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SUMMARY

Slender-body theory has been applied to the study of the effects
upon lift produced by the presence of a gap between wing and cylindrical
body of a slender wing-body combination. Two conditions were studied,
one. in which both wing and body had the same angle of attack, and the
other in which only the deflected wing had an angle of incidence to the
free stream., The lift for the case of combined angle of attack and wing
deflection can be found by superposition.

The theory predicts large losses In 1ift even for minute gap widths;
it is anticipated, however, that the effects of viscosity and possibly
of compressibility not considered in the theory will serve to reduce such
losses in practice in the case of very small gep widths. The loss in
1ift effectiveness due to gap effects is more severe when both wing and
body are at an angle of attack than when only the wing has incidence
relative to the free stream. For the wing~body combination exclusive
of the nose and afterbody, the gap effects, expressed in terms of per-
cent loss in 1lift, are more pronounced for larger ratios of body radius
to wing semispan; and the ratio of the lift obtained from wing deflection
to that due to angle of attack increases with increasing gap width. The
effect of the 1ift of the nose is to reduce the percent loss in 1ift due
to gap in the angle~of-attack case from that predicted for the portion
of the configuration considered sbove. As a consequence, the effective-
ness of the wing as a control surface may increase or decrease with
increasing gap width accordingly as the ratio of body radius to wing
gsemispan 1s small or large.

INTRODUCTION

In connection with the use of all-movable lifting surfaces in
missile design, there arises the practical problem of the effects upon
the aerodynamic characteristics of the missile caused by the presence of
a gep between the wing panels and the fuselage. When the fuselage is
cylindrical, the gap is unavoideble for two reasons: In the first plece,
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a clearance between the movable wing panels and the body is required
from mechanical considerations, and secondly, & space between the wing
panels and the curved surface of the fuselage is created by the deflec-
tion of the wing with respect to the body. This latter gap distance
varies in the chordwise direction. For the usual ratios of wing chord
to body radius encountered in missile design, and for small angles of
wing deflection, this variable portion of the gap width will be very
small compared to the constent gap present at zero deflection. In the
present theoretical treatment of the problem, only small angles of wing
deflection are considered, and therefore the gep is assumed to have
constant width.

The purpose of this report is to evaluate the effects of gap upon
the 1ift of a typical slender wing~body combinetion having an all-movable
wing. Two basic problems are considered: Problem one deals with the
lifting characteristics of a wing-body combinstion inclined at a small
angle of attack with respect to the free streem, the wing panels having
zero deflection with respect to the body; problem two is concerned with
the same configuration, but the body is consldered to be at zero angle
of attack and the wing is deflected to some small angle with reference
to the body exis. By the principle of superposition, the 1ift of the
wing~body combination having both angle of attack and wing deflection can
be found. )

Although the first of the problems described above could be treated
by the method given in reference 1, where the effects of & gap in the
middle part of a wing at subsonic speeds are investigated, the second
Pproblem appears less amenable to solution by such methods. More useful
for the present purpose, it is believed, is the procedure employed in
reference 2, in which slender-body theory is applied to the analysis of
the aerodynamic characteristics of a family of wing-~body combinations.
Accordingly, both problems are treated in much the same manner as that
given in the latter reference.

While the present report was in preparation, the results of other
investigations of gap effects were published. Bleviss and Struble (ref.
3) suggested a method of estimating effects of streamwise gaps upon the
1ift of wing-body combinations which included replacing the body by an
infinite wall. Mirels (ref. 4) obtained the slender-body result for
problem one of the present analysis, but did not obtain in closed form
the solution of the gecond problem.

In common with the above-mentioned investigations, the present
analysis makes use of several simplifying assumptions. For example, the
wing is considered to be vanishingly thin, and the fluid medium is
assumed to have zero viscosity and to be free from shock waves. Con-
sequently, the usual side-edge condition of infinite velocity and zero
1ift is applied at the edge of each wing panel adjacent to the gap. It
18 alsgo assumed that the 1ift is zero across the gap. Only small angles
of attack and wing deflection are permitted, and the plane of the wing
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is considered to include the center line of the body. Finally, the wing-
gap=-body combination is regarded as being slender in the sense that
lateral dimensions are small in comparison to longitudinal (free-stream)
dimensions.

For gap widths of the order of a few boundary-layer thicknesses, the
neglect of viscosity and compressibility will certainly produce unrealis-
tic results. For example, subsonic theory (ref. 1) predicts large losses
in 1ift for even infinitesimal gaps in the middle part of a wing. It is
interesting to note, however, that in an early experiment treating the
configuration of reference 1, Munk and Cario (ref. 5) obtained results
which indicate appreciable decreases in lift-curve slope at zero angle
of attack for gap widths which, though not "infinitesimal," were small
in terms of the wing chord. It remains for experimental investigation
at supersonic speeds to define the range of gap dimensions and of angles
of attack for which the present inviscid theory is reasonably valid.

GENERAL ANALYSIS

If it is assumed that for slender bodies (including wings) the
velocity gradient in the free-stream direction ®Pyxx is small compared
with the velocity gradients in the ¥y and z directions, then the well-
known Prandtl linearized differential equation for the perturbation
velocity potential @ of a compressible flow in three dimensions

(l—Moz)chx + cpy-y + CPZZ =0
is closely epproximated by the more simple twa-dimensional form
Pyy + Pgg = O (1)

which permits the use of conformal mapping.
The same simplification can be made if Mg,
the free-stream Mach number, is unity, or

very close to unity, and the velocity gra- — ¥
dient in the free-stream direction is not
excesglively large. i

€
The wing-body combination chosen for

consideration is shown in sketch (a). 8

Symbols are defined in Appendix A. The >t | fe—

body consists of & cylinder of circular
cross section of constant radius and an

arbitrarily pointed nose. The wing con=- k=
:=f———'50-——>4
x

sists of two identical right triangular

Sketch (a)
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flat platesl of vanlishing thickness placed adjacent to and on opposite
sides of the constant cross-gection portion of the body. The distance
from the body axis to the inner edge of.each wing panel is designated

t; the gap is defined as the distance t-ry, where 1y is the radius of
the cylinder. The distance from the body axis to the outermost point on
the wing panel is called 8g; the symbol 8 refers to the distance from
the body axis to a point on the leading edge of each wing panel. The
slope of the leading edge may be designated as ds/dx, or m = tan €,
where € 18 the vertex angle of the wing panels. The origin of the
coordinate system is taken at the point of intersection of the body axis
and the line Jjoining the apexes of the wing panels.

We introduce the complex variable & =y + iz = pelf, The cross
section of the wing and body in the £ plane is shown in the upper part
of sketch (b). The Joukowsky tranaformation

Too 16
fp = E+ = &y =v+im = ppet (2)

maps the given cross sectlon onto’the real axils of the §1 plane, as
shown in the lower part of sketch (b).

iz
E plane
ro
-8 _ -t t 8 y
iz, €, plane
~81 -ty -r ry t 81 &
Sketch (b)

1The results of this analysis are, however, applicable to con~
figurations in which the leading edge is not a straight line, provided,
of course, that the agsumptions of slender body theory are not violeted.
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Then, for

and

The induced

from which
v =
W =
Vr =

zy =0,

Ji

J1
83
t1

Iy

y

velocities In the two planes are related by

o

v 1l - —
L A
Yo

1L - ——
w2 -(3

2
T
=y+_o_.
y
= 2ro cos 6 = 2y
TS
=8 + —
8
=t+£o_2.
t
= 2rq
_ V1 + 7aB-ri®
2
- Y1 = A/}’12"1‘12*
2
=JL
2

v - iw

Pyrys + Pzyzy =

(vi=iwy)

asy

0

I

Iy

Iy

2

2 . 2
) cos 26:, + w1<-59) sin 26
2 2
To
) cos 29] - vl(?-> sin 26
‘ ro\2 ro\2
vy cos8 0 + wy 8in 6) 1 - -;) :] + 2w1<-5—> sin GJ

Also, Laplace's equation must be satisfied in the £, plane, so that

-7

(3)

(4)

(5)

(6)

(7)
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The general solution to equation (7) that gives the vertical induced
velocity wy; on the yy axis due to the jump in the value of the lateral
velocity Avy ecross the y; axis can be written

1
i) = - L [ o) 40 (8)

21 -5y Y1 = V2

In the present problems, wi(y:) is known from boundary conditions, but
Ovy  is unknown (except in the gap). Equation (8) is thus an integral
equation which will be solved to find Avy in each of the two problems.

PROBLEM 1 - WING-BODY COMBINATION AT SMALL ANGLE
OF ATTACK, WING AT ZERO ANGLE OF DEFLECTION

Boundary Conditions

As was mentioned in the introduction, it is assumed that no 1ift is
carried in the gap; hence the circulation and vorticity in the gap are
teken to be zero. The boundary conditions which obtain in this problem
axre therefore

(1) w= -V p=ry 05 68<2x )
(ii) av = 0 z =0, 1<y <t
(11.1) W=V z =0, t2 < ¥y < g2 > (9)
(iv) v=0,w=0 p=w, 0506< 2%
(v) A?=0 z =0, yo > g% )
In the &, plane these boundary conditions become ‘
(1) W1=-z;—a: zy =0, 0< 312 < )% )
(1) &avy =0 z1 = 0, 11% <« 7% < %7
(111) wy = - -ch—L (l + —————zy—l———z— z1 = 0, t1% < % < 8,7 > (10)
(iv) v1 =0, wp =0 e Py =w, 0< 63 < 21
(v) a9 =0 2y = 0, 11® > 8:.°
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Solution of the Integral Equation

The general solution expressed by equation (8) can be written

-ty -r

1 Av 1 1 Av

wl(yl) = o e ._.___lw dyz - —— __._15_ d_yz -
2nd_g, Vi -V end_t; Y1 - Ve

— —_—dy, - — —_—dy, - — dys
exJop, Y1 - ¥z et Jp, Y1 =¥z enJt, Y1 - Y2

(11)
where

Avyyy = Avy between +t; and 83
Avlg = Avy between *r, and *t;

Avyg = Avy between -r; and r;

Since Avyg = O, the second and fourth integrals of equation (11) vanish.
Also, since the wing-body combination is laterally symmetric,

&vi(y1) = =Lwy(-y1) (12)

and equation (11) can be written

wi(ny) = - _]:_frlz _A_‘E'B_d'qz - _];.fslz_ﬂ_ dn, (13)
21 U, M, =7, 2n .2 My =M,
where
M, = y12
N = ¥°

Inversion of equation {13) will be accomplished by the application
of the procedure presented in reference 2. First consider the region

Voo
0= nl < rlz. Here wy = - 2 and equation (13) may be written
2 ) 2
Vou 1 B Avg(ng) b1 17 Avig(n,) 40 <1 < p2
T Taidie moom 2T T, Thooa e 0SMm=m
t12 Tll = T]a (e} Tll = na

(14)




8 NACA TN 322k

Equation (14) is now of the general form

b Avy (1)
£(n) = - X | 2 ay, (15)
21 Jg n, -0,

of which the inversion is

b . f - -
& (A) = 2 %}]ﬁ £y (ny)dn, +b/"b (n, )/ (b-n,) (n, -a) an,
1/ (b=2) (A-2) a a A=y

(16)

which for Avy,(a) = O reduces to
b
_2 /A-a £(n,) b-n,
ama(A) = T E-_)\.b/; A=, dn,y m, e (1)

In the present problem, Av,(0) = O from symmetry, and the inversion
of equation (1) is

) 2
81 Av. -r
Ale(T]Z) = - Voa, .____;12 + !‘_ - 22 f 1W(n:3) 3 -1 dﬂa
ri-n, T/ rat-ngdg2z n, - g Mg

(18)

This expression for Avyp will be used subsequently in solving for the
lifting properties of the body. To find AWiw it is necessary first to
substitute equation (18) into equation (13) and reverse the order of

- .
integration. .Using wi(nl = =~ —gg 1+ —_le§:> for ;%< n, < g2
AR M5 )
1

we obtain, after simplification,

2 2
81° Avy(n,) /n,-T1
1 1
—Voa, = - 5—. W 2 2 dn2 (19)
el tlZ T]l = Tl2 nz .

Inversion of equation (19) will follow the procedure given by
equations (15) and (16). Thus
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2 2
2./ 1 e /N2 771
Lvyy = = ) f 2 AVlW( 712) N dn, -
tf (8220 ) (n, ~£22) (n, -r22) T 2
v f (07 (0 (20)
[¢) 2
£,2 n, =Mz

or

2,/
Avyy = L {G - Voo g- [2'01 - (812+’012):|}

7,/ (822-1) (1, ~t22) (n, -112)

(21)

where
812
1
G = —f &vyy(n,)
2 t12 ﬂz

2
2 ~TL

2

Equation (21) is not unique since it contains an integral involving
Avyy. However, the integral is merely & constant, which can be evaluated
from the assumption that A®; is zero at 1% = t,%. Knowing Avy, we
can express A9P; as

Y
AY, = f Y avidys (22)
o 8y :
or, in terms of n, =V
Ty, Av
APy = f 2 ¥ an, (23)
81" 2 /111
Then
1% Avy
AP, (ty) = O =f ¥ an, (k)

812 2/1;:

Substituting equation (21) into equation (2L) yilelds
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i aq £12 on, - 8% - 32
G = = g' Voo = - - dT]l
2 2
8 83
2 Je2 o) (1,762 (1, 122) J (8221, (1, ~6:) (1, 232)
(25)
Performing the indicated integrations® and solving for G gives
G = oo (812-1‘12) yk—) - l (812+t12"2r12) (26)
K(k) 2
where
X = le_tlZ
812-1‘3_2

An expression for Avyy can now be found by substituting equation (26)
into equation (21). The result is

QA/'HI Voo (812-1'12) E}(_k). _ '(nl_.rla):, (27)

Lvyy =
~/ksla'“1)(ﬂl'tlz)(nl-rlz) K(k)

Span Loading on Wing Panel

The span loading is proportional to the total circulation
I = APpp - A%pp. From equations (23) and (27) we obtain

APy = 2Voa, /812112 Z(¥ 4, k) (28)

where
_ _ B
Z(V1,k) = E(¥y,k) =) F(¥,,k)
and

¥, = sint /BN
le_tlZ
(The function Z is tebulated in ref. T.)

2The elliptic integral of the third kind encountered here, as well
as those which occur subsequently, were evaluated by use of reference 6.
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If t; is set equal to r; (condition for a slender wing on an
infinite cylinder with no gap) equation (33) becomes

(Aq)lw)tl-‘:I']_ = QVOG./ SlZ_ylZ

which when transformed by equations (3) may be written in the yz plane

rot ro4 .
= 2 o o)
(Aq)lw)t=ro = EVOG;/B <l + -;}— - y2 1+ ;4— (29)
Equation (29) egrees with the expression for the velocity potential for
a slender wing on a semi-infinite cylinder given in reference 8.

At the leading edge of the wing, y1 = 83, and (AﬂhW)LE =0 as it

should. Therefore, Iy can be given by equation (28) with 8o substituted
for s. However, it is more convenient to express the value of the
circulation in terms of the value of the semispan of the wing for zero

gep 8o*. Then, since 8o = 80* + g, where g 1is the gap distance, the
expression for span loading is

P 2 ‘
<g_§: = oVl = lagso'a <1 + E-%> [l - (Z—Z) :] z(¥; ,k) (30)
Y Ay

where V¥, and k are evaluated for s; = 8pz.
Pressure Distribution Over Wing Panel

The loading coefficient Ap/q can be found from the equation

First, the differentiation of AP, with respect to s1 18 carried out
and gives, after simplification,

APy 81 of 812 -T2 % E(k) (y12-122) (722-118)
— = 2Voa 1 - 7(¥1,k) +
dsy 812 - t® K(k) (81%2-y12) (8,2 -11%)

(31)
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Since dsl/ds =1 - roz/sz, and for trianguler wings ds/dx = m, there
results for the loading coefficient for the wing

Lp = hmt2 (g% -ro?) _BE(K) ) EQE
qa)w (8%-t7) (s%t%-ro*) [1 K(k) :I < 82 2(¥1,%) +

P - xR (P rg)
7oV (P FPrh) (32)

In the case of zero gap (t = ro), equation (32) reduces to the
result given in reference 8 for the loading coefficient for a triangular
wing on a semi-infinite cylindrical body.

Lift of Wing Panels

The 1lift of the wing panels may be found by integrating the
expression for the span loading; that is,

L 2 o 4 pBo
((_l.)W - V().[SO Cydy = ﬂv/t‘ (A9 ) ey (33)

The integration is more easily carried out in terms of y;. Equation
(33) then becomes

<%>W - %ljm (A% e <1 +ﬁ> ayy (34)

Substituting in equation (34) the expression for (Acplw)TE obtained
from equation (28) with 81 = soy gives .

<%> = n{tlz + (3012-;12) [1 -2 %%]}[1+AO(W,]£1):I - 12 +
W

2ty /8012112 {E(kl) - K(k1) + %1; [1 -2 ;E{—E%}K(kl-)} (35)
1

i
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where
Ao (V,k1) = %{[E(kl) - K(kl):' F(Y,ki') + KE(\U,kl')}
¥ = gin™t Eli:fli; kg =L k = IL 8124, 2
6,2 ty t1 [e,2-1,2
' = J1 -2

and the moduli and arguments are evaluated at the wing trailing edge
where 81 = sop. (The function Ay is tabulated in refs. 6 and 9.)

Equation (35) gives the 1lift of two pointed low-aspect-ratio wings
in the presence of a slender body which is cylindrical in the region
between the apexes and trailing edges of the wing panels and lies
between and at a distence t ~ ro from the panels, all at an angle of
attack.

If %y =11 = 0, equation (35) reduces to (L/qa)y = 2nss® or, for
the two triangular wing panels now joined (triangular wing)

218" T
Ci, = --—S-—O—CL EACL (36)

which is the well-lmown result for the 1lift of a slender wing.

Span Loading on Body

Equation (18) expresses the vorticity on the body in terms of the
vorticity on the wing. Substituting equation (27) into equation (18)
gives

’ 2
pvyg(n,) = = 2Vgn [k 1,1 /% (ng=riZ)dng )
1BlM, sl ERd- O 4 : 2
* 8% (ny-ng) /(s12-n.) (ng=t1)
1 BE(k) Zh dn
= 2_,.2 s
% (e25m%) iy f (37)

2% (ﬂl'ﬂs)~/k512'ﬂ3)(ﬂ3't12)
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which -becomes

2_ 2_.2 E(k)
n 1 (r1 ﬂl) + (81%-11%) X(x) (38
2

r,2-q
*Th J(e22-n,) (a2 n,)

Avip(ng) = 2Vga

Since AP; =0 in the gap, the jump in potential across the real axis
between -r; and r; can be given by

2
Ji~  Av
£Pyp= f 2B an, (39)
- 1‘12 5 a
1

From equations (38) and (39), it follows that

1
Voo [,/ s12-y12 sin Vp - ,/8:%-11% Z(¥a,k) - > N 1‘12‘5712]

. 2 2
2 t 2_v.2
1 =Y1

r1, equation (L40) reduces to

= z_.2 _1 2_,.2
(ACPIB)tJ_:rl = 2V [,/51 Y1 5 Jris=y1 :|

or, in physical terms, to

(ACPB)t=rO = 2Voa ﬁz <l + %Z)z - by? - ./;;2_-}'_2-

A%ig
(ko)

where

When tl
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The span loading on the body due to the presence of the lifting wing
can now be determined. First we shall consider the loading induced on
the body aft of the apex of the wing

(see sketch (c)). The value of o~
(AcplB)LE is found by setting sy = i, /(Aq)B)LE
>y
in equation (40), which becomes
1>t
(ACPJ-B)LE = Vo /1%~y 7
VJ“‘ —B
For A®Pig at the trailing edge, the >T) .‘\"l
velue of 8oy is used in place of s, — (APg) R
in equation (40). Therefore, the span Y
loading on the body is : X
’ Sketch (c)

f—;’; = )-l-qa, ['/ 8012-y12 sin ‘i'fa - /5012-1'12 Z(‘p’g;k) - A/ rlz-ylz:l ()'l'l)

or since the value of the span loading on ‘the nose in lqa ,/roZ-y2

according to Munk's airship theory, the total span losding on the body
is, in terms of the geometric properties,

4aL :
= 2 2 2
dy g < ro° v ( To )
= |1 4+ —— 14— -ll--—-—sinllf - 1L -«—)72W,.,k) -
haqso* [ so*] / 502 502 2 802 (‘2; )
B

ORO]

where V¥, and k are evaluated using s; = so1.

From equations (28), (41), and (L42), the span loading for the wing-
body combination 1is plotted for several ratios of gap to semispan in

figure 1(a). No 1lift is induced on the body aft of the trailing edge of
the wing, according to slender-body theory.
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Pressure Distribution on Body

The expression for the loading coefficient A@/q on the body is
obtained in the same manner as for the wing in a preceding section. The
result is

—

(- %)
(), g B
K(x) — =TT e
C5) 0
g2 8 /. _J
(143)
If t = rg, equation (43) reduces to the result given in reference 8 for

the lifting pressure coefficient on an infinite cylindrical body in the
presence of a 1ifting low-aspect-ratio wing.

The distribution of lifting pressures on a spanwise strip for the
present wing-body combination is shown for several ratios of gap to
semispan in figure 2(a). For comparison, the pressure distribution of

the wing alone is also shown in the same figure.
Lift of Body

The 1ift induced on the body by the wing can be found by the

formula
To amn T
- 2ay- [T By (1)
-To o dy,

with dIp/dy, given in equation (41) above. The final result can be

written

(%)B = n{tla + (sOlz-rlz)\[l -2 %%]}[1 - Ao(w,kl)} - 1% -
tl/s_cEF{E(kl) - K(iy) + ﬁ-i- [1 e %%]K(kl)}

(45)

where Y, k, and k, are evaluated for s8; = Soy.
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For the 1ift of the wing-body combination (exclusive of the nose),
equation (L45) is added to equation (35). This yields the simple equation

(%) - ex{ (67n?) + (8012—r12)[1 -2 %}} (16)
WB

When written in terms of the physical dimensions, equation (46) agrees
with equation (2) of reference L.

The total 1ift of the body and of the wing-body combination can be
obtained by simply adding the 1ift of the nose (which has the value

I
5 r? = 2ﬂr02) to the respective expressions for 1lift.

For the case in which the gap is zero (t1 = ri), equation (46)
reduces to the result given for this case in reference 8.

Equations (35), (45), and (46) have been evaluated for several gap
semispan ratios; the results, given as ratios of 1lift in the presence of

a gap to the 1ift when the gep is zero, are shown in figures 3(a) and
h(a).

PROBLEM 2 - BODY AT ZERO ANGLE OF ATTACK TO FREE STREAM,
WING DEFLECTED AT SMATLL ANGLE WITH RESPECT TO BODY

The second problem is complicated by the fact that the total gap
between the wing panel and the cylindrical body is the sum of two gaps,
one of which is the constant clearance required for mechanical reasons,
and the other is the gap caused by wing deflection. The latter gap
distance varies from apex to hinge line, and from hinge line to trailing
edge of each wing panel, and also changes in magnitude with the angle of
deflection. However, for the small deflections considered here (say of
the order of 50), the gap created by deflecting the wing will be small
for the usual ratios of body dismeter to wing chord encountered in prac-
tice, and the total gap distance will be taken as a distance independent
of wing deflection angle.

Boundary Conditions

Certain boundary conditions for this problem differ from those of
the previous problem, although the basic conditions, such as the zero
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velue for the jump in potential at the leading edge of the wing panel,
apply here as well. Stated first in the physical yz plane (see sketch
(b)), the salient boundary conditions for this problem are

(i) v¢ = O p=1, 05 0% 2n )
(ii) &av = 0 z =0, o2 <y° <t
(ii1) w = -Vod z =0, t2 <y® < &? g(xm
(iv) v=0,w=0 p=w, 029 <2x

(v) a2=0 ¥ > 6® J

Transforming equations (47) to the &, plene by means of equations (6)
gives

(1) wy =0 / z1 =0, 0 < y1% < 7i® )

(1) &vy =0 z1 = 0, 11% < 7% < 117
(111) w = - I2 ( ) w®<w®<a L(us)
(iv) vy =0, wp =0 Y Py =@, 06 < 2x

(v) o9, =0 v12 2 8,2 J

Solution of the Integral Equation

Commencing with equation (13) we shall obtain a solution for Av,,
the jump in lateral velocity along the real axis. In the region
0<q,-< r,© the vertical component of velocity is zero so that equation

1
(13) can be written

2
1 AV 1’12 AV
E‘i' __ﬂ_dﬂa - -2 ——i-]i-dnz; 0<nq, < 3% (L49)
T oJpe My - 2T Jo T T M2

Applying the inversion formulas given by equations (15) and (17) gives

2
</ T1 1% 1 Lviy(ng)
Ale(nz) = i. _2_2_ f 1 iw w13/ d"la
72 1= =Ty Jg N,y = Tla

(50)
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or after integration with respect to n,

Na (51)

2 2
1 81 Aviy(ng)  [ng-ra
tvig(ng) = = 2 U/1 g |
t

1‘12"']2 12 Mo = TNg Mg

Next, substitution of equation (51) into equation (13) will eliminate
Ale end provide an integral equation for the vorticity across the wing.

Thus

2 - 2
W'l(n ) = - ——l frl - dng ne fsl AVIW(TIS) 1]3'1'12 d-T] -
1
2% Jp Myt My YTy My mmg,) g O
2
83 A

1 1w
ox f - dng (52)

t12 T]l 1]2

Integrating the double integral first with respect to N, Wwe find that
for 1% < 1, < 812, equation (52) reduces to

2

2
2, 87
Ny~T1 1 avyo(ng) T
wi(n.) = = - = SR 2 ang; 112 < . < 82 (53)
1 Ny 2n Jp 2 My - Mg L *

Equation (53) can be inverted by the formulas given by equations (15)
and (16). Thus is obtained

2/n,

Ovyy = C +
ﬁvkslz‘ﬂl)(ﬂl'tlz)(nl‘rlz)

8,2 ‘- - -r2”
L ") fleafong) (gt P) (g
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where

2

1 f 81
2 Ug,2

1

As in problem 1, the value of the constant C can be determined from
the condition that A®P,(t,) = 0. Since ,

£,2 Av
£9(ty) = f * = dn

1

and from boundary conditions

Vod o
wi(ny) = -— {14+ /
2 o) < nz_r12>

it follows from equation (54) that

2

2
o ftl dn, _ Vo ftl dn,
2 2 g2

81 /(812‘711) (n, =t2%)(n, -12®) 1 | /(512"7]1)(ﬂl-tla)(nl-rlz)

tl dn, (SJ. "le)(‘ﬂz-tlz)(nz-rl )
2 nl Tl2 1]2

+

% dn
f Z /(51 -1,) (ny=t1%)
8.7 MMy

(55)
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from which

o Vod [812-r12 ftlg dn,

hk(k 2
(x) 512 [(s12n,) (n, -6:2) (n, -122)
2
tl dle ( S1‘2 -T]Z ) (112 -tlz ) (1]2 -I'l2 ) Tt o o
-=(2n, - &% - t:%)
512 Tll = T]g nz 2

(56)
Thig expression is left in this form since further integration is not
advantageous at this time.

Span Loading on Wing Panel

The circulation Aqu(yl) will be obté,ined by integrating the
expression for Avyy given by equation (54); that is

2 .
1= Avy
Aq)_u;,l(yl) = f il d'ﬂl; Tll = ylz (57)
5% 2 /nl

By a suitable choice of the order of integration, equation (57) can be
evaluated to give

e
295(a) = Voo { 2 ) [ 2 242,00 - mthe ) | +
1
P 204 | 1+ aol¥k) }} (58)

where

(81Z-y12)t1 %

(812-t2%)y1®

Wa = sin-l
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In the case of zero gap (t, = r1), equation (58) degenerates into

Vobd O o
ACPJ_w(tl=r1) = —J'O[_ T, [81%-y1? [1 + % cos~t —l] +

=51

2 2 Iy 2 2
[ 81 -~Ty1 +-ﬁ/51"}’1

y1ln -

/2 2 rn [ =2 2
S17 -y~ = ;,; 817 =Y

2 2 2 2
,/ By"-Tyi™ + ,/ 817 -¥1
rl'_Ln

2_..2 2_, 2
»/ 81 -T1i~ - ﬁl =y1

(59)

Equation (59) agrees with an unpublished result obtained by Gaynor J.
Adams, who solved a similar problem of & slender wing-body combination
having the wing deflected - no gap being considered.

Since AP = 0 at the leading edge, the expression for the'spa.n

loading can be written

ar, Fo_
— -3
& _ _1/7, .8 p BP0 (k) +
* 2
bagsg” T So o X
> * 2
80 8
\
b1 I'02 [
5 < - — )1 + AO(W;k):I Z(\lfl,k) =
802 .
2 52
S_o<_L + 2% VK(k) 2(¥a,ke) (60)
¥y \852 85
(o} (o]

where the moduli and arguments of the elliptic integrals are evaluated

for

8y = 8o1-
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Pressgure Distribution on Wing Panels

Following the procedure outlined in problem 1, page 1ll, we solve
for the loading coefficient of the wing panels. Differentiation of
equation (58) with respect to sy yields

NP,

- ([ - B e [ ]

81

21‘1

K(kl)} 2ty [K(ky) - E<kl)]> Z(‘l’lyk) +

(712 =t12) (722 -11%)

(61)

( 131‘2 "le ) ( s’:1.2 -1‘12 )

and the expression for the loading coefficient becomes

g) _em_ (strot)¥® 2 (¥-ro?) [(PP-re) (°-1)
By 7 A(FR)(FEwg) | yo(Prd) | (FPre ) (F )

7( ¥, k) <[1 - E(x) J Bro™t (k) +

X(x) Y+ rs

n(e?-r®) [1 . Ao(w,kl)]} - Blrea) [K(kl) ) E(kl)]>

8

(62)
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For the limiting case of zero gap, equation (62) degenerates to

(= w2 () Jen(s) )

K e R P

Lift of Wing Panels

The solution for the 1lift of the wing panels in this problem follows
the same pattern as adopted in the first problem. 1In the £, plane

OR T OL

1

Substitute the expression for A®Ppy obtained from equation (58) into
equation (64) and integrate and there results

<‘§‘> = g'{(sor?-rla) [1 -2 @} + tlz} 1+ Ao(¥,k1) + era®(in) | +
W

K(k) by /ESF'-r_lz'

o -
2%, /3012-r12 l:E(kl) - _Ig(k_;).:' 1+ Ao(V,ky) + r1°K(ky ) N

sin®V tty /8012 -T2

-

2
2 1‘—;- E(ky)K(ky) = g ry2 (65)

where the moduli end arguments of the elliptic integrals are evaluated
using 83 = Boi-
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Span Loeding on the Body

Equation (51) provides an expression for the jump in lateral
velocity Avyp along the real axis in the transformed plane between

0 and r;® in terms of Avyy between ;2 and s;2. Combining equations
(51) and (54) gives the expression

2

ryp(n,) = = 21 U/\sl dng C+
7= Iy "‘]1 tlz (ﬂl‘ﬂg)J( 512 -1]2) (7]2 -tlz)

81° wl(nla) (817 -ng) (ng-t2%) (n5-r1%)

'b]_z ( Na=1 3) s ’

dng (66)

An expression for AP;p can now be found by substituting equation (66)
into

2
b Avyp
ACPlB = f —— d_'ql
I‘12 2 ‘I]l

Using the expression for C given in equation (56) and performing
the integrations gives

ADyp = Vod oK (ks ) 1 1% -y12 2 812~y 2 - 5.2 1% =22 _
B~ 1 + 2 =2\ * 2_.,2 1 2_..2
1 [ B15-T3 1% -y 817 =¥1

2
I z(¥p,k) - iZ( ¥,k )| - ﬁ,/rlg-YIz +

ta

14 [l +.Ao(*,k1)J [,/Blsz12 sin ¥o ~ [8;%=r,® Z@ha:k)]

(67)
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where

V. = gin-i (827 -r1%)7?
s =

( 812 '}’12 )I':L‘2

With 8y = 801, equation (67) gives the value of APp at the

trailing edge of the wing. If the body extends aft of the tralling edge
of the wing, the present boundary conditions cannot properly be applied
to find the loading on the afterbody. No attempt to determine such load-
ing will be made here.

Since (A(PJ_B)IE is zero,

- t 2_y.2
E = 2._th.§ 2K(k;|_) i. }’1 g2 l—Yl__

= 1
dyx t1 [ 80a® "1‘1 tl ~yiZ 812 -y,

2

Iy
t, Z(Wg:k) - Y:LZ(W4’kl) -% /rlZ'YZLz +

t[1+ Ag(V,k)] |:,/ 801Z-y1% sin Vo - ,/ 8012-r1® Z(‘Va:k):|
(68)
where 803, the value of s; at the trailing edge, is used throughout.

Tor the condition of zero gap, the expression for span loading cen be
shown to be )

8
bl ,/ 8o1Z-y1% - ,/ r1Z-y1% Y + 2 / 8017 -y1% ¢
dyl ty=ry £ So:L

y11n rl./Soiz-ylz + Yl./ 801 '1‘1
,/ -YJ. / "1‘1

/ so1Z-y1% + ﬁ012 -r® (69)

/. =2_..2 2_...2
8p1"=¥1i - ,/501 =Ty

rlln
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When equations (68) and (60) are evaluated for several ratios of
gep to semispan, the results shown in figure 1(b) are obteined for the
span loeding on the wing-body combination.

Pressure Distribution on Body

The differentiation of APip (eq. (67)) yields

aNP]_B _ 2Vod 81t - - - E&i)_ ‘Il?’.
dy T (8:2-1,2) (K(kl) B0 [l K(k)J{tf <)+

2t3_ '/sl 12 [ 1+ Ax(¥V,k) ]}) [Z(‘lfz,k) - E;il%:l (70)

so that

Ap _ Eg't(s4-ro4)(t2+r02) } _
?5>B T g(62-t2) (82 BT ?) <K(kl) sa)

[l _ B(k) ] Lr 2+2K(k; ) . x t(s%-r7) 14
K(k) (tB4r2)2 2 s(tB+r2) [

Ao(v,kl)]D[z( Yok - l‘-ﬁn—w‘l”%] (72)

If t 1is set equal to ry in equation (71), the loading coeffi-
cient for the case of zero gap is obtalned as

o el @@
ARET W
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The loadings on & spanwise strip of the wing-body combination,
obtained from equations (71) and (62), are shown graphically in figure
2(b) for several ratios of gap to semispan.

Lift of Body

The 1lift of the body is found in the same manner as in the first
problem, namely, by integrating the span loading over the diameter. The
integration is carried out in the §; plane for convenience. When
equation (68) is substituted into the equation

Ti dlp
=2 -
Ip _/c: pry dya

the expression for 1lift on fhe body is

<’§g> = g{(sof-rl?) 1.2 %—%J +t12} 1-§Ad¥,k) +
B s

2r,®K(k; ) K(ky)
- 2t1,./5012-1'12 B(ky) - ZW:]
nty /5012 -1‘12 ] sin

2 2 !
A ¥ky) + —= Ka) ). 21: E(k )K(ky) - g r,2

It"31,/8012"1‘1‘2

with the moduli and arguments of the elliptic integrals evaluated for
83 = 8o1-.

(73)

The expression for the 1ift of the wing-body combination in the
presence of & gap 1s obtained by adding equations (73) and (65) and is
given by
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<-c-ll-'8->m3 = ﬁ{tl‘?' + (8012 ~ r12) l:l -2 E—E—B—:’}{l + Ao(ll',kl)}- ri® +
tlm{E(kl) - (k) + %;[1 - igg} K(kl)} (74)

where 81 = 801 18 used throughout.

As previously mentioned, no effect of the afterbody is included in
the analysis of the lifting properties of the body, so equations (73)

and (T4) are strictly applicable only to wing~body combinations having
no afterbody.

It is interesting to note that the 1ift of the wing-body combination
per unit angle of wing deflection is identical to the 1ift of the wing
of the combination (exclusive of body nose) per unit angle of attack
(cf. eqs. (74) and (35)).

For the case of zero gap (ty = r1), equation (T4) may be written

To
_1 ro\2 2 EZ
=31+ ()T |1 -
o)
T - —
<' 502:>
2
14 5o » To
2
2 Bo - 8o
7| ——% | cosT —— (75)
1 - o 14+ X0
502 602
where CLW —.AB 1ift coefficient of a slender triangular wing. Equa-

tion (75) agrees with a result obtained in reference 10.

Figures 3(b) and 4(b) present the variation of 1ift with gap width
for the wing, body, and wing-body combination for ratios of body redius
to wing semispan equal to 0.5 and 0.216.
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EFFECTIVENESS OF ALL-MOVABiZE WING

The effectiveness of a control surface in producing 1lift is often
of interest to designers of aircraft. It is usually expressed in terms
of an effectiveness parameter defined by

dcr,
a8
dcCr,
da

'
o la
I

CL=constant

For the wing-body combination investigated in this report, the
variation of the effectiveness parameter with gap width is shown in
figure 5. Figure 5(a) shows results obtained by omitting the 1ift of
the nose, which according to theory is inveriant with gap, and by omit-
ting the 1ift of any afterbody, which cannot be calculated in the present
analysis. In figure 5(b) the nose 1ift has been included in the calcula- .
tions, so that the latter figure pertains to a slender wing-body com-
bination having no afterbody.

DISCUSSION OF RESULTS

Application of slender-body theory to the determination of the 1lift
of a slender wing-body combination having a gap between wing and body
indicates that comparatively large logses in lifting pressures, circula-
tion, and 1ift are caused by even minute gaps; however, it is antici-
pated that these large losses will not be realized in practice for very
small gaps because of the viscous and possibly the compressible proper-
ties of actual fluids. Experimental investigation is necessary to deter-
mine the range of gap dimensions and of angles of attack for which the
simplified theory is valid.

If attention is confined to the wing-body combination exclusive of
nose and afterbody, it is evident from figures 3 and 4 that for a given
gap width the percent loss in 1ift is greater when both wing and body
are at an angle of attack than when only the wing is set at an angle of
incidence. Comparison of figure 3 with figure 4 shows that the percent
loss in 1ift due to gap increases with increasging ratios of body radius
to wing semispan. Figure 5(a) indicates that the presence of & gap
tends to reduce the difference between the 1lift of the wing-body com-
bination due to angle of attack and that caused by wing deflection.

The influence of the ratio of body radius to wing semispan is such that
for larger ratios the effectiveness of the wing as a control surface 1is
diminished. !
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The effect of the 1lift of the nose in the angle-of-attack case is
to reduce the percent logs in 1ift of the complete configuration for a
given gap width from that given for the portion of the configuration
above; thus the effectiveness of the wing as a control surface is
lowered from the values given in figure 5(a) to those shown in figure
5(b). It appears from figure 5(b) that, with no afterbody, the control
effectiveness of the deflected wing may increase or decrease with

increasing gap width accordingly as the ratio of body radius to wing
semispan is small or large.

Ames Aeronautical Iaboratory
National Advisory Committee for Aeronautics
Moffett Field, Calif., May 12, 1954




32

B(k)

E(¥,k)

F(V¥,k%)

kl

K(k)

NACA TN 322k
APPENDIX A

NOTATION

8 02
aspect ratio, L -

1ift coefficient, L
qsS

camplete elliptic integral of the second kind with modulus k,

/2
f /1 - Esin®9 a0
(o]

incomplete elliptic integral of the second kind with argument

L2
¥  and modulus k,f /1 - ¥¥sin®0 a6
[o]

incomplete elliptic integral of the first kind with argument

ae .
1 - ¥®gin®g

¥
¥ and modulus k,d/\
)

gap width between fuselage and wing panels, t - f6

moduli of elliptic integrals, k =

complementary modulus, /1 - kK2

complete elliptic integral of the first kind with modulus k,

/2
f ae
° J 1 - K2sin®0

1ift force

slope of leading edge of wing panel, triangular wings, %%

free-stream Mach number
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%? loading coefficient, El_éfgﬂ

a free~gtream dynamic pressure, %-povoz

To radius of fuselage (cylindrical portion)

8 local semispan of wing

8¢ maximum semispan of wing

8%, go¥ local and meximum semispan of wing, respectively, when gap is
Zero

S . combined areas of both wing panels

% distance from body axis'lo ingide edge of wing panel

u,v,w perturbation velocity components in the x,y,z directions,
respectively

M, Av Jump in velocities across the z=0 plane (u, - uy, vy - vz)

Vo radial component of perturbation velocity in a plane perpen-
dicular to the x axis

Vo free-stream velocity

XY, Cartesian coordinates

a angle of attack of body axis

r total circulation about a wing section

3] wing deflection angle with respect to body axis

€ apex angle of wing panel

z(V¥, k) Jacobi's zete function, E(V,k) - %—)—F(w k)

n ¥?

] polar coordinate in a plane perpendiculer to the x axis

Ao(¥, k) Heuman's lembda function,
2{x00) - 1091 7o) + xR |

3 complex variable, y + iz
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AN

IP’,Wl’\lfgy
VasVs

WB

NACA TN 3224

polar distance in a plane perpendicular to the x axis
free-gtream density
perturbation velocity potential

jump in @ across the 2z = O plane

[ 2_.2
arguments of elliptic integrals, ¥ = sin™* E&——éi—;
81
> = 2 2
81 -Y: Ti -
ﬂfl gin=1 _1_2.._.—12_; 1,[,(2 = gin~t 12 YIz;
812 =ty t1= -y

2
sin=1 (Slz-yiz)tlzé ¥, = sin-1 (Slz-rlz)yiz
(81%-11%)y7 (812 =y1%)ry

Vs

Subscripts

complex plane resulting from application of Joukowski trans-
formation to the physical complex plane (except when used
in the elliptic integrals)

body
0 plane or of wing panel

lower surface of =
upper surface of z = 0 plane or of wing panel
wing

wing=body combinsation
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