langley Research  Center. 

and  Aerospace 

v, 
Y I  "5- 

r ALPHA2>0 

Twist < 0 

I 

Ratio of Comparisor 

passage  reference 

to  inlet 
area, 

I 
Engineering, Cornell 

Figure 1. - Planar cascade of airfoils. 
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Figure 2. - Quasi-threedimensional effect. 

-1.0 --51 
Figure 3. - Computational  mesh in physical  plane. 
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-m I t m  

“ , tm 

Fiqure 4. - Geometric  transformation sequence, where TE denotes 
trailing edge and LE denotes leading edge. 
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9 

1 

Figure 5. 

2 

Computational (X, Y) space 

Auxiliary  and  elementary  mesh cells. 

3 
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f 
Input data 

CONMAP 

S PLIF 

r"-x INTPL r"-x INTPL 

i, 
1 Output  listing 

Figure 6. - Block diagram of CAS2D program. 

Figure 7. - Input coordinate system. 
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-.6 
0 Test case 1 (finite  area  results); 

- Unpublished data of  D.A. Cauqhey 
h k  (PITCH), 3.6 

0 
0 

1.0 " 0 . 2  . 4  .6 .8 1.0 

x'lc 

Figure 8. - Comparison  of  nonlifting  incom- 
pressible  test case (test case 1) with un- 
published data of  D.A. Caugheyof  Sibley 
School of Mechanical  and Aerospace Engi- 
neering,  Cornell  University.  Airfoil, NACA 
0012; Mach  number of free  stream at upstream 
inf in i ty,  M, (FMACH), 0.001; stagger angle 
between x axis  and  airfoil  chord  line, BNWIST), 
6; angle between free  stream  and x axis  at 
upstream  infinity, a_,(ALPHAl), 8; angle 
between free  stream  and x axis  at  downstream 
inf in i ty,  a,(ALPHA2), 8; ratio of in let  area 
to exit  area  of blade-to-blade passage,  AR,  1.0. 

0 Test case  2 (finite  area results); 
-1.0-  AR,  1.0 - Results of ref. 9 :::h 
-. 4 

48x12 

1. o r 
0 . 2  . 4  .6 .8 1.0 

x'lc 

Figure 9. - Comparison  of  lifting  uncompres- 
sible test case (test case 2) with  resul ts of 
reference 9. Airfoil, Gostelow  cusped; Mach 
number of  free  stream  at  upstream  infinity, 
M,(FMACH), 0.001; stagger angle between 
x axis  and  airfoil  chord line, p (TWIST), -37.5'; 
angle between free  stream  and x axis  at  up- 
stream  infinity, a,(ALPHAl), 53.5'; angle 
between free  stream  and x axis  at  downstream 
infinity, a,(ALPHA2), 30.02490; gap-chord 
ratio, h l c  (PITCH), 0.990157. 



1.0 .i 
" . 

1.8928 
192x48 1 18 j 1.9685 
. .  

0 

Mesh 
0 80x12 
0 160x24 

x ' lc  
(a)  Test  case 3 (finite  area  results).  (b)  Unpublished data of D.A. Caughey. 

Figure 10. - Comparison of nonl i f t ing  t ransonic-shocked  test  case (test case 3) with  unpubl ished 
data  of D.A. Caughey  of  Sibley  School of Mechanical  and  Aerospace  Engineering,  Cornell 
University.  Airfoil,  NACA 0012; Mach  number of free stream at upstream  inf in i ty,  M_,(FMACH), 
0.8; stagger  angle  between x axis  and  airfoi l   chord  l ine, p TTWIST), 8; angle  between  free  stream 
and x axis  at  upstream  infinity, a-, IALPHAl), 8; angle  between x axis  and  airfoi l   chord  l ine at 
downstream  inf ini ty, a+w (ALPHAZ), 03; gap-chord  rat io,  hlc (PITCH), 3 . 6 ,  ra t io  of in let   area to 
exit  area  of  blade-to-blade passage, AR,  1.0. 
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r Fully  
conservative 

1. 2 

1.0 

0 Test  case 4 (finite  area  results); 
AR,  1.023 

(taken  using  hodograph  method 
Unpublished  data  of J. Sanz 

0 . 2  . 4  . 6  .8 1.0 
x ' lc  

Figure 11. - Comparison of l i f t ing  t ransonic  
shockless test case (test case 4) with  unpub- 
lished  data of J. Sanz of ICASE,  Langley 
Research  Center.  Airfoil, J. Sanz  shockless; 
Mach  number  of  free  stream at upstream in- 
finity,  M-(FMACH), 0.711; stagger  angle 
between  x  axis  and  airfoil  chord  l ine, p TTWIST), 
-9.32968O; angle  between  free  stream  and  x 
axis  at  upstream  infinity, a,(ALPHA11, 30.81'; 
angle  between  x  axis  and  free  stream  at  down- 
stream  inf ini ty, a+,(ALPHAZ), -0. @; gap- 
chord  rat io,   h lc (PITCH), 1.02824. 

~ > i s O O I O O  NNFI 0012 - INCIXWRESSIBLE NONLIFTING CFlSE 
~0000200 Xn'ELL = 0. i0000D+02YCELL = 0.OS000D+02PMESH = 4 .  ~OOOOOD+OO 
0000300 FILPHAI= 0.lOOOOOD+00TWIST = 0.00000D+00CILPHC12= O.O000OD+00 

i1000500 FM!XH = 0.00100D+OORLX = 1.72000D+OOCIR 5 1. 0000OD+OO 

0000700 POINTS= a>. 1500OD+0JGCIMMA - 1.4000OD+O0CONVER= I .  000000-06 
OOOOC.00 T I T R l  = 1.50000D+O2TITR2 = 0.600000+02TITR3 = 0.360000+02 

c:mo8oo I .  oooooo 0. oooooo 
0000900 0.350000 -0.008070 
noo1onn Q.YOOOOO -0.014450 
tooat 1010 0. 3nonoo -0 .0'62m 
0001200 0.700000 -0.036640 
60001300 0.600000 -0.045430 
oon14no 0.500ooo - 0 . 0 ~ 9 4 0  
0oo15nn 0.4noooo -0 .05~mo 
0001c.00 1 0 .  300000 -0.060020 
ooo17no o.~soono -0.059410 
0001:300 10. 200000 -0.057370 
OOOIVOO 0. ISOOOO -0.nsz450 
0002000 0. 1 00000 -0. 0463330 
txm21no n. h75000 -0.04iono 
~ ~ 0 0 2 1 0 0  0. osoooo -0.035sso 
WO2300 0.025000 -0.026150 
0002400 0.012500 -0.015940 
0002s00 0.000000 0.000000 

01101:1400 PITCH = 3 . ~ 0 0 0 0 0 + 0 0 ~ o 1  = O . O ~ ~ B O ~ + O O R ~ Z  = o.o0o5ou-~oo 

Figure 12 - i n p u t  data  for   incompress ib le   nonl i f t ing  test  case. 
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0000100 
0000200 
0000300 
0000400 
0000500 
0000600 
0000700 
0000800 

0001000 
0000900 

0001100 
0001200 
0001300 
0001400 
0001500 
0003600 
oon1700 
0001500 
0001900 
0002000 

0002200 
00021 00 

0002300 
0002400 
0002500 
0002600 
00027r~o 
ono2E:oo 
0002Y00 
0003000 
IO003100 
0003200 
0003300 

0003500 
0003400 

0003600 
0003700 
0003500 
0003900 

0004 100 
0004000 

0004300 
il004200 

0004400 
0004500 
0004600 

GOSTELOU  CUSPED PlIRFOIL 
XCELL = 0.24000D+02YCELL = 0.060000+02Pt4ESH = 4.00000D+00 
PlLPHPll- 0.535000+02TWIST =-0.375000+02&LPHP2= 3.00249D+Ol 
PITCH = ~ . ~ O I S ~ D - O ~ R O ~  = 0.01250n+00~02 = O.OO~O~D+OO 
FMP~CH = o.o01oon+ooRLx = ~ . ~ ~ O O O D + O O A R  = I.OOOOOD+OO 
TITRl = 1.50OOOD+02TITR2 = 0.50000D+02TITR3 = 0.300000+02 
POINTS=  0.390000+02GAMMA = 1.40000D+00CONVER= 1.000000-05 

0.995590 0.000390 
1.000000 0.000000 

0.985070 0.003090 
0.918570 0.017050 
0.816750 0.029510 
0.691660 0.035040 
0.562150 0.031740 
0.425130 0.020330 
10.321980 0.007780 
0.272560 0.001030 
0.232030  -0.004630 
0.165360 -0.013530 
0.110980  -0.019350 
0.057580  -0.021490 

0.015190 -0.015100 
0.03os90 - O . O I C / ~ Z O  

o.005990 -0.009'730 
0. 00001 0 -0. 1:100040 
0.001 130 to. 0086&.0 
0.004610 0.015330 
0.017060 0.02:3'3nl'l 

0.059531) 10.055450 
0. 035630 0. 042360 

0.048440 0.067920 
IO. 12235,-1 0.07"540 

F igu re  13. - I n p u t  data for incompress ib le   l i f t ing  test  case. 

F igu re  14. - I n p u t  data for t ransonic ,   shocked  nonl i f t ing  test  case. 
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JOSE SCINZ  SHOCKLESS  CCISCCIDE - TIP SECTION 
XCELL = 0.24000D+O2VCELL = 0.06000D+02PMESH = 3.0000OD+00 
CILPHCII= 0.303lOD+O2TUIST =-9.329680+00CILPHCI2=-0.09nl)OD+00 

FMCICH = 0.71100D+00RLX = 1.68000D+OOPR = 1.02400D+00 
PITCH = 1.04400D+00ROI = 0.01000D+OOR02 = 0.01000D+00 

TITRl = 1.20600D+02TITR2 - 0.60000D+02TITR3 = 0.30000D+02 
POINTS= 1.27000D+02GCIMMCI = 1.40000D+OOCONVER= 1.OOOOOD-05 
0.994000 0.171500 

C4006900 
0007000 

0007200 
0007100 

0007300 
0007400 

-0.007900 O . O O h 9 0 0  
-0.006400 0.016500 
0.031100 0.055400 

0.082600 0.087400 
0.054800 0.072200 

0.110300  0.105400 

Figure 15. Input data for transonic, shockless lifting test case. 
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