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NATTONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL NOTE 3227

APPLICATION OF TWO-DIMENSIONAL VORTEX THEORY TO THE
PREDICTION OF FLOW FIELDS BEHIND WINGS OF WING-BODY
COMBINATIONS AT SUBSONIC AND SUPERSONIC SPEEDS

By Arthur Wm. Rogers
SUMMARY

A theoretical investigétion has been made of a general method for
predicting the flow field behind the wings of plane and cruciform wing
and body comblnations at transonic or supersonic speeds and slender con-
figurations at subsonlc speeds. The wing trailing-vortex wake is repre-
sented initially by line vortices distributed to approximate the spanwise
distribution of circulation along the trailing edge of the exposed wing
panels. The afterbody is represented by corresponding image vortices
within the body. Two-dimensional line-vortex theory is then used to
compute the induced velocities at each vortex and the resulting displace-
ment of each vortex is determined by means of a numerical stepwise inte-
gration procedure. The method was applied to the calculation of the
position of the vortex wake and the estimation of downwash at chosen tail
locations behind triangular-wing and cylindrical-body combinations at
supersonic speeds. The effects of such geometric parameters as aspect
ratio, angle of attack and Incidence, ratio of body radius to wing semi-
span, and angle of bank on the vortex weke behind wings of wing-body
combinations were studied. The relative importance of wing vortices,
the corresponding image vortices within the body, and body crossflow in
determining the total downwash was assessed at a possible tail location.

It was found that the line-vortex method of this report permitted
the calculation of vortex paths behind wings of wing-body combinations
with reasonable facility and accuracy. A calculated sample wake shape
agreed qualitatively with one observed experlmentally, and sample results
of the line-vortex method compared well with an available exact crossflow-
plane solution. An empirical formula was derived to estimate the number
of vortices required per wing panel for a satisfectory computation of
downwash at tail locations. It was found that the shape of the vortex
wake and the ultimate number of rolled-up vortices behind & wing depend
on the circulation distribution along the wing trailing edge. For the
low-aspect-ratio plane wing and body combinations considered, it appeared
that downwash at horizontal tall locations is largely determined except
near the tail-body Juncture by the wing vortlces alone for small ratios
of body radius to wing semispan, and by the body upwash alone for large
values of that ratio.
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INTRODUCTION

Satisfactory aerodynamic design of high-speed aircraft requires
knowledge of the interference flow field resulting from wing-body-tail
interaction. The behavior of the wing vortex wake in the presence of °
the body directly affects the alr stream flowing past the tail surfaces.
In particular, for certain relative sizes and positions of wing, body,
and tail, the wing-body vortex wake -produces large stream angles at the
tall surfaces and nonlinear variation with angle of attack of the pitch-
ing moment contributed by the tail. Therefore, it is desirable to be
able to predict flow fields at the tail location for a given configura-
tion in order to evaluate stabllity and control requirements.

Furthermore, vapor-screen studies in supersonic wind tunnels have
shown that the configuration of the vortex wake from the wings of some
wing-body combinations differs markedly from the usual conception of a
sheet whose side edges curl over to form a single palr of vortices.
For example, figure 1l(a) shows the S-shaped cross section of a vortex
sheet from each panel of a high-aspect-ratio supersonic wing and body
combination at angle of attack.l Here the ultimate vortex pattern far
downstream of the wilng consists of two vortices from each wing panel,
both rotating in the same .direction. Such a vortex wake results in a
flow field different from the more well-known pattern, and the load on
a tall situated in that flow field differs from the tail load associated
with & single-vortex wake. It 1s important, therefore, to determine
the conditions under which this unusual wake pattern occurs.

Considersble investigation (refs. 2-12) has been devoted to the pre-
diction of flow fields behind wings, both plane and cruciform. Refer-
ence 2 uses linearized conical-flow theory to calculate sidewash and
dowvnwash for a flat vortex sheet at the wing trailling edge and in the
Trefftz plane, references 3 and I use supersonic potential doublet dis-
tributions to determine downwash in the plane of a flat wake and in the
vertical plane of symmetry for any distance downstream of a wing. Ref-
erence 5 employs pressure doublets to obtain general expressilons for
the induced velocities in space behind a wing, and references 6 through 8
utilize lline-vortex theory to predict slidewash end downwash in the flat-
vortex wake and in space. The flow in the Trefftz plane behind super-
sonic wings is treated in reference 9 by means of linearized conicel-flow
theory. The downwash based on a flat deflected vortex sheet and the
dovnwash based on two deflected vortex lines are calculated in refer-~
ence 10. The rolling up of the tralling-vortex sheet behind wings is
analyzed in reference 11, and reference 12 considers the motion of single
vortices from each pdnel of a cruciform wing. The literature on the
vortex wake behind wings of wing-body combinations, however, is still
relatively meager (refs. 13 and 14). For wing-body combinations, ref-
erence 13 accounts for the effect of the fuselage on the flow field\by

1A description of the vapor-screen technlque 1s given in reference 1.
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considering the motion of two fully rolled-up vortices in the presence
of a circular cylinder. Reference 1k treats a specific configuration by
slender-body theory with the two assumptlions of either a flat vortex
sheet or two fully rolled-up vortices.

The general problem to be consldered here ls the determination of
the interference flow field behind wings of wing-body combinations
(e.g., Tig. 2) at subsonic or supersonic speeds. The dual purposes of
this report are to present in detail and evaluate the method ocutlined
in reference 13, and to apply it to the calculation of vortex paths and
to the effects of wing aspect ratio, span loeding, angle of attack, ratio
of body diameter to wing span, angle of bank, and wing incidence on vor-
tex paths and downwash at a possible tail location.

Part I of this report presents the results of the application of
the method. All calculations of span loading were made for triangular-
wing and cyllindrical-body comblnations at a& Mach number of 2.0. Wing
aspect ratios of 2/3, 2, and 4 are considered, combined with bodies
whose radil are 0.2, 0.4, 0.6, and 0.72 times the wing semispan. The
tall location selected for downwash computations in this part represents
e missile~-type configuration, for which the horizontal tall is assumed
to be located in the body dismetral plane 10 body redil downstream of
the wing trailing edge.

Part II of this report contains a detalled description of the line- -
vortex method. An exemlnetlon is made of the effect on downwash at
chosen tail locatlons of the number of vortices used. to represent the
trailing vorticity. The nature of the stepwlse integration method used
is discussed, and solutions obtalned by the stepwlse integretion method
are compared with known exact solutions. Downwash is also computed at
the tail of a high-tail airplane-type configuration, characterized by a
horizontal tall 3 body radii downsitream of the wing tralling edge and
2 body radii above the body axis.

SYMBOLS
A aspect ratio
c local wing chord
Cr wing root chord in plane of symmetry
ds directed line segment of a contour
E elliptic integral of second kind

R
‘-
i

unit vectors in x,y,z directions
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aspect-ratio correction factor defined in Appendlix B
lift

Mach mumber

number of vortices in summation

static pressure

pressure differential across wing surface, PZ - Py

PV
2

free-stream dynamic pressure,

velocity vector, ul + vJ + wk

body radius

local horizontal-wing semispan

maximum horizontal-wing- semispan

spanwlse position of wing vortex

local vertical-wing semispan

maximm vertical-wing semispan

velocities in x,y,z directions (See fig. 2.)
free-stream velocity

chordwise dlstance from leading edge

Cartesian coordinates of wind axes (See fig. 2.)

load coefficlent

angle of attack of body axis, radians

VAT

angle of yaw, o sin @, radians

spanwise distribution of circulation (defined by eq. (Al))

increment
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€ downwash angle, —-%%
o tan™t %
A wing leading-edge sweep angle, 90° - w, radians
HyA,T dimensionless rectangular coordinates of wind axes, %a%:%:
(See fig. 2.)
p alr density of free stream
o,T coordinates of source-point in xy plane
P angle of bank, radians
0170579,
veloclty potentials
Py o o e
) wing.semiape# angle, tan™t ;%, radians
Subsecripts
B body
i,] indices of summation
1 lower
m maximum
u upper
o wing )
LT linear theory

SBT slender-body theory
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I.- APPLICATION OF METHOD TO THE PREDICTION OF VORTEX PATHS
ANWD DOWNWASH BEHIND TRTANGULAR-WING AND CYLINDRICAL-BODY
COMBINATIONS AT SUPERSONIC SPEED

General Description of Method

The method used herein follows that of reference 13. The circula-
tion distribution along the wing trailing edge of a given wing-body con-
figuration is required as the initial condition. In this report, the
circulation distribution is determined by modified slender-body theory.
The circulation distribution is then replaced by & finite number of vor-
tices which trall downstream and represent the wake vorticity. The
effect of the afterbody is accounted for by vortices placed within ‘the
body at the image position of each of the wake vortices. It is assumed,
in general, that the flow changes in the stream direction are such that
in the velocity potential equation

(1= M%) @yye + Py + Pyye = O

the first term is negligibly small, that is,

(1 -M3) Py =0

so that

ny +9,, =0

. Thus the solution is independent of Mach number. Such an assumption
of two-dimensionality is valid for slender, pointed wings and bodies at
subsonic speed, and at supersonic speed when the entire plan form lies
within the body nose Mach cone, or near M = 1 for more general con-
figurations.2

Consistent with this slender-body theory assumption, the bound vor-
tices within the wing are neglected in computing vortex paths and down-
wash. The trailing vortices are extended to infinity upstream and down-
stream, and the induced velocities in crossflow planes are calculated by
two~-dimensional line-vortex theory and body potential crossflow. In the
crossflow plane, therefore, the analysis considers the following picture:

2See reference 15 for & discussion of these limltations.
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Wing vortex repre-
senting clrcula-
/é_-') tion distribution

5

Body Image vortex

crossflow

Sketch (a)

The motion of each of the vortices in the crossflow plane is computed,
and the results applied to the wing-body problem by relating time in the
crossflow plane motion to distance downstream of the wing trailing edge.

The wing and image trailing vortex system used in the stepwise cal-
culations constitutes the only vortex pattern considered here. It 1s
known that at high angles of attack and for large ratios of body diameter
to wing span, viscous crossflow produces vortices above the body (e.g.,
fig. 1 and ref. 1) which significantly effect the flow field. A thorough
understanding of the mechanism of formastion, strength, and stability of
crossflow vortices is as yet lacking. Consequently, no attempt has been
made to account for them.

On the basis of a large number of computatlions made during this
investigation, the following analysis was made of the effect of geometric
parameters on the vortex wake and the induced flow field behind wings of
wing-body combinations. Although only triangular wing and body combina-
tions were studied, the general conclusions should be applicable to any
wing plen form for which the circulation distribution is similar to the
types contained herein.
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Effect of Reduced Aspect Ratio, A, and Span Loading
on the Rolling Up of the Vortex Weke

Figure 3 shows the calculated detailed rolling up of 10 vortices
representing a typical wake behind a low-aspect-ratio configuration.
Vortex coordinates for this figure are listed in table I. It can be
seen that at 10 body radii downstream of the wing trailing edge, T of
the 10 vortices have already spiraled into a single group which trails
downstream in epproximately the free-stream direction. The circulation
distribution along the trailing edge of the subsonic—leaging-edge wing
of this configuration is of almost elliptic shape. The vortex sheet
behind a wing of a high-aspect-ratio combination, represented in fig-
ure 4, distorts much slower toward its final configuration and shows a
different pattern. Vortex coordinates for this figure are listed in
table II. The different shape of the vortex sheet 1s due to the change
in span loading with reduced aspect ratio pBA.

The difference in span loading for the high- and low-aspect-ratio
configuration is a consequence of the supersonic or subsonic leading
edge, respectively. As a consequence of its supersonic leading edge,
the wing trailing edge of the high-aspect-ratio combination of figure b
has a theoretical circulation distribution which is linear from gbout
the mid-semispan to the tip. This linear distribution is represented
by the eight equal, uniformly spaced vortlces shown, the remaining two
vortices arising from the slender-body type of loading (egq. (3) of
part II) inboard of the intersection of leading-edge Mach line and the
wing trailing edge. Now, it is characteristic of a uniform distribution
of isolated vortices along a line, such as those shown in figure 5, that
the rolling up proceeds in the form of a symmetrical, S-shaped curve
rotating about the centroild. The final configuration of the vortices in
figure 5 will consist of two equal vortex cores, each cdntaining four
vortices, rotating symmetrically about the fixed centroid. In figure L,
therefore, the S-shaped rolling up occurs for the uniform portion of the
sheet, although the symmetry about and fixity of the centroid in space
does not occur because the flow field is due not only to the 8 vortices
but also to the other 12 wing vortices, 20 lmage vortices, and the body
crossflow. The inboard portion of the vortex sheet displaces downward
and outward in the conventional manner of figurée 3. In summary, then,
the effect of aspect ratio and the consequent change in circulation dis-
tribution is to change the shape of the rolling-up vortex sheet as in
sketch (b). The final vortex pattern for the high-aspect-ratio case
depends on the extent of the span over which the circulation distribu-
tion along the wing trailing edge is linear. A comparison of the calcu-
lated S-shaped sheet and an experimentally observed vortex sheet is
shown in figures 1(a) and 1(b).
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Trailing-edge circulation distribution

Shape of rolling-up vortex sheet
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-

Final vortex pattern ‘
. Sketch (b) )

Effects of Geometric Parameters on Vortex Paths
and Downwash at a Tail Location

In the following sections, calculated vortex paths and downwash are
presented for a wing-body-tail combination at a Mach number of 2.0. The
tall location at which downwash is determined is 10 body radii downstream
of the wing trailing edge, a possible missile-type configuration. The
vorticity shed from each wing panel is represented by a single vortex.
For the comparison of the relative importance on downwash at the tail of
the wing vortex, ilmage vortex, and body crossflow, a single vortex for
each wing panel suffices, in general, although the computation of the
actual magnitude of downwash requires several vortices. In part II of
this report an investigation is made of the effect of the number of vor-
tices used to represent the trailing vorticity on the computed downwash
at chosen tail locations.

Effect of aspect ratio.- Figures 6(a), (b), and (c) present the
effect of aspect ratio on downwash, calculated at a missile-type tail
location, for a small body and wing combination (r/sp = 0.2) at an angle
of attack of 50. For the low-aspect-ratio combination, the approximation
that the total downwash is caused by wing vortices alone is good except
in close proximity to the tail-body Juncture. For increasing aspect
ratios the approximation is good only at greater spanwise distances from
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the body. The reason for this result is simply that the downwash from
the wing vortices decreases with increasing aspect ratio for the condi-
tion of a given ratio of body radius to wing semispan. The wing lift
decreases with increasing aspect ratio because of span load changes, and
the effect of the body upwash therefore becomes more pronounced. Slender-
body theory predicts that the wake downwash angle exactly cancels the
flow angle of attack inboard of the tip. It 1s lnteresting to note that
inboard of the vortex locatlon for the aspect ratio 2/3 wing (A = 4) the
average downwash angle is roughly the negative of the angle of attack of
the wing-body configuration.

Effect of angle of attack.- Vortex paths behind wings of two
triangular-wing and body combinations at various angles of attack are
presented in figure 7. It is seen that increased angle of attack results
in a more pronounced inward and downward motion of the wing vortex with
increasing distance u downstream, although for low-aspect-ratio com-
binations the initial vertical motion is upward due to body upwash.
Farther downstream the distance between the body and the vortex wake
increases, with a corresponding decrease In the effect of body upwash.
The vortices from the wing panels of the low-aspect-ratio configuration
then move downward more rapidly because of their nearness to each other.

Exemination of the equations of motion of the vortex wake, presented
in part II of this report, shows that for a given wing-body combination
8 single set of computations can be made for.all angles of attack a.

The results of figures T(a) and (b) are replotted against pa in fig-
ure 7(c), which then applies to all angles of attack, at the same Mach
number.

The effect of angle of attack on downwash is illustrated by fig-
ures 8(a), (b), and (c) for an aspect ratio 2/3 wing and large-body com-
bination, and by figures 8(d), (e), and (f) for an aspect ratio 4 wing
and small-body combination. For the low-aspect-ratio configuration, it
appears that the largest portion of the total downwash is contributed by
the body upwash because of the large body. The difference in the shape
of the total downwash curves of figures 8(a), (b), and (c) is due to the
fact that the vortex wake passes farther above the horizontal tall as
the angle of attack increases. For the high-aspect-ratio configuration
the total downwash is not primarily caused by any single component
because of the small body size. Wing and image vortices together with
body upwash must be considered in calculating total downwash at any
angle of attack for such configurations.

Effect of ratio of body radius to wing semispan.- Another parameter
governing the behavior of the vortex wake is the ratio of the body radius
to the wing semlspan, r/sm. Figure 9 presents the results for an aspect
ratio 2/3 wing of fixed span, 2lone and in combination with bodies of
different radii. The variation of the vortex strength with body size,
given by equation (3) with y = r, is plotted in figure 10. The vortex
strength goes to zero for r/sm =1 since the entire wing then is
enclosed by the body. It is seen in figure 9 that the initial slope of
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the vertical displacement of the vortex path near the wing trailing edge
increases in magnitude as r/ém increagses. This is the result of
increasing upwash in the body crossflow field coupled with correspond-
ingly decreasing wing vortex strength (see fig. 10). The final uniform
downward motion of the vortex pair begins when the body 1s far removed
from the vortices, and the path lies above that for the wing alone case
in vhich the vortex pair moves linearly downward from the trailing edge.
The lateral motion of the trailing vortex 1s shown in the lower part of
figure 9. Together with the decreased strength of the wing vortex for
large values of r/sm, there is an initial outboard shift of the vortex
at the .trailing edge. For the isolated elliptically loaded wing, y/sm
equals n/4 and it approaches 1 (the initial vortex location moves
toward the wing tip) as r/ém increases from O to 1. The lateral vor-
tex motion downstream is affected by the sidewash component of the body
crossflow fleld. The larger the body for a given wing, the more rapid
is the 1nboard motion of the vortex.

Figures 6(a), 11(a), 8(a), and 11(b) show the effect of r/spm on
downwash for ratios of body radius to wing semispan of 0.2, 0.k, 0.6,
end 0.72, respectively. The results shown in the figures can be antici-
pated qualitatively. For an r/sm of 0.2, figure 6(a) shows that the
downwash contributed by the image vortices almost entirely cancels the
body upwash, except 1n close proximity to the body-tall Juncture. Thus,
for small ratios of body radius to wing semispan, downwash at the tail
-location 1s mostly given by the downwash caused by the wing vortices
alone except near the juncture. Figure 11(a), for an r/sy of 0.k,
exhibits a decrease in downwasbk from the wing vortices, and the total
dovnwash is not as well given by the wing vortices as in figure 6(a)
especially near the body-tail juncture. Figure 8(a), for an r/spm of
0.6, shows that except near the body-tail juncture the downwash in this
case is largely that given by the body upwash. Finally, figure 11(b)
for an r/sm of 0.72, showing the same trend as figure 11l(a) and fig-
ure 8(a), indicates that for very large ratios of body radius to wing
semispan, such as for canerd configurations, the downwash at the tail is
almost entirely determined by the body upwash.

Comparison of Rolling Up of Vortex Sheet Behind
Wing Alone and Wing-Body Combination

Plane wing and body.- It is interesting to compare the rolling-up
process of the vortex sheet behind a wing alone with that behind a wing-
body combination under the conditions of sketch (c).
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Egq. (3)

O

Elliptical

SM "_"'l - Sm =g

Sketch (c) -

Both wings have the same aspect ratio, root chord, and I';. However,
this maximum I' occurs at the center line for the wing (with elliptical
distribution) and at the wing-body Juncture for the wing-body combination
(with near-elliptical circulation distribution). Figure 5 of refer-
ence' 11 presents a picture of the rolling up of a vortex sheet behind an
elliptically loaded wing as calculated by Westwater (ref. 16) in terms
of the ratio of downstream distance 4 +to rolling-up disteance e. This
ratio is related to p in Figure 3 as follows (using eq. (5) of ref. 11):

- ()w(@)()
t- (Hm(2)

0la

e
X<

or

where
b wing span
Cy, total 1ift coefficient

K constant based on the shape of the trailing-edge circulation distri-
butlion
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The value of K is 0.28 for elliptic loading. Now equation (10) of
reference 11 is:

C
Po = J-I-SVO ﬁ

where Iy corresponds to elliptic loading for the wing alone. When the
last two equations are combined,

1- <%>(o.28) ;&%O—)

or
da_2.24 g) 8
. B T \e/ To/Vo
In the present notation,
qa._x
8 By

The lift coefficient of a triangular;wing and infinite cylindrical-body
combination in terms of the wing alone 1ift coefficient is given by
equation (38) of reference 15 as:

2
2
CLyyp = CI‘W( - EZ?)

It is clear that while the same I'y .is chosen in this comparison,
the total 1ift of the combination is less than that of the wing alone
because of the loss of exposed wing area. For the calculations of fig-
ure 3, PO/VO equals 0.575 and sp equals 3.75. These values being
assumed in the equation for d4/s,

x _(2:28\(a\( 3.75 ) _ a
on < % ><e><0-575> - .65 <“>
For figure 3:

X

=X =
o Sm"r —O.2|J-

r
x_—
5m
Therefore the streamwise stations in figure 3 correspond to 0.2,

0.4, 0.6, . . . 2 wing semispans downstream. The values of d/e in
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figure 5 of reference 11 correspond to values of x/sy of 0, 0.233,
0.977, 1.953, 4.370, and 8.040. Cross sections through the vortex sheet
at these six stations have been drawn in figure 12 as well as the nearest
corresponding sheet configuration from figure 3. From figure 12 it can
be seen that the rolling-up process of the vortex sheet behind a
triangular-wing and small-body combination closely resembles that for a
wing alone under the conditions of the preceding sketch.

Banked wing and body.- The qualitative difference between the
rolling-up motion of a vortex wake behind an isolated wing and wing-body
combination both banked at a given small angle and at angle of attack
can be reasoned simply with the aid of sketch (d), illustrating condi-
tions immediately behind the trailing edge.

Sketch (4)

For the isolated wing, each panel vortex induces a velocity V, on
the opposite vortex and both move in the dotted direction with uniform
velocity. The motion in this case is symmetric with respect to the 1'u
plane. Now the addition of a body, with potential crossflow symmetrical
respect to the np plane, adds the same induced velocity V, at each
vortex. The wing vortices in thls case then move initially in the direc-
tion of the resultant velocity Vp. Henceforth, the velocity due to the
body crossflow is different at each vortex. Thus it can be seen that
the wake motion is different from that behind an isolated wing, that is,
completely nonsymmetrical. Simllar reasoning for wing vortices of
unequal. strength leads to the same conclusion.

For a cruciform wing and body combination at 45° angle of bank and
at angle of attack, the superposed velocity fields (from the wing and
body) are both symmetrical with respect to the np plane. Therefore
the computed vortex weke motion should agree qualitatively with results
for isolated cruciform wings.
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II.- PRESENTATION AND EVALUATION OF METHOD

The remainder of this report will examine in detail the line-vortex
method outlined in reference 13. The manner by which the initially
required circulation distribution was obtained is first discussed. The
method of replacing the wake circulation distribution and the afterbody
by discrete vortices then follows. The determination of the flow field
in transverse planes and the stepwise integration technique are next
explained. After a few sample calculations, an evaluation is made of
the errors inherent in the stepwise integration and of the effect of the
number of vortices used on the computed downwash distribution at chosen
tail locatlons.

Clrculation Distribution at Wing Trailing Edge

Before the stepwise calculation of vortex paths behind the wings of
wing-body combinations can be started, it is necessary to know the cir-
culation distribution along the wing trailing edge. In general, the
circulation distribution I(y) and the wing span loading are not equiva-
lent. The conditions for equivalence are derived in Appendix A. The
method of this report has been applied to triangular-wing configurations
which have readily obtainsble circulation distributions. However, the
stepwise calculatlon method is applicable to configurations with any
wing plan form.

For a plane-wing and cylindrical-body combination, the span loading
1s equivalent to the circulation distribution and can be obtained by
chordwise integration of the complete pressure coefficient Qﬁp/q)w.
Equations for Gﬁp/q)w are given in the slender-body analysis of refer-
ence 15. Por such configurations, the circulation about the wing at any
spanwise station y 1is given by linear theory as:

=2 [(F), = e

The notation for this and the following equations is defined in fig-
ure 13, vhich shows the more general case of & noncylindrical body.

Equation (11) of reference 15 furnishes the wing loading coefficient
for a plane-wing and cylindricel-body combination as:

Ap\ - % - %)
(—q—)w = la / = = (2)
1+ prr e 1+ }Z
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Substitution of equation (2) in equation (1) and integration yields:

2V0a
Smy

ry) =

J (en® - ¥°) (sm®y® - r4) (3)

When the body is not cylindrical, equation (2) is modified to:

é&( _ﬁ>+2££_r 2 2 ar(, _r*

<jé£j> e ax g% g8 dx \ g2 2 _ ax ve
T ) =
W

foi-Be5)  LoB)EE
(%)

The last term of equation (4) is due to the spamwise velocity and
does not contribute to the circulation distribution. Hence one obtailns
the required circulation distribution by insertion of only the first
term of equation (4) in equation (1) and integration. The result is
identically equation (3). This shows that the circulaetion distribution
I'(y) along the trailing edge of a plane wing on & noncylindrical body is
dependent only on the cross section of the configuration at the tralling
edge, as could be anticipated. The circulation is, in fact, the Jjump in
the crossflow potential at the trailing edge and hence must agree with
the slender-body result, equation (3).

For cruciform wings on a cylindrical body at angle of attack and
sideslip, the complete velocity potential (eq. (47) of ref. 15) is:

! 4 4 4 \2
o, = + Yoo {[-<1+ X )r,;2 cos 26 + 82<l + %>]+[rl‘*<l - l‘;) +
W2 r,* 8 T,
N2 L. 1
4 4 2
br* cos® 20 + s* <l + %) - 282 <l + ) (1+ &) r,2 cos 26:,2}
e r, ot

VB! 4 rd
Voa'z  —2 {[<1+}'— r,2 cos 20 + t2( 1 + =— +
© NE rt/ 7t t*

3 2 i . 4.2
rf (1 -2 ) + Ir* cos? 20 + t4:<ﬁ.+ =) o+
T, - t

1.1
4 4 2 |Z
2t2 <l + f;) <l +f-z> r,2 cos 29]-} + VB'y (5)
1
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where
.2 = y2 + 22, 6 = tan™t
and

+ means 0 <6 <x

-means n < 8 < 2n

The transformation to a configuration pitched a radians and banked
® radians is for small angles a:

a' = a cos 9, B! = a sin @ (6)

Now for banked cruciform configurations, the span load distribution
is not equivalent to the circulation distribution. Hence, instead of
equation (1) one must use the general relation between I' and the Jump
in the velocity potential at the wing trailing edge:

T = AP (7

For horizontal and vertical surfaces respectively, one obtains by
substitution of equation (5) in equation (7):

) = 5 o o - 9 (a5 (&)
r(z) = S8 /(e - ) (b2 - ) (9)
. m2

It is thus seen, by comparing equations (8) and (9) with (3), that
the circulation distribution for a cruciform wing and body combination
is derivable by assuming that each wing acts independently of the other
as part of a plane wing and body combination at an angle of attack given
by equation (6). This can be seen also by the linear superposition of
potentials in equation (5).

The foregoing equations are based on the slender-body theory of
reference 15, which is postulated for slender wing and body configura-
tions at subsonic, transonic, and supersonic speeds. In order for the
equations to apply at supersonic speeds, the entire configuration must
lie well within the body nose Mach cone. Experimental date on models
conforming to these restrictions agree well with the theory. In order
to apply the results of slender-body theory to nonslender wing and body
combinations, an aspect-ratio correction factor is employed. This factor,
which for trilangular-wing configurations is the ratio of the 1ift of a
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triangular wing calculated by linear theory to the lift calculated by
8lender-body theory, is discussed fully in Appendix B. The results may
be summarized as follows: For subsonic-leading-edge wings (B tan w <1),
equations (3), (8), and (9) should be multiplied by the factor

k=% Jl-B%mFm)

For supersonic-leading-edge wings, (B tan w > 1), these equations should
be multiplied by equations (BT) or (B18) for the ranges of y indicated:

k = L o (87)
Sm + ¥

./;32 tan® w - 1

for
Sm =T
r+ ————— <y <sp
B tan w
2 2,
€ s = {Sm’f%{(sm - y)sin~1 yp” tem” w-Sm _
Jn? - 73) (B2 tan w -1) B tan w(eg - ¥)
2 tan® w +5
(sm + y) sin™2 yP = ]} - (B18)
Btan w(sy + ¥)
for
r<y<r+—2_T
- = B tan w

Replacement of Wake Circulation Distribution
and Body by Discrete Vortices

After the circulation distribution I(y) along the wing trailing
edge has been determined, the next step is the replacement of the conse-
quent weke clrculation function by a finite number of vortices. A plot
of the circulation function, equation-(3), for example,looks like that
portion of the solid curve sbove the wing in sketch (e):
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Sketch (e)

The loadling over the body, which can be calculated from the corre-
sponding body pressure coefficient (eq. (12) of ref. 15), is not explic-
itly required here. It will be seen that this loading is automatically
accounted for by the vortex model set up for the wing loading. The
curve I'(y) over the wing can be replaced by a suitable number of step
functions (dashed lines in sketch), each of which corresponds to a vor-
tex of strength equel to the step height and located at the step abscissa
as shown. Although an infinite number of step functions would be
required to duplicate the given curve, in practice the number selected
are the fewest which render possible @ reasonably accurate prediction of
the trailing-vortéx sheet behavior. Single-, three-, and ten-step fumc-
tion distributions have been used herein. Quantitative results will be
presented later concerning the number of vortices used to replace the
circulation distribution. For a single-step (one vortex) approximation,
integrating equation (3) for the area under the I'(y) curve and equating
the result to a single rectangular area lead to the simple result shown
in figure 14, namely, that the spanwise distance from the body of a
single vortex representing the circulation distribution on one panel of
a plane, subsonic-leading-edge wing and body combination 1s approximately
constant and equal to about 0.76 times the exposed wing semispan for all
ratios of body radius to wing semispan. In this approximation by a
single vortex the value of I'pgay at the wing-body Juncture is assigned
to the vortex. In all cases the two panels of the wing are treated inde-
pendently. A circulation distribution which, unlike the preceding sketch,
is asymmetrical across the wing trailing edge will, therefore, require
an asymmetrical vortex distribution.

The effect of a circular body in the presence of this wing vortex
distribution is accounted for by placing an Image vortex for each wing
vortex within the' body at the inverse point, as indicated by sketch (f).
The image vortex cancels the velocity normasl to the body due to the wing
vortex.
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3
>

Sketch (f)

The foregoling discussion applies to the trailing-vortex filaments
from the wing and the image vortices contained within the body. These
filaments can be considered joined by bound vortices within the wing
and adjacent body to form horseshoe vortices as shown in sketch (g).

The portion of the total 1ift of
. the wing-body combination carried
-r by the wing and by the body is rep-

/W resented by the bound flilaments of
_Ga_____giEggi___fa_ length 1o within the wing and 1,
within the body, respectively. A
plot of I(y) across the body is,
therefore, obviated since the single

vortex representing the body loading

1 automatically appears at the inverse
g"’/’wdd . N\\fa\‘\} (image) point of the wing vortex.
This vortex model, due to Lennertz

(ref. 17), assumes that the ratio
of body to wing 1ift is proportional

2 Sy to the ratio 1,/1, (1, + 1, being
’ 2 the "effective semispan®), and is
< > ) known from experiments to represent

the distribution of 1lift between
wing and body with good accuracy,

[~ deviating but slightly from slender-
body theory.

Sketch (g)

Consistent with the assumed two-dimensional nature of the solution,
the segments of the vortices bound within the wing and adjacent body are
neglected. It is then assumed that the remaining filaments extend
upstream to infinity.

Determination of the Flow Field in Transverse Planes

The nonlinear differential equations géverning the downstream motion
of the vortex wake require a stepwise solution for the vortex positions
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at successive streamwise stations (or time increments). Consider a
vortex pattern at any downstream station such as section A-A in figure 2.
(The image vortices inside the body are not shown in the figure.) It is
assumed that every vortex influences the flow field according to the
Biot-Savart velocity law of planar, incompressible-flow vortex theory,
as illustrated in the sketch (h). This assumption will be justified

later. /
]

+w

5/"

+v

(’\ja 7]) | Sketch (h)

The velocity Vi induced at the ith vortex by the Jth vortex is:

3
V‘l = En_rg . (lO)

The vertical component, wy, of Vi 1is:

AL - A
Wy = I‘ﬁi = P'j Z J > (ll)
2 (Ap-Ay)% + (ng - ny)
The horizontal component, vy, of Vi 1is:
. —P ni - n

A (hy - Ag)2 + (ng - ny)2

In general, for a flow fleld contalning n vortlces, the velocity
components induced at the position of the 1ith wing vortex by the other
n-1 vortices are:

Pj()\i - 7\3)

n
1
Wy o= (13)
2nr ;é; (Ai'-K3)2 + (ﬂi - ﬂj)a
i
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n

Y -l Iy(ng - n3)
1 -
B (g - Ag)E (g - my)®

A

Equation (10) is derived from consideration of an infinitely long,
incompressible-flow vortex filament, and is, therefore, applicable only
to two-dimensional flow. For supersonic speeds, the use of equation (10)
is consistent with the slender-body theory underlying this study for
these reasons: Reference 7 shows that an infinitely long vortex filament
parallel to a supersonic stream obeys the Biot-Savart law of incompres-
slble flow. Omission of the bound vortex end wing chord loading causes
the difference between initial and asymptotic downwash at the wing trail-
ing edge seen in figure 15 reproduced from reference T7; the downwash
along the wake center line approaches the asymptotic value within a chord
length behind the trailing edge for the triangular wings of PBA < L.
Hence the asymptotic downwash given by a two-dimensional trailing-vortex
system has been used.

(1)

Superimposed on the velocity field due to the wing and image vortex
system is the body potential crossflow velocity field. From the poten-

tial:
Py =Vg az'| —E—— (15)

where z' 1s measured from the body axis (instead of the wind axis), one
readily obtains the velocity components induced by the body:

d _ 42
W= —qi']:. = Voal'z .—yz..Lzz (16)
9z (v + 2%)
09, . -2V, arZyz! -
Ve s —— . (17)
% (y®+ z'®)
or in dimensionless form:
2__,2
LA Sl W (18)
Vo (A2 + n'3)%
— _2 3
LA, o A (19)
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where
"W =n+ptana T+ pa (20)

This transformation from the usual potential equations is neces-
sitated here by the fact that the coordinates are not body centered, and
the body 1s inclined, wlth respect to the free-stream direction.

These last equations assume that the body angle of attack i1s small
enough so that tan a & a, cos a & 1 (which is true for o wup to approxi-
mately 20°), and that the contribution of the crossflow to the local
streamvise veloclty is negligible. As stated previously, viscous cross-
flow separation around the body, with 1ts consequent vortex wake, 1s not
congidered here.

Stepwise Determination of Vortex Paths

The replacement of the wing trailing-edge circulation distribution
by step functions and associated vortices, together with the placement
of image vortices within the body, as detalled above, provide the start-
ing point for the stepwise calculations to be described. The spanwise
and helghtwlse coordinates of all vortices at p =0 are known. The
downstream incremental motion of these vortices will next be determined.

Now at any point in a transverse (yz) plane, the lateral velocity, v,
is given by the sum of equations (1%) and (19). The vertical velocity, w,
is similarly given by the sum of-equations (13) and (18). The streamwise
veloclty, u, perpendicular to the plane, is everywhere V,. Consider
the polnt where & vortex line passes through the transverse plane. In
a time intervel At the vortex filament moves with the fluid a vertical
distance Az = w At. Since At = Ax/V,, Az = (w/Vy)Ax, then nondimen-
sionally:

An = -VE- Ap (21)
(o}

Similarly the dimensionless lateral movement 1s:

an= L Ap (22)
(o)

The last two equatlons then furnish points in transverse planes a
distance AWM apart, the locus of which ls the path of a vortex filament
moving in the wing-body flow field. With each vortex, a "strength® I'j/‘V
(rather than [Ij) will be assoclated in order that equations (13)
and (14) will a.ctua].ly yleld the velocity ratios w/Vy and v/V,.
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In the plane W = O, which contains the wing trailing edge, as long
as the wings have no incidence with respect to the body, all the vortex
filements have coordinates 7 = 0. Therefore, the total spanwise veloc-
ity induced at the location of any given wing vortex can readily be seen
to be zero, from equations (14) and (19). In fact, the initial motion
of such a vortex sheet is always one of pure vertical displacement. The
total vertical velocity summed from equations' (13) and (18) is multiplied
by a sultable increment Ap ylelding an incremental distance An moved
by the given vortex line, according to equation (21). Values of A7n are
thus calculated for all the wing vortices, the entire group of which is
so transported to the plane u = Ap. The coordinates of each wing vortex
in this new plane are found simply by adding the computed increments to
the coordinates at the previous station. Of course, symmetrical proper-
ties are used wherever possible to obviate the calculation of the paths
of vortices from each half of a wing. Corresponding to the new location
of each wing vortex line at the station W= Ay, the image vortices
within the body are repositioned according to the followlng formulas:

A
Mmage = (23)
N (n + 1 tan a)2

N+ p tan a

Mimage = ~P tan a + (2k)

A2+ (n+ p tan )@

where (A,n) are the coordinates of the wing vortex at the new station
H = Ap. This readjustment of the image vortex positions, required by
the downstream displacement of the inclined body away from the free-
stream direction, is made because the image vortices are bound within
the body; the image vortex displacement, in fact, measures the amount
of 1ift carried by the afterbody (see ref. 13).

With the new positlions of wing and image vortices this procedure is
repeated. That is, the total lateral and vertical velocity induced at
each wing vortex location is calculated and multiplied by an incremental
distance AWM. The new wing vortex positions are obtained by adding the
computed increments to the original coordinates. The image vortices are
then repositioned according to the new wing vortex locations, and the
stepwise calculation continued to, the desired downstream station.

This stepwise procedure is simply a method for integrating numeri-
cally n simmltaneous differential equations of motion of n/2 wing
vortices for the downstream paths. A closed solution for the three-
dimensional paths 1s, in general, extremely complicated, if not impos-
sible. While the equations of the vortex motions in a transverse or
crossflow plane can be written, introduction of time dependence (equiva-
lent to the streamwise coordinate) renders a closed solution extremely
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difficult. Reference 13, using complex variable notation, cites explic~
itly the entire path of a palr of vortices in the presence of a cylinder
in the transverse plane. The equatlions were derived by Villat in refer-
ence 18. Even for this simple case, where n = 4, recourse is necessary
to numerical solution for the time or streamwise coordinate. This solu-
tion will be analyzed in greater detall subsequently, as well as the
manner of choosing the proper spacing AR of successive stations.

Sample Calculations

Three examples will now be presented to illustrate the calculative
procedure and resulting vortex paths. They are:

l. A plane-wing and cylindrical-body combination at angle of
attack.

2. A cruciform-wing and cylindrical-body configuration at anglz
of attack and bank.

3. A plane-wing and cylindrical-body combination with the body at
‘angle of attack and the wing panels at differential incidence.

The procedure has been systematized by prepared computation forms
such as table IIT which is used when the circulation distribution on one
wing panel is replaced by a single vortex.

Example 1, plane triangular-wing and cylindrical-body combination
at angle of attack.- The data for this example are: wing aspect
ratio = 2/;, ratio of body radius to wing semispan = 0.6, angle of
attack = , and Mach number = 2.0.

The leeding edge of the wing is subsonic (B tan w= 0.2912 < 1), so
the trailing-edge circulation distribution I(y) is calculated from equa-
tion (3) and multiplied by the aspect-ratio correction factor k = 0.917
(see Appendix B). A plot of I(y) vs. y 1like that of figure 1k is
obtained, with a maximum ordinate T/V, = 0.12796 in this example.
First, this distribution is replaced by a single vortex per wing panel,
wilth the location consequently given by figure 1k as s'/(sm-r) = 0.763,
or A, = 1.509 (r/sm = 0.6). The vertical coordinate of the vortex at
the wing trailing edge (p = O) is zero in this case. The dimensionless
spanwise coordinate of the image vortex is, therefore, A, = 1/A; = 0.663.

Referring now to table III(a), the above values of T;/V,, Ay, 1
%2, and N, are filled iInto the proper boxes of columns (:L , and . By

symetry, the values of A , A,, Mgy 8nd 7, cap be readily filled in, and
an increment Ap is chosen (1 here). Columns through @, based on
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equations (13) and (14), are then computed in order, the last two giving
the vertical and horizontal veloci components induced at vortex 1 by
the other three vortices (columns and ) respectively). Rows
through.éz),based on equations (18) through (22), next add the potential
crossflow velocity components at vortex 1. Thus, rows and é% give
the new coordinates of vortex 1 for use in table III(b), while the
bottom calculation furnishes the coordinates of the corresponding new
image vortex 2 position.

Columns(:) through(:) of the teble ITII(b), for station u = 1, can
now be filled in and the procedure repeated, as illustrated. This step-
wise computation is continued for as many statlions downstream as desired,
each part of this example representing positions at increments of one
body radius (Ap = 1) downstream of the wing trailing edge. The results
are summarized graphically by figure 16.

For the same given data, the calculated circulation distribution
for one wing panel is now replaced by three vortices of equal strength
I'/VO = 0.042653. Their spanwise locations are determined graphicelly,
equating areas under the curve of r(y) vs. y, and in this example are:
Ay = 1.652, A, = 1.558, and Ag = 1.316. The three image vortex loca-
tions are again calculated as the inverse points, giving: A, = 0.75988,
As = 0.64185, and Ag = 0.60533. The results of this case are shown in

figure 17.

Example 2, cruciform triangular-wing and cylindrical-body configura-
tion at angle of attack and bank.- The configuration data of the pre-~
ceding example are again assumed in addition to which another pair of
wing panels now exists, forming a cruciform wing-body arrangement banked
45°, The stréngths of the assumed four vortices originating from the
four wing panels are identical, as required by equations (8) and (9).
These equations with equation (6) provide the required circulation dis-
tribution I(y) and I'(z) which is corrected for aspect ratio as explained
in Appendix B. Figure 14 again furnishes the initial positions of the
four wing vortices, whose corresponding four image vortices are then
located at the inverse points. The calculative procedure follows that
described above. Because of planar (xz) symmetry, only the paths of a
pair of vortices on one side of the body need be computed. The results
of this case are presented in figure 18, which shows that there is a
tendency toward "leapfrogging," sketch (1)3 although the process appears
to be retarded initially by the body.

SThe phenomenon of "leapfrogging" vortices is discussed in detail
for isolated wings in reference 12.
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"Leapfrogging” paths in crossflow plane

Sketeh (1)

Example 3, plane-wing and cylindrical-body combinatlon with the
body at angle of attack and the wing panels at differential incidence.-
The given data’ for this case are the same as for the first example with
two exceptions. One wing panel is deflected and the other is at zero
incidence with respect to the body axis such that the vortex from each
panel has the same strength. Now the vortices from both wing panels
are rotating in the same direction. The vortex shed from the deflected
panel is assumed to start above the xy plane because of the angular
displacement about the hinge line of that panel's tralling edge. It is
further assumed that the vortex from each panel is shed at the same span-
wise station.

Figure 19 1llustrates an effect characteristic of wings differen-
tially inclined. The vortex from the wing panel which has no incidence
to the body moves essentially the same way as in the plane wing case.
However, the vortex from the wing panel which is at a negative angle of
attack travels sharply upward and inboard. This marked motion is due
to two effects: First, the vortex starts at the trailing edge with some
n >0 because of the negative angle of attack of the panel, and second,
the body crossflow and image vortex-induced velocities are cumulative in
this case instead of being subtractive as in the plane case. At a suf-
ficlently high angle of attack, it may be possible for the rising vortex
to jump over the body to the same side as the other vortex. Such an
occurrence would cause a sharp increase in rolling moment from the tail
surfaces. )

For the case of a pair of wing panels inclined together, the trail-
ing vortex paths can be estimated qualitatively by consideration of the
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vortex plcture ln the crossflow plane. Thus, for a pair of wing panels
inclined at a positive angle of attack on a body whose axis 1s parallel
to the free stream, the vortex paths trail below the free-stream direc-
tion with concavity upwards since there is no body upwesh and the effect
of the lmage vortices 1s to depress the wing vortex wake. For a pair of
wing panels at a negatlive angle of attack on a body at a positive dngle
of attack, the tralling vortlces are inclined upward since the body
crossflow and vortex-induced velocitles are additive.

These and all other computations except those with 10 vortices per
wing panel were performed with & desk calculator. It was found that the
solution of vortex paths downstream of the wing could be accomplished in
about fifteen minutes per station for a single-wing vortex, and two hours
per station for a three-wing vortex scheme. In general, the nmumber of
computatlions per solution lncreases approximetely as the square of the
number of vortices assigned per wing panel.

Eveluation of the Effect of Stepwise Integration
on Vortex Paths

In the present line-vortex method, the principel factors governing
the labor expended in the solution to & given problem are the size of
the "time" increment Ap and the number of vortices used to replace the
trailing vorticlity. The first factor will now be discussed in detail.

The necessity for a stepwise solution for vortex paths stems from
the difficulty of integrating n simultaneous differential equations of
vortex motion (egs. (13) and (1k4), together with egs. (18) and (19)).

The differential equations are therefore solved with a small, finite Au.

In this report, the use of equations (21) and (22) implies the use of
Euler's linear integration method, that is,

avy
V) = Vi), (E‘)u A

where

v{ = Ny or 1y, and 1=1,2,3, . ..17/2

A Taylor serles expansion shows the higher order terms neglected:

_ dvy v\ A2 8\ Aps
(vi)p+Au*(Vi)u+<——uAu+<——“ ?+< >“ —_—t e .

dun ap® dus 3!

Thus, it may be seen that the use of Buler's method without appre-
ciable error requires either the second and higher derivatives to be
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small or Ap to be small., The following discussion indicates the impor-
tance of the higher order terms for vortex motion.

Comparison of known exact solution of vortex motion with stepwise
integration.~ A simple example of the mutual interaction of two vortices,
for which the exact ‘solution is known, furnishes an insight into the
nature of the cumulatlve error incurred by this stepwise-integration
method. It is easily shown by the methods of hydrodynamics (e.g., p. 320
of ref. 19) that two vortices of strengths T, and I, will, due to their
own mutual influence, each rotate about their common “centroid” in a ecir-
cular path with constant angular velocity which is efjual to (I& + Ié)/Qﬂ
divided by the square of the distance between the vortices. This motion
1s illustrated in figure 20. The solid lines radiating from the centroid
represent the ends of a constant time increment (proportional to Ap) and
the solid, spiral-like curves are the corresponding paths computed by a
stepwlse approximatlon. The dashed radial lines and spirals relate to a
time intervel half of that used before. It appears from figure 20 that
the error or discrepancy between circular and spiral paths increases
while the rate of growth of this error decreases with time (or distance
downstream of the initial position). Further, it is seen that a decreased
size of time increment results in & decreased error, for this example, in
approximately the same ratio. Of course, this case of completely circular
vortex motion cannqQt be solved accurately by Euler's linear scheme without
using extremely small lncremenits. However, for many of the computed vor-
tex paths behind the configurations considered in this report it will now
be shown that Euler's method is sufficiently accurate.

Effect of size of increment Ap on computed vortex paths.- The
error incurred by using the linear integration method can be Jjudged by
calculating vortex paths with different increments AWK and extrapolating
the results to AR = 0. This has been done for single- and three-vortex
schemes at a = 5° and typical results appear in figures 21 and 22.
Both figures show that the stepwise method employing finite increments AM
vields results which converge fairly rapidly to the exact solution (for
which Ap—>dH—>0). Here the error, using a given value of AW, is
indicated by the difference between the value of A or n extrapolated
to Ap =0 and the value of A or n at the given value of Ap. As in
figure 20, the error is seen to lncrease with time or dlstance W down-
stream of the wing. For a single-vortex scheme (fig. 21), the error is
approximately proportional to pAp and is small, in general. The error
becomes greater and less predictable, for the same increment size, with
a multiple-vortex scheme (fig. 22). A single-vortex scheme is therefore
less subJject to integration error than a multiple-vortex scheme. The
reason why the error increases nonlinearly for the three-vortex scheme
of figure 22 can be explained by reference to figure 22(0) which shows
the projection of the vortex paths on the crossflow plane. For small
values of p the vortex paths are falirly linear, with the vortex posi-
tion error given by figure 22(a) belng small and essentlially linear
with AMl. Further downstream, as the effect of the rolling-up process
becomes marked, the paths are seen to become spiral-like. Each vortex-
positlon error curve becomes increasingly nonlinesr as the vortex path
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approaches a maximm or minimum vertical position in the crossflow plane.
The use of smgller increments Ap then reveals the tendency toward con-
vergence of the path to one of a lesser radius of curvature, as illus-
trated previously for the case of truly circular paths.

From these resulis 1t appears that the selection of a suitable
Increment Ap for any given case should be made by trial calculation
with several values of Ap for a few stations downstream of the wing.
As long as the computed vortex paths are relatively linear in the cross-
flow plane, the largest value of Ap should be chosen which permits the
extrapolated error 1n vortex location to be the maximum tolerable at the
furthest downsiream statlon at which downwash is desired; Ap should be
decreased locally wherever the vortex paths appear to be approaching a
meximm or minimm height in the crossflow plane.

More accurate mumerical integration schemes than Euler's method can
be found in reference 20. Curve-fitting and extrapolation formulas are
presented which by taking account of the higher order derivatives of the
path enable one to malntain sufficient accuracy of vortex positions with
a glven Ap even when the paths are markedly nonlinear.

Comparison of computed paths with exact solution for vortex paths
in crossflow plane.- The exact solution known for the vortex path in the
crossflow plane corresponding to the single-panel vortex representation
mentioned previously can be used to check the accuracy of the stepwlse
integration. Equation (VI-4) of reference 13 cites the result obtained
by Villat (ref. 18). In the present notation, 1t is:

4A2(g2-1)2 ' 2 2_
2)\<1-%> - in (67-1) =27\0<1_ 12)_ r_ o {2h(A-1)
3 hxv, (£2-1)2 + 42 Ao Wo N2+l

(25)

where

£2 =22 + (5 + pa)®

Ao = (7\)u=0

At an infinite distance downstream the vortices are infinitely far
removed from the body (1 + pa—>w) so that the asymptotic spacing
2(7\)'_1:co of the vortex pair is given by the relation:

r 1 r 2 )
- — = O\ - - 26
2(N) e o, 1= 2(N) e = 2o (1 )\02> o, In il (26)
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Two solutions by the stepwise method have been checked against
equations (25) and (26). This has been done by inserting pairs of values
of the coordinates p end 1, from the stepwise-~calculated paths, into
equation (25) and solving for the A coordinate by trial. The compari-
son appears 1n figure 23, showing the results to be practically coincident.

Effect of Number of Vortices on Downwash at Tail Locations

Comparisons were made of the downwash along & line, representing a
horizontal tail plane, resulting from the seperate presence of one,
three, and ten vortices, all derived from a given circulation distribu-
tion. Possible tail locations for both a missile-type and high-tail
alrplane-type configuration were chosen.

. Missile-type confilguration.- For the former, p = 10 was selected;
that is, a tail Yocatlion 10 body radlii downstream of the wing tralling
edge. Therefore downwash was first computed along the line p = 10,

1 =-10 tan a, 1 < A < 6, which is a horizontal line through the body,
center line of the missile-type configuration.

Figures 24(a) and (b) show the effect of number of vortices on down-
wash at the chosen missile tail location with and without components of
the body potential crossflow in the stepwise computations. These omis-
sions were made for two reasons: One was to determine the extent -to
which the stepwise calculations could be simplified without obtaining
dissimilar results in downwash, and the other was an attempt to account
for the flow around the body at high angles of attack.. As an assumption
for the high-angle-of-attack crossflow, the potential crossflow (egs. (18)
and (19)) was replaced by equation (18) alone with 7' = 0. This assump-
tion implies that the velocity distribution on the lee side of the body
is the same at any vertical station as along the horizontal diameter, as
indicated in sketch (J).

| ] D
/\hNKN

]/ N/

Potential crossflow. Assumed center line crossflow.
Sketch (J)
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For the aspect ratio 2/3 configuration of figure 24(a), with
r/sp = 0.6, the mumber of vortices used has a negligibly small effect on
downwash except when the body crossflow is entirely omitted in the step-
wlse calculations. Observance of the vatrious vortex positions at the
tail location, shown at the top of figure 24(a), shows that the vortices
from the wing panels are subject to a relatively strong body crossflow
so that their computed positions are greatly in error if the body upwash
is neglected. Thus, when at least the upwash component of the body cross-
flow (the center. line crossflow in sketch (3)) is added to the stepwise
calculations there 1s.no appreciable effect of either the number of vor-
tices used or the strength distribution for a given multiple-vortex )
scheme. Figure 24(a) also shows that only a small change in downwash
results from replacing the potential body crossflow by the assumed center
line crossflow. '

For the aspect ratio 4 wing and body combination of figure 24(b),
with r/sm = 0.2, 1t 1is seen that there is little effect of body cross-
flow on the downwash at the tail. This could be expected because of
the relatively large wing. While the use of a single vortex does not
‘adequately approximate the magnitude of downwash over a tailspan equal
to the wingspan, a 3-vortex scheme appears to be as satlsfactory as a
10-vortex scheme. Reference to the computed vortex locations shown at
the top of the figure indicates that the vortex sheet from a high-aspect-
ratio wing at low angles of attack rolls up so ‘slowly and extends over
such a large spanwise distance that a single vortex cannot give the cor-
rect distribution of downwash.

At higher angles of attack, the vortex wake will be even further
from the horizontal tall plane because the body will be inclined below
the free-stream direction more than the vortex wake according to fig-
ure 7. Although the vortex strengths increase directly with angle of
attack, the downwash at the talil decreases very rapidly with distance
from the wake. Consequently, the effect of number of vortices should be
smaller at higher angles of attack.

Alrplane-~type configuration.- Now a possible horizontal tall loca-
tion for a high-tail airplane-type configuration is p = 3 and 7 = 2,
that is, 3 body radii downstream of the trailing edge of the wing and
2 body radii gbove the body exis. Figure 25 presents the effect of the
number of vortices used on the downwash at this tail location. The
aspect ratio 2/3 configuration of figure 25(a), with r/sy = 0.6, shows
no noticeable effect of number of vortites on either the distribution or
magnitude of downwash simply because of the distance of the horizontal
tail plane above the vortex wake. Neither is there any apprecieble effect
of assuming the body crossflow to be the center line crossflow. The
aspect ratio 4 configuration of figure 25(b), with r/sy = 0.2, shows
that 3 vortices give the same downwash as 10 vortices. However, from
figure 7 the vortex wake behind the wings of both high- and low-aspect-
ratio configurations at small values of p 1is seen to be falrly close
to the free-stream dlrection at all angles of attack. Therefore 1t can
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be expected that with increasing angle of attack, the tail plane
approaches the wing vortex wake and the use of at least three vortices
to represent the wake behind wings of such high-tail airplane-type con-
figurations will be required to obtain the correct magnitude of downwash
across the tallspan.

To obtain the shape of a vortex wake behind a wing, clearly a mul-
tiple trailing-vortex system, such as the 10-vortex systems used herein,
is required. However, for the computation of dowvnwash at tall locatioms
g minimum number of vortices is deslirable and this number depends mainly
on the distance between the wing wake and tail surfaces. The mmber
varied from about one to three for the configurations studied herein,
depending on whether that distance was large or small. An empirical
relation, based on the calculations made in this study, for estimating
the nearest integral number of vortices required per wing panel is:

N=1l+ 0.16A

£

vhere h is the height of the horizontel tail above the body axis in
terms of body radii.

Note on calculations involving large numbers of. vortices.- In set-
ting up the initial (trailing-edge) vortex distribution from the given
circulation distribution TI(y), one must exercise great care when n 1is
large (1.e., n >20). The spacing of the vortices which approximate
I'(y) stepwise must be checked to insure a smooth curve of their divided
differences. Otherwise, spurious effects such as the "loss™ of a vortex,
caused by excessive induced velocity, sketched below, can occur (see
fig. 2k(a)).

"TLost" vortex
2 1
& 5 43 Q é_—‘é—&)/ﬁ) .

Initial vortex distribution Incorrect result at p = Ap
at p=0 due to vortex No. 2

Sketch (k)
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CONCLUSIONS

An investigation has been made of a line-vortex method for computing
vortex paths, downwash, and sidewash behind wings of wing-body combina-
tions. Application of the method to the calculation of wake shapes,
vortex paths, and downwash behind triangular-wing and cylindrical-body
combinations with various prescribed data leads to the following con-
clusions: -

1. Wake shapes calculated by two-dimensional line-vortex theory
agree qualitatively at least with wakes observed in a supersonic wind
tunnel. Calculated vortex paths using thls line-vortex method agree
well with & known exact crossflow-plane solution.

2. A missile-type wing-body-tail combination with the horizontal
tail located in the body diametral plane 10 body radil downstream of the
wing trailing edge at 5° angle of attack was considered. It was found
that if the plane wing is of low aspect ratio (order of 2/3), downwash
can be computed at the horizontal tail from the wing vortices alone for
small values of the ratio of body radius to wing semispan (order of 0.2)
and from the body upwash alone for large values of that ratio (order
of 0.7). TFor high-aspect-ratio wings (order of 4) on small bodies, down-
wash at the tail location can be well approximated only by considering
all the flow components - wing vortices, image vortices, and body cross-
flow. :

3. A muitiple trailing-vortex system is, of course, required to.
determine the shape of the wake behind a wing. However, for the computa-
tions of downwash at a tail location the number of vortices required per
panel depends mainly on the distence between the wing wake and tail sur-
faces. The mumber varies from about one to three for the configurations
studied herein, depending on whether this distance is large or small.

An empirical relation, based on the calculations made in this report,
Tor estimating the nearest integral number of vortices N required per
wing panel is:

where h 1s the height of the horizontal tail gbove the body axis, pu
the distance of the tail from the wing trailling edge (both in terms of
body radius), o is the angle of attack in radians, A is the wing aspect’
ratio, and r/sm the ratio of body radius to wing semispan.

., The rolling up of a vortex wake behind wings of unbanked wing-
body combinations qualitatively resembles the wake pattern behind com- -
pareble isolated wings. The comma-shaped rolling-up pattern of the
vortex wake behind a subsonic-leading-edge triangular wing panel, with
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the eventual single-vortex core, is due to the nearly elliptic circula-
tlon distribution along the wing trailing edge. In contrast, a supersonic-
leading-edge triangular wing panel generates an S-shaped vortex weke
behind the portion of the trailing edge which has a linear circulation
distribution, and the S-shaped wake eventually rolls up into two vortices.

5. The spanwise distance from the body of a single vortex repre-
senting the circulation distribution on one panel of & plane, subsonic-
leading-edge wing end body combination is approximately constant and
equal to about 0.T76 times the exposed wing semispan for all ratios of
body radius to wing semispan.

6. The type of vortex wake, and resultant downwash from & wing, is
significantly affected by the clrculation distribution along the wing
trailing edge. It should be noted that the circulation distribution
which must be used in setting up the initial vortex distribution along
the wing trailing edge is not equivalent to span loading when the wings
are in sideslip or the body noncylindrical.

Ames Aeronautical Laboreatory
National Advisory Commlttee for Aeronautics
Moffett Field, Calif., June 1, 1954
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APPENDIX A

NONEQUIVALENCE OF WING SPAN LOADING AND CIRCULATION DISTRIBUTION

I'(y) ALONG THE TRATLING EDGE OF A WING

The circulation function I’ in fluid dynamics is defined by the
contour integral:

Where

ds = dxi + dyJ + dzk

ILet I' be evaluated around a streamwise chord of a flat plate such
as AB in figure 13. Then:

c o]
r =j{‘u dxl =f Uy dxl +f uz dxl
(o] C

where u; meens (u)y_ 5,0, and uj means (W) g—> 0"

Within the 1imits of linear theory, u; = -uy, so that:
c c
T = 2L/n u, dx;  or 4 = EU/\ s dx, (A1)
o o

The‘span loading on a wing 1s defined by the relation:

%3 =‘al§c<:%?:k_dxl (a2)

From the Bernoulli equation one obtains the 1lifting pressure coef-
ficient for a general wing-body combination as:

ap _ Blwgmun)  (vyP-v®) + (wy%ow®) (43)
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For a noncylindrical body-wing combination, two linear crossflow
velocity potentials must be added; @, assoclated with a cylindrical
body-wing combination and ¢2 for an expanding body can be superposed
as follows:

2 -
(3 r \Q/?EZV”;
VN
A 9,
Sketeh (1)

When the potential subscript 2 is dropped,

u; - uy = £(9) = -2u¢u, Wy - Wy = g(®) = —2W¢u =0 W
Vi = Vel + [Voyls Yu = [ Vey |- |Vey | > (ak)
vyZ-v2 = 2|v¢u|(|vq)1| + | vo,l) = ¥lve, |l ve,l
using the symmetrical properties of each potential. ’
Substituting equations (A4) into (A3), one has:
2) - e T (15)
q W Vo Vo

vhere the derivatives are evaluated on the wing (z=0). Equation (%) in
the text is the result of substituting the expressions for potentials
pand & in equation (A5). It can thus be seen that the second term in
equation (4) representing the contribution of the spanwise velocities
(the second term of eq. (A5)), can be of the same order of magnitude as
the fiist term, and not negligible as in the linearized theory for wings
alone.

1The above derivation appears in reference 21 where it is pointed
out that for axisymmetric bodies, crossflow velocities may considerably
exceed axial velocities, that is, 0(u) < O(v).
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Now the span loading is obtained by substituting equation (A5) in
(A2): .

.

o ., up ), Yo%
ay-qf hvo (h:l--qk/jl\tvo2 dx,
L .

O

and using equation (Al):

oL r 4 c
a—y— = 2q V—O- - V—Oqg f vcpvq>dx1 (A6)

(o]

Thus it is seen that the span loading along the wing trailing edge
of a noncylindrical body-wing combination differs from the circulation
distribution by the last integral term. In fact, it can be shown, by
writing equation (A3) in terms of velocity potential and comparison with
equation (7), that to any order theory span loading is not equivalent to
circulation distribution as long as sideslip angle of flow is not zero
or the body noncylindricel. For a banked cruciform configuration, there-
fore, this nonequivalence is always present.
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APPENDIX B

CORRECTION OF SLENDER-BODY THEORY TO ACCOUNT

FOR MODERATE ASPECT RATTO

The theory developed in reference 15, for the 1lift of wings and
wing-body combinations, is based on the assumption of slenderness. The
aspect ratio of the configuration analyzed by this theory must be low
enough so that the wings are near the axis of the Mach cone. A correc-
tion factor is required, therefore, to apply slender-body results to
higher-aspect-ratio wings according to the formula:

Typ = () () (51)

The correction factor k i1s obtained by comparison of slender-body
theory with the more exact linear theory (applicable to high-aspect-ratio
wings) for triangular wings (ref. 22), that is:

)
k= (_LW_LE (B2)

(Tispe

It has here been assumed that this wing aspect-ratio factor k can
be used for the winged portion of wing-body combinations and for other
than triangular-wing plen forms. Thus one can correct the 1ift of a
higher-aspect-ratio configuration by means of equation (Bl). This assump-
tion is Jjustified for small values of the parameter B tan w (see fig. 26)
when k 1s approximately one, and slender-body theory is itself spplica-
ble. Satisfactory results should also be obtained for large wing-to-body.
area ratios since the wing then carries the major portion of the 1ift of
the combination. Experimental data confirm the validity of these assump-

tions for wing-body configuretions of aspect ratios on the order of
1 to k4. : ’

For triangular wings with subsonic leading edges, the 1ift distribu-
tion given by linear theory has the same shape as that given by slender-
body theory. Therefore the k factor can be defined as in equation (B2)
by total 1lift ratios, and is independent of the spanwise coordinate y.
For such wings, the method of reference 15 (applied to wings alone) yields
results identical to the low-aspect-ratio triangulsr-wing results of
Jones (ref. 23). However, 1t is known that Jones! results overestimate
lift-curve slope when the parameter 8 tanw 1s not small relstive to
unity. The factor by which lift-curve slopes calculated by slender-body
theory must be multiplied to agree with linear theory is given as:
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k = 1 B tan w < 1
E(+/ 1-% tan® w)
(B3)
2
k = ——— B tan w > 1
it B tan w

These equations have been plotted in figure 26.

However, for supersonic leading edges (B tan w > 1), the lift dis-
tributions are not functionally identical so that equation (Bl) must be
written in terms of local chord 1ift. Then k becomes a function of Yy,
namely, the ratio of section lifts or circulation by linear and slender-
body theory. Now in linear theory, the pressure coefficient on a
supersonic~-leading-edge triangular wing outboard of the Mach line 1is:

e___= | (t)

q
A B2 - tan® A

Substitution of this expression in equation (1) yields the circu-
lation distribution (in this case equivalent to the span loading):

2V,a tan A(sp - ¥)

I(y) = (B5)

A B2 - tenZ A

For a wing alone r = 0 in equation (3), thus giving the slender-
body theory result:

Ny) = &Voa/sn® - ¥° (B6)

Hence, for the part of the wing tralling edge outboard of the Mach
cone, the factor k for a wing-body combination is bthe ratio of equa-
tion (B5) to (B6), or:

k= 1 fm = ¥ (BT)
B2 tan2w-1 + Sm+ Y
for
Sp ~-T
T+ <Y <é&m
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Fortunately, the accuracy of the k factor can be checked in this.
case since an exact answer for [I'(y) for the wing-body combination can
be calculated by linear theory wilithout excessive labor. Referring to
figure 27, at any point P(x,y) on the wing trailing edge outboard of
the point of intersection of the Mach cone with the trailing edge, the
potential @, can be evaluated by integration of the distribution of
sources at points (o,T) within the forecone of P, that is:

v
= - _9 &
CPS(X:Y) = - ff T do 4r (B8)
Torecone ) )
of P

where, in the plane of the wing (z = 0), the hyperbolic radius rp is:

rn = o (x - 0)2 - B3(y - T)2 (B9)

end the anglé of attack « ié the sum of the body angle of attack, ag,
and the body angle of upwash:

2
a = agll + = (B10)

On the wing, the forecone of point P produces the shaded area
shown wilth the corresponding boundaries of integration. Thus:

: 2 T
v vy x-B(y-7) <1+_r_> do
o (o) = - 22| [T ar [T = +
By-x T tan A ~/ZXfU)2‘ BE(y-7)2
B-tan A
By+x ' 2 '
f—_ﬁ+tan YR fX+B(y-T) <1 + %) do
ar
v

(B11)
T tan A ~/Zx-c)2-32(y—7)2

The integrals not containing r have been evaluated in refef—
ence 24, and in the present coordinate system give:

) Voap(x-y tan A)

P, = m . (B12)
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The integrals containing r2/r2 yield:

Vochrz(x-y tan A)

P = - (B13)
v/ BZYZ - %2
Therefore the total potential at P is P, =P, + ¢_ or:
0y (553) = - Top(xcy ten ) (it s ) (o)
B2 -tan® Ay BEYE - xB

The circulation distribution I'(y) along the wing trailing edge
X = cr 1s then (see eq. (7)):

(y) = ap tan Alspy -y) 1 + r? -
TE o"B </52-l51:2A v B2 - 52 tasz)
(B15)

where

Sp- T
r + B tan ASy < sy

Thus equation (B1l5) furnishes the linear-theory answer for I(y)
along the trailing edge outside of the Mach cone, while equation (3)
multiplied by equation (B7) is the approximation to the linear theory
assumed by equation (Bl) with k = k(y). This approximation is com-
pared with linear theory in figure 28 at the spanwise position of the
Mach line y =1 + (sm-r)/B tan w for variocus values of r/sm as a
function of B tan w. It is seen that the approximation assumed by
equation (Bl) with Xk = k(y) is satisfactory, producing a maximm error
of about 20 percent and only gbout 10 percent for the range of the
parameter B tan w from O to L.

For the region of the wing inboard of the Mach cone, the pressure
coefficient given by linear theory is (for a wing alone):

Y .2 Y .2
A ha =B cot A-1 — BT cotA + 1
7113= 1+.11? sin~t X : — 1 gin-2
B2 - tan® A B<cotA -%) T B(cotA+ %>

(B16)
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Integration of equation (1) then results in:

EVOa

C(¥)pg =

2 -
{sur] (sn-y)etars LIS 000
w-1

v g2 tan2 (sm-y)B tan w

(sm + y)sin™t

y82 tan® w + Sm
] } (BL7)

(ep+¥)B tan w
Therefore the factor k(y) to be used for I'(y) along the wing

trailing edge inboard of the Mach cone is the ratio of equation (B1T) to
equation (B6) or:

2 2
k() = = {%*%[(sm-y)sin-l YO~ ten” V- fm
~/(sm‘°“ - ¥¥)(p? tan® w - 1) (sm -¥)B tan w
( >11y’32m2‘°”m]}
8 + sin~
" (sm + ¥)B tan w (B18)
for
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TABLE I.- VORTEX COORDINATES A, n VERSUS DOWNSTREAM DISTANCE p FOR 10-VORTEX CALCULATION OF FIGURE 3
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TABLE III.- SINGLE WING VORTEX FORM
(8) a = 5% ¢=0% M=2; r =3/l u=0; Ap = 1

Vorteax~inducad velocitles
B ; ; -
vortex| 1§ N g TN e @] U B S T e
Mo, J Va J?\J_-@nl_@__)v @X5/7-@x6/® 2 2xr [/,
@ @ @ |® 6 ® @ ® @
1 |o.12796 | 1.%0870| 0|0 o] 0 s} 0
2 l.,12706 c628t ol L8kME6 0 STL8 -.15128 0
I S B - -0.02860 0
3 | .12796 | -.6628k| o 2715k | -0 L1139 -05833 0 ]
L |-.12796 [-1.50870| O 3.0LTke 0 9.10470 -.0h241 o]
Crosaflov velocities

e e L e

s+ @fm + €

a
x

_ At
n, +u tena AR @<3+ g)

®
:
€
&
®
®

> |1®|®
®
®
®
®

@ - @] eux @ «x O/E
® | @ @ ® | @

0 e.e7618 | © 5.18100 2.27618 0 0.0383k

0.0097h 0 0.00974 | 1.50870

Image vortax posltion .
wian | wme (@ x@| @ | @ | @O | @ O | - BF | -G
@ ® | @& Gy @ ® @ @ €]

1 0.087ho 0.08Tk9 1.%0870 0.009T7h 0.09723 2.28563 0.66008 0.0h25h -0.0kk95
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TABLE IIT.- SINGLE WING VORTEX FORM
() a=5% ®= 0% M=2; r=3/4; p=1; Ap= 1- Concluded

Vartsx induced velocities
vortex| I R R T Ay RN I I U o
w5l w2 | v -0 | expio|-ex@i@] = L e LR
ol@| | ®| 6 | ®| @ @ @
1 [o0.12796 | 1.%0870 | 0.009Th| © 0 0 0 0
2 [-.2796 | .66008 | -.o0kho5| .8hBG2 | .omW&o| .72715 -.1%016 00958
3 | .12796 | -.66008 | -.0nkos | 2,16878 | .0sl&g | L.To6E0 05896 ~.00049 | -0-02835 |-0.cOLTH
4 |-.12796 [-2.50870 | 0097k | 3.00LTHC |0 9.10k70 -.042hL 0
Croasflov velocities
M, + K tan A @ﬂ (@+®)a B-Q | evnx Q|ox B/Q|xOD/O m(®+@)‘ﬁ“(®+@) n+E€ | A+ 6
@ G | @ 3 ® @ ® i) €9 () €3 (]
0.09723 2.27618 | 0.00945! H.22410 2.26873 -0.029338 0.03787 ~0.,00500 0.,009%2 -0.005Th | 0,01926 | 1,%0196
Imags vortex position
pedp | tana | ED x €3 M+ €9 n, + &) @*‘@ & + & 7‘2'@/® 2/ ‘b"@*@
e | & & €) e & @ @ @ @
) 0.08Tho | 0.1T4o8 1,50196 0.01926 0.194524 2.29361 0.65485 0.08469 -0,09029
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(b) Calculated theoretical wing vortex wake,

Figure 1l.- Vortex wake behind wing of high-aspect-ratio supersonic wing
and body combination at angle of attack.
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Aspect ratio = 2/3

10 vorfices par wing pane/

Figure 3.~ Rolling up of a vortex sheet behind wing of subscnic leading-edge wing and body
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Aspsct rafio = 4

NACA TN 3227

onic leading-edge wing end body
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Flgure 4.- Rolling up of e vortex sheet behind wing of supers
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Figure 6.- Contribution of wing vortices, image vortices , and body cross-
flow to total downwash at tail location for various aspect ratios.
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Figure 6.- Concluded.
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Figure T.- Vortex paths behind two wing-body combinations at various
angles of attack.
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Figure 8.- Contribution of wing vortices, image vortices, and body cross-
flow to total downwash at tail location.
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Figure 8.- Continued.
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Figure 9.~ Vortex paths behind wings of 2/3-aspect-ratio triangular-wing
and body combinations with various ratios of body radius to wing
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Figure 10.- Variation of single-vortex strength with body radius to wilng
semispan ratio for subsonic leading-edge configuration.
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Figure 11.- Contribution of wing vortices, image vortices, and body cross-
flow to total downwash at tall location.
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Flgure 12.- Comparison of rolling up of vortex sheet behind wing-body

combination (A = 2/3, r/sp = 0.2) with wing alone.
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Figure 23.- Comparison of stepwise approximation with Villat (exact
crossflow) solution for two wing-body combinations (ref. 18).
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Figure 25.- Effect of number of vortices on downwash at tail location

for airplane-type configuration.
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Figure 25.- Concluded.
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Figure 26.- Aspect-ratio correction factor k.
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Figure 27.- Forecone of integration for equation (B3).
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