

AN EARTH-MARS MISSION-ANALYSIS PROGRAM

by James F. Kibler
Langley Research Center Hampton, Va. 23365

0132695

*For sale by the National Technical Information Service, Springfield, Virginia 22151

AN EARTH-MARS MISSION-ANALYSIS PROGRAM

By James F. Kibler
Langley Research Center

SUMMARY

A rapid, flexible, preliminary Earth-Mars mission-analysis computer program has been developed. The program computes a conic interplanetary trajectory approximation, a noncoplanar impulsive deboost maneuver into a closed orbit about the target planet, and many mission-dependent and mission-independent parameters to allow examination of the entire flight profile. The capabilities of the program are discussed along with the requirements for computing a general planet-to-planet mission. Examples of program input and output and sample data analyses are presented for an Earth-Mars mission during the 1973 launch opportunity. A flow diagram for the main program, the input and output description, and a complete program listing are presented in the appendixes.

INTRODUCTION

Interplanetary flights from Earth to the planets represent a significant part of the space effort. Detailed study is required for each of these flights. A necessary part of the study is a preliminary mission analysis which consists of choosing a suitable mission profile from an infinite set of possible candidates. Many variables and trade-offs are available to the flight planner. For example, once a rocket booster is chosen, the maximum allowable spacecraft weight is specified for a given launch date and arrival date. The planner must then trade weight for required launch-arrival periods until a feasible combination is obtained. Once the spacecraft weight is determined, an allocation must be made for fuel to perform midcourse corrections, a deboost maneuver at the planet, and a deorbit maneuver to the surface of the planet. Each of these maneuvers will depend upon other mission constraints such as the desired orbit at the planet and the desired landing point on the surface. In addition, the mission planner must consider the effect of scientific requirements on the mission profile. For example, the landing point must be located in a scientifically interesting area and must have proper lighting for any onboard optical equipment. The orbit about the planet must satisfy constraints such as communication requirements with the Earth and the necessity for solar cells to be exposed to sunlight for the greater part of each orbit. The many different problems involved in preliminary mission analyses present a real task for the flight planner.

At Langley Research Center, computer programs have been developed to solve several individual parts of the mission-analysis problem. However, experience with the Viking project has shown the difficulty of data interchange between the programs and the necessity for an integrated approach to a preliminary mission analysis. The program described herein is an attempt to combine the many facets of preliminary mission design into one rapid and flexible program. In addition, capability not previously available in program form, such as a noncoplanar impulsive-burn deboost maneuver, has been included in this program.

The present version of the mission-analysis program is concerned only with EarthMars missions of the Viking type. However, modifications described herein would allow study of interplanetary missions to other planets. The accuracy of the program is limited by the use of Keplerian mechanics and impulsive-burn maneuvers rather than finiteburn integrating schemes. However, it is felt that for preliminary mission design, the order-of-magnitude accuracy involved in the approximations, as compared with an integrating program, is far outweighed by the several orders of magnitude gained in computational speed and program flexibility. Results from the various program elements agree with results obtained from other conic programs that were previously designed individually to study specific parts of the total mission.

Information required for operation of the program is contained in the appendixes. Appendix A includes a brief flow chart and a description of the primary subroutines. An explanation of the required input is given in appendix B. Appendix C describes the output parameters, and a complete FORTRAN listing is given in appendix D. The program was developed for use on a Control Data 6600 series computer and requires a field length of approximately 650008 .

SYMBOLS

$\vec{B} \quad$ a vector from center of target planet and perpendicular to approach asymptote of incoming hyperbola
$C_{3} \quad$ twice total geocentric injection energy per unit mass, $\mathrm{km}^{2} / \mathrm{sec}^{2}$
$D_{\text {LA }} \quad$ declination of launch asymptote as measured from Earth's equator, deg
f true anomaly, deg
$f_{\text {deorbit }} \quad$ true anomaly of deorbit, deg

G Sun lighting angle, deg
$\mathrm{h}_{\mathrm{a}} \quad$ apoapsis altitude of specified elliptical orbit, km
$h_{p} \quad$ periapsis altitude of specified elliptical orbit, km
$r_{p} \quad$ periapsis radius of ellipse, km
$\mathrm{V}_{\mathrm{e}} \quad$ velocity on ellipse, $\mathrm{km} / \mathrm{sec}$
$\mathrm{V}_{\mathrm{h}} \quad$ velocity on hyperbola, $\mathrm{km} / \mathrm{sec}$
inclination of elliptical orbit, deg
oblateness coefficient for Mars
apoapsis radius of ellipse, km
radius of Mars, km
center of planet
velocity on ellipse, $\mathrm{km} / \mathrm{sec}$
velocity on hyperbola, $\mathrm{km} / \mathrm{sec}$
deboost velocity-change requirement, $\mathrm{km} / \mathrm{sec}$
declination of landing point, deg
declination of subsolar point, deg
gravitational constant for Mars, $\mathrm{km}^{3} / \mathrm{sec}^{2}$
right ascension of landing point, deg
true anomaly of landing point (periapsis to landing-point angle on ellipse), deg
$\overrightarrow{\mathbf{R}}=\overrightarrow{\mathbf{S}} \times \overrightarrow{\mathbf{T}}$ with $\overrightarrow{\mathbf{R}}$ a unit vector completing the RST triad
unit vector, parallel to approach asymptote at Mars and passing through
unit vector perpendicular to $\overrightarrow{\mathrm{S}}$ and parallel to ecliptic plane
hyperbolic excess velocity of spacecraft relative to Mars, km/sec
flight-path angle at entry into Martian atmosphere, deg
$\phi_{\mathrm{S}} \quad$ right ascension of subsolar point, deg
$\Omega \quad$ right ascension of ascending node, deg
$\omega \quad$ argument of periapsis, deg

Subscripts:

1,2 denotes specific points on the ellipse
$\max \quad$ maximum
min minimum

Symbols without arrows denote magnitudes.

MISSION-ANALYSIS CAPABILITIES

The computer program has been developed to fulfill a requirement for preliminary mission analysis and design. The program is intended to be a rapid engineering tool which may be easily modified to perform additional tasks as the need arises. In this light, the following paragraphs describe the basic assumptions and approximations, the method of calculation, and the program capabilities for each part of the mission-analysis problem treated by the program.

Heliocentric Trajectory

The Earth-Mars-Sun geometry used for calculating the heliocentric trajectory elements is shown in figure 1. Point masses and Keplerian mechanics are assumed throughout the analysis. The heliocentric orbits of Earth and Mars are represented by timevarying mean orbital elements. If the position vector to the Earth at a launch date and the position vector to Mars at an arrival date (fig. 1) are known, a number of methods can be used to generate a unique set of trajectory elements which connect these two points in the desired trip time. A true anomaly iteration method (ref. 1) is used here. Once the elements of the heliocentric transfer trajectory are known, many additional parameters of interest are computed. For example, C_{3} (twice the injection energy of the spacecraft relative to the Earth) and D_{LA} (the declination of the launch asymptote relative to the Earth's equator) are calculated. These two parameters are of interest to the mission planner because they define launch-vehicle energy requirements per unit mass (C_{3}) and whether the injection into the interplanetary trajectory violates range-safety requirements

Figure 1.- Earth to Mars geometry.
(overflight restrictions on D_{LA}). Also, the hyperbolic excess velocity of the spacecraft relative to Mars V_{∞} is computed here. Constraints on the maximum values of C_{3}, D_{LA}, and V_{∞} are applied by the program. The trajectory for a given launch and arrival date is rejected if it violates any one of the constraints, and a new launch-arrival date pair is tried. Thus, the mission planner is spared the necessity of sifting through a number of impractical trajectories. The other parameters computed here are described in appendix C. This trajectory computation is very rapid and may be easily modified to compute additional quantities of interest to the mission planner.

Elliptical Orbit at Mars

The orbit trace and inertial landing-point geometry at Mars is shown in figure 2. The mission requirements of Sun lighting angle G, landing latitude λ_{l}, orbital inclination i, and the argument of the landing point f_{l} are specified. The declination and right

Figure 2.- Landing-point geometry. Arrows indicate positive sense.
ascension of the subsolar point, λ_{S} and ϕ_{S}, are calculated from the position of the Sun with respect to Mars. Since these quantities are known, the argument of periapsis ω and the right ascension of the ascending node Ω can be found. (See fig. 2.) The resulting equations depend on the location of the landing point with respect to the ascending or descending node of the orbit and with respect to the morning or evening terminator (that is, lighting conditions). The various combinations of landing-point conditions are chosen on option from the main program. Finally, the apoapsis and periapsis radii, r_{a} and r_{p}, are specified from experiment considerations. Thus, the orbital elements (r_{a}, r_{p}, i, Ω, and ω) of an ellipse which passes over the inertial landing point are known for the date of deorbit.

For photographic coverage, the spacecraft will be in orbit about Mars for a number of revolutions prior to landing. Because of the oblateness of Mars, Ω and ω will change as functions of time. Therefore, Ω and ω are regressed an amount dependent upon the required stay time in orbit. (See ref. 1.) Thus, the elements of the initial ellipse on the date of the deboost maneuver are determined.

The mission planner is interested in Sun and Earth occultations as seen by the spacecraft while in orbit about Mars. Therefore, such parameters as the first orbit on which occultation occurs, duration of occultation, and the time and true anomaly from periapsis of entrance to and exit from occultation are computed for both the Sun and Earth. These parameters are necessary to define quantities such as battery requirements (solar cells occulted from sunlight) and data-storage capability (direct telemetry occulted from tracking bases). The computed quantities are described in appendix \mathbf{C}. It would be possible to compute occultation parameters for other celestial bodies (for example, Canopus) by a suitable modification to the program.

Deboost Maneuver

The deboost maneuver geometry is shown in figure 3. A minimum ΔV impulsive burn maneuver is computed. The maneuver is not constrained to be coplanar or to be a periapsis-to-periapsis transfer. The values of hyperbolic excess velocity V_{∞} and a unit vector parallel to the approach asymptote and passing through the center of the planet \vec{S} have been computed in the heliocentric trajectory part of the program. The quantities V_{∞} and \vec{S} define a family of approach hyperbolas. The orbital elements of the required ellipse at Mars have been determined in the elliptical orbit computation section. The deboost maneuver is designed to specify the family of approach hyperbolas that results in the minimum ΔV requirement for deboost.

The procedure is described with reference to figure 3. The approach hyperbola is rotated about $\overrightarrow{\mathbf{S}}$ and its periapsis altitude is adjusted until it intersects the specified elliptical orbit at a particular true anomaly f_{1}. Since the radius of the hyperbola is constrained to be the same as the radius of the ellipse at that true anomaly, the orbital elements of the hyperbola are computed. The velocities on the ellipse $\mathrm{V}_{\mathrm{e}, 1}$ and hyperbola $V_{h, 1}$ at the intersection point are computed and their vector difference ΔV_{1} represents an impulsive-burn transfer between the conics at their intersection. Next, another true anomaly f_{2} is chosen, and the velocity difference ΔV_{2} is computed at this new intersection of the hyperbola and ellipse. This process is repeated at true anomaly intervals around the ellipse. The minimum ΔV is calculated by a parabolic interpolation through the three smallest computed values of ΔV. The associated hyperbola is then defined to be the required conic. A maximum acceptable ΔV is defined by the user and any profiles which violate this constraint are rejected.

Figure 3.- Deboost velocity computation geometry.

Additional parameters of interest to the mission planner are computed in this part of the program. For example, the areocentric components of ΔV, the plane change involved in the maneuver, and the radius, time and true anomaly of the deboost maneuver are computed. Also computed are the components B•T, B•R of a "miss parameter" $\overrightarrow{\mathrm{B}}$ which is the perpendicular from the center of the planet to the approach asymptote. The components $B \cdot T$ and $B \cdot R$ lie in the plane formed by \vec{T} (a unit vector perpendicular to \vec{S} and parallel to the ecliptic plane) and $\vec{R}(\vec{R}=\vec{S} \times \vec{T}$, with \vec{R} a unit vector completing the triad). The RST areocentric coordinate system is a convenient targeting system for the mission planner. Other computed parameters associated with the deboost maneuver are described in appendix C.

Operational Modes

There are several modes of operation and program options available to the mission planner. There are three output modes which control computational flow as shown in the flow chart in appendix A. A sample input and a sample output for each of the computational modes are illustrated. An initial launch date of August 9, 1973, and an initial arrival date of March 16,1974 , are specified for each example. In each mode, the program automatically scans a grid of launch and arrival dates as determined by the user. Maximum values for the $C_{3}, D_{L A}, V_{\infty}$, and ΔV constraints are selected. A set of landing-point parameters (f_{l}, λ_{l}, G, i, and stay time in orbit) are chosen which relate to the particular mission. Physical constants associated with the planet are specified. For each case, a set of program control integers is required. Each of the input and output parameters is described in appendixes B and C.

An example of the input and output for the minimum output mode is presented. This operational mode performs only the calculations required to define the basic mission profile. Output is restricted to a single line to facilitate scanning a wide range of possible launch and arrival date combinations. Only the profiles which satisfy constraints on C_{3}, $D_{L A}, V_{\infty}$, and ΔV are printed out. This option requires less than 1 second of computer time per launch-arrival date pair.

A sample input and output described in appendixes B and C for the minimum output mode follows:

SINPT

E	0.73E+02. 0.	0.9E+01. 0	0.0, 0.0, 0.0,
XM	0.74E+02, 0.3E+01,	0.16E+02,	0.0, 0.0, 0.0,
ILD	$=75$.		
IAD	$=25$.		
IJD	$=5$,		
		u	$=0.428284 E+05$,
JJ0	$=5$,	INC	$=1$.
c3max	$=0.21 E+02$,		
		KEY1	$=0$,
Dlamax	$=0.4 \mathrm{E}+02$.	KEY3	$=1$.
VHPMAX	$=0.35 \mathrm{E}+01$.		
DEI Vmax	$=0.2 \mathrm{E}+01$.	KEY4	
		KFY5	$=0$.
PFR	$=0.12 \mathrm{E}+02$.	I SEARCH	= 0 .
ELP	$=0.3 \mathrm{E}+02$.	tnest	$=0.0$.
SPFCLLON	$=0.90866469013461 F+02$,		
GEE	$=6.65 E+02$.		
XI	$=0.4 \mathrm{~F}+02$.		
days	$=0.1 \mathrm{E}+02$.		
HA	$=0.3267 E+05$.		
HP	$=0.14 \mathrm{E}+04$.		
RS	$=0.33934 \mathrm{E}+04$,		
RPMIN	$=0.47969 \mathrm{~F}+04$.		
TADFORB	$=0.0$,		
FPA	$=-0.16 \mathrm{E}+02$.		
RENTRY	$=0.363724 E+04$.		
X J ${ }^{\text {? }}$	$=0.197 \mathrm{~F}-02$,		

	$\begin{aligned} & \text { UNCF } \\ & \text { ATE } \end{aligned}$		$\begin{gathered} \text { ARRIVAL } \\ \text { DATE } \end{gathered}$			C3	DLA	deltav	$\begin{aligned} & \text { F DRST } \\ & \text { ELIPSF } \end{aligned}$	F DRS HYPER	$\begin{aligned} & T \text { DRST TIM } \\ & R \text { FROM PFR } \end{aligned}$	SO	EO	TSUNTN	DIJR Sum	TASIN	tascit	TFARIM	mueras	+A-tn	tastit
73	8	9	74	3	16	16.54	33.66	1.510	-63.7	-44.6	-1630.69	0	1	0.00	0.00	0.00	0.00	8.84	25.1!	74.57	75.07
73	8	9	74	3	21	17.04	35.96	61.689	-74.4	-51.1	-2065.39	0	1	0.00	0.00	0.00	0.00	8.97	27.?1	24.71	76.58
73	8	9	74	3	26	17.71	38.51	11.877	-84.1	-55.5	-2556.29	0	1	0.00	0.70	0.00	0.00	9.07	29. 20	? 4.98	78.05
73	8	14	74	3	16	17.41	28.85	1.349	-60.8	-41.6	-1529.65	0	1	0.00	0.00	0.00	0.00	8.84	26.11	24.52	75.07
73	8	14	74	3	21	17.67	30.67	1.501	-71.5	-48.4	-1939.69	0	1	0.00	0.00	0.00	0.00	8.07	$=7.21$	34.71	75.59
73	8	14	74	3	26	18.03	32.68	1.658	-81.3	-53.7	-2404.05	0		0.00	0.00	0.00	0.70	9.02	28.20	24.98	78.05
73	8	14	74	3	31	18.52	34.90	1.820	-90.2	-57.0	-2925.13	0	1	0.00	0.00	0.00	0.00	9.15	? 0.25	25.22	79.49
73	8	14	74	4	5	19.18	37.35	1.990	-98.0	-58.4	-3502.91	0	1	0.00	0.00	0.00	0.00	9.30	30.29	75.77	B0. 8.8
73	8	19	74	3	16	19.15	24.76	1.237	-59.4	-39.1	-1481.56	0	1	0.00	0.00	0.00	0.00	9.84	25.11	24.52	75.07
73	8	19	74	3	21	19.25	26.22	1.366	-69.8	-45.9	-1870.06	0	1	0.00	0.00	0.00	0.00	8.72	?7.?!	24.71	76.58
73	8	19	74	3	26	19.41	27.81	1.502	-79.5	-51.4	-2309.39	0	1	0.00	0.00	0.00	0.00	0.02	23.99	34.98	78.05
73	8	19	74	3	31	19.64	29.56	1.640	-88.2	-55.3	-2801.39	0	1	0.00	0.00	0.00	0.00	9.15	39.25	75.27	79.49
73	8	19	74	4	5	19.97	31.48	1.781	-96.1	-57.5	-3347.84	0	1	0.00	0.00	0.00	0.00	9.30	20.39	25.77	90.88

An example of the input and output for the extended printout mode is presented. This operational mode calculates numerous additional parameters (described in appendix C) associated with a particular launch and arrival date. In this mode, the "timecorrection" option can be selected. This option allows the user to pick a particular longitude of landing (that is, "tying down" the inertial landing point to the rotating planet). The chosen longitude must rotate beneath the computed elliptic orbit with the given lighting conditions at a particular time. This constraint determines the landing time. With the time of landing known, event times of deorbit and deboost are computed. The deorbit-to-landing time increment is computed by use of an entry trajectory with no atmosphere to allow rapid computation. On option, a more accurate time increment can be put into the program. The deboost-to-deorbit time increment is computed along the specified elliptical orbit. One page of output and approximately 2 seconds of computer time per launch-arrival date pair are required in the extended output mode. Other quantities of interest to the mission planner could be computed and inserted into this output.

A sample input and output for the extended output mode (described in appendixes B and C) follow:

$\$$ INPT

E	$=0.73 E+02$.	0.8F+01.	0.9F+01.	0.0, 0.0, 0.0,
XM	$=0.74 \mathrm{E}+02$.	0.3E+01.	0.16E+02,	0.0, 0.0, 0.0.
ILD	$=1$.			
IAD	$=1$.			
I JD	$=1$.			
JJ0	$=1$.			
C 3MAX	$=0.21 E+02$.			
DLAMAX	$=0.4 \mathrm{E}+02$.		1 =	$0.428284 \mathrm{E}+05$ 。
VHPMAX	$=0.35 \mathrm{E}+01$,		INC. =	1.
delvmax	$=0.2 E+01$.		KEY1 =	1.
PER	$=0.12 E+02$,		KFY3 =	1.
ELP	$=0.2 \mathrm{E}+02$.		KEY4 =	1.
SPERILON	$=0.32 \mathrm{E}+03$.		$\text { KFY5 }=$	0 .
GEE	$=0.6 F+02$.		ISEARCH $=$	0.
$\times 1$	$=0.3 E+02$.		$\text { TDFST }=$	0.0.
DAYS	$=0.9 E+01$		\$END	
HA	$=0.3267 E+05$.			
HP	$=0.14 E+04$.			
RS	$=0.33934 \mathrm{E}+04$			
RPMIN	$=0.47969 \mathrm{E}+04$			
TADEORB	$=0.21475 \mathrm{E}+03$			
FPA	$=-0.16 \mathrm{E}+02$.			
RFNTRY	$=0.363724 \mathrm{E}+0$	04,		
XJ 2	$=0.157 E-02$.			

interplanetary flitiht parameters
OLA $=3.36573132 E+01 \quad R A L=1.36567 \angle 555+01 \quad C 3=1.654077505+01 \quad$ TETP TTMF $=3.39000002+07$

AC. $=5.4063$ C549F+01 $\quad E T C=2.69475543 F+02$

Elfments anc nernost parametefs - yyderamla

GRST TRIE ANOM. $=-3.73713240 E+01$ ORST TIME $=-7.838712315+02$

Elemfnts and deboost paramfterg - ellipse

debnost maneiver parameters

DELTA V $=1.27618493 F+00$	EXCESS RELTA V = 7.238150675-01	DADItJ $=6.00774389 E+03$	
$v X=4.72911478 \mathrm{~F}-01$	$V Y=-7.81123210 \in-01$	$v 7=8.91543065 f^{-n 1}$	

occultatira parameters

IST ORBIT. SUN= $0 \quad$ TIME. SIJN $=0$ DIJRATION, SIJN $=0$

TRUE ANOM.. EARTH IN = 3.39979033E+01 TRIJEAVGM., EARTH TIIT $=7.77646115 E+01$

Landing point parameters

The third output option is the "parametric-analysis" printout mode. An example of the input and output of this mode follows. This mode computes the heliocentric transfer trajectory for a specified launch and arrival date. Then the input parameters, f_{l}, λ_{l}, G, i, and stay time in orbit, are varied through specified ranges to determine their effect on the ΔV required for the deboost maneuver. One line of output and approximately 1 second of computer time are required for each combination of input parameters.

\$ INP T

E	=	$0.73 \mathrm{E}+02$.	0.8F+01.	$0.9 E+01$,	0.0,	0.0,	0.0,
XM	$=$	$0.74 E+02$.	$0.3 E+01$.	$0.165+02$.	0.0.	0.0.	0.0,
ILD	$=$	1.					
IAD	$=$	1.					
I J0	$=$	1.					
J. 10	$=$	1.					
CSMAX	$=$	0.21E+02.					
DLAMAX	$=$	$0.4 \mathrm{~F}+02$.					
VHPMAX	$=$	$0.35 E+01$.					
DELVMAX	$=$	C.2E+01.					
PFR	$=$	$0.12 E+02$.					
EIP	$=$	$0.2 \mathrm{ta}+02$					
SPECLON	$=$	$0.32 F+03$.					
GFE	$=$	$0.6 F+02$.					
X I	$=$	0.3E+02,					
DAYS	$=$	$0.9 E+01$.					
HA	$=$	$0.3267 E+05$,					
HP	$=$	$0.14 E+04$.					
RS	$=$	$0.33934 E+04$					
RPMIN	$=$	$0.47969 E+04$					
TADENRB		$0.21475 E+03$					
FPA		$-0.16 E+02$.					
RENTRY	$=$	$0.363724 E+0$	4.				
$\mathrm{XJ2}$	$=$	$0.197 \mathrm{E}-07$.					

```
|) = 0.428284E+05,
INC. = 1,
KEYI = 2.
KFY3 = 1,
KEY4 = 1.
KFY5 = 0.
ISFARCH = 1.
TOEST = 0.0.
$FND
```

\$PARAM
PER1 $=0.1 E+02$.
PERT $=0.12 \mathrm{E}+02$.
$K P F R=2$.
ELP1 $=0.25 E+02$.
ELP? $=0.3 E+02$.
KELP $=5$.
GFEL $=0.6 E+02$.
GEE2 $=0.65 \mathrm{E}+02$.
KGEF $=5$.
$X I 1=0.35 E+02$.
$\mathrm{XIT}=0.4 \mathrm{E}+02$.
$K X I=5$.
DAYI $=0.5 E+01$.
DAY $=0.1 E+02$.
KDAY $=5$.
\$FND

There are several program options available within each of the output modes. The program user must select values for each of the control integers described in appendix B. Either a posigrade or retrograde hyperbola may be chosen for the approach to Mars. One of four combinations of ascending or descending node and morning or evening lighting are specified for the landing point on the surface of Mars. The user may also put in broken-plane trajectory parameters (that is, a combination of two intersecting conic trajectories with different orbital elements). If this input option is selected, no heliocentric trajectory computation is made within the program. (See the flow chart in appendix A.)

A brief description of the primary subroutines is given in appendix A. The other general purpose subroutines are given in the FORTRAN listing in appendix D. These subroutines are generally self-explanatory and may be used in many types of programs. The mathematics associated with several of the general purpose subroutines is discussed in reference 2.

Application to Other Planets

The modular construction of the mission-analysis program permits a relatively easy extension to the evaluation of a planet-to-planet mission. A planetary ephemeris subroutine must be substituted for the launch and arrival planets, and a coordinate transformation subroutine is required to rotate a vector between the mean planet equatorequinox coordinate systems. Changes in the planetary constants and minor FORTRAN modifications must also be made. The straightforward computation and flexibility of the mission-analysis program should permit the addition of any calculations required by the mission planner.

RESULTS AND DISCUSSION OF SAMPLE CASE

Many phases of preliminary mission analysis can be studied by use of the data computed by the program. Since this paper is intended as an explanation of the capabilities of the mission-analysis program, only two examples of data analysis are presented here. First, consider the problem of choosing feasible ranges of launch and arrival dates. This analysis is performed by the minimal output mode of the program. The choice of a launch and arrival date pair is constrained immediately by the available launch vehicle energy per unit mass C_{3}, range safety considerations $D_{\text {LA }}$, and the deboost velocitychange requirement ΔV. Program output is used to plot constant contours of these three quantities as functions of launch and arrival dates. (See fig. 4.) By establishing an upper value of each quantity, many combinations of launch-arrival dates which exceed one of the constraints can be eliminated immediately from further consideration. The shaded region in figure 4 indicates the launch and arrival dates which simultaneously satisfy the

Figure 4.- $C_{3}, D_{\text {LA }}$, and ΔV constraints on launch-arrival date opportunities.

Figure 5.- Deboost ΔV variation with landing-point parameters.

Figure 5.- Continued.

Figure 5.- Continued.

Figure 5.- Concluded.
constraints of $C_{3}=20 \mathrm{~km} 2 / \mathrm{sec}^{2}, \mathrm{D}_{\mathrm{LA}}=35^{\circ}$, and $\Delta V=1.3 \mathrm{~km} / \mathrm{sec}$. It should be noted that the ΔV contours are dependent upon a particular set of landing-point conditions which determine the elliptical orbit at Mars. Any variation in the elliptical orbit will shift the ΔV contours.

Next, it is logical to choose a launch-arrival opportunity from the shaded region of figure 4 , and to determine the effect of the landing-point conditions on ΔV. This problem is easily handled by the parametric analysis output mode. Figure 5 shows the variation in inclination as a function of deboost ΔV for a launch date of August 20, 1973, and an arrival date of March 24,1974 . The plots show the variation in ΔV as dependent upon the Sun lighting angle, f_{l}, landing latitude, and stay time in orbit. Since these parameters are not truly independent, the two-dimensional plot will not tell the complete story. However, this type of analysis does indicate trends for additional study. The data presented in figures 4 and 5 can be generated in two runs of the program.

CONCLUDING REMARKS

Rapid computing time, modular construction, and the combination of many phases of mission design into one package are assets of the mission-analysis program. The conic trajectory computations decrease the accuracy of the program as compared with an integrated trajectory, but this inaccuracy is felt to be of minor concern for preliminary mission planning purposes. The ease with which modifications can be made, and computational flexibility make the program a useful engineering tool.

Langley Research Center,
National Aeronautics and Space Administration, Hampton, Va., August 7, 1970.

APPENDIX A

MAIN PROGRAM

Flow Diagram

This flow diagram is a simple description of the computational flow of the main program. The three sets of input are described in appendix B. Each of the subroutines shown here is described briefly after the flow diagram. These subroutines, in turn, call the other subroutines given in appendix D. The numbered decisions are as follows:
(1) Is the program in the parametric analysis output mode?
(2) Is broken-plane input data required?
(3) Is the program in the extended printout mode?
(4) Are the $C_{3}, D_{L A}$, or V_{∞} constraints exceeded?
(5) Is the ΔV constraint exceeded?
(6) Has the "time correction" option been selected?
(7) Is the required range of launch-arrival dates completed?

APPENDIX A - Concluded

Description of Primary Subroutines

The following is a brief description of the primary subroutines shown in the flow diagram.

PLUG and PLUG 1 - PLUG is called in the minimum output mode; it computes C_{3}, $D_{L A}$, and V_{∞}, and the declination and right ascension of \vec{S}. PLUG 1 is called in the extended output mode; it computes many additional trajectory parameters as described in appendix C. These subroutines compute the elements of a heliocentric trajectory between Earth and Mars for a given launch and arrival date. A unique conic trajectory is determined from the two radius vectors and the trip time. A true anomaly iteration method is used to establish the conic trajectory.

COMPEL - If the landing-point parameters of i, f_{l}, G, λ_{l}, stay time in orbit, and the date of landing are known, this subroutine computes the elements of an ellipse at Mars which passes over the landing point on the date of deorbit.

FUDGE - With the oblateness coefficient for Mars and the stay time in orbit known, this subroutine modifies Ω and ω as computed in COMPEL to account for oblateness effects accumulated during the specified stay time in orbit. The resultant elements determine the initial orbit at Mars.

DEBOOST AND DBST 1 - DEBOOST is called in the minimum output mode; it computes the minimum ΔV and the elements of the hyperbola associated with it, and the impact plane parameters. DBST 1 is called in the extended output mode; it computes the additional deboost parameters described in appendix C. These subroutines compute the minimum impulsive velocity change required to transfer from the approach hyperbola to the initial orbit at Mars.

SEESE - This subroutine determines whether occultations of the Sun or Earth as seen by the spacecraft occur during the specified stay time in orbit. If so, it computes the occultation parameters described in appendix C.

EVENTS - This subroutine is called in the "time correction" option. The user specifies a longitude of landing which determines the landing time. Then, event times of deorbit and deboost are computed. The user may specify the deorbit-to-landing time increment. If this time increment is not specified, an impulsive deorbit maneuver is performed and the deorbit quantities described in appendix C are computed.

APPENDIX B

DESCRIPTION OF PROGRAM INPUT

The NAMELIST feature of the Control Data 6600 computer is used to facilitate data input. Three namelists are used. INPT is the standard set of data and control variables and is always required. PARAM is a set of quantities used to vary the landing point data parametrically and is put in only in the parametric-analysis output mode. BPDATA is a set of broken-plane trajectory parameters. If this namelist is put in, no trajectory calculation is made within the program.

The following quantities are put in by the INPT namelist.

$\underset{\text { symbol }}{\text { Program }} \underset{\text { dimension }}{\text { Program }}$| Mathematical |
| :---: |
| symbol |

E	6	
XM	6	
ILD	1	
IAD	1	
IJD	1	
JJD	1	
C3MAX	1	$C_{3, \max }$
	1	
DLAMAX	1	$D_{\text {LA, max }}$

> yr, mo, day, Calendar launch date (for example, 73 , $\mathrm{hr}, \min , \sec \quad 10,23,0,0,0$)
yr, mo, day, Calendar arrival date $\mathrm{hr}, \min , \mathrm{sec}$
days Scanning period size for launch
days Scanning period size for arrival
days Launch-date increment
days Arrival-date increment
$\mathrm{km} 2 / \mathrm{sec}^{2} \quad$ Constraint on vis-viva injection energy C_{3}

Constraint on declination of the launch asymptote D_{LA}

VHPMAX	1	$\mathbf{V}_{\infty, \text { max }}$	$\mathrm{km} / \mathrm{sec}$	Constraint on hyperbolic excess velocity V_{∞}
DELVMAX	1	$\Delta V_{\text {max }}$	$\mathrm{km} / \mathrm{sec}$	Constraint on deboost ΔV
PER	1	f_{2}	deg	Periapsis to landing point angle
ELP	1	λ_{2}	deg	Landing-point latitude
SPECLON	1	ϕ_{p}	deg	Specified landing-point longitude (required only in time-correction mode)
GEE	1	G	deg	Sun lighting angle

APPENDIX B - Continued

APPENDIX B - Continued				
Program symbol	Program dimension	Mathematical symbol	Units	Definition
XI	1	i	deg	Orbit inclination at Mars
DAYS	1		days	Stay time in orbit
HA	1	ha_{a}	km	Height of apoapsis above Mars surface
HP	1	h_{p}	km	Height of periapsis above Mars surface
RS	1	${ }^{\prime}$	km	Radius of Mars
RPMIN	1	$r_{p, \text { min }}$	km	Minimum periapsis radius of approach hyperbola
TADEORB	1	$\mathrm{f}_{\text {deorbit }}$	deg	True anomaly of deorbit (required only in time-correction mode)
FPA	1	α	deg	Flight-path angle at entry
RENTRY	1	$\mathrm{r}_{\text {entry }}$	km	Radius at entry (FPA and RENTRY are required only in time-correction mode and when no estimated time from deorbit to landing has been specified)
XJ2	1	J_{2}	none	Oblateness coefficient for Mars
U	1	μ	$\mathrm{km}^{3} / \mathrm{sec}^{2}$	Gravitational constant for Mars
INC	1		none	INC is 1 for posigrade hyperbola and 2 for retrograde hyperbola
KEY1	1		none	Output control integer KEY1 is 0 for minimum-output mode, 1 for extended-output mode, and 2 for parametric-analysis output mode
KEY3	1		none	Landing-point control integer KEY3 is 1 for descending node, p.m. lighting; 2 for ascending node, p.m. lighting; 3 for descending node, a.m. lighting; 4 for ascending node, a.m. lighting
KEY4	1		none	Time-correction mode control integer KEY4 is 1 for time correction, and 0 for standard run

Program symbol	Program dimension	Mathematical symbol	Units	Definition
KEY5	1		none	Broken-plane input control integer KEY5 is 1 for broken-plane input (BPDATA namelist must be added) and 0 for standard input
ISEARCH	1		none	Parametric-analysis control integer ISEARCH is 1 for parametric analysis (PARAM namelist must be added) and 0 for standard run
TDEST	1		days	Estimated time from deorbit to landing TDEST is 0 yields computed time from deorbit to landing

The following quantities are input by the PARAM namelist when required.

Program symbol	Units	Definition
PER1	deg	Initial value of f_{l}
PER2	deg	Final value of f_{l}
KPER	deg	Incremental value of f_{l}
ELP1,ELP2,KELP	deg	Initial, final, and incremental values of λ_{l}
GEE1,GEE2,KGEE	deg	Initial, final, and incremental values of G
XI1,XI2,KXI	deg	Initial, final, and incremental values of i
DAY1,DAY2,KDAY	days	Initial, final, and incremental values of stay time
		in orbit

The following quantities are input by the BPDATA namelist when required. All are associated with a particular broken-plane trajectory.

Program symbol
Units
Definition

C3	$\mathrm{km}^{2} / \mathrm{sec}^{2}$	C_{3}
DLA	deg	D_{LA}
VHP	$\mathrm{km} / \mathrm{sec}$	V_{∞}
DPA	deg	Declination of the approach asymptote
RAP	deg	Right ascension of the approach asymptote
XM	yr, mo, day, $\mathrm{hr}, \mathrm{min}, \mathrm{sec}$	Arrival date for broken-plane trajectory
E	yr, mo, day, $\mathrm{hr}, \mathrm{min}, \mathrm{sec}$	Launch date for broken-plane trajectory

APPENDIX C

DESCRIPTION OF PROGRAM OUTPUT

Three output options are available in the program. The first output option is a minimum print mode. Several important parameters associated with a particular launcharrival date pair are printed on a single line. This mode facilitates scanning a wide range of launch-arrival date combinations to select suitable mission profiles. Only profiles which satisfy the $C_{3}, D_{L A}, V_{\infty}$, and ΔV deboost constraints are printed out. The program automatically scans a grid of launch and arrival dates as determined by the first six quantities in the INPT namelist. The following quantities are output in the minimum print mode.

Output	Units	Definition
LAUNCH DATE	yr, mo, day	Launch date at Earth
ARRIVAL DATE	yr, mo, day	Arrival date at Mars
C3	$\mathrm{km} 2 / \mathrm{sec}^{2}$	Vis-viva injection energy for Earth-Mars trajectory
DLA	deg	Declination of launch asymptote
DELTAV	km/sec	Deboost velocity change requirement
F DBST ELLIPSE	deg	True anomaly of deboost on the elliptical orbit at Mars
F DBST HYPERB	deg	True anomaly of deboost on the approach hyperbola
DBST TIM FROM PER	sec	Time of deboost from the periapsis of the ellipse
SO	none	The first orbit on which occultations of the Sun take place; $\mathrm{SO}=0$ indicates no occultations of the Sun during the specified stay time in orbit
EO	none	The first orbit of Earth occultations; EO = 0 indicates no occultations during the specified stay time in orbit
TSUNIN	min	Time from elliptical periapsis of entrance to Sun occultation
DURSUN	min	Duration of Sun occultation
TASIN	deg	True anomaly of entrance to Sun occultation
TASOUT	deg	True anomaly of exit from Sun occultation
TEARIN,DUREAR, TAEIN,TAEOUT	\min deg	Parameters associated with Earth occultations

APPENDIX C - Continued
The second output option is an extended printout mode. This option performs the same tasks as the minimum print mode, but with many additional parameters computed. The program must be in this mode in order to select the time-correction option. This operational mode is useful for examining a candidate mission profile in detail. The following quantities are output in the extended printout mode.

Output
LAUNCH DATE

ARRIVAL DATE
DEBOOST TIME

DEORBIT TIME

LANDING TIME

DLA	deg
RAL	deg
C3	$\mathrm{km} 2 / \mathrm{sec}^{2}$

TRIP TIME
AREO.DEC.S-VECTOR
AREO.R.A.S-VECTOR
HYPER.EXCESS VEL.
GEO.DEC.S-VECTOR
GEO.R.A.S-VECTOR
COMMUNICATION DIST. km

ZAP
ETS

ZAE
Units
deg
deg
km/sec
deg
deg
deg
deg
deg

Definition
Calendar (mo, day, yr, hr, min, sec) and Julian (days) launch date from Earth

Calendar and Julian arrival date at Mars
Calendar and Julian deboost date; output only in time-correction option
Calendar and Julian deorbit date; output only in time-correction option

Calendar and Julian landing date; output only in time-correction option

Geocentric declination of the launch asymptote
Geocentric right ascension of the launch asymptote
Vis-viva injection energy
days Trip time

Areocentric declination of \vec{S}
Areocentric right ascension of \vec{S}
Hyperbolic excess velocity
Geocentric declination of $\overrightarrow{\mathrm{S}}$
Geocentric right ascension of \vec{S}
Line-of-sight distance from Mars center to Earth center at arrival date
Angle between \vec{S} and Mars-to-Sun vector
Angle measured clockwise from $\overrightarrow{\mathrm{T}}$-axis to negative of projection of Mars-to-Sun vector on the $\vec{R} \vec{T}$ plane (measured in areocentric, equatorial, arrival date coordinates)

Same as ZAP with Mars-to-Earth vector

APPENDIX C - Continued		
Output	Units	Definition
ETE	deg	Same as ETS with Mars-to-Earth vector
ZAC	deg	Same as ZAP with Mars-to-Canopus vector
ETC	deg	Same as ETS with Mars-to-Canopus vector
PROBE PERIHELION	km	Periapsis of heliocentric transfer trajectory
PROBE APHELION	km	Apoapsis of heliocentric transfer trajectory
PROBE INCLINATION	deg	Inclination to the ecliptic of heliocentric transfer trajectory
LAUNCH TRUE ANOM.	deg	True anomaly of launch point on transfer trajectory
ARRIVAL TRUE ANOM.	deg	True anomaly of arrival point on transfer trajectory
HELIO. ANGLE TRAVEL	deg	Heliocentric angle between launch and arrival points
B-VECTOR MAGNITUDE	km	Magnitude of \vec{B} ("miss distance" from center of planet perpendicular to the approach asymptote)
B DOT T	km	Component of \vec{B} along the \vec{T}-axis; areocentric ecliptic of date coordinate system
B DOT R	km	Component of \vec{B} along the \vec{R}-axis; areocentric ecliptic of date coordinate system
The following parameters are output for both the approach hyperbola and the elliptical orbit about Mars.		
Output	Units	Definition
A	km	Semimajor axis of conic
E	none	Eccentricity of conic
I	deg	Inclination to Martian equator of conic
CAP.OMEGA	deg	Right ascension of the ascending node of conic
OMEGA	deg	Argument of periapsis of conic
DBST TRUE ANOM.	deg	True anomaly of deboost point on conic
DBST TIME	sec	Deboost time from periapsis on conic

Output	Units	Definition
PER. RADIUS	km	Periapsis radius of conic
PER. DEC.	deg	Areocentric declination of periapsis of conic
PER. R.A.	deg	Areocentric right ascension of periapsis of conic
V AT DBST	$\mathrm{km} / \mathrm{sec}$	Magnitude of velocity on conic at deboost
VX,VY,VZ AT DBST	$\mathrm{km} / \mathrm{sec}$	Areocentric components of velocity on conic at deboost

In addition to these parameters, the following quantities are output for the ellipse.

Output	Units	Definition
DORB. T.A.	deg	True anomaly of deorbit point on ellipse; output only in time-correction mode
VDORB	$\mathrm{km} / \mathrm{sec}$	Velocity change required for deorbit; output only in time-correction mode
PERIOD	days	Period of the ellipse

The following parameters are output under the headings of "DEBOOST MANEUVER," "OCCULTATION," and "LANDING POINT."

Output	Units	Definition
DELTA V	km/sec	Magnitude of velocity increment required for deboost
EXCESS DELTA V	$\mathrm{km} / \mathrm{sec}$	$\Delta V_{\text {max }}-\Delta V_{\text {deboost }}$
RADIUS	km	Radius on conics at deboost point
PER	deg	True anomaly of landing point beneath the ellipse - (positive if landing before periapsis, negative if landing after periapsis)
VX,VY,VZ	km/sec	Areocentric components of DELTAV
PLANE CHANGE	deg	Angle between the planes of the approach hyperbola and the elliptical orbit
1ST ORBIT, SUN	none	The first orbit on which occultations of the Sun occur

APPENDIX C - Concluded		
Output	Units	Definition
TIME, SUN	min	Time of entrance to Sun occultation from periapsis
DURATION, SUN	min	Duration of Sun occultation
TRUE ANOM., SUN IN	deg	True anomaly of entrance to Sun occultation
TRUE ANOM., SUN OUT	deg	True anomaly of exit from Sun occultation
1ST ORBIT, EARTH	none	The first orbit on which occultations of the Earth occur
TIME, EARTH	min	Parameters associated with Earth
DURATION, EARTH	min	occultations
TRUE ANOM., EARTH IN	deg	
TRUE ANOM., EARTH OUT	deg	
LONGITUDE	deg	Areocentric right ascension of the landing point (in time-correction mode, the specified longitude is substituted)
LATITUDE	deg	Specified latitude of the landing point
SUN LIGHTING ANGLE	deg	Specified lighting angle at the landing point
DAYS	days	Stay time in orbit prior to deorbit
The third output option is a parametric-analysis printout mode. This mode lists		
the launch and arrival date for a particular trajectory. Then, on a single line, PER, ELP, GEE, XI, DAYS, and DELTA V are listed. Each landing-point parameter can be varied in turn to determine its effect of ΔV required for the deboost maneuver.		

APPENDIX D

PROGRAM LISTING

The following is a FORTRAN listing of the mission-analysis program and associated subroutines:

```
    PROGRAM MISHAP (INPUT, QUTPUT,TAPE5=INPUT,TAPE6=OUTPUT)
    DIMENSION E(6),XM(6), El(6),XM1(6)
    NAMELIST/INPT/E,XM,ILD,IAD,IJD,JJD,C3MAX,DLAMAX,VHPMAX,DELVMAX,
    IPER,ELP,SPECLON,GEE,XI,DAYS,HA,HP,RS,RPMIN,TADEORB,FPA,RENTRY,XJZ,
    2U, INC,KEY1,KEY3,KEY4,KEY5,I SEARCH,TDEST
    4/PARAM/PER1,PER2,KPER,ELP1,ELP2,KELP,GEEL,GEE2,KGEE,XIL,X
    5I2,KXI,DAYI,DAY2,KDAY
    2/BPDATA/C3, DLA,VHP, DPA,RAP,XM,E
    DIMENSION DRST(6),DEOR(6), XLAND(6)
1 REAO(5,INPT)
    WRITE(6,INPT)
    IF(ISEARCH.NE.1)GO TO 11
    READ(5,PARAM)
    WRITE(6,PARAM)
11 CONTINUE
```


INPUT FOR MAIN

E(1-6)=FIRST CALENCAR CATE OF LAUNCH PERIJD.
$E(1)=C A L E N C A R$ YEAR $(2$ DIGITS), E(2)=CAL。MONTH, $E(3)=C A L$ DAY, E(4)=HOURS
E(5)=MINUTES, E(6)=SECONDS.
XM(1-6) $=F I R S T$ CALENCAR DATE OF ARRIVAL PERIOO.
XM(1,2,3,4,5,6)-SAME AS FOR LAUNCH.
ILD=LAUNCH PERIOD SIZE, IAD=ARRIVAL PERIOD SIZE.
IJD=LAUNCH DATE INCREMENT, JJD=ARRIVAL DATE INCREMENT,
PER=IMPACT ANGLE, ELP=DECLINATIOV OF IMPACT, SPECLON=SPECIFIED
LONGITUDE OF IMPACT, GEE=SUN LIGHTING ANGLE, XI=INCLINATION OF
ELLIPTICAL ORBIT, HA=HEIGHT OF APOAPSIS, HP=HEIGHT DF PERIAPSIS,
DAYS=STAY TIME PRICR TO DEORBIT.
RS=RADIUS OF MARS, RPMIN=MINIMUM RADIUS OF PERIAPSIS IF HYPERBOLA. TADEORB=TRUE ANOMALY OF DEORBIT, FPA=FLIGHT PATH ANGLE AT ENTRY.
RENTRY=RADIUS AT ENTRY,
XJ2 $=0 B L A T E N E S S$ COEFFICIENT, $U=M U$ FOR MARS
KEYI=O FOR MINIMAL OUTPUT, $=1$ FOR EXTENDED OUTPUT, $=2$ FOR PARAMETRIC ANALYSIS OUTPUT.
KEY3=1,DESCENDING NODE(PM) - 2, ASCENDING NODE(PM) -
3. DESCENDING NODE(AM) - 4,ASCENOING NODE(AM) -

KEY4=1 FOR TIME CORRECTION LJOP, =O FOR NO CORRECTION,
KEY5=1 FOR BROKEN PLANE INPUT, $=0$ FUR STANDARD INPUT.
ISEARCH=1 FOR PARAMETER RUN ON PARTICJLAR LAUNCH-ARRIVAL DATE PAIR, O=NO
PER1,ELP1,GEE1,XIL,DAY1 = FIRST VALUES TO BE INPUT WHEN SEARCHING
ON A PARTICULAR LAUNCH-ARRIVAL DATE PAIR.
PER2,ELP2,GEE2,XI2, DAY2 = LAST VALUES.
KPER,KELP,KGEE,KXI, KDAY = INCREMENTAL VALUES(INTEGER JNLYI

ALI. LENGTHS IN KILOMETERS, ALL ANGLES IN DEGREES.

APPENDIX D－Continued

C

```
    WRITE{6,6501
    IF{KEY1.NE.OIGO TO 2
    WRITE(6.875)
    WRITE(6,876)
    2 CONTINUE
    IF{KEY5.NE.1IGO TO 21
    24 READI5.BPDATAI
    21 CONTINUE
```

 IF(C3.GT.C 3 MAXIGO TO 700
 IF (DLA.GT.DLAMAX)GO TO 700
 IF (VHP.GT. VHPMAX)GO TO 700
 GO TO 23
 22 CONTINUE
 23 CONTINUE
 C
C
IFIISEARCH.NE.OIGO TO 12
$J P E R=1$.
$J E L P=1$ 。
$J G E E=1$ 。
$J X I=1$ 。
JDAY $=1$ 。
12 CONTINUE
IF (ISEARCH.NE. 1)GO TO 13
JPER=ABS(PER1-PER2) +1
$J E L P=A B S(E L P 1-E L P 2)+1$

JGEE=ABS(GEE1-GEE2)+1
$J X I=A B S(X I 1-X I 2)+1$ JD $A Y=A B S(D A Y 1-D A Y 2)+1$
13 CONTINUE
IF(KEY1.NE.2)GO TO 15
WRITE(6,900)E1(2),E1(3),E1(1),E1(4),E1(5),E1(6),XM1(2),XMI(3),XM1(
11), XM1 (4), XM1(5), XM1(6), DATEE,DATEM

15 CONTINUE
DO 700 I $1=1, J P E R, K P E R$
DO 700 I $2=1$,JELP,KELP
DO 700 I $3=1$.JGEE,KGEE
DO 700 I $4=1, J X I, K X I$
DO 700 I $5=1$, JDAY,KDAY

IFIISEARCH.NE.IIGO TO 14
PER=PER1+I1-1.
$E L F=E L P L+I 2-1$ 。
GEE=GEE1+I3-1.
$X I=X I 1+I 4-1$.
DAYS=DAY1+15-1.
14 CCNTINUE
KEY2=1
CALL COMPEL(PER,ELP,GEE,XI,CAPW,XITH,DATEM,HA,HP,AE,EE,DAYS,RS,KEY
12.KEY3.ELONP)

EPRAD=HP + RS
IFIKEYZ.EQ.OIGO T3 700
CALL FUDGEIXJ2,XI,AE,EE,DELCOM,DELSOM,PD,XITH,CAPW,OE,WE,U,DAYS,RS 11

IFIKEYI.NE.OIGO 「O 6
$M=10$
CALL DEBOUSTIAE,EE,XI,WE,OE,FE,U,DPA,RAP,VHP,RPMIN,INS,AZ,EH,ZI, W $1 Z, O 2, F H, B T, B R, D E L T V, T P E R E, M)$
60 TO 7
$6 M=1$
CALL DBSTIIAE,EE, XI,WE, OE,FE,U,DPA, RAP, VHP, RPMIN,INC,AZ,EH,ZI,W 1Z, OZ, FH, BT, BR, DELTV,TPERE, TPERH,B,HPRAD, DBRAD, VXH,VYH, VZH,VXE, VYE, 2VZE,VXD,VYD,VZD, DECHP, RAHP, DECEP,RAEP,VDBH, VDBE, PLANE, MI
7 CONTINUE
******TRANSFORMATION OF BT,BR FROM EQUATORIAL TO ECLIPTIC.
$D R=.017453292519943$
$X S=\operatorname{COS}(D P A * D R) * \operatorname{COS}(R A P * D R)$
$Y S=C O S(D P A * D R) * S I N(R A P * D R)$
ZS=SIN(DPA*DR)
CALL RECEQ(DATEM, 3.,0., 1., XEQ,YEQ, ZEQ)
CALL REOMEQ(DATEM,XEQ,YEQ,ZEQ,XMEQ,YMEQ, ZMEQ,DM,RM)
CALL CROSSIXS,YS,ZS,XMEQ,YMEO, ZMEQ,TX,TY,TZ,PRODTI
CALL CROSS(XS,YS,ZS,TX,TY,TZ,RX,RY,RZ,PRODR)

CALL CROSS (XS,YS,ZS,C.,C., $1 ., T E X, T E Y, T E Z, P R O D E T)$
CALL CROSS (XS,YS,ZS,TEX,TEY,TEZ,REX,REY,REZ,PRODER)
CALL DOT\{TX,TY,TZ,TEX,TEY,TEZ,ANGI)
CALL DOT(TX,TY,TZ,REX,REY,REZ,ANGZ)
CALL DOT (RX,RY,RZ,TEX,TEY,TEZ,ANG3)
CALL DOT(RX,RY,RZ,REX,REY,REZ,ANG4)
$B D T=B T$
$B D R=B R$
$B T=B D T * C O S(A N G 1 * D Q)+B D R * C O S(A N G 2 * D R)$
$B R=B D T * \operatorname{COS}(A N G 3 * D R)+B O R * C O S(A N G 4 * D R)$

IF(K KYY. NE. 1).OR. (KEY4.NE. 1) IGO TO 17
CALL EVENTSIELONP, SPECLON, AE, EE,FE, DAYS,PD, DATEM,PER,FPA,RENTRY,RS
I, TDEST,U,TADEORB,TIMLAND, TIMDEOR,TIMDBST,VDEORB,KK)
IFIKK.EQ.OIGOTO 703
DBW=IFIX(TIMDBST)
DOW=IFIX(TIMDEOR)
$X L W=I F I X(T I M L A N D)$
$D B F=T I M D B S T-D B W$
DOF = T IMDEOR - DOW
$X L F=T I M L A N D-X L W$
CALL JULCAL (DBST, CBW, DBF, O)
CALL JULCAL(DEOR,DDW, DOF,O)
CALL JULCAL (XLAND, XLW, XLF,O)
GO TO 20
17 CONTINUE
SPECLON=ELONP
TACEORB=0.
VDEORB=0.
20 CONTINUE
C
IF (KEY1.EQ. 2)GO TO 16
IFIKEYI.EQ. 1 IGO TO 8
WRITE(6,800)E1(1),E1(2),E1(3),XM1(1),XM1(2),XM1(3),C3,DLA,DELTV,FE 1,FH,TPERE, IS, IE, TSUNIN,DURSUN, TASIN, TASOUT, TEARIN, DUREAR, TAEIN,TAE 2 ПUT
GO TO 9
8 CONTINUE
IFIKEY4.NE. 1 GGO TO 18
WRITE(6,899)E1(2),E1(3),E1(1),E1(4),E1(5), E1(6),XM1(2),XM1(3),XMI 11), XM1 (4), XM1 (5), X41(6), DBST(2), DBST(3), DRST(1),DBST(4), DRST(5), DB 2ST (6), DEOR(2), DEOR(3), DEOR(1), DEOR(4), DEOR(5), DEOR(6),XLAND (2),XLA 3ND(3), XLAND (1), XLAND(4),XLAND(5),XLAND(6),DATE三, DATEM, TIMDBST,TIMD 4EOR,TIMLAND

```
        GO 10 19
        18 CONTINUE
        WRITE(6,900)E1(2),E1(3),E1(1),E1(4),E1(5),E1(6),XM1(2),XMl(3),XMI(
        11),XM1(4),XM1(5),XM1(6),DATEE,DATEM
        19 CONTINUE
            WRITE(6,901)OLA,RAL,C 3,TT,DPA,RAP,VHP,GDA,GRA,OCOM,ZAP,ETS,ZAE,ETE
        1,ZAC,ETC, PROBPER,PROBAP,PROBINC,TAL,TAA,HELANG,B,BT,BR
        WRITE(6,902)AZ,EH,ZI,OZ,WZ,FH,TPERH,HPRAD,DECHP,RAHP,VDBH,VXH,VYH,
        IVZH
        WRITE(6,903IAE,EE,KI,GE,WE,FE,TPERE,TADEORB,VDEORB,EPYAD,DECEP,RAE
        1P,PD,VDBE,VXE,VYE,VZE
        WRITEI6,904 IDELTV,VEXCESS, CBRAD,PER,VXD,VYD,VZD,PLANE
        WRITE(6,905)IS,TSUNIN,DURSUN,TASIN,TASOUT,IE,TEARIN,DJREAR,TAEIN,T
    IAEOUT
        WRITE(6,906)SPECLON,ELP,GEE,DAYS
        GO TO 9
        16 CONTINUE
        WRITE(6,910)PER,ELP,GEE,XI,DAYS,DELTV
        9 \text { CONTINUE}
C
    600 CONTINUE
    70O CONTINUE
        IFIKEY5.EQ.1IGO TO 24
        GO TO 1
C
C
    500 FORMAT (*0*)
    650 FORMAT (* l *)
    800 FORMAT(1X,6F3.0.2F6.2.1X,F5.3.2F6.1,1X,FG. 2.2I3,2F9.2,2F8.2,2F9.2,
    12F8.21
    875 FORMATI* LAUNCH ARRIVAL C3 DLA DELTAV F DBST F DBST DBST T
    IIM SO EO TSUNIN DURSUN TASIN TASOUT TEARIN DUREAR TAEI
    IN TAEOUT*I
876 FORMAT\* DATE DATE ELIPSE HYPERB FROM P
    1ER*/I
    899 FORMAT(20X,*LAUNCH DATE*, 12X,*ARRIVAL DATE*, 12X,*OEBDOST TIME*,12X
    1.*DEORBIT TIME*,12X,*LANDING TIME*,/,* CALENDAR*,6X,GF3.0,6x,6F3.0
    2,6X,6F3.0,6X,6F3.0.6X,6F3.0,1,* JULIAN*,5X,F18.2,6X,F18.2,6X,F18.2
    3,6x,F18.2.6X,F18.2,11
    900 FORMAT(21x,*LAUNCH DATE*,13X,*ARRIVAL DATE*,/,* CALEVDAR*,7X,6F3.0
    1,7X,6F3.0.1,* JULIAN*,7X,F18.2,7X,F18.2,/1
901 FORMATI* INTERPLANETARY FLIGHT PARAMETERS*,// 5X,*DLA =*,É16.8. 5X
    1,*RAL =*,E16.8, 5X,*C3 =*,E16.8, 5X,*TRIP TIME =*,E16.8,/ 5x,*AREO
    2. DEC. S-VECTOR =*,E16.8, 5X,*AREO. R.A. S-VECTOR =*,E16.8, 5X,*HY
    3PER. EXCESS VEL. =*,EE16.8,/ 5X,*GEO. DEC. S-VECTOR =*,EI6.8, 7X,*G
    4EO. R.A. S-VECTOR =*,E16.8, 5X,*COMUNICATION DIST. =*,E16.8./ 5X,*
    5ZAP =*,E16.8, 5X,*ETS =*,E16.8, 5X,*ZAE=*,E16.8, 5X,*ETE =*,E16.8
    6,/5X,*ZAC =*,E16.3, 5X,*ETC =*,E16.8,/5X,*PRORE PERIHELION =*,E16.
    78,10X,*PROBE APHELION =*,E16.8, 7X,*PROBE INCLINATIOV =*,E16,8,/5X
    8,*LAUNCH TRUE ANOM. =*,El6.8, 5x,*ARRIVAL TRUE ANOM. =*,E16.8, 5x,
    9*HELIO. ANGLE TRAVEL =*,E16.8./5X,*B-VECTJR MAGNITUDE =*,E16.8,15X
```


APPENDIX D - Continued

902 FORMAT (* ELEMENTS AND DEBOOST PARAMRTERS - HYPERBOLA*,// 5X,*A =*,
 $2 *$ OMEGA $=*$, E16.8,f $5 \times$, *DBST TRUE ANOM. $=*, E 16.8,7 X, * D 7 S T$ TIME $=*, E$ 316.8./5X,*PER. RADIUS $=*, E 16.8,5 X, * P E R$. DEC. $=*, E 16.8,6 X, * P E R$. R
 $5 * V Y$ AT DAST $=*, E 16.8,5 X, * V Z$ AT DBST $=*, E 16.8, / 1$
903 FORMAT (* ELEMENTS AND DEROOST PARAMETERS - ELLIPSE*,// 5X,*A =*,
 2*OMEGA $=*, E 16.8, f 5 X$, *DBST TRUE ANOM. $=*, E 16.8,7 X, * D B S T$ TIME $=*, E$ 316.8. $5 \mathrm{X}, *$ ©ORB. T.A. $=\star$, E16. $8,5 \mathrm{X}$, *VOORB $=*, E 16.8, / 5 \mathrm{X}$,
\$ *PER. RADIUS =*,E16.8, 5X,*PER. DEC. =*,E16.8, 6X,*PER. R 4.A. $=*, E 16.8, ~ 9 X, * P E R I O D=*, E 16.8,15 X, * V$ AT DBST $=*, E 16.8,6 X, * V X$ \$AT DBST $=*, E 16.8,5 \mathrm{X}$, 5*VY AT DBST $=*, E 16.8,5 X_{1} * V Z$ AT DBST $=*, E 16.8,11$
904 FORMAT(* DEBOOST MANEUVER PARAMETERS*, // $5 X$, *DELTA V $=*, E 16.8$, $5 X$, $1 * E X C E S S$ DELTA $V=*, E 16.8,5 X, * R A D I U S=*, E 16.8,5 X, * P E R=*, E 16.8,15$
 $3=*, E 16.8,1)$
 IME, SUN $=*, E 16,8,7 X$, \&DURATIUN, SUN $=*, E 16.8,15 X$, *TRUE ANOM., SUN 2 IN $=*, E 16.8,7 X, * T R U E$ ANOM., SUV OUT $=*$ EE16. $8,1,5 X, * 1 S T$ ORBIT, EA 3RTH $=*, I 3$, $5 X, * T I M E, E A R T H=*, E 16.8,5 X, * D U R A T I O N, E A R T H=*, E 16$ $4.8,15 \times, * T R U E$ ANOM., EARTH IN $=*, E 16.8,5 X, * T R U E$ ANOM., EARTH OUT $5=*$ E16.8.11
906 FORMATI* LANDING POINT PARAMETERS*, //5X,*LJNGITUDE $=*, E 16,8$, 5X,*L LATITUDE $=*$, E16.8. $5 \mathrm{X}, * \mathrm{SUN}$ LIGHTING ANGLE*,E16.8, 5X,*DAYS $=*, F 3.0$, 2/*1*1
910 FORMAT(/, IX,*PER $=*, E 12.4,3 X, * E L P=*, E 12.4,3 X, *$ GEE $=*, E 12.4,3 X, * X I$ $1=*, E 12.4,3 x, * D A Y S=*, E 12.4,3 x, * D E L T A V=*, E 12.41$
END

APPENDIX D - Continued

```
    SUBROUTINE PLUG(DATEE,CATEM,C3,DLA,VHP,DPA,RAP,KK)
    USUN=1.3271411E+11
    CALL ELARTHIDATEE,XE,YE,ZE,DXE,DYE,DZEI
    CALL EMARS(CATEM,XM,YM,ZM,DXM,DYM,DZM)
    TT=DATEM-CATEE
    CALL LAMBRTIXE,YE,ZE,XM,YM,ZM,TT*24.*3600.,A,E,XI,W,O,TAL,TAL,USUN
1,KK)
    IF(KK.EQ.OIRETURN
    CALL CONCAR(A,E,XI,W,O,TA1,X1,Y1,Z1,DX1,DY1,DZ1,USUN)
    DX1E=DX1-DXE
    OY1E=CY1-DYE
    DZIE=CZ1-DZE
    C3=[X1E**2+DY1E**2+CZ1E**2
    CALL RECEQ(cATEE,OXLE,DYIE,CZ1E,XEQ,YEQ,ZEQ)
    CALL LATLNG(XEG,YEO,ZEQ,DLA,RAL)
    CALL CCNCAR(A,E,XI,W,O,TAZ,X2,Y2,I2,DX2,DY2,DZ2,USUN)
    DX2M=D K2-DXM
    DY2M=DY2-DYN
    CL2N=CZ2-DLN
    VHP=SORT(DX 2M**2+DY2M**2+DZ2M**2)
    CALL RECEQ(CATEM,DXZM,DY2M,DZ2M,XEQ,YEQ,ZEQ)
    CALL REDMEQIDATEM,XEQ,YEO,2EQ,XMEQ,YMEQ,ZMEQ,DPA,RAPI
    RETURN
    END
```

SUBRCUTINE FLUGI(DATEE, CATEM,C3,DLA,VHP,DPA,RAP,TT,RAL,DCOM,PROBPE 1R, PROBAP, PROBINC,IAL, TAA,HELANG,GDA,GRA, ZAP,ETS,ZAE,ETE, ZAC,ETC,KK 2)

LSUN=1. $3271411 E+11$
CALL EEARTH(CATEE,XE,YE,ZE, DXE,DYE,DZE)
CALL EMARS(CATEM,XN,YM,ZM, DXM, DYM, DZM)
CALL CEARTH(OATEM, XEA, YEA, ZEA, DXEA,DYEA, DZEA)
$X M C=X E A-X M$
$Y M E=Y E A-Y M$
$Z M E=Z=A-Z M$
DCCM=SGRT(XNE゙\#XME + YME*YME + ZME*ZME)
TT=DATEM-CATEE
CALL LAMBKTIXE,YE, ZE, XM,YM, ZM,TT*24.*3600., A,E,XI,W,O,TA1,TAZ,USUN
1.KK)

IFIKK.EO.OIRETURN
PROBPLR $=A-A * E$
PROBAP $=A+A * E$
PROBINC=XI
$T A L=T A 1$
$T A A=T A 2$
HELANG = 「AA-TAL
CALL CCNCAR(A,E,XI,W,U,TA1,X1,Y1,21,DX1,DY1,D21,USUNI

APPENDIX D - Continued

```
    CX1E=[XI-0XF:
    DY1E=OY1-DYE
    DZ1c=CZ1-DZミ
    C3=CX1E**2+DY1E**2+DZ1E**2
    CALL RECEOICATEE,DXIE,DYIE,DZIE,XEQ,YEQ,ZEQI
    CALL LATLNG(XLG,YEC,ZEQ,DLA,RALI
    CALL CENCAR(A,E,XI,h,O,TAZ,X2,YZ,Z2,DX2,DY2,DZ2,USUN)
    DX2M=DX2-DXN
    DY2M=DYZ-DYM
    DZ2N=CZ2-CZM
    CALL DCT(-XM,-YM,-ZM,OX2M,DY2M,DZ2M,ZAPII
    CALL DOT(XME,YNE,ZME,DX2M,DY2M,DL2M,ZAE1)
    VHP=SORT(DX 2M**2+DY 2M** 2+DZ2M**2)
    CALL RLC-G(CATEM,DX2M,DY2M,DZ2M,XEQ,YEQ,ZEQ)
    CALL LATLNG(XEG,YLG,ZEQ,GDA,GRAI
    CALL REQMEQ(DATEM,XEQ,YEQ,ZEQ,XMEQ,YMEQ,ZMEO,DPA,RAP)
    SX=XMicG/VHP
    SY= YMEG/VHP
    SZ=IM:O/VHP
    SKT=SQRT(SX*SX+SY*SY)
    TX=SY /SRT
    TY=-SX/SRT
    TZ=0.
    SXI=0X2M/VHF
    SYl=DYZM/VHiP
    SZ1=DLZM/VHP
    SRT1=SQRT(SX1*SX1+SY1*SY1)
    TXl=SY1 /SRT1
    TYl=-SX1/SRT1
TZl=0.
CALL FECEQ(CATEM,TXI,TYI,TZI,TXEQ,TYEQ,TZEQ)
CALL KLGMEQ(CATEM,TXEQ,TYEQ,TLEQ,TXMEQ,TYMEQ,TZMEQ,DEC,RAI
CALL DCT(TX,TY,TZ,TXMEQ,TYMEQ,TZMEQ,ERROR)
CALL CROSS(SX,SY,SZ,TX,TY,TZ,RX,RY,RZ,RMAG)
CALL VECTOF (DATEM,X1,X2,X 3,X,X,X,SUNX,SUNY,SUNZ,EX,EY,EZ,CX,CY,CZ,
14)
    SLNS =SX*SUNX+SY*SUNY+SZ*SUNZ
    SUNT = TX* SUNX +TY*SUNY+TZ*SUNZ
    SUNR=RX*SUNX+RY*SUNY+RZ*SUNZ
    EAS =SX*EX + SY*EY + SZ*EZ
    EAT =TX*cX +TY*EY +TZ*EZ
    EAR=RX*&X +RY*CY +RZ*EZ
    CAS =SX*CX +SY*CY +SZ*CZ
    CAT =TX*CX +TY*CY +TZ*CZ
    CAR =KX*CX +KY*CY +RZ*CZ
    CALL LATLNG(SUNT,SUNR,SUNS,SOEC,SRA)
    CALL LATLNG(EAT,EAR,EAS,EDEC,ERA)
    CALL LATLNG(CAT,CAR,CAS,COEC,CRA)
```


APPENDIX D - Continued

```
    ETS=SRA+180.
    ETE=ERA+180.
    ETC=CRA+180.
    ZAP =90.-SDEC
    ZAE=90.-EDEC
    ZAC=90.-CDEC
    IF(ABS(ZAP1-LAP).GT.1.IWRITE(6,100)ZAP1,ZAP
    IF(ABS(ZAEI-ZAE).GT.l.IWRITE(6,200)ZAE1,ZAE
100 FORMAT(2E16.8,* ERROR IN ZAP*1
200 FORNAT(2E16.8,# ERROR IN ZAE*:
    RETURN
    END
```

 SUBROUTINE COMPEL(PER,ELP,GEE,XI,CAPW,XITW,DATEM,HA,HP,AE,EE,DAYS,
 1RS,KEY2,KEY3,ELCNP)
 C ALL ANGLES INPUT IN DEGREES AND OUTPUT IN DEGREES.
$\operatorname{ANGLE}(X)=\operatorname{AMOD}(X, 360)+.180 .-\operatorname{SIGN}(180 ., X)$
XSIN(X)=SIN(DR*X)
$x \operatorname{ccs}(x)=\operatorname{COS}(D R * x)$
IF(ABS(XI).LT.ABS(ELP))GO TO 50
$D R=.017453292519943$
CJUL=CATLM+[AYS
ICODE $=4$
CALL VËCTORIDJUL,ELS,ELONS, DECE, RAË,DLCC,RAC,SX,SY,SZ,EX,EY,EZ,CX,
1CY,CZ,ICODC)
IF(ABS(SIGN(GEと,iLP)+ELS).LE.ABS(ELP)IGO TO 50
RD=57.255775513C82321
ARG=(XCOS(GEE)-XSIN(ELS)*XSIN(ELP))/(XCOS(ELS)*XCOS(ELP))
IF (ABS(ARG).GT. I.IGC TO 50
ARCI=ASIN(XSIN(ELP)/XSIN(XI))*RD
ARC2=ASIN($(X S I N(t L P) / X C O S(E L P)) \neq(X C O S(X I) / X S I N(X 1)) \neq 2 D$
GU TO (10, 20, 30,40) KEY3
10 CCNTINUE
ELONP = (ACOS (ARG)) *RC+tLCNS
XITW=PER+180.-ARC1
CAP $W=$ ELONP-18C. $+A R C 2$
GO TO 100
20 cCNTINUE
ELONP $=(A C O S(A R G)) * R D+E L O N S$
XITh=PER+ARCI
CAFW=とLONP-ARC2
GO TO 100
30 CONTINUE
ELONP=ELONS-(ACCS(ARG))*RD
XITW=PER+18C.-ARC1
$C A P W=E L O N P-180 .+A R C 2$
GO TO 100
40 CONTINUE

APPENDIX D－Continued

```
    ELONP=ELONS-(ACCS(ARGI)*RD
    XITW=PLR+ARCl
    CAPW=ELONP-ARC2
    GO TO 10O
ICO CENTINUE
    XITh=ANGLE (XITW)
    CAPW=ANGLE (CAPW)
    RA=RS +HA
    RP=RS +HP
    AL= (RA+RP)/2.
    EE=(RA-RP)/(2.*AE゙)
    RETURN
50 KEYZ=0
    kLTURN
    ENO
```

 SURROUTIN: FUCGEIXJ2,XI,AE,EE, DELCOM,DELSOM,PD,XITW,CAPW,OE,WE,U,D
 LAYSORSI
$X A=\operatorname{SORT}(U / A F * * 3)$
$P I=3.141552653589753$
$D R=P I / 130$.
$\mathrm{Cl}=(\mathrm{RS} /(\mathrm{AE*}(1 .-E E * E E))) \neq 2$
DLLSCN=6.*PI*XJ2*C1*(1.-1.25*SIN(XI*DR) **2)
DELCOM $=-3 . * P I * X J 2 * C 1 * C O S(X I * D R)$
ENAAR = XN* (1. + $1.5 * C 1 * X J 2 * S Q R T(1 .-E E * E E) *(1 .-1.5 * S I N(X I * D R) * * 21)$
$\mathrm{PD}=2 . * \mathrm{PI} / \mathrm{ENB} A R / 8640 \mathrm{~J}$ 。
$B=C A Y S / P D$
OL =CAPW-(B*CCLCCM)*180./PI
$h t=x I T W-(B * D E L S C M) * 180 . / P I$
FLTURN
ENC
SURROUTINE SEESとICATEM, PD, AE, EE, XI,WE, OE, U,RS, EX, EY,EZ,IS,IE,TSUNI
1N, DURSUN,
TASIN,TASOUT, TEARIN, DUREAR, TAEIN,TAEOUT, DELSOM, DELC
2UM, DAYSI
15=0
It $=0$
TSUNIN=:。
DUR SUN=0.
TASIN=**。
TASOUT=0.
TE \triangle RIN=U。
$D U K E A R=0$.
TAEIN=0。
TALGUT=j.
ISTCP = $\mathrm{CAYS} / P D+1$

APPENDIX D - Continued

```
    DO 20 J=1,ISTCP
    TIME=CATEM+PD#FLOAT (J-1)
    CALL VECTOR(TIME,DECS,RAS,DECE,RAE,DECCC,KAC,SX,SY,SZ,EX,EY,EL,CX,C
    1Y,CZ,4)
    CALL OCLULT(AE,EE,XI,WE+PD*FLJAT(J-1)*DELSOM,OE+PD*FLJAT(J-1)*DELC
    1UM,U,RS,SX,SY,SZ,OURSU,TSUNI,ALT1,TASI,DEC1,RA1,T2,ALT2,TASOU,DEC2
    1,RA2,KSI
        CALL OCCULT(AE,EE,XI,WE+PD*FLOAT(J-1)*DELSOM,OE+PD*FLJAT(J-1)*DELC
    ICM,U,RS, EX,EY,&Z,DURE,TEARI,ALT1,TAEI,DLCC1,RA1,T2,ALT2, TAECU,DEC2,
    1RA2,KE)
        IF(IS.NE.OIGO TC 10
        IFIKS.EO.1IGO TO 8
    GO TO 1J
    8 I S=J
    TSUNIN=TSUNI
    DURSUN=UURSU
    IASIN=TASI
    IASCUT=TASOU
    10 IF(IE.NÉ.O)GO TO 15
    1F(KE.EG.1)GO TC 11
    GO TO 2J
11 IE=J
    TLARIN= TLAKI
    LUREAR=DURE
    TACIN=TALI
    TAECUT=TAEOU
    15 IF(IE.NE.0.AND. IS.NE.O)KETURN
    2O CCNTINUE
    RETURN
    END
    SUEROUTIN: EVENTSIELCNP,SPECLUN,AE,EE,FE,DAYS,PU,DATEM,PER,FPA,REN
    ITRY,RS,TULST,U,TADEORB,TIMLAND,TIMUEOR,TIMDBST,VDEORB,KKI
```

```
CGMPUT\&S EVENT TIMES FCR LANDING,DEOKBIT ANC DEBOOST, GIVEN LANDING PUINT AND ELEMENTS OF ELLIFSE AND TRUL ANJMALY OF DCDRBIT.
CURRLCT FUR TIME JF CAY.
ANGLE (x)=AMUO(x,363.)+180.-SIGN(130., X)
PMDCT \(=35 \mathrm{~J} .891962\)
\(H A=145.845+350.891562 *(D A T E M+D A Y S-2418322.1\)
D\&LTON=LLONP-SPE CLCN-HA
DELTLUN=ANGLE (UELTLON)
CとLTJL=UcLTLON/FMDCT
TIMLANU=DATEM+CAYS + CELTJD
IFITDEST.NL.O.IGD TO 1
PiRg=-PER
CALL CCNFPAIAE, EL, TADEORB,PERO,RS,RENTRY,FPA,U,AL,EL,FLO,FLD,VDEOR
1B,The (A,KK)
```


APPENDIX D－Continued

IFIKK．EG．OIFETURIN
CALL TCENIC（U，EL，AL，FLC，TDEOR）
CALL TCONIC（U，EL，AL，FLO，TLAND）
TEEOK＝TDEOK／8E4CC．
$T L A N D=T L A N D / 8640 C$ ．
POT＝2．＊3．1415626536＊SORT（AL＊AL＊AL）／SQRT（U）
PDT＝PCT／864CO．
IF（TDLUR．GT． Co ）CLLDECR＝TLAND＋PDT－TDEOR
IF（TLL：（IR．LT．U．）CELDECR＝TLAND－TDEOR
GU TO 2
1 CENTINGE
DLLDLOK＝TDLST
2 CCNTINUE
IIMOEOR＝TIMLAND－DELDLUR
calculate uibcost time．
BACKUP＝DAYS／PO
DELTIN＝IFIX（BACKUP）
CALL TCONICIU，ZE，AE，FL，TPERE）
CALL TCUNIC（U，EF，AE，TADEJKB，TOEGRy）
TPERE＝TPERE／8E4CC．

IF（TUELURR．GT．C．IUELCDB＝TDEORB－TPERE
IF（TOLURZ．LT．U．）DELCLB＝TDEOR3－TPERE＋PD
TlMUBST＝TINDEGKーUELTIM－DLLODB
FETURN
LND

SUBRGUTIN：LLBUCSTIAL，LI，II，WI，OL，FI，U，LATS．LONS，VINF，RPMIN，INC，AZ \＄， EL L，IZ，WZ，UZ，FZ，BT，RR，DELLTV，TPLRE，MI
REAL II，IL，LAIS，LCAS，NX，NY，NZ，N，IZP，IZM
CATA DK，KU．PI／．17453252519943E－1．57．295779513082321，3．141592653589
$\$ 7531$
ANGLi $(x)=A M C C(x, 2$ ．$=$ PI $)+P I-S I G N(P I, x)$
［INiNSIGN LV（36：），TA（300），HYP $(36), 6)$
UINENSILN $P X(3)$ ，PY $(3,6)$
CLAT＝LUS（DR＊LATS）
SLAT＝SIN（DK＊LATS）
CLCN＝CCS（DF＊LCNS）
SLUN＝SIN（OF＊LONS）
$S X=C L A T * C L C N$
SY＝CLAT＊SLCN
$S Z=S L A T$
DO 1 I $=1$ ，30i， M
TA（1）＝FLOAT（I）－18う。
$F=C k * T A(I)$
$C W F=C C S(D R \neq W 1+F)$
$S W F=S I N(O ん * h 1+F)$
$\mathrm{CI}=\operatorname{Cos}(1) \mathrm{R}=\mathrm{I} 1)$
$S 1=S I N(D R * I I)$

APPENDIX D－Continued

```
    Cu=COS(DR*C1)
    SO=SIN(OR*U1)
    RX=CWF*CO-ShF*SO*CI
    RY=CWF*SU+SWF*CO*CI
    RZ=SWF*SI
    AL=-U/VINF**2
```



```
    RS=RX*SX+RY*SY+RZ*SL
    A=AZ**2
    B=RO**2*RS**2+2.*RO*AZ*RS-RO**2-2.*AZ**2 +2.*AZ*RO
    C=2.*R引れ*2*RS-L.*RC#AL*RS+2.*RO**2+AL**2-2.*AZ*R心
    OV(I)=1.E20
    TtST=B*B-4**A*C
    IF(TEST.LT.O.)GC TO 1
    OISC=SQRT(TEST)
    EZP=SORT((-E+CISC)/(2.*A))
    &ZN=SORT((-B-DISC)/(2.*A))
    IFILZM.LE.1.1EZN=EZP
    PHIP=ACOS(1./EZP)
    PHIM=ACOS(1./EZN)
    FZP=ACOS((AZ*(1.-EZP**2)-RC)/(EZP*RO))
    FZN=ACOS((AZ*(1.-EZN**2)-RO)/(EZM*RC))
    IF(ABS(COS(ANGLL(PHIP-FZP))-RS).GT.1.E-7)FZP=-FZP
    IF(ABS(COS(ANGLE(PHIM-FLM))-RS).GT.1.t-7)FZM=-FZM
    NX=RY*SZ-RZ*SY
    NY=RL*SX-RX*SZ
    NZ=RX*SY-RY*SX
    N=SORT(NX**2+NY**2+NZ**2)
    IZP=ACOS(NZ/N)
    IF(ANGLE(PHIP-FZP).GT.PI)IZP=ACOS(-NZ/N)
    IZN=ACOS(NZ/N)
    IF(ANGLE(PHIM-FZM).GT.PI)IZM=ACOS(-NZ/N)
    IF(|IZP.LE.PI/2..ANC.INC.EQ.I).UR.(ILH.GT.PI/2..AND.INC.EQ.2)I2,
    $3
2 L=cZP
    IZ=RD*I LP
    FL=RD*FLP
    FHI=RD*PHIP
    GO TO 4
3EZ=EZM
    I Z=RD*ILM
    FZ=RU*FLM
    PHI=RD*PHIM
4 RPL=AL*(1.-EZ)
    DV(I)=1.E20
    IF(RPL.LT.RFNINIGG TO I
    WS=ASIN(SZ/SIN(DR*IZ))
    WZ=FD*WS-PHI
    IF(ABSIRL-SIN(DR*(WZ+FZ))*SIN(DR*IZ)).GT.I.E-7)WZ=180.-RD*WS-PHI
    DET=CCS(DR*(WZ+PHI))**2+COS(DR*IZ)**2*SIN(DR*(WZ+PHI))**2
    CC=(CCS(DR*(WZ+PHI))*SX+COS(DR*IL)*SIN(DR*(WZ+PHI))*SY)/DET
    SO=(-COS(DR*IZ)*SIN(DR*(WZ+PHI))*SX+COS(DR*(WZ+PHI))*SY)/DET
    OZ=RD*ATAN2(SO,CO)
```


APPENDIX D - Continued

```
    FYPP(I,1)=AZ
    HYP(1,2)=:Z
    HYF(I,3)=1 l
    r.YP(1,4)=wZ
    RYP(I,5)=0Z
    F1=RD*F
    FYP(I,G)=FZ
    CALL CGNCAR(AZ,EZ,IL,WZ,OZ,FZ,X,Y,Z,DX,DY,DZ,U)
    CALL CCNCAR(Al,El,IL,WI,OL,F1,X,Y,Z,VX,VY,VZ,U)
    [V(I)=SOF.T(()X-VX)**2+(DY-VY)**2+(DZ-VZ)**2)
1 CCNTINUE
    IMIN=?
    ULLTV=1.E20
    DO 3 I= 1,36),M
    IFIEV(I).GT.DELTVIGC TO 8
    MMIN=I
    LiLTV=CV(I)
8 CLNTINLE
    IMINM=IMIN-N
    IMINP=ININ+N
    IF(IMINM.LL.O.OR.IMINP.CE.361)GO TO 6
    IF(DV(IMIN-N).EG.1.E20.OR.DV(IMIN+M).EQ.1.E2OIGO TO 6
    Px(1)=TA(IMIN-M)
    PX(2)=TAIINIA)
    FX(3)=TA(ININ+M)
    PY(1,1)=DV(ININ-M)
    PY(Z,I)=OV(IMIN)
    PY(B,l)=CV(ININ+N)
    CO ? I=2,0
    PY(1,I)=4YP(ININ-M,I)
    FY(2,I)=rYP(ININ,I)
5 PY(3,I)=AYP{ININ+N,I)
    CALL PAKINIFI,DiLTV,PX,PY(1,1),0)
    LALL FARIN(F1,EZ,PX,PY(1,2),1)
    CALL FAEIN(F1,IL,PX,PY(1,3),1)
    CALL PARIN(FI,WZ,PX,PY(1,4),1)
    CALL PARIN(F1,CZ,PX,PY(1,5),1)
    CALL PARIN(F1,FZ,PX,PY(1,6),1)
    GL 「U O
6 Fl=\A(IMI:N)
    AZ=rYP(IMIN,I)
    cZ=HYP(IMIN,2)
    IZ=riYP(IMIN,3)
    WL=FYY(IMIN,4)
    CZ=FYP(IMIN,5)
    FZ=FYP(IMIN,6)
Э B=-AL*SCKT(とZ*[Z-1.)
    BT=B*CLS([RF*IZ)/CLAT
    RR=H%SIN(UK*IZ)*CGS(DR*(LUNS-OZ))
    CALL TCCNIC(U,EL,A1,FI,TPERE)
    RETUKN
    &ND
```


APPENDIX D - Continued

SUEROUTINE LEST1IA1,E1,II,W1,OL,F1,U,LATS,LONS, VINF,RPMIN,INC,AL,E LZ,IL,WL, OZ,FZ,BT,BR,DELTV,TPERE,TPERH,B,HPRAD,DBRAD,VXH,VYH,VZH,VX 2L, VYE, VZE, VXD,VYD,VZD, DECAP,RAHP, DECÉP, RA:P, VDSH, VDBE, PLANE, MI
REAL II,IZ,LATS,LUNS, AX,NY,NZ,N,IZP,IZM
CATA OR,RD,PI/.17453252519943E-1,57.295779513082321,3.141592653589 \&793/
$\operatorname{ANGLE}(x)=\operatorname{AMCD}(x, 2 . * P I)+P I-S I G N(P I, x)$
EINENSIUN DV(360), TA (360), $\operatorname{HYP}(360,6)$
DIMENSIBN PX(3), PY(3,6)
CLAT $=\operatorname{COS}(C R * L A T S)$
SLAT=SIN(OR*LATS)
CLCN=COS(DR*LCNS)
SLCN=SIN(DR*LENS)
SX=CLAT*CLUA
SY=CLAT*SLON
$S L=S L A T$
CC $1 \quad I=1,360,1, M$
TA(I) =FLOAT(1)-180.
$F=[R \neq T A(I)$
$C W F=\operatorname{COS}(D R * h 1+F)$
$S W F=S I N(D R * W 1+F)$
$C I=C O S(D R * I 1)$
$S I=S I N(D R * 11)$
$\operatorname{CO}=\operatorname{COS}(D R * L i)$
SU=SIN(OR*O1)

$\mathrm{RY}=\mathrm{CWF} * \mathrm{SO}+\mathrm{SWF} \% \mathrm{CO} * \mathrm{CI}$
F $L=S W F * S I$
$A Z=-U / V I N F * * 2$

$R S=R X * S X+R Y * S Y+R Z * S L$
$A=A \geq * * 2$
$B=R 0 * * 2 * R S * * 2+2$ *

$D V(I)=1.20$
$T E S T=H * ふ-4 * * \Delta \pi C$
IFIT:ST.LT.C.IGC TC I
ClSC=SOKT(TEST)
t $Z F=S 6 k T((-\mathrm{E}+\mathrm{CISC}) /(2 . * A))$
$c Z M=S Q F \Gamma((-E-D I S C) /(2 . * A))$

PHIP=ACOS (1./EZP)
PHIM=ACOS(1./LZM)
$F Z F=A C \operatorname{CiS}((A Z *(1 .-E Z P * * 2)-R C) /(E Z P * R O))$

IF (ABS (COS (ANGLE (PHIP-FZP) I-RS) .GT. L.E-7)FZP=-FZP
IF($\triangle B S(C O S(A N G L E(P H I M-F Z M) I-R S)$.GT. I.E-7)FZM=-FZM
$N X=R Y * S Z-\hat{R} Z * S Y$
$N Y=R Z * S X-R X * S Z$
$N Z=R X * S Y-R Y * S X$
$N=S G R T(N X * * 2+N Y * * 2+N Z * * 2)$
$I Z P=A C O S(N Z / N)$
IF (ANGLE(P+1P-FZP). GT•PI)IZP=ACOS(-NZ/N)
ILN=ACCS(NZ/N)
IF (ANGLE(PHIM-FZM) •GT•PI)IZM=ACOS(-NZ/N)

APPENDIX D－Continued

```
    IF((IZP.Li.PI/2..ANC.INC.EQ.I).OR.(ILP.GT.PI/2..AND.INC .EQ.2)I2,
    $3
2 L = = 2P
    Iノ=R0*1ZP
    FL=к!0*FLP
    PHI=RO*PMIP
    GU TO 4
3EZ=&ZM
    17=кO*1?M
    FZ=RD*FZ %
    PH:I=KD*P:IIM
4 PPL=AL*(1.-\I)
    UV(I)=1.c2U
    IF(KPL.LT.HFMINIGO TO I
    nS=ASIN(SL/SIN(UK*I2))
    kZ=Rも系hS-Pi,I
    IF(ABS(RI-SIN(LR**(WZ+FZ)I*SIN(DR*IZ)).GT.1.E-7)WZ=180.-RD*WS-PHI
    [:T =CLS(DN*(WZ+PMI))**2+COS(UR*IL)**2*SIN(UR*(NZ+PHI))**2
    CO=(CES(DR* (WZ+PAI))*SX+COS(OR*IZ)*SIN(DR*(WZ+PHI))*SY)/DET
    SC=(-CCS(CF*IZ)*SIN(DR*(WZ+PHI))*SX+COS(DR*(WZ+PHI))*SY)/DET
    CZ=K[O*ATAN2(SC,CC)
    HYP(I,1)=AZ
    FYP(I,2)=El
    HYP(I,3)=1L
    HYP(1,4)=Wl
    +YP(1,5)=:12
    F1=RD*F
    FYP(I,O)=FZ
    CALL CCNLAK(AZ,iz,IZ,NZ,OZ,FZ,X,Y,Z,DX,OY,DZ,UI
    CALL CCNCAK(Al,il,IL,N1,LIL,Fl,X,Y,Z,VX,VY,VZ,U)
    DV(I)=S\रT((OX-VX)**2+(DY-VY)**2+(CZ-VI)**2)
1 COMTINL=
    IMIN=:
    CeLTV=1.t2u
    CO & i=1.j60.M
    IF(JV(I).GT.D_LTVIGC TU B
    IMIV=I
    D_LTV=CV(I)
& CGNTINU:
    IMINK=1MIN-N
    IMINP=IMIN+N
    IF(IMINM.LE.C.JR.ININP.Gr.36IIGO TO 6
    IF(EV(IMIN-N).#Q.1.E2.J.GR.DV(IMIN+M).EQ.1.E2C)GO TO 6
    PX(1)=TA(ININ-M)
    FX(2)=TA(IMIN)
    PX(3)=TA(IMIN+N)
    PY(I,I)=DV(INI.V-M)
    PY(2,1)=UV(IMIN)
    FY(3,1)=CV(ININ+N)
    OC 5 i=2.0
    PY(1,1)=mYP(1N|N-M,I)
    PY(2,I)=nYP(ININ,I)
5 PY(3,1)=nYP(IMIN+M,I)
    CALL PAKIN{Fl,DCLIV,PX,PY(1,1),0)
    CALL PARIN(FI,LZ,PX,PY(1,21,1)
```


APPENDIX D - Continued

CALL FARIN(F1, $12, P X, P Y(1,3), 11$
CALL PARIN(F1,WZ,PX,PY(1,4),1)
CALL PARIN(F1,CL,PX,PY(1,5),11
CALL PARIN(F1,FZ,PX,PY(1,6),1)
GO TO 9
6 FI=TA(IMIN)
$A Z=\Pi Y P(I M I N, 1)$
$E Z=$ HYP (IMIN,2)
I $2=n Y P(I M I N .3)$
$W Z=$ MYP (IMIN.4)
CL=HYP(IMIN,5)
$F Z=$ FYP(IMIN,6)
$9 B=-A Z * \operatorname{SORT}(\approx Z * E Z-1$.)
$B T=B * \operatorname{COS}(O R * I Z) / C L A T$
$B R=B * S I N 1 D R * I Z) * C O S(C R *(L O N S-O Z))$
CALL TCONIC(U,E1,A1,F1,TPERE)
CALL TCCNIC(U, EZ,AZ,FZ,TPERH)
HPRAD $=A Z-A Z * E Z$
CBRAD $=(A 1-A 1 * E 1 * \& 1) /(1,+E 1 * \operatorname{COS}(D R * F 1))$
CALL CCNCAK (AZ, EZ, IZ,WZ,OZ,FZ,X,Y,Z,VXH,VYH,VZH,U)
CALL CCNCAR(AL, $\left.=1,11, W 1,01, F 1, X, Y, Z, V X_{L}, V Y E, V Z E, U\right)$
VDBH=SQRT(VXH*VXH+VYH*VYH+VZH*VZH)
VCBE=SQKT (VXL*VXE +VYE $\ddagger V Y L+V Z E X V Z:)$
$V \times D=V X E-V X H$
VYC=VYE-VYH
VZC=VZこーVZM
CALL CCNCARIAZ,EZ,IZ,WZ,UZ,U.,XPH,YPH,ZPH,DX,DY,UZ,U)
CALL CCNCAR(A1, E1, I 1,WI,O1,O.,XPE,YPE,ZPE:DX,DY,DZ,U)
CALL LATLNG (XPH, YPH,ZPF, DLCHP, RAHP)
CALL LATLNG (XPE,YPE, ZPE,DECEP,RAEP)
$W X \ddot{E}=\operatorname{SIN}(D R * I 1) * S 1 N(C R * O 1)$
WYE $=-\operatorname{COS}(C R * O I) * S I V(C R * 11)$
$W Z E=\operatorname{COS}(D R * 11)$
$W X_{H}=$ SIN(OR*IZ)*SIN(CR*OZ)
$W Y H=-C J S(D R * O Z) * S I N(D R * I Z)$
$W Z H=\operatorname{COS}(D R * I Z)$
CALL DCJ(hXe,hYE,WZE,WXF,WYH,WZH, PLANE)
KETURN
LND

```
    SLERLUTIN_ CALJUL(WJD,FJU,WND,FD,X)
    DIMENSIUN X(6),A(12)
    DSO=2433282.
    YD=X(1)-48.
    YL=YD/4.
    KYL=YL
    CK=KYL
    IF(YL-CK)1,1,3
    IF(x(2)-2.14,4,3
3 DS=CK
    GO rO 5
4 ~ C S = C K - 1 . ~
5 DS=DS + 365.*(YD-2.)
```


APPENDIX D－Continued

```
    C0 6 I=1.1<
\epsilon A(I)=i.)
k=X(2)
EO 7 1 = K.12
7 AlII=C.0
    CS =0S+31.*(A(1)+A(3)+A(5)+A(7)+A(8)+A(10)+A(12))
    1+30.*(A(4)+A(6)+A(9)+A(11))+28.*A(2)
    CS =CS + X (3)-1.
    WND=DS
    FC=x(4)/24.+x(5)/1440.+x(6)/86400.
    IF(FD-.4799C99)9.8.3
8 FJC=FD-.5
    WJD=1.
    C!j ru ly
9 FJC=FC+.5
    WJD=%.
10 n.JC=055+wJU +WNO
    FETURN
    2NC
SUBRDUTIN,: CLNCAR(A,E,XI,W,O,F,X,Y,Z,DX,DY,DZ,U)
[ATA CR/.J17453252515943/
Fk=こR*F
WFR=0゙R*(n+F)
CR=似%C
XlR=0K*XI
1):N=1,+\therefore*CCS(FR)
R=A*(1.-L*i
V=5GRT(U*(2./R-1./A))
GAN=ATAN(L*SIN(FR)/DLNI
WFjN=WFK->GAN
CiNF=COS(WFR)
SWF=SIN(WFK)
SJ=SI:V(OR)
CJ=CUS(OR)
SI=SI:N(XIR)
CI=COS(XIK)
SNFG=SIN(NFGR)
CW:FG=CGS(mFGR)
X=R*(CWF=CC-SWF*SC*CI)
Y=к*(CWF*SO+SWF*Cこ*CI)
Z=K*SWF*SI
CX=V*(-S*FF**C-CWFG*SO*CI)
DY=V*(-SNFG*SO+CWFG*CO*CI)
CI=V*CNFG*SI
FETURN
&ND
```


APPENDIX D－Continued

```
    SLBROUTINE CONFPAIAC,EO,FO,PERO,RS,RE,FPAL,U,AL,EL,FLD,FLO,DELV,TH
    LETA,KKI
    DINENSIUN P(2)
    ANGLE(X)=AMCD(X,30i.)+180.-SIGN(180.,X)
    DíLV=0.
    DR=.U17453292515
    RD= 57.2557755130
    KK=0
    ANG12=ANGLL{PERC-FO\
    S12=SIN(ANG12*DF)
    C12=COS(ANG12*DR)
    CFPA=CCS(FPAE*DF)
    SFC=SIN(FU*LR)
    CFC=CUS (FO*[R)
    R1=AO*(1.-c[*之O)/(1.+ LO*CFD)
    R2=RS
    VO=SORT(U*(2./R1-1./AO))
    FPAC=ASIN(EC*SFC/SGHT(1.+2**i二O*CFJ+EO*CO))*RO
```

```
    A=-R2*R2-<1*RI+2**R1*R2*C12+(KI*R2*S12/RE/CFPA)**2
    H=2.*(R1*R2*R2+R1*Ri*R2-R1*R1*R2*C12-R1*R2*R2*C12-(R1*R2*S12)**2/R
    1E)
    C=R1*F1*RZ*R2*(-2.*2.*C12+S12*S12)
    CALL VAURAT(A,B,C,P(1),P(2),KK)
    IF(KK.Ë.J) GL TO 800
    DO 1 I =1,KK
    IF(P(I).LL.C.) COTD 1
    L2=1.-2.*P(I)/RL+(P(I)/RL/CFPA)**2
    IF(E2.LT.O.) GU TO L
    EL=SOkT(亡2)
    AL=F(1)/(1.-E2)
    CF2=(P(1)-R2)/EL/R2
    SF2=-SQRT(1.-CF2*CF2)
    CFこCK=K2*(1.+iL*CF2)-R1*(1.+EL*(C12*CF2+S12*SF2))
    IF(ABS(CH_CK).GT.1.) GC TO 1
    I=2
    F2=ANGLE(ATAN2(SF2,CF2)*FU)
    Fl=F<-ANGlL
    FPALI=ASIN(&L*SIN(F1*DR)/SQRT(1.+2.*:LL*COS(FI*UR)+.L*三L))*RD
    VLL=SURT(U*(2./RI-1./\DeltaL))
    DELV=SGRI(VC*VO+VLI*VLI-2.*VO*VLI*COS((FPAO-FPALI)*DR))
    STH=VLI/DELV*SIN((FPAO-FPALI)*DR)
    CTH=(VO*VO+UELV*OELV-VLI*VLI)/2./UcLV/VO
    TFETA=ATAN2(STH,CTH)*RD
    1 CuntINU:
    IFIC&LV.LT..OO1) GC TC 80U
    FLO=F1
    FLC=F2
    KK=1
SUO REIURN
    &NC
```


APPENDIX D－Continued

C
SURROUTIN- CRCSS (X1,Y1,Z1, X2,Y2, $22, P X, P Y, P Z, P R O D U C T)$ $P X=Y 1 * Z 2-Z 1 * Y Z$
$\mathrm{FY}=21 * \times 2-\times 1 * 22$
$P Z=X 1 * Y 2-Y 1 * \times 2$
PRCDUC $T=S Q R T(P X * P X+P Y * P Y+P Z * P Z)$
FETURN
c．NU

SUEROUTIN＿CURIC（A，B，C，C，X1，X2，X3，KK）
THIS SUBROUTINE SCLVES THE LQUATION AX＊＊ $3+B X * 2+C X+D=0$ FOR THL K．AL kOCTS

A．B，C．D－CL＿FFICIENT CF THL DIFFERENT POWERS OF X
XI，X2，X3－REAL RJCTS GF THE EQUATION
KK－NUMBGR OF KEAL ROOTS
CERT $(x)=$ SIGN（ABS $(x) * * .333333333, x)$
$K K=0$
PI＝3．1415927
IF（A．LT．．I：－3：．ANC．A．GT．$-.1 \Sigma=3 j)$ GJ TO 4
$P=B / A$
$C=C / A$
K＝i／A
$S A=(3 . *(j-P * 2) / 3$ 。
$53=12 . * P * * 3-5$ 。 $* P * Q+27$＊＊R ）／27．

IF（Cel．LT．．1L－3心．AND．DtL．GT．－．IL－30）GOTO 3
If（LiL）1．3．2
$1 \mathrm{KK}=3$
CPril＝－53／2．／SOKT（SA＊＊3／（－27．））
IF（ABS（CPriI）．GT．1．）EG TO 10
SPHI＝SGRT（1．－CPHI＊＊2）
PHIL＝ATAVZ（SPr．I，（PHI）
GO TO 11

SINC：FOK SMALL $\quad \triangle N G L E S \quad$ SPMI $=$ PHI
BETA＝5P：I
1F（－SH．GT． C －）IFHI＝ $\mathrm{B}=\mathrm{TA}$
IF（－SH．LT．\because ）PAI $=3.141592653587793-B E T A$
11 LU＝2．＊SUKT（－SA／3．）
$x_{1}=\Sigma$ C＊COS（Pト1／3．1－P／3．

GC 「0 7
$2 K K=1$
XI＝CBRT（－SB／2．＋SWRT（DELL）＋CBRT（－SB／2．－SQKT（DEL））－P／3．
GU TO 7
$3 K K=3$
X1＝ Z •＊ CRF T1－SR／2．1－P／3．

APPENDIX D - Continued

```
    x2=CBRT(SB/2.)-F/3.
    X3= x2
    GO TO 7
    4 CGNTINUE
    DIS=C**2-4.*B*O
    IF(DIS)7,5,5
    5 XI=(-C+SQRT(DIS))/2./B
    x2=(-C-SQRT(DIS))/2./B
    KK=2
    7 CONIINUE
    RETUKN
    END
    SUBROUTINL CETER(A, E)
    DOLBLE PRECISICN AP,BP
    DIMENSICN B(3,3),BP(3,3)
    DO 10 I=1,3
    DO 10 J=1,3
    BP(I,J)=0.DO
    BP(I,J)=DBLE(B(I,J))
10 CCNTINUE
    AP=BP(1,1)*BP(2,2)*BP(3,3)-BP(3,1)*BP(2,2)*BP(1,3)+
    1BP(1,2)*BP(2,3)*BP(3,1)-BP(1,2)*BP(2,1)*BP(3,3)+BP(1,3)*BP(2,1)
    2*BP(3,2)-BP(1,1)*BP(2,3)*BP(3,2)
    A= SNGL(AP)
    RETURN
    ENO
    SLEROUTINE DOT(X1,Y1,21,X2,Y2,Z2,ANGLE)
C
C
C
C
C
C
C
    RD=57.295775513C823
    RI=SORT(X1*X1+Y1*Y1+Z1*Z1)
    R2=SORT(X2* X2+Y2*Y2+Z2*Z2)
    ANGLE=ACOS((X1*XZ+Y1*Y2+Z1*Z2)/R1/R2)*RD
    RETLRIN
    END
```


APPENDIX D－Continued

SURKOUTIN：EEARTH（JL，XFE，YHL，ZHL，DXHE，DYHC，DZHEI

THIS SUBRUUTINE CGNPUIES THE HE゙LIOCENTRIC PGSITION AND VELOCITY OF The fartir in mian equinox and ecliptic uf date coordinate system． THIS RUUTINE CALLS SUBRCUTINES TINVS ANO CONCAR．

JO－JULIAN DATL
Xhe，Yhe，ZHe－PCSITION OF EARTH
EXFc，CYHE，DZH：E－VELOCITY OF ZARTH
FEAL JO
ANGLE $(X)=\operatorname{AMCD}(X, 36 C)+,180 .-S 1 G N(180 ., X)$
$C R=.017453252515543$

LSLN＝1．3271411世＋11
$\Delta U=14$ 5j9E845．
C＝Jट－2415も20．
$C D=C / 1600$.
$\mathrm{T}:=\mathrm{C} / 30525$ ．
$A \vdots=1.0303023 * A U$
it＝j． $01075154-0.03034180 * T:-0.000000126 * T \% * 2$
XIE＝j．0
$\left.h_{2}=131.22 j 033+\dot{3} . j\right)(547668 * D+0.30 \cup 3339 * C D * * 2+0.30000007 * C D * 3$
$\mathrm{O}_{\mathrm{i}}=\mathrm{E} \mathrm{C}$
XME＝ANGLE $1352.475845+0.985603267 * D-0.000 \cup 112 * C D * 2-0.0 C O O C O C 7 * C D * *$ 13）

CALL TINVS（XME＊LF，EE，FCE，FE）

FETURN
END

SURROUTINE LMARS（JD，XHN，YFM，ZHM，DXHM，DYMM，DZHM）
THIS SUBRGUTINE COMPUTES THE MEAN HELIOCENTRIC POSITION AND ViLLOCITY UF MARS IN THL MEAN EARTH GQUINOX AND ECLIPTIC OF DATE COOKDINATE SYSTEM．THIS RUUTINE CALLS SUBROUTINES TINVS AND CONCAR

```
JD - JULIAN DATL
```

XGN，YHN，ZחM－PCSITION OF MARS
EXTM，DYHN．DZHN－VELOCITY OF MARS
REAL JC
$A N G L E(X)=A M C D(X, 3 \in 0.1+180 .-S I G N(180 ., X)$
$D R=.017453252515943$
$\mathrm{RD}=57.2557755130823$
$U S U N=1.32715445 E+11$
$A U=14 ヶ 538845$ 。

APPENDIX D - Continued

$$
D=J D-2415020
$$

$C D=[/ 10 \cup 00$.
$T L=E / 36525$.

```
    AM=1.5230915*AU
    EN=C.CS33129C+0.COC0S2C64*TE-0.0000U0077*TE**2
    XIN=1.850334-0.COU575*TE+U.000012*TE**2
    CM=43.786442+C.77CS.31*TE-0.0U00015*TE**2-0.COCDO576*T:**3
    WM=334.2182C3+1.84C75S*TE+U.000130*TE**2-0.000J0129*T=**3-0M
    XMM=ANGL=1319.527425+3.5240207666*D+0.0J0013553*CD**2+0.000003025*
    1CD**3)
    CALL TINVS(XMM*OR,EN,ECN,FM)
    CALL CCNCAR(AM,EM,XIM,WM,OM,FM*RD,XHM,YHM,ZHM,UXHM,DYHM,DZHM,USUNI
    RETURN
    END
```

C
c

SUBRUUTINE EULER(X,Y,Z,XP,YP, ZP,PHI,PSI,THETA,DPHI,DPSI, DTHETA,WXP I, WYP,WZP,J,KI
XPHI = PriI*.0174532525
$\mathrm{XPSI}=\mathrm{PSI}$ *.0174532525
$X T H=T h \therefore T A *$. 0174532925
IF(J) $10,12,11$
$10 \quad \mathrm{X}=(\operatorname{COS}(X \mathrm{PSI}) * \operatorname{CCS}(X \mathrm{FHI})-\operatorname{COS}(X T H) * S I N(X P H I) * S I N(X P S I)) * X P+(-S I N(X P S I$
1)*COS(XPHI)-CCS(XTH)*SIN(XPHI)*COS(XPSI))*YP+(SIN(XTH)*SIN(XP:II))*
$22 P$
$Y=(\operatorname{COS}(X P S I) * S I N(X F H I)+\operatorname{COS}(X \Gamma H) * \operatorname{CUS}(X P H I) * S I N(X P S I)) * X P+(-S I N(X P S I$
$1) * \operatorname{SIN}(X P H I)+\operatorname{CCS}(X T H) \neq \operatorname{COS}(X P H I) * \operatorname{COS}(X P S I)) * Y P+(-S I N(X T+1 * \operatorname{COS}(X P H I))$
$2 * 2 P$
$Z=(S I N(X T H) * S I N(X P S I)) * X P+(S I N(X T H) * C O S(X P S I)) * Y P+(\operatorname{COS}(X T r i) * Z P$
GO TO 12
$11 X P=\left(\operatorname{COS}(X P S I) * \operatorname{COS}\left(X P_{1} I\right)-C U S(X T H) * S I N\left(X P_{H} I\right) * S I N(X P S I)\right) * X+(C O S(X P S I)$
$I \neq S I N(X P H I)+C U S(X T H) * C O S(X P H I) \neq S I N(X P S I)) * Y+(S I N(X T H) * S I N(X P S I)) * Z$
$Y P=(-S I N(X P S I) \neq C G S(X P H I)-\operatorname{COS}(X T H) * S I N(X P H I) * C U S(X P S I)) * X+1-S I N(X P S$
1I)*SIN(XPHI) +COS (XTH)*CCS (XPHI)*COS(XPSI))*Y+(こOS(XPSI)*SIN(XTH))*
22
ZP=(SIN(XTH)*SIN(XPHI))*X+(-SIN(XTH)*COS(XPHI))*Y+COS(XTH)*Z
12 IF(K)I3,13,14
13 OPHI=(WXP*SIN(XPSI) +WYP*CUS(XPSI))/SIN(XTH)
CPSI $=W 2 P-(C C S(X T r) *(W X P * S I N(X P S I)+W Y P * C O S(X P S I)) / / S I N(X T H)$
L「HETA=WXP*COS(XPSI)-WYP*SIN(XPSI)
GGTO 15
$14 W$ WP=DPHI*SIN(XTH)*SIN(XPSI) +DTHETA*COS(XPSI)
WYP = CPHI*SIN(XTH)*CCS(XPSI)-DTHETA*SIN(XPSI)
WZP $=$ DrSI + OPHI*CCS $(\times T H)$
15 RETLRN
END

APPENDIX D - Continued

```
    SURROUTINE JJLCAL(X,WDI,FUI,INO)
C
c
C
C
C
C
C
C
```

 DINENSILN X(6),A(12),W(12)
    ```
    DINENSILN X(6),A(12),W(12)
    WC=WDI
    WC=WDI
    FC=FDI
    FC=FDI
    IF(IND)I,1,5
    IF(IND)I,1,5
    1 IF(FD-.5)2,2,3
    1 IF(FD-.5)2,2,3
    2 FC=FO+.5
    2 FC=FO+.5
        WC=nD-1.
        WC=nD-1.
        G\ TO 4
        G\ TO 4
    3 FC=FD-.5
    3 FC=FD-.5
    4WC=WD-2433<82.
    4WC=WD-2433<82.
    5WC=WD+1.
    5WC=WD+1.
        DY=365.
        DY=365.
        Z=2.
        Z=2.
        N=3
        N=3
        Q=4.
        Q=4.
    6 hL=WD-DY
    6 hL=WD-DY
    IF(WO)1U,lC,7
    IF(WO)1U,lC,7
    7N=N+1
    7N=N+1
    Z=z+1.
    Z=z+1.
    CK=6-Z
    CK=6-Z
    IFICKI9.9.8
    IFICKI9.9.8
    8 CY=305.
    8 CY=305.
    FC=28.
    FC=28.
    GG 10 6
    GG 10 6
    G DY=36t.
    G DY=36t.
    Q=6+4.
    Q=6+4.
    FC=29.
    FC=29.
    GU TO }
    GU TO }
10 wo = nD+CY
10 wo = nD+CY
    DU 11 I =1,12
    DU 11 I =1,12
11 A(1)=\hat{*}.
11 A(1)=\hat{*}.
    Cl=31.
    Cl=31.
    C2=30.
    C2=30.
    DO 13 I=1,12
    DO 13 I=1,12
    A(I)=1.
    A(I)=1.
    CA=FC*A(2)+Cl*(A(1)+A(3)+A(5)+A(7)+A(8)+A(1C)+A(12))+CZ*(A(4)+
    CA=FC*A(2)+Cl*(A(1)+A(3)+A(5)+A(7)+A(8)+A(1C)+A(12))+CZ*(A(4)+
    1 A (6)+A(9)+A(11))
    1 A (6)+A(9)+A(11))
    W(I)=w[-CA
    W(I)=w[-CA
    IF(W(I))12.12.13
    IF(W(I))12.12.13
12 1F(1-1)15,15,16
```

12 1F(1-1)15,15,16

```

\section*{APPENDIX D－Continued}
```

15 MLN=1
GO TO 14
16MCN=I-1
WD=W (MON.)
NCN=MCN+1
GO IO 14
13 CCNTINU:
14N=N+5U
X(1)=N
X(2)=MCN
X(3)=WD
FH=FD*24.
N=FH
X(4)=N
FM=(FH-X(4))*60.
N=FM
x(5)=N
X(6)=(FM-X(5))%60.
FETURN
END
SUBRLIUTINL: LANBRTIX1,Y1,Z1,XZ,YZ,Z2,TIME12,A,E,XI,W,O,TA1,TAZ,U,KK
1)
IF $\times 2, Y 2, A N O$ ZZ ARE ZERO，THEN XI IS CONSIDERLD THE KADIAL DISTAVCE TO PCINT 1，Y1 THE UISTANCE TO PUINT 2，ANO LI THL ANGLE FRON POINT 1 TU PUINT 2．MJTIUN IS ALWAYS CONSIDER $: D$ FRCM PUINT 1 TO PCINT 2.
REAL M12．N
$\operatorname{ATANH}(x)=.5 * \operatorname{ALOG}((1 .+x) /(1 .-x))$
$\operatorname{ANGLE}(X)=A N C D(X, 360.1+180 .-S I G N(180 . . X)$
CATA［R．RD，PI／．01745329251594．57．2957795．3．141う926535／
$M=0$
$K K=1$
TAZ $=0$ 。
KE．$Y=1$
IORBIT $=1$
IF（TIML12．LE．0．）GU TO 800
IF（（ABS（X2）．LT．．．1）．ANC．（ABS（Y2）．LT．．1）．AND．（ABS（Z2）．LT．．I））GOTO 1
$\mathrm{Kl}=\operatorname{SOK} \mathrm{T}(\mathrm{X} 1 * \times 1+Y 1 * Y 1+21 * 21)$
R2 $=$ SOR $\mathrm{T}(\times 2 * \times 2+Y 2 * Y 2+Z 2 * Z 2)$
CPSI $=(X 1 * X 2+Y 1 * Y 2+Z 1 * Z 2) / R 1 / R 2$
SPSI＝（X1＊Y2－X2＊Y1）／ABS（XI＊Y2－X2＊Y1）＊SQKT（1．－CPSI＊CPSI）
PSI＝ANGLE（ATAN2（SPSI，CPSI）＊RD）
GO TO 2
$1 \mathrm{Kl}=\mathrm{XI}$
$R 2=Y 1$
PSI＝ANGLE（Z1）
$X I=G$ ．
$0=0$ 。
$h=0$ ．
$2 \mathrm{C}=\operatorname{SGRT}(\mathrm{R} 1 * R 1+\mathrm{R} 2 * R 2-2 * * R 1 * R 2 * \operatorname{COS}(P S I * D R))$

```

\section*{APPENDIX D－Continued}
```

 IFIPSI.LT.C.G1) GO TC 800
 AM=(R1+R2+C)/4.
 S=2.*AN
 TP=S@RT(2./L)*(S**1.5-(S-C)**1.5)/3.
 TTP=SQRT(2./U)*(S**1.5+(S-C)**1.5)/3.
 IF((PSI.LE.18こ.).AND.(TIME12.LT.TP)) IOKBIT=2
 IF((PSI.GE.130.).ANC.(TIME12.LT.TTP)) IORBIT=2
 3 CTA2=COS(TA2*OR)
 CTA1=COS((TA2-PSI)*DR)
 Q=R2*CTTA2-R1*CTA1
 IF(ABS(O).GT.1.) GC TO 5
 4 IF(KEY.GT.1)GC TO 25
TA2=TA2+5.
GO 10 3
5 F = (RI-K2)/Q
IFI:=LT.J.1 GC TC 4
A=k2*(1.+%*CTA2)/(1.-これに)
GU TU (0,7),ICKBIT
O IFIL.GT.1..CR.A.LT.J.I GU TO 4
TLNP=SORT((1.-E)/(1.0+E))
tC1=ANGLE(2.*ATAN(TEMP*TAN((TA2-PSI)*DR/2.))*RD)*DR
LC2=ANGLE(2.*ATAN(TEMP*TAN(TA2*DR/2.1)*RDI*DR
LELEC=:-C2-cCl
IF(DELLC.LIOS.) DELEC=2.*PI+DELEC
M12=D:L\&C-E*(SIN(EC2)-SIN(ECI))
GU rO 3
7 IF(\&.LT.1..CR.A.GT.J.) GO TO 4
TEMP=SORT((x-1.)/(E+1.))
\&Cl=2.*ATANH(T_NP%TAN((TAZ-PSI)*DR/2.))
LCZ2=2**A「ANH(TEMP*TAN((TA2*UR/2.)1)
M12=_*(S1NF1%C2)-SINH(ECi) 1- =C2+=Cl
\& }N=SQKT(U/ABS(A)**3
F=TIME12-412/N
GO TU (9.10.11).kty
G KEY=2
TALAST=TAL
TA\hat{c}=T\Delta2+1.
GO TO 13
10 KEY=3
gu TU 12
11 M=M+1
IF(M.GT.6C)GO TC GCJ
IF(ABS(F).LL.ABS(FLAST)) GO TO 12
25 DFCTAL=JFETA2*2.
M=N+1
IF(N.GT.OCIGO IC 80J
TA2=TALAST-FLAST/LFDTAL
GO TO 3
1: ERRRCR=F/TIMC12
IF(ABS(LRRUR).LT..COOO1) GU TO 14
UFC゙TA2=(F-FLAST)/(TA2-TALAST)
TALAST=TAZ
TAZ=TAZ-F/LFCTAZ

```

\section*{APPENDIX D - Continued}
```

 13 FLAST=F
 GO TO 3
 C
14 TA1=TA2-PSI
IF((ABS(X2).LT..1).AND.(ABS(Y2).LT..1).A.(ABS(Z2).LT..1)IGO TO 900
D1=Y1*Z2-Z1*Y2
D2=21*X2-X1* Z2
D3=X1*Y2-Y1* X2
HH=SQRT(D1*D1+D2*D2+D3*D3)
IFID3.GT.0.1 GO TO 15
D1=-D1
D2 = - D2
C. 3 =-D3
15 COSXI=D 3/HH
XI=ATAN2(SORT(1.-COSXI*COSXI),COSXI)*RD
SO=D1/(Hr1*SIN(XI*DR)
CO=-D2/(HH*SIN(XI*DR))
IFISO.EQ.O..AND.CO.EQ.O.1 CO=1.
C=ANGL\tilde{F}(ATAN2(SC,CC)*RD)
W=ANGLE(ATAN2((-XI*SO+YI*CO)*COSXI+Z1*SIN(XI*UR),XI*CO+YI*SO)*RO-T
1A1)
GO TO 900
8C0 KK=0
9CO FETURN
END
SUBROUTINi= LATLNG(X,Y,Z,XLAT,XLUNG)
C THIS SUBROUTINE CONPUTES THE LATITUDE ANO LONGITUDE OF A GIVEN
C POSITIGN VECTCR
C X,Y,Z - CCNFCNEMTS OF ThL PUSITION VECTOR
C XLAT,XLUNG - LATITUDL AND LONGITUDE
C
ARCOS(x)=\operatorname{ACCS}(x)
ARSIN(X)=ASIN(X)
RD=57.2957755
R=SGRT(x**2+Y**2+Z**2)
XLONG=ATAN2 (Y,X)*RC
XLAT=ARSIN(Z/R)*RD
RETURN
END

```

\section*{APPENDIX D－Continued}

SURRJUTINE：OCCULT（A，E．XI，W，D，U，RS，EX，EY，EZ，TOCC，T1，ALT1，F1，DECI，R 1A1，I2，ALT2，F2，DEC2，RA2，KK1

THIS SUBFOUTINE COMFUTES THE ENTRANCE AND EXIT TRUE ANOMALIES OF CCCULTATION．THIS RCUTINE CALLS SUBRUUTINES RXYZPQW，QARTIC． CROSS，DUI，TCCNIC，RPGWXYZ，AND LATLNG．

A，E，XI－SEMIMAJOR AXIS，ECCENTRICITY，INCLINATION W，O－ARGUMENT OF PERIAPSIS，LJNGITUOE OF ASCENDING NJDE U，RS－GRAVITATILNAL CCNSTANT AND RADIUS OF THE PLANET EX，EY，こZ－CGNPCNENTS OF UNIT VECTOR TOWARD THE BODY OCCULTED TOCC－LENGTH JF TINL IN SHADOW
TL，ALTI，FI，DCCI，RAI－CGNDITIONS AT ENTRY INTO THE SHADOW，TIME FROM PERIAPSIS，ALTITUDE，TRUL ANOMALY，DECLINATION，AND RIGHT ASCENSIDN
T2，ALT2，F2，EEC2，FA2－CCNDITIUNS AT EXIT FROM THE SHADOW KK－CCNTEOL INTEGER．O INPLIES NO OCCULTATION， 1 IMPLIES OCCULT．

DIMENSICN RPQW（3，3），CF（4），RXYZ（3，3）
ANGLE \((X)=\operatorname{AMCD}(X, 360)+.180 .-\operatorname{SIGN}(180 \ldots, X)\)
\(C R=01017453292519943\)
\(\mathrm{RD}=\)－ 7.2557755133823

F2＝2060．
\(K K=0\)

CALL RXYZPQW（EX，EY，EZ，XI，W，O，RPQW，BETA，XXI，ZBODYI
\(C 1=(\mathrm{FS} / \mathrm{P}) * * 4 * \dot{c} * * 4-2 . *(R S / P) * * 2 *(X X I * * 2-B E T A * * 2) * * * 2+(B E T A * * 2+X X I *\) \(1 * 21 * * 2\)




\(\mathrm{C} 5=(\mathrm{RS} / \mathrm{P}) * * 4-2 . *(\mathrm{kS} / \mathrm{P})\) 市＊2＊（1，－XXI＊＊2）＋（1．－XXI＊＊2）＊＊2
CALL UARTIC（C1，C2，C3，C4，C5，CF（1），CF（2），CF（3），CF（4），JJ）
IF（JJ．EQ．O）GO TC 8CO
C
Cu \(3 \quad l=1, \mathrm{JJ}\)
IF（ABS（CF（I））．LT．1．OC）1．AND．ABS（CF（I））．GT．1．）CF（I）＝0．999999
IF（ABS（CF（I））．GT．1．）GOTU 3
\(S F=S Q R T(1,-C F(I) * * 2)\)
\(R=P /(1 .+\cdots * C(I))\)
CALL CROSS（F＊CF（I），R＊SF，O．，BETA，XXI，ZBUOY，PX，PY，PZ，PRODUCT）
CALL EOT（CF（I），SF，C．，BEFA，XXI，IBUOY，ANGI
IF（ABS（PRODUCT－RS）．LT．．01．AND．ANG．GT．90．）GO TB 1
\(S F=-S F\)
CALL CRUSS（R＊CF（I），R＊SF，Ö．，BETA，XXI，ZBODY，PX，PY，PZ，PFODUCT）
CALL CCT（CFII），SF，C゙．，BETA，XXI，ZBODY，ANG）
IF（ABS（PRUDUCT－FS）．LT．．OL．AND．ANG．GT．90．）GO TO I
GO TO 3
1 IFIFI．LT．IOCO．IGO TO 2
\(F 1=A N G L=(A T A N 2(S F, C F(I)) * R D)\)
GC 103
\(2 F 2=A N G L E(A T \Delta N 2(S F, C F(I)) \neq R O)\)

\section*{APPENDIX D - Continued}

5 CALL TCONIC(U,E,A,F1,T1)
CALL TCONIC(U,E,A,F2,T2)
TOCC \(=\) T2-T1
IF(TOCC.LT. U.)TUCC \(=6.2831853 * S O R T(A * * 3 / U)+T O C C\)
T1=T1/60.
\(\mathrm{T} 2=\mathrm{T} 2 / 60\).
TOCC = TOCC \(/ 60\).
ALT1=P/(1.+E*COS(F1*CR))-RS
ALT2=P/(1.+2*CCS(F2*DR))-RS
CALL RPQWXYZ(COSIFI*DR),SIN(FI*DR), O., XI,W,O,RXYZ,RX,RY,RZ)
CALL LATLNG(RX,RY,RL, DECl, RA1)
CALL RPQWXYZ(COS(FZ*DR),SIN(F2*DR), D., XI,W,O,RXYZ,RX,RY,RZ)
CALL LAFLNG(RX,RY,R2,CEC2,RA2)
\(K K=1\)
é ra g jo
c
8CO cCNtinué
TOCC=1.
\(\mathrm{Tl}=\mathrm{C}\).
\(A L T 1=0\).
\(\mathrm{Fl}=0\).
DECl=0.
RAl \(=0\).
\(\mathrm{T} 2=0\).
ALI2=0.
\(\mathrm{F} 2=\mathrm{C}\).
CEC2=0.
RA2 \(=0\).
sco continue
RETURN
END

\section*{APPENDIX D - Continued}

SURROUTINE PARIN(XP,YP,X,Y,II)
DINENSICN X(3),Y(3), DET(3,3)
\(00 \quad 10 \quad \mathrm{I}=1.3\)
DET(1,1)=x(1)**2
DeT \((1,2)=x(I)\)
DET(I.3)=1.0
10 CCATINUE
CALL DETER (D, DK̈T)
1F(ABS(D)-1.0E-161100.100.20
\(20 \mathrm{DO} 30 \quad I=1.3\)
DET(I, 1) \(=\mathrm{Y}(\mathrm{I})\)
30 CONTINUE
call deter(apet)
\(\Delta=A / D\)
CO \(43 \quad 1=1,3\)
\(\operatorname{DLT}(I, 1)=x(I) * * 2\)
\(\operatorname{CeT}(I, 2)=Y(I)\)
40 CONTINUE
CALL UETLR(E,DET)
\(B=B / D\)
DU \(50 \quad \mathrm{I}=1,3\)
DET (I, 2) \(=x(1)\)
CeT(I,3)=Y(I)
50 CCNTINUE
call CeTER(C,Dit)
\(C=C / D\)
IF(11)200.150.263
\(150 \mathrm{XP}=-\mathrm{B} /(2.0\) * A\()\)
\(Y P=C-U * * 2 /(4 . C * A)\)
GO TU 3i:
\(200 Y P=(A * X P+B) * X P+C\)
GU 「O 300
\(1 C \mathrm{CX}=\mathrm{C} .0\)
\(Y P=U . U\)
\(3 \therefore 0\) RETURN
ENC

SUBRUUTIN:̈ PRECES(JU1,XE1,YE1,ZE1,JO2,XE2,YE2,ZE2)

\title{
THIS SUBRUUTINE TKANSFCRMS GEUCENTRIC EARTH EQUATORIAL COORDINATES
} FRCN EPOCH JDI TL EPOCH JD2. THIS ROUTINE CALLS SUBROUTINE EULER.

JDI.JO2 - JULIAN DATES CF INITIAL AND FINAL EPOCH
XLL,YLL,ZEL - CCMPCNENTS OF VECTOR IN JDI COORDINATE SYSTEM
Xi2,YL2, LE2 - CCMPCNENTS OF VECTOR IN JDZ COORJINATE SYSTEM
RE. \(\Delta L\) JC1, JD2
\(T=A B S((J D 2-J D 1) / 36524.2198791\)
\(T C=(J D 2-2415020.1 / 36524.219879\)
ZETAG \(=(0.64(66944+C .38777778 E-3 * T)) * T+0.83888889 E-4 * T * * 2+0.5 E-5 * T *\) 1*3
```

 CZETAO=ZETAC + C. 21572222E-3*T**2
 THETAU=1U.55685611-3.2369444E゙-3*TOl*T-0.11833333E-3*T**2-0.1166666
 17E゙-4%T**3
 C
IF(JC2-JD1.GT.0.1 GO TO I
TEMP=ZETAO
ZETAO=-CZETAO
CZETAO=- TEMP
THETAU=-THETAO
C
C
RETURN
END
SLBROUTINE CACRAT(A,B,C,X1,X2,KK)
SOLVES EQUATICN A*X**2+B*X+C=0
KK = NUMBER GF RIAL ROOTS
KK=0
DIS=B*B-4.*A*C
IFIDIS.LT.O.I GO TO 800
XI=(-B+SWRT(DIS))/2./A
X2=(-B-SOKT(DIS)//2./A
KK=2
80O RETURN
END
SLBRUUTIN: QARTIC(A,B,C,D,E,XI,X2,X3,X4,KK)
THIS SUAROUTINE SOLVES THE EQUATIUN AX**4 +BX**3 +CX**2 +DX +č=0
FOR THE REAL RUCTS. THIS ROUTINE CALLS SUBROUTINES QADRAT AND CONIC
A,B,C,D,E - CCEFFICILNTS OF THE UIFF\&KENT PCWERS OF X
X1,X2,X3,X4 - REAL RLOTS OF THE. EOUATIUN
KK - NUMBLR CF REAL RDOTS
KK=0
BP=B/A
CP=C/A
CP=C/A
EP=E/A
C
H=-8P/4.
H2=H**2
H3=H2*H
H4=H3*H
P=\epsilon.*H2+3.*BP*H+CP
C=4**H3+3**BP*H2+2.*CP*H+OP
R=H4+BP*H3+CP*H2+DP*H+EP

```

\section*{APPENDIX D - Continued}

C
\(c\)
    CALL GADRAT (1.,SGKP,XI,Y1,Y2,IROUT)
    CALL GADRAT(I.,-SGRP, BLTA,Y3,Y4,JROOTI
    IFIIRDCT+JRUOT.EQ.O) GO TO 800
    IFIIFCCT+JRCCT.EQ.4) GO TU 6
    IF IRUOT.EQ.OI GC IC 5
    \(X 1=Y 1+H\)
    \(x_{2}=Y_{2}+h\)
    \(K K=2\)
    GO ro 800
        \(5 \quad x 1=y 3+r i\)
        \(x 2=y 4+r\)
        \(K K=2\)
        GC 10800
        \(6 \times 1=Y 1+h\)
        \(\times 2=Y 2+r 1\)
        \(X 3=Y 3+r\)
        \(X_{4}=Y 4+H\)
        \(K K=4\)
    8しう CCNTINU=
    FETURN
    LNC

SURRUUTINE RECEG(JO,XEC,YEC, ZEC, XEQ,YEQ,ZEQ)
C. THIS SUBRUUTINE ROTATĖS A VECTOR FROM GEOCENTRIC, ECLIPTIC, TO
C THE GEOCENIRIC, LARTH EQUATURIAL COORDINATE SYSTEM
C
C JD - JULIAN DATE
C XECPYEL, Z C - CEMPCNENTS OF THE VECTOR IN THE GEOCENTRIC, ECLIPTIC
    XeC,YELELCOCRDINATE SYSTEM
    XEG,YEQ, ZED - CCMPONENTS OF THE VECTOR IN THE GEOCENTRIC, EARTH
                EGUATCRIAL, COURDINATE SYSTEM
    Kin \(A L\) JC
    \(D R=.017453252519943\)
    \(T t=(\mathrm{JL}-2415 \mathrm{C} 22.1 / 3 \in 525\).
    XIE=23.452254-0. © 1 3C125*TE-0.00000164*TE**2+0.000000533*TE**3
    \(C=C G S(X 1 E * U R)\)
    \(S=S I N(X I \varepsilon \neq D K)\)

\section*{APPENDIX D - Continued}
```

XEG=XEC
YミG=Y\&゙C*C-ZEC*S
ZEG=YEC*S+ZEC*C
RETURN
END

```

SURROUTINE REQMEQIJC,XEQ,YEQ,ZEQ,XMEQ,YMEQ,ZMEQ,DECMEQ,RAMEQI

THIS SUBROUTINE ROTATES A VECTOR FROM THE MEAN EARTH EQUATOREQUINCX TO THE MEAN MAFS EQUATOR-EQUINOX COORDINATE SYSTEM. THIS ROUTINE CALLS SUBRCUTINES REQPEE AND LATLNG.

JD - Julian date at time of interest
XEG,YEO,ZEQ - VECTOR IN THE EARTH EQUATORIAL SYSTEM
XMEG,YMEQ,ZMEC - VECTOR IN THE MARS EQUATORIAL SYSTEM
DECMEG, RAMEG - CECLINATION AND RIGHT ASCENSION OF THE VECTOR IN THE MARS EQUATORIAL SYSTEM

REAL JD
\(T L=1 J E-2415020.1 / 36525\).
TAU=AMOD (TE*1 OO...1.)
\(T P=T E * 100 .-T A U-50\).
ALPHAO \(=316.55+45 . * .0 C 5751+.006751 * T P-.001013 * T A U\)
GAMMAO \(=52.85+45 * .0 \mathrm{C} 343+.00348 * T P-.000631 * T A U\)
OMEGA \(=48.78 \in 44167+0.77 C 99167 * T E=0.13888889[-5 * T F * * 2\)
\(X I=1.850333333-0.675 E-3 * T E+0.12611111 E-4 * T E * * 2\)
CALL REQPEQ(JC, ALPHAO, GAMMAO, OMEGA,XI,XEQ,YEG,ZEQ,XMEQ,YMEQ,ZMEQ) CALL LATLNG(XNEG,YMEG,ZNEQ,DECMEQ, KAMLQ)

RETURN
ENC

\section*{APPENDIX D - Continued}

SUBRUUTINE RLGPEQ(JI, ALPHAC,GAMMAO, LIMEGA,XI,XEQ,YEQ,ZEQ,XPEQ,YPEQ, 12PEGI
    THIS SUBROUTINE RQTATES A VECTOR FROM MEAN EARTH EQUATOR-EQUINOX
        TO PLANET EGUATCR-EGUINGX COORDINATE SYSTEM. THIS ROUTINE CALLS
        SUBRUUTINE LULER.
    JU - JULIAN DATE: AT TIME OF INTEREST
    ALPHAG.GAMMAD - RIGHT ASCENSIJN AND DECLINATION OF THE PLANETS
                AXIS GF RCTATICN EXPRESSED IN THE EARTH EQUATORIAL
                COCRDINATE SYSTEM
    UMEGA, XI - LONGITUCé UF THE ASCENDING NJDe AND INCLINATION OF THE
                        planits ofbital plane referenced tu the ecliptic and
                    VERNAL EGUINOX
    XEG,YEQ,ZEQ - CCMPCNENTS OF THE VECTOR IN THE EARTH EQUATORIAL
                    COURDINATE SYSTEM
        XPEG, YPEQ, LPEO - CCMPCNENTS OF THE VECTOR IN THE PLANET EQUATORIAL
                        CODRDINATE SYSTEM
    Refl JC
    DIMcNSICN KFQW(3.3)
    \(C R=0.017452292519943\)
    \(\mathrm{RD}=57.255775513 \mathrm{CE} 23\)
    \(T \mathrm{t}=(\mathrm{J} \mathrm{C}-24 \mathrm{lb} \mathrm{C} 2 \mathrm{O} \cdot 1 / 36525\).
    \(E=23.45225444-\) C. \(130125 E-1 * T E-C .16388889 E-5 * T E * 2+3.53277778 E-6 * T E *\)
\(1 * 3\)
    \(C L=\operatorname{COS}(i * 1) R)\)
    \(\mathrm{Si}=\operatorname{SIN}(i * D R)\)
    \(C A L=C O S(A L P H: A C * C R)\)
    \(S A L=S I N(A L P H A O * C R)\)
    \(C G N=C O S(G A M N A C * C R)\)
    \(S G N=S I N(G A M N A C \neq D E)\)
    \(C C N=C C S(C M E G A * D R)\)
    \(S G N=S I N(O M E G A * D F)\)
    \(C Z P=C F * S O M * C A L-C C M * S A L\)
    \(S Z P=S G R T 11 .-C Z P * C Z P 1\)
    \(Z P=A \operatorname{TAN} 2(S Z P, C Z F) * R U\)
    \(S X P=S L * C A L / S Z P\)
    \(C X P=\left(-\right.\) Cエ \(_{\text {ェ }} * C C N * C A L-S C M * S A L J / S \angle P\)
    \(X P=A T A N 2(S X P, C X P) * R C\)
    \(S Y P=S: \div S C N / S Z P\)
    \(\left.C Y P=\left(C \_* S i\right) M * S A L+C C M * C A L\right) / S Z P\)
    \(Y P=A T A N 2(S Y P, C Y F) \neq R \Gamma\)
    \(C I=\operatorname{COS}((X P-X I) *[R) * S I N((Y P-G A M M A O) * D R)+S I N((X P-X I) * D R) * C O S((Y P-G A M\)
1NA() *DR) \(* C Z P\)
    SI = SQRT(1.-CI*CI)
    \(S W P=S Z P * S I N((X P-X I) \neq D R) / S I\)
    \(C W P=(-\operatorname{COS}((X P-X I) * D R) * \operatorname{COS}((Y P-G A M M A O) * O R)+S I N((X P-X I) * D R) * S I N((Y P-\)
1GAMMAC)*(DR)*C(P)/SI
    \(W P=A T A N 2(S W P, C W F) * R D\)
    CALL GULER (XLQ,YEG, ZLQ,XPEO,YPEQ, \(2 P=Q, 93 .+A L P H A O, W P+180 ., 90 .-G A M M A\)
1U......U., C., O., ©., 1.01
    Re. TURN
    END

\section*{APPENDIX D - Continued}
c this subroutine rotates a vector from the pow to the xyz

RXYZ(1,2) \(=-\mathrm{SW} * \mathrm{CO}-\mathrm{CW} * \mathrm{SO} * \mathrm{CXI}\)
RXYZ(1,3)=SO*SXI
FXYZ(2,1) \(\mathrm{CH} * \mathrm{SU}+\mathrm{SW} * \mathrm{CO} * \mathrm{C} X \mathrm{I}\)
KXYZ(2,2) \(=-\mathrm{SW} * \mathrm{SO}+\mathrm{Ch} * \mathrm{CO} * \mathrm{CXI}\)
RXYZ(2,3) \(=-\mathrm{CO*} \mathrm{SXI}\)
RXYZ \((3,1)=S h * S X I\)
FXYZ \((3,2)=C h * S X I\)
RXYZ(3,3)=CXI
\(V X=R X Y Z(1,1) * V P+R X Y Z(1,2) \neq V Q+R X Y Z(1,3) * V W\)
\(V Y=R X Y Z(2,1) * V P+R X Y Z(2,2) * V Q+R X Y Z(2,3) \neq V W\) \(V Z=K X Y Z(3,1) * V P+R X Y Z(3,2) * V Q+R X Y Z(3,3) * V W\)

RETURN

\(C W=\cos (W * D R)\)
\(\operatorname{Sh}=\operatorname{SIN}(W * D R)\)
\(\operatorname{co}=\cos (0 * D E)\)
SO=SIN(O*DRI
CXI \(=\operatorname{CGS}(X I * D R)\)
\(S \times I=\operatorname{SIN}(X I * E R)\)
LNC

SUBREUTINE RXYZPQh(VX,VY,VZ,XI,W,O,RPQW,VP,VO,VW)
ROIATES A VECTOR fRCM THE XYZ TO THE PQW CUORDINATE SYSTEM
OINENSIGN RPQW(3.3)
\(D R=.017453252515943\)

O=COS(O*DR)
\(C W=\cos (W * D R)\)
\(S W=S I N(W * D R)\)
\(C O=\operatorname{CUS}(10 * D R)\)
\(S O=S I N(O * D R)\)
\(C \times I=\cos (X I *[R)\)
\(S X I=S I N(X I * C R I\) COORDINATE SYSIEM

VP,VQ,VW - CCNFCNENTS OF THE VeCTUR IN THE PQW SYSTEY XI,h,O - INCLINATIGN, ARGUMiNT OF PERIAPSIS, LONGITUDE OF ASCENDING NOCE
rXyz - ROTATIONAL MATRIX fROM ThE PQW to rhe xyz COORDINATE SyStem vx,vy,vz - CGNfENENTS OF THE VECTOR IN THE XYZ SYSTEM

CIMENSION RXYZ(3.3)
\(C R=.017453252515943\)

\section*{APPENDIX D - Continued}
```

FPQu(1,1)=CW*CC-Sw*SO*CXI
RPQw(1,2)=Cw*SC+SW*CC*CXI
KPQW(1,3)=Sh*SX1
RPGW(2,1)=-SW*CC-CW*SO\#CXI
FPGW(2,2)=-SW*SO+Ch*CO*CXI
RPQW(2,3)=Ch*SXI
KPGN(3,1)=SC*SXI
KPGN(3,2)=-CO*SXI
KPGW(3,3)=CXI

```
```

VF=RPQW(1,1)*VX+RPQW(1,2)*VY+RPQW(1,3)*VZ

```
VF=RPQW(1,1)*VX+RPQW(1,2)*VY+RPQW(1,3)*VZ
VQ=RPQW(2,1)*VX+RPGW(2,2)*VY+RPQW(2,3)*VZ
VQ=RPQW(2,1)*VX+RPGW(2,2)*VY+RPQW(2,3)*VZ
VW=KPQW(3,1)*VX+FPQW(3,2)*VY+RPQW(3,3)*VZ
```

VW=KPQW(3,1)*VX+FPQW(3,2)*VY+RPQW(3,3)*VZ

```
C
    kiturn
    \&ND
    SURRJUTIN: TCONIC(U,EC,A,TA,T)
    DATA CK/.17453252515S43E-1/
    TAZ=TA*DR
    \(S L K=A *(1 .-H C * C)\)
    \(A B=A B S(A)\)
\(F A C=A B * S Q R T(A Q / U)\)
ᄃ \(C \Delta=(1 .-E C) /(1 .+2 C)\)
\(A B E=S G K T(A E S(E C A))\)
Tri=TAN(.5*TA2)
IF \(\left(A B_{r}-.5 t-10\right) 11,11,12\)
12 CCATINUL
ECA=2.*ATAN(ASこれTHE)
IF(A)14,11.13
\(13 T=F A C *(L C A-E C * S I N(E C A))\)
GU TO 15
\(14 \Delta N G=A B E+T_{2}\)
\(\Delta N G=1 .+2 . * A N G /(1 .-A N G)\)
\(\left.T=F A C * 1 \_C \div T A N(E C A)-A L O G(A N G)\right)\)
GO TO 16
\(11 \mathrm{FAC}=\operatorname{SGK} \mathrm{F}(\mathrm{SLR} * * 3 / \mathrm{U}) * 2.1(11 .+E C) * * 2)\)



16 CCNTINUK
Ri:TURN
END

\section*{APPENDIX D - Continued}
```

 SUBROUTINE TINVS(M,E,EC,F)
 REAL M.MO
 CATA PI/3.141592653583793/
 ASINHI(X):=SICN(ALOG(ABS(X)+SQRT(X**2+1.)), X)
 IF(E.GL.l.JGO TO 1OJ
 EC=M
 10 MU=\&C-\therefore*SIN(FC)
CM=M-MO
DE=CM/(1.-E\#CCS(EC))
EC=EC+Dt
IF(ABS(DE).GT.1.E-12 IGO TO 10
HEC= EC/2.
HF=ATAN(SQRT((1.+E)/(1.-E))*SIN(HEC)/COS(HEC))
IF(HF.LT.O.)HF=HF+PI
F=2.*HF
GO TO 800
1CO CONTINUE
EC=ASINH(M/E)
101 MO=E*SINH(EC)-EC
CN=N-MO
DE=CM/(c*COSH(EC)-1.)
LC=EC+DE
IF(ABS(DEE).GT.1.L-12 IGU TO 101
F=2.*ATAN(SQRT((E+1.C)/(E-1.0))*TANH(EC/2.0))
800 KETLKN
END

```

SUBROUTINE VECTOR(JD, DECS,RAS, DECE,RAE,DECC,RAC,SX,SY,SZ,EX,EY,EZZ, ICX,CY,CZ,IBCDYI

ThIS SURROUTINE CGN PUTES THE POSITION OF THE SUN, EARTH, AND CANGPUS IN PLANLT ËQUATOR, MEAN PLANET EQUINOX OF DATE, AND WRITES CATA. THIS ROUTINE CALLS SUBROUTINES EEARTH, EMARS, EVENUS, PRECES, latlng, dot, receg, regveg, and regmeg.

JD - Julian date at time uf interest
IBOOY - CONTRUL INTEGER. 2 IMPLIES VENUS, 4 IMPLIES MARS.
DLCS,RAS - CECLINATION AND RIGHT ASCIVSION CF THE SUV.
DECe,kAE - CECLINATICN AND RIGHT ASCENSIJN OF THic EARTH.
DECC,KAC - CECLIAATIUN AND RIGHT ASCENSION GF CANOPUS.
SX,SY,SZ - LNIT VLCTOR FRUM THE PLANET TO THE SUN.
EX,EY,EL - UNIT VECTCR FROM THE PLANET TO THE GARTH.
CX,CY,CZ - UNIT VECTOR FROM THE PLANET TO CANOPUS.
REAL JD
\(\mathrm{RD}=57.295775513 \mathrm{C} 82 \mathrm{~s}\)
CALL EEARTH(JD, XHIE, YFE,ZHE,DXHE,DYHE,DZHE)
CALL PRECES (2433282.,-. C60340592,.60342839,-.79513092,JD,CXE,CYE,C 12E)

\section*{APPENDIX D - Concluded}

C
2 CALL EMARSIJD, XYP,YHP,ZHP, DXHP, DYHP,DZHPI
\(3 X H P L=X H E-X H P\)
YHPE \(=\) YHË-YHF
ZHPE= ZHE-ZHP
RSE=SQRT (XHE** \(2+\mathrm{YHE} * * 2+2 H E * * 2)\)
RSP=SQRT (XHP**2+YHP**2+ZHP**2)
RPE \(=\) SQRT (XHPE**2+YHPE**2+2HPE**2)
SEX=XhE/RSE
SE \(Y=Y\) ME/RSE
SE \(Z=Z H_{i} / R S E\)
\(S P X=X H P / R S P\)
\(S P Y=Y\) HP/RSP
\(S P Z=Z H F / R S P\)
PEX=XトPE/RPE
PEY=YHPE/RPE
FEZ=ZGPL/RPE
CALL LATLNG (SEX,SEY,SEZ,EHLAT,EHLONG)
CALL LATLNG (SFX,SPY,SPZ,PHLAT,PHLONG)
CALL DCTISEX,SEY,SEZ,SPX,SPY,SPZ,ESP)
CALL DCT(SEX,SEY,SEZ,PEX,PEY,PEZ,SEP)
CALL DCTISPX,SPY,SPZ,-PEX,-PEY,-PEZ,SPEI
CALL RECEG(JD,-SPX,-SPY,-SPZ,SXE,SYE,SZE)
CALL R_CEO(JD,PEX,PEY,PEZ,EXE,EYE,EZE)
IFIIBCDY. \(=0.4\) GO TC 5
5 CALL REGMED(JD, SXE,SYE,SZE,SX,SY,SZ,DECS,RAS) CALL RᄃGMEQ(JC,EXE, EYE,EZE, EX,EY,EZ, DECE,RAE)
CALL KEOMLQ(JC,CXE,CYE,CZE,CX,CY,CZ,DECC,RAC)
\(6 X P S=S X * R S P\)
\(Y P S=S Y * R S P\)
ZFS \(=S Z \#\) RSP
\(X P E=E X * R E\) YPE \(=E Y * R P E\) \(Z P c=\varepsilon \geq * R P E\)
C
800 KE TURN
END

\section*{REFERENCES}
1. Escobal, Pedro Ramon: Methods of Orbit Determination. John Wiley \& Sons, Inc., 1965.
2. Green, Richard N.: Investigation of Occultation and Imagery Problems for Orbital Missions to Venus and Mars. NASA TN D-5104, 1969.

Washington, D.C. 20546
official business
FIRST CLASS MAIL


POSTAGE AND FEES PAID NATIONAL AERONAUTICS ANI SPACE ADMINISTRATION
\(03400155 \quad 51\) 3DS 7101200903

AIR FORCE WEAPONS LABURATORY /WLOL/ KIRTLAND AFB, NEW MEXICO 87117

ATT E. LDJ BOWMAN, CHIEF,TECH. LIBRARY
> "The aeronautical and space activities of the United States shall be conducted so as to contribute . . . to the expansion of buman knowledge of phenomena in the atmosphere and space. The Administration shall provide for the widest practicable and appropriate dissemination of information concerning its activities and the results thereof."
- National Aeronautics and Space Act of 1958

\section*{NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS}

TECHNICAL REPORTS: Scientific and technical information considered important, complete, and a lasting contribution to existing knowledge.

TECHNICAL NOTES: Information less broad in scope but nevertheless of importance as a contribution to existing knowledge.

\section*{TECHNICAL MEMORANDUMS:}

Information receiving limited distribution because of preliminary data, security classification, or other reasons.

CONTRACTOR REPORTS: Scientific and technical information generated under a NASA contract or grant and considered an important contribution to existing knowledge.

TECHNICAL TRANSLATIONS: Information published in a foreign language considered to merit NASA distribution in English.

SPECIAL PUBLICATIONS: Information derived from or of value to NASA activities. Publications include conference proceedings, monographs, data compilations, handbooks, sourcebooks, and special bibliographies.

\section*{TECHNOLOGY UTILIZATION}

PUBLICATIONS: Information on technology used by NASA that may be of particular interest in commercial and other non-aerospace applications. Publications include Tech Briefs, Tcchnology Utilization Reports and Technology Surveys.

Details on the availability of these publications may be obtained from:
SCIENTIFIC AND TECHINICAL INFORMATION OFFICE
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION```

