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WITH AN APPLICATION TO COMBINATIONS
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By Jack N. Nielsen and WXlliam C. Pitts

SUMMARY

An exact theoretical methd is developed that Termits the determina-
tion of the pressure field of a wing-body conibinationhaving a cirmllar
body and a wing with supersonic leading and trailing edges. Detailed
calculations have been performed for wing-body combinations composed of
rectangular wings mouyted at incidence on bodies at zero angle of attack
for effective chord-radius ratios of k or less. For large effective
chord-radius ratios some asymptotic results have been obtained. It was
determined that for the family of conibinationshaving an effective chord-
radius ratio of k the area of the wing blanketed by the body does not
generate any lift itself but rather acts to suppmt the lift generated
by the exposed w3ng, and that the body is less than 50 percent effective
in reflecting lift back to the wing. For chord-radius ratios less than 4,
the relative amount of reflection increases.

The significant fact was determined that for rectangulsx wing-body
combinations for which the effective chord-radius ratio is greater than 4,
most of the loss of lift due to titerference can be estimated from the
first term of the Fourier series used in the analysis. Tbis fact was
used to determine asymptotic lift results for the region where no -et
calculations were made. The asymptotic expressions, together with the
calculations, allowed the construction of design charts showing the lift
and center-of-pressurelocation of the exposed w3ng panels as a function
of effective aspect ratio and effective chord-radius ratio. The charts
show that as a result of interference the lift on the exposed wing panels
in combination with the body can be reduced as much as 15 percent below
the value for the wing panels joined together, and that the center of
pressure of the exposed wing panels can move forward as much as 4 percent
of the wing chord.

INTRODUCTION

In recent years the problems of supersonic wing-bmly interference
have occupied the attention of many workers in aerodynamics. The Mge
amount of effort expended on the subject is a result of the important

—. ...— — ——.——. .—— —-
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effects that interference can have on the over-all aerodynamic character-
istics of wing-body conibinations.The trend toward using large bodies
and small wings at supersonic speeds, especially for missiles, is the
prime reason for the increased importance of wing-body interference at
these speeds.

Much significantwork has alxeady been done in the field. In ref-
erence 1, Spreiter has shown that, when a wing-body combination is slender
in the sense of his paper, shple expressions for the lift and moment
coefficients can be derived. These results were obtained by reducing a
three-dimensionalproblem for the wave equation to a two-rlbnensional
problem for Laplacels equation. Another approach is that of simplifying
the differential equation by using conical boundaries. Following this
approach, Browne, Friedman, and Hodes in reference 2 obtained a solution
for the pressure field of a wing-bcdy combination ccmposed of a flat
triangular wing and a cone both with a croon ap~. The use of m-
conical boundaries reduces the problem to one of conical flow for which
powerful methods of soltiion are available.

Several investigatorshave presented methods for determining the
pressure field, including the effect of interference, acting on wing-baly
combtiations employing circular fuselages and wings not necessarily
slender. ~ reference 3, Ferrari has given an approximate method of
obtaining the “interference of the wing on the streamlined body, assuming
that the induced field generated by the wing is that which would exist
around the whg if i-bwere placed in the uniform stream slone.” Simi-
larly, the interference of the body on the wing has been determined. The
results of Ferrari thus represent a first approximation and, while a
second approximation using the method is possible in principle, it appears
that too much labor would be involved.

Another method for estimating the effect of interference on the aero-
mc ProP@ies ofwhg-body combinations which are not necessarily
slender is @ven in reference 4. In this reference the method is applied
to determining the dxag of symmetricalwing-body ccmibinations;it is also
applicable to the calculations of the lifting pressures acting on coribi-
nations employing wings with supersonic edges. ~ reference 5, an essen-
tially newmethc-d of solving a tide class of wing-body interference pro-
blems has been presented. The method is based on decomposing the inter-
ference of a wing-bdy combfiation into a number of Fourier components
and solvlng the problem for each component in a manner similar to that
used by von K&m&n and Moore in reference 6 for bodies of revolution.

To mmm=ize the present situation, it can be said that the existing
interference methods fall into two categories. The first category
includes those attempts to solve difficult boundary-value problems as in
references 3, 4, 5, and 7. These methods have the shortcomings that they
sll involve a great deal of labor, and that, with the exception of ref-
erence 5, they represent approximations to the true linear-theory solu-
tions. The second category includes simpler methods such as those of
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references 12
These methods

.

2, and 8
have the

ized configurations or

and existing ap~oximate engineering methods.
disadvantages of being applicable only to special-
of being based on assumptions of unknown validity.

At the present time, there is a definite need for a simplified gen-
eral theory of wing-body interference that wi13 give results of engineer-
ing accuracy for a wide range of wing aspect ratio, taper ratio, leading-
edge sweepback angle, and span4Lameter ratio. The reasons that none hss
yet been developed are twofold: ffist, the lack of systematic experi-
mental results makes an empirical theory difficult; and second, incomplete
knowledge of the mechanism of wing-bcdy interference, because of the
shortage of exact solutions, makes it difficult to develop a reliable
rational method. The developmxt of a simple general theory of wing-body
interference seems thus to be deyendent on obtaining a few exact solutions
that will give sufficient insight into the mechanism of interference to
permit valid simplifying assumptions. Such solutions are also necessary
to assess the validity of the assumptions underQ5ng present theories.

In reference 5, a solution has been obtained to awtag-body problem
that is exact with the limitations of linear theory. It is the pur-
pose of this paper to present a r&um~ of reference 5 with special
emphasis on the physical principles underlying the interference. It iS
hoped that the insight gained into the mechanism of titerference in this
paper will be sufficient to allow the development of & simple, re13.able
engineering method.

In this paper, a
will be given, and an
dence on a round body

a

A

c
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%

Cr

%

physical description of
illustrative example of
at zero angle of attack

SYMBOLIS

the interference problem
a rectangular wing at inci-
will be presented-in detail.

body radius

aspect ratio of wing formed by joining exposed half-wings
together

chord of rectangular wing

()
effective,chord-radiusratio ~

pa

minimum wave drag coefficient of wing based on exposed
wing area

chord at wing-body judcture “
.

chord atwtng tip
.. ,., . ....,,.,,.,.‘, . ,,., . .. .,. .
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velocity smplitude function of nlth Iburier component

tial strength function of ntth Fourier component

=al strength function for unit step b f=(x) at
origin

kc

T

function used in determi@ng P=

lift on exposed half-wings joined together

lift on exposed half-wings in combination with body

lift

lift due to ntth Fourier component

odd integer

free-stream Mach number

characteristic functions

number of Fourier component

()
pressure coefficient –*

interference pressure coefficient due to n~th Fourier
component

free-stream

cylindrical
(See fig.

Semispan of

dynamic pressure

coordinates: y = r cos 0, z . r sin e

1“)

wing-body combination

maxtmumwing thickness

thiclmess ratio

axkl, lateral,
respectively

of double-wedge wing

and vertlcsl perturbation velocities,

.

.
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X,y,z
.

1

,.

.

Xc.p.

v

%

a2

Cartesian coordinates: x, axial coordinate; y, lateral
coordinate; z, “verticalcoordinate
(See fig. 1.)

center of pressure of wing lift measured from wing lead-
ing edge

free-stream velocity

body angle of attack

()10CSI singleof attack –~

upwash angle of bdy-alone flow

wing angle of attack

J~2-~

effective aspect ratio

sin-lx

()

Ct
taper

~

dummy variables of titegration

sweep angle of wing leading edge

interference perturbation velocity potential

combination perturbation velocity potential

wing-alone perturbation velocity potential

nrth Fourier component perturbation yelocity potential

fundamental solution for n’th Fourier component

undetermined function of x and r

PHYSICAL PRINCIPLES

Prior to a mathematical formulation of the wing-body interference
problem, it is well to define interference and to eqlain how it arises.
With a stationary wing or a stationary body in a uniform par~el flow,

. .—.—.. —___ ._ ___ ._______ ——. —-—— .- -—.-.——
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there are associated the wing-alone and body-alone flow fields. If the
wing is immersed in the body-alone flaw field, the fluid velocity due to
the body-alone field will not, in general, be tangential to the wing (or
conversely). For this reason, the sum of the body-alone plus wing-alone
flow fields will not be the flow field for the body and wing together.
The difference between the flow field of the body and wing together and
the sum of the body-alone and wing-alone flow fields is defined to be the
interference flow field.

Effect of Forebody on Wing

The effects of wing-bcdy interference on the flow field of a wing-
body combination are illustratedby considering separately the effects of
each component on the others. For the purposes of this discussion
figure 1 shows a wing-body combination divided into the part in front of
the leading edge of the wing-body juncture, henceforth called the nose,
the winged part and the part behind the wing trailinn edge, henceforth
called the afterbody. The wing maybe twisted and cambered, but it is
assumed to have supersonic leading edges. Consider now the flow as it
progresses past the body. At the body nose the flow is that around a
body of revolution, and it can be treated by existtig methods such as
those of references 1, 6, and 9. When the body is at angle of attack q,
there is an upwash field in the horizontal plane of symmetryof the body.
If the body is sufficiently slender, the flow field in aplane at right
angles to the body axis corresponds to that around a circular cylinder
~ a ~o~ stream of ~elocity, V sfi UB. This gives an upwash field
in the horizontal plane of symmetry of the body of

.

% = ~B (1 + a2/~) (1)

1

*

.

.

The effect of this upwash on the wing canbe obtainedby considering the
wing to be at angle of attack and twisted according to equation (1) and
by applying the formulas of supersonic wing theory. The wing pressure
field so obtained is qact, within the limitations of the theory; for
that section of the wing outboard of the Mach Une emanating from the
leading edge of the wing-body juncture. If the wing is located close to
the body nose so that there is a chordwise variation in the upwash field
due to the body, then the wing is effectively cambered, and the solution
is more difficult. However, for most wing-bcdy ccnibinationsit is pos-
sible to disregard the effect of the nose, and to assume that the wing
is attached to a circular cyMnder that extends upstream indefinitely.

Mutual Effects Between Body and Wing

The iutual interference between the body and wing on the *gedp*
of a combination c.mes an interference field acting on the body and on

t
——.— —. ——.—
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the wing tioard of the Mach line emanating from the leading edge of the
Wing-bdy juncture.

The wing-alone flow field does not, in general, produce flow tan-
gential to the position to be occupied by the body surface. An inter-
ference flow field must arise that cancels the velocity induced by the
wing-alone flow field normal to the body while not changing the body
shape. Alternately, the origin of the interference field can be explained
in the following manner. The wing and bcdy can be thought of as sources
of pressure disturbances that radiate in all directions in downstream
Mach cones. The tig disturbances which radiate toward the body are in
part reflected backby the body onto the wing and in part transmitted
onto the body giving rise to interference pressures. Likewise, the dis- “
turbances originating on the body pass onto the wing and affect-the pres-
sures there. It is a~ent that the determination of the interference
pressure field on the body and on the wing inboard of the Mach line of
the juncture is the crux of the wing-body interference problem.

Mutual Effects Between Wing Panels

To determine the region of influence of one wing panel on another,
it is necessary to trace the path of a pulse from one wing panel across
the body onto the other. The path traced across the body by the pulse
originating at the leading edge of the wing-body juncture is the forward
boundsry of the region of influence of one wing panel on the body. (See
fig. 1.) It is clearly the helix intersecting all parallel elements of
the cylinder at the Mach angle. The boundary crosses the top of the body

a distance of ~~ downstream and reaches the opposite wing-body

juncture a distance fia~=l- downstream. A pulse originating at a
point on one wing panel and traveling to a point on the other panel can
travel mound the body on its surface to the opposite juncture and then
along the whg to a given point, or.it can leave the body tangentially
before reaching the opposite wing juncture in a straight path to the
point. The second means of transmitting the impulse is shorter in dis-
tance than the first and is the one which determines the forward bound-
ary of the region of influence of one wing panel on the other. Applying
this consideration to the pulse originating at the leading edge of one
wing-body juncture, it is easy to show that the forward boundary of the
region of influence of one wing psmel on the opposite wing psael is
given by the equation

—=& (II- Cos-l; ) a+J~ (2)

This boundary is also shown in figure 1, and it becomes parallel to the
Mach direction at distances far from the body.

4

— —— -— - -. .——. —
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Effects on the Afterbody

As far as the interference effect of the body on the wing is con-
cerned.,it is confined to the winged part of the combination, but’the
effect of the wing on the body is felt also on the afterbody. If the
dwnwash were known everywhere in the wing wake, then the wake couldbe
considered as an extension of the wing with twist snd camber. The wing
wake and afterbody could then be incorporated with the winged.part of
the combination and treated in the ssme manner. However, the actual
downwash pattern in the wing wake depends on the interference effect of
the body on the wing. It is thus apparent that the solution of the after-
body problem requires that the interference problm for the winged part
of the combination be solved first. Only the winged part of the combina-
tion is analyzed in detail in

MATDMMDCAL

Throughout the analysis,
istakenas2sothat p=l.
radius by dividing all length

this repori.

FORMULATION OF THE PROBLEM

the body radius is taken as unity and M2
Anyformlacanbe generalizedto anybody
symbols by a, andto anyMachnumberby

dividing all streamxise lengths by ~, byn&tiplying all pressure and
lift coefficientsby ~, and leaving all potentials, lift forces, and
span loading unaltered. It is necessary to specify the wing alone before
any detailed interference calculation can be carried out. However, in
the theoretical solution of the problem the wing-alone definition is
arbitrary. The flow field about the combination does not depend on the
definition of the wing alone.

The analysis is confined to the cases for which the aspect ratios
sre sufficiently
wingtips do not
the aspect ratio

large that the Mach lines from the leadhg-edges of the
intersect the wing-bdy juncture. This is the case if
obeys the following inequality:

Under such circumstances, the tips have no influence on the wing-body
interference of the winged part of the combination.

The w3ng-body combinations being considered in this report are those
possessing a vertical plane of symmetry. To eliminate any questions of
the symmetry of the boundary conditions above and below the wing, the
assumption is made that the w5ngs have supersonic leading and trailing
edges. This assumption, together with that concerning tip effects, is
sufficient to insue the fact that pressure camnunication between the
Upperand kwer
the winged part

wing surfaces can have no effect on the interference on
of the combination. Thus it is immaterial whether the

.

c
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problem at hand is symmetrical or antisymmetricalwith regard to the
horizontal plane of symmetry. Attention will henceforth be focused above
the horizontal plane of symmetry.

The assumptions with regard to tip effects and the sweep of leading
and trailing edges enable the drag of a symmetrical wing-body combination
at zero amgle of attack to be obtained from solutions for lifting sur-
faces. su~ose the problem solved is that for a flat wing at angle of
attack q mounted on a body at zero angle of attack. The pressures
sre antisymmetric with respect to the horizontal plane of symmetry. How-
ever, considering the same pressures as positive end symmetrical yields
the solution for the pressure field of a single-wedge wing of ML?
angle ~ at zero angle of attack. This fact is of
drag coefficient at zero angle of attack, as will be

General Decomposition of Boundsxy-Value

use in obtaining the
illustrated.1

Problem

The general case of the wing and body at different angles of attack
is considered. Following the suggestion of Lagerstrom and Van Dyke in
reference 10, the problem can be broken down into several shpler prob-
lems on the assumption that the wing boundary conditions canbe applied
in the plane of the wing and those for the body can be applied on a
cylindrical surface. Figure 2 shows the decomposition of the wing-body
combination into three components. Cmponent (a) is simply the body
alone, which creates an upwash field ~ in the region that is to be
occupied by the wing. Components (b) and (c) are combinations with win&
of the same plan form; but while component (b) has the wing-alone angle
of attack, component (c) has a wing with angle of attack ~. The sig-
nificance of this particular method of decomposing the general wing-body
problem is that component (a), the body alone, canbe solvedby kaown
methods and components (b) and (c) with bodies at zero angle of attack
can be solved by the methods of this report. Henceforth the analysis is
confined to combinationswith bodies at zero angle of attack.

Wing alone and interference potentials.- Consider now a combination
with the body at zero angle of attack and let q

~
be its potential.

(See fig. 3.) This potential can be considered he sum of a wing-alone
potentisl. ~ and of an interference potential q.

The essential problem is to determine q. Ffist,
way of extending the wing through the body to form the

(3)

select a convenient
wing alone, thereby

specifying ~. The wing-alone flow field in general prcxlucesveloc-

%ities —
&

normal to the surface that will enclose the ciraulsr cylinder

as illustrated in figure 3 for the region above the wing. In figure 3
and the subsequent figure, all bodies sre shown as cylinders parallel

,

..-— -.— ——— — ——
;.
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to the x tis. While the bodies of the actual configurations in some
cases are slightly distorted cylinders, they are nevertheless shown as
true cylinders. This procedure is compatible with the fact that the
boundsry conditions are to be applied on a true cylinder. The value

of *T varies with G and with x.
x

!tlhismeans that a bcdy conforming

to the wing-alone flow field is distorted in a complicated fashion. Now
since the bcdy must be circular, there must arise an interference poten-

a~ a-tjthe body surface,tial q that identically cancels thereby
x

straightening it.

(4)

There are two other conditions to be flilfilledby q. It must not tis-
tort the shape of the wing when tided to 9W to produce Pc= ~us
when El= O,

(5)
.

or ~q = O for the interference cmibinations as shown in figure 3. The
last condition is that the interference potential must be zero ahead of
the winged part of the combination.

. Cp.oxso (6)

Equations (4), (5), and (6) are the essential boundary conditions on 9.

a~ to be induced at the body surface by theThe normal velocity ~

interference potential can be analyzed at any given stresamime position
as a Fourier cosine series. The amplitudes of the various Fourier
cosine terms, fa(x), vary with x, the streamwise distance. Thus,

a~. mI %
ar

f=(x) Cos 2ne = - —
ar

atr=l

n=o

(7)

Only even multiples of 6’ are considered because of the vertical plane
of symmetry. Consider that the interference potential is decomposed into
a series of potentials such that each cancels one Fourier component of
the velocity at the body surface, that is,

*

.

— ____ .—
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with

l-l

=,

.

(9)

Then the combination giving the interference potential $ can be decom-
posed in a series of combinations each giving one of the g= values.
The decomposition is illustrated in figure 4. For n = O,

a%
T = fo(x)

and there is no variation of the normal velocity, pressure, or potential
with 0. Thus the first interference combination is a body of revolution.
The pressure field acting on the bcdy of such a combination canbe deter-
mined by the method of reference Il. This n = O interference caibina-
tion has the very simple significance that its flow normal to the

aqa~O sfitracted from ~r = 1 cylinder, —
ar’

reduces.the flow across

body to zero when averaged from 13. 0 to 9 = x at any streamwi,se
tion. For n = 1,

a92
—= fa(x) Cos 20
&

and the

To
ference

normal velocity, pressure, and potential wilJ vary as cos

the

loca-

20.

summrize briefly, it has been shown that the general inter-
problem of a body and wing at different angles of attack can be

broken down into wing-body problems with bodies at zero angle of attack
as shown in figure 2. Combinations with the body at zero angle of attack
are decomposed into wings alone plus interference combinations as b
figure 3. The interference combinations are finally decomposed into
their Fourier components as in figure k.

A general method for determining the characteristics of any Fourier
component will now be given. It will be shown that good accuracy can be
obtained for the interference patential with few Fourier components.

Method of Solution

tion
body

The problem to
subject to the

be solved is that of a supersonic
conditions.alreadymentioned, but

wing-body COmbh-
wit~the-wing and

possibly at different angles of attack. This problem is reduced to
a body-alone probla and two wing-bcdy problems with the body at zero
angle of attack as showq~ figure 2., The body-alone problem can be
solved by existing methodp such as ref~ences 6 and 9. The procedure

.,,~, ,.,’3 .

,! . . —. — . . . . ..— — .—-. .. --—. _.—_— --— — -. —.. . .
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necessary to solve either wing-body problem as given in reference 5 is
now summarized.

Wing-alone potential and velocity amplitudes.- The first step in
the solution is to determine the wing-alone potential, q~~. The metha%
of wing theory available for doing this will not be discussed here.
lh?omthe value’of ~ the value of the normal velocity induced at
the r = 1 cylinder follows readily. This normal velocity distribution
is expanded in al?ourier costie series of even multiples of e.

%7.-*
ar I f~(x) cos 2ne at r = 1 (lo)

The
are

n=o

functions fa(x) ~e called the velocity amp~tude functions and
part of the boundary conditions for the interference potentisl.

Interference potential..-The solution for the interference potential
is .obtain~ by summing the potentials for the series of Fourier component
potentials. The determination of the potential for any one Fourier com-
ponent (as illustratedby fig. 4) has been carried out formally in ref-
erence 5 by Laplace transform theory. It was shown that the formal
mathematical solution is equivalent to distributing fundamental solutions

.

for 9 along the axis of the combination in a manner similsx to that of
von K&m&n and Moore in reference 6. Let 9=n*(x-~,r,e) be the funda-
mental solution located at x =

.
5 to be used indetermdning the poten-

tial of the nlth Fourier interference component. Let gm*(~) be the
distribution of this solution along the baly @s from x = -1 to x = w
to satisfy the boundary conditions. Then the potential of the nrth
Fourier component is

First, the set of fundamental solutions 9= *(x,r,e) will be presented,
and then the method of obtaining gm*(~) w?il be discussed.

Axial strength function.- The boundary conditions to be satisfied
by each Fourier component of the interference potential are givenby
equations (5), (6), and (9). The first two boundary conditions sre
satisfied by choosing an appropriate set of fundamental solutions. Such
a set of fundamental solutions, derived in appendix A, is

(n) “
,,

The fundamental solution is located at the petit x = ~, and the value
of 5 varies from -lto-. For n= O an integration is to be per-
formed. The last boundary condition is satisfied by distributing
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fun&ahental solutions, as given in equation (Xl), along the body axis in
variable strength. In appendix B the following equation is derived for
determini.nnthe axial strength function

g=(x) = 2
J

2n(2n!) x M=(x-E) f=’(~) d~
(hnl) o

(12)

The evaluation of g=(x) from this equation is done numerically or
graphically. The values of f= ‘(x) are obtained on the basis of equa-
tion (10). A table of the functions M2n(x) are included as table I for
use in equation (12), and figure 5 illustrates these functions. The
properties of M=(x) are discussed in reference 5.

Potential or span loading.- Once the axial strength distribution of
the fundamental solution is known, the determination of the interference
potential or pressure follows readily. Consider the general point T,
shown in figure 6, where the potenti&l is to be determined. The funda-
mental solution along the @s from -1
at P which is given as

f

2n-1
qa(xjr,e) = ‘-r COSEM a

-1 r~ ax2n-1

to x-r influences the potential

[(x-~)2-r21a-* ga*(& ) ~

(13)

Byma.king a unit translation of the variable of integration so that the
lower limit is zero,

Q2n(x,r,~) =

there is easily obtained

Equation (14) serves
field once the axial

to determine the yotential anywhere in the flow
strength function g2n(x) has been obtained. Since

the integrated lift per unit span up to a given streamwise position x
is proportional to q at that position, equation (14) also gives the
span loading.

Pressure coefficient.-
coefficient is

‘P

On the basis of linear theory, the pressure

2U= -—= 4 Z&
v v

(15)

.?

—-_—_____ —.. —— . . . _—. ..—. — —. ..—- —.—
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With the aid of equation [15) it is readily shown from equation (14) that

P= = -2 I
x-r+l

Cos 2ne
~(’jr) g~(x-r+l-T)dT

V.
(16)

.

where”

.

1 a=[T(T+2r)]=%Ka(T,r)==
aT2n

The proceduxe in obtaining the pressu coefficient is first to
obtain the axial strength function from equation (12) by numerical.or
graphical integration, and then to obtain Pm for any point in the
flow field from equation (16) by the same means.

130dypressure coefficient.- The determination of the pressure coef-
ficient by the method outlined requires two numerical or graphical integ-
rations. In appendix C a simpler method involving only one integration
is derived for the body pressure coefficient. The result for the pres-
sure coefficient is

.

(17)

at r = 1. The functions W=(X) are universal functions. They are
tabulated in table II, and are plotted in figure 7.

Combination potential.- The conbtiation potential is obtainedby
simply adding the wing-alone potential to the interference potential P.
The interferencepotential ~ is obtained as already describedby add-
ing together the interference potentials of a number of Fourier compo-
nent combbations. The lift or pressure coefficients for the combtia-
tion are similarly obtained shply by adding to those for the wing alone
those for the interference combination.

Referrhg again to figure 2, the detailed methd for solving either
cases (b) or (c) has been summarized. To solve the general case of both
body and wing at angle of attack, both (b) and (c) must be solved. The
wing alone for each case is different. The simplest interference problem
is that for the body at zero angle of attack. Under these circumstances,
~ is zero, and only case (b) must be solved. This case wi~be calcul-
ated for a rectangular wing-body combination as,an illustrative example.

— -—-— —-..—— ——-——-
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PRESSURE FIELD ACTING ON A COMKUWHON W1’I!lIREC!UNGDIAR WINGS

One of the simplest wing-body c~inations of technological @or-
tance is that formed by a rectangular wing mounted at incidence on a cir-
cular body at zero angle of attack. The complete pressure field acting
on such a combination wilJ now be determined. The results are inter-
preted in terms of lift and center of pressure presented as a function
of effective aspect ratio aud effective chord-radius ratio. As pre-
viously mentioned, the wing alone can be specified in any convenient
manner and, for the purpose of the example, the wing alone is taken as
the rectangular wing extending straight through the body from side to
side. Although the analysis as carried out is for M = ~, the results
sxe presented in a form applicable to a range of Mach numbers. The steps
in performing the calculation are: (1) to determine 9W, the wing-alone
potential; (2) to determine the velocity smplitude functions, f=(x);

(3) to dete~e tie ~~ stren@h ~ctionsj ga(x); ~d (4) to deter-
mine the potential or presmre, as desird, anywhere in the field. ITo
tip effects are considered until the results axe presented as a function
of wbg aspect ratio.

The wing-alone flow,
from the Ackeret theory.

Wing-Alone Potentisl

-elusive of tip effects, can be determined
The flow at a spanwise station out of the

region of influence of the wing tips is illustrated in figure 8. The
potentisl for the flow above the wing is

VW=Vx when ZZX (18)

~ = Vx + ~V(x-z) when Z<X (19)

aqw is zero and the do~shsuch a potential —
b

The downwash causes a flaw normal to the sur-

face r =1 in smount -u@sinO. This means that for a body conform-
ingto the wing-alone flow, the deformations zero at the wing-body
junctures and a maximum on the top of the body. The interference combi-
nations when added to the deformed body straighten it out Fourier com-
ponent by Fourier cmqponent.

,, ,
Fourier Amplitudes of Body

The Fourier amplitudes of the normsl

alone potential at the body is determined

I?ormalVelocity

velocity induced by the wing- “

a% at -r=1by qandAng —
ar

———. --—— —- —.—-—- -— —-.—— ——–————— — —- .—-
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in a Fourier cosine series of even multiples of e. The normal velocity
distribution is
tiersed in the
ing the Fourier

shown in figure 9. For ‘x21 the body is totally
wing downwash field. ~iiththe usual equation for obtain-
amplitudes of a function, there is obtained

f.(x)

f=(x)

The integrations give

fo(x)

2

f

sin-lx
=—
l-c

~Jv stie de
o

4

J

sin-lx
=—
3(

~~v stie cos2nede
o

2va+7

(
.— l- J--

II )

fo(x) == when
Yc

(20)

(a.)

(22)

(23)

.

v’
f=n(x) =—

[

2 Cos (%1-l)b _2 Cos (2n+l)5 4
Yt 2n-1 2n+l –~ 1when xS1

(24)

-4v~
f=(x) = when X21

fi(4n2-1)
(25)

where 5 = sin-lx. The f2n(x) functions are shown in figure 10. The
constant values of fro(x) for x21 are noteworthy.

Axial Strength Functions

The calculation of the axial strength distributions has been carried
out with the aid of eqyation (12). The integrations were performed
numerically by means of integration formulas given in reference 12. Two
sepsxate cases occur, x<l and x>l. For x<l a typical plot of the
integrand and its components is shown h figure n(a). ‘It willbe
observed that the ~(x-~) function has a singularity at the upper limit
of integration. Since the stigularity is of the squsre root type, it is
easily hadled. For x>l the determination of q(x) is complicated
by the fact that fo’(~) has a square root singularity at ~ = 1, but
shplified Ey the fact that fo’(~) is zero for g >1. A typical plot
of the integrand and its components for x>l is shown in figure n(b).
The singularity of Mo(x-~) has been replacedby that of fof(~) at the

—— ——. —— ——-—
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upper limit of integration. For X = 1 the squsre root singularities
of %(x-g ) and fo’(g) both occur at ~ = 1, reinforcing each other in
such a msmner that ~(x) has a logarithmic singularity at x = 1. In
fact, it can be shown that

4++ - (-lp
(4n:)

(;) q@l,-xl

in the neighborhood of x = 1. The function ga(x) minus the logarith-
mic term passes smoothly through x = 1.

A plot
figure 12.
crosses the
increases.

of the ga(x) functions for n = O to n = 3 is shown in
The main effect noted is that the number of times the cue {

zero axis increases as the order of the gin(x) functions
The singularities at x = 1 are also illustrated.

Pressure Distributions

Obtaining the strength functions of g=(x) is tantamount to getta
the potential or pressure coefficient anywhere in the flow field as given
by equation (14) or (16). If only the span load distribution is required,
then one calculation using equation (14) suffices for each spanwise
station; but if the detailed pressure distribution is requ$red, then
_ c~ctitio~ Wtig equation (16) must be made for each station. me
detailed pressure distributions have been calculated using equations (16)
and (17). ~ equation (16), the factor

appesrs inside the integral as an influence coefficient for converting
axial strength function into pressure coefficient. The factor plays an
bportant role in determining the accuracyof the numerical work. In
figure 13 plots of ~(T,r) and K2(T2r) ‘arepresented showing the singu-
larities of Km(7,r) at the origin of T. These Singularities, together
with those of ga(x-r+l-T) at T= x-r, bring about two different cases
in the deterndnation of the pressure coefficient. If x<r, only
the I&(7,r) singularity occurs in the integration as idlustratedby
figure 14(a). Howev=, for x>r there sre two singularities as shown
in figure 14(b). For x=r the two singularities come into confluence,
but they stillprcduce a finite pressure coefficient.

Interference pressure distribution.- The interference pressure dis-
tributions have been calculated for the first four Fourier components
and s.represented in figure 15. In this figure the abscissa is propor-
tional to distance beldnd the Mach line originating at the leading edge

. . . .. .. -—. — ——.— ---——- —..— .—..— -——————— — —--- ———.—-
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.

of the juncture, as illustrated in the figure. Althou@ the calcula-
tions have been carried out for M = ~, that is, p = 1, and for unit
radius, they are~qeneralizedto all Mach numbers and body radii by rephc- -

ing x-r+l by — – ~ + 1 and Pm by ~P= as has been done in the

figure.
@

IYom the figure it is apparent that the cusps in the pressure
distributions are propagated downstream along lines of constant
x r

~ + 1 or x-pr;———

!

that is, along the downstream characteristics. As

~e pressure distributions move outwsrd from the body along the down-
stream characteristics,they are tistorted and decreased in magnitude.

Increasing the order of the Fourier harmonics causes two important
effects: first, the number of points of zero pressure is increased and,
second, the pressure coefficient damps more rapidly. As a result of the
first effect the contributions of the higher harmonics to the combination
span loading are proportion-y less than their contribuizionsto the
pressure coefficient;while as a result of the second effect the more
remote a point is from the leading edge of the wing-body juncture, the
fewer the nmiber of Fourier components that must be included to obtain
its pressure coefficient accurately. All titerf=ence pressure distribu-
tions exhibit tiscontinuities in slope at ~–~+ 1 = 1. This behavior

!is a consequence of the fact that the body ~com& tota13.yimmersed in ●

the wing-alone flow field for this condition. When the pressure distri-
butions of the various Fomier components are added together to obtain
the interference pressure distributions, the discontinuities in slope “

.

tend to cancel so that the pressure distribution for the combination will
be smooth.

A detaild examination of the interference pressure distribution
for the first Fourier component illustrates several points of interest.
The importance of the component arises fram the fact that it accounts
for most of the effect of interference on the span loading. The reason
for this is that the pressure coefficients for n = O are of invariable
sign. The effect of the first Fourier component is to reduce the veloc-
ity induced normal to the bodyby the wing-alone flow field to zero
average sround the body for 19= O to 19= YC at any streamwise location.

For purposes of comparison with the exact results for n = O, some
approximate results have been included in figure l~(a). For values

of &<l on the body, the Ackeret value of P. (twice the local stream

E@& dlvidedby ~) is a close approximationto the true pressure coef-
ficient. This is the result of the facts that the part of the body
affecting the interference is effectively plane for points nea the lead-
ing edge of the wing-body juncture and that there is no variation of any
quantities with 19 so that an appro-te two-ctbnensionalsituation pre-

,

v-ails. & ~ increases beyond unity on the body, there is a rapid

decrease in the pressure coefficient below the Ack~et value due to the

.— ——. ..— .- ——- —— .—
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effect of all disturbances in front of the point in question as repre-
sented by the integral of eqyation (17).

In reference ~, the fo,#xring ap~,oxhate results were obtained for

small and large values of
(

=+1
$-a )

for the ~easme coefficient:

(27)

Figure l>(a) shows that for values of &–~ + 1<0.6 equation (26) is

a good approximation for n = O although it is of little value for
higher-order harmonics. There is a general tendency of P. to approach a

uniform value @dependent of r as ~ – ~ + 1 becomes large, as shown

by equation (27). The damping in thePa@acteristic direction, although
initially inversely proportional to the square root of r} is ult~tel.y
independent of r.

.

,-

The pressure distributions of figure 15 were determined by equa-
tion (17) for r = 1, and by equations (X2) and (16) for r = 1.5, 2.0,
and 3.0. However, the values for r = 1 were checked by equations (1.2)
and (16) before these eqyations were applied to the higher values of r.
For r = 1 equation (17) gives more accurate results than equations (1.2)
and (16) since it requires o-y one numerical integration. T& accuracy

of both methods of calculation decreases as n and ~ - ~ + 1 increase

!because the small values of the pressure coefficient~ under these condi-
tions are the result of Iar& counterbalancing influences.

Pressure distribution in juncture of wing-body conixlnation.-By
adding the interference pressure coefficients of the various Fourier
components to that for the w5ng alone, the pressure distribution for the
combination is obtained. The addition has been carried out for the wing-
body juncture using four Fourier components and six Fourier components,
and the results are presented in figure 16. The pressure coefficient
with interference is less in magnitude than two, the value wlthouk inter-
ference, shcndng that significant losses of lift occm in the wing-body
juncture. A comparison of the results for four components md ~ com-
ponents shows that four comp~ents give good over-all accuracy for aid.

values of & geater than 1. For small values of ~ in the wing-

body junct&e, the curvature of the body insofar as i%e flow is concerned
is not large so that the body is effectively a vertical boundary onwhich
a given distribution of normal velocity is prducing an interference

.--— — .. .. . . .—— - -——. —— —— —. .-
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v

field. Supersonic wing theory applied to this condition gives for the
net interference pressure coefficient (reference 5)

It is clear that the calculated results can be joined smoothly to this
result. Using the result of equation (28) enibles satisfactory results
to be obtained with four Fourier components.

The critical region in the convergence of the.solution is that nesr
the leaMng edge of the wing-body juncture. The higher harmonics have
their most important effect near here, and rapidly dsmp downstream along
the body. Hence more and more Fomier components wouldbe required to

get accuracy for smaller and smaller vslues40f x However, with the
z“

result of equation (28), this extra work is unnecessary.

One point of interest in figure 16 is the fact that when ~ equals

appraimately 3, the pressure coefficient increases in magnitude. This

x >fi the influence of the opposite half-is due to the fact that for —–

wing is felt in the wing-bcxlyP~uncture.

Pressure distribution on top meridian of wing-body conlbination.-
The pressure distribution on the top meridian of the wing-body combina-
tion is obtained in the same fashion as that at the wing-body juncture,
the difference being-that the pressures due to the even number Fourier
components have the same sign at the meridian as at the juncture, whereas
the odd nuniberedcomponents have reversed signs. The pressure distribu-
tions based on four and sti Fourier components are shown in figure 17.

Several interesting effects sre exhibitedby the results. The step

in the wing-alone pressure at Z = 1 is effectively canceled by tie

interference pressures of the F~&ier components from e=ltoe=
K/2,

~>Tc/2 the pressure increases rapidly and tends toward the two-
‘for pa
dimensional value. The effect of the interference pressme in canceling

the effect of the wing alone on the top of the body from ~= 1

‘0 $=
fi/2 is to be expected since the wing of the combination can

have no effect on the top of the body unless &’/22 as~sbeen

already pointed out. If an &finite number ofrFourier components had
been taken, the pressure coefficientswould be identically zero

from &o to&x/2. ‘l!hegen=al behavior in this regard is evi-

dence of the plausibility of the calculated results.

.

.
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The tendency of the pressures to approach an asymptotic value is also
illustrated by figure 17. This asymptotic value represented by the sum
of the wing-alone pressure plus the asymptotic results for the first
Fourier component is given by the foldowing equation:

(29)

~>2.4, the results of this equation are in good agreement‘or pa
with the results of figure 17.

Some evidence is furnished from the pressure calculations for the
juncture and top of the body concerning the nuniberof Fourier components
necesssry for accuracy. Comparisonsmade in figures 16 and 17 show that
about four components are sufficient, and that the addition of two more
is not worth the extra work.

Pressure distributions for wing of wing-body combination.- The dis-
tribution of the pressure acting on the wing of the combination canbe
determined in amanne~ similar to that for the wing-body juncture by
adding to the wing-alone pressure those due to the Fourier components.
The resultant pressure distribution for the wing based on four Fourier
components is shown b figure 18. A drawing of the pressure field for
the complete configuration is included as figure 19. For smalJ values

~ the higher-order oscillations in the pressure coefficient as
‘f pa
shown in figure 16 have been ignored and the cmves have been faired
through them.

Since the region of influence of the body on the wing is confined to
the wing region downstream of the Mach lines emanating from the leading
edge of the juncture, in front of this he the pressures are uniform
at the two-dimensionalvalue and behind the line there is a decrease in
the magnitude of the pressure coefficient. If the bdywere a perfect
reflector, that is, a vertical wall of infinite extent, then there would
be no pressure loss. However, the pressure pulses originating on the
wing are only in part reflectedby the circular body. The efficiency of
the body as a reflector is discussed subsequently in connection with span
loading. The tendency of the pressure to increase in magnitude near the
imbosrd trailing edge is due to the effect of the op~site ~panel
which at the wing juncture is felt downstream of the point — = m.pa

The span load distributions for a range of rectangul= wing-body
combinationswith the body at zero angle of attack can be determined

.— —— —- –——— —— .—
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from the pressure Ustributions of figure 18. For pm-poses of specify-
ing the span loaiktngthe folJn?ing equation is used:

)

(30)

The span loading is taken as the quantity inside the brackets.

The pressure results of figure 18 are for v-dues of the effective
chord-radius ratio of 4 or less and for values of the effective aspect
ratio of 2 or geater. Span loadings for any combination of & (or c*)

and ~ in these radges can be obtained by integrating the pressure dis-
tributions. The span loading evaluations have been made for c* = 4
and ~A>2. First the span loadings due to the various Fourier components
are discussed, and then the span loadings for the ac- @-b@ c~i-
nations are presented.

Fourier component cmibtiations.- In figure 20, the contributions to
the span loading for the first three Fourier components are shown.
For n= O the pressure field does not depend on 0, being axially SP-
metric, and a constant loading exists on the body. However, on tie ~
as the spanwise distance increases there is a decrease in the span load-
ing due primarily to decrease-in the lengbh of chord over which the
interference preasmes act. The span loading due to the first Fourier
component causes a loss of lift everywhere along the span.

A comparism of the results of figure 20 for n = O ad n = 1 shows
that the first Fourier component accounts slhnostentirely for the effect
of interference on the span loadhg of the combination. For the body
this fact is even more true than for the -g. This f=t iS of co~ider-
able hportance since it gives a simple means of extending the lift and
moment results to larger values of ~ than those for which the pressure

pa
distributions have been calculated. Also, it suggests a simple means of
minimizing the adverse effects of interference on lift as wiKl subse-
quently be pointed out.

With the techniques of Laplace transform theory, it is possible to
obtain asymptotic formulas for the span loadings
components. For the first Fourier component the
result has been obtainedby the standard methods
theory. (See reference 5.)

of the vsrious Fourier
following asymptotic
of Laplace transform
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1

.

The asymptotic result for
compared with the results
seen to be slightly high.

the span loading given by this equation, when
of the exact calculations in figure 20, is
However, for values of & greater thsm 4

the tifference between the results decreases, and e&uation (31) thus pro-
vides a satisfactorymeans of extrapolating the results of the present
calculations for span loading to larger values of

k

The asymptotic result has
Fourier components as a matter

f

Xp
-2 s &+ 8 C!OS 2n6

o %7 nn(4n2-1)- -

also been determined for the higher-order
of interest. The span loading

+=+d(kn-’)’cos:: &+m

() $a
m(ZW )2(4n2-1)24=-1 +

j3a

(32)

A comparison between the results of equation (32) and the exact solution
for n = 1 in figure 20 shows agreement and corroborates the fact that
the span loading of aXl but the first Fourier component is negligible

~>4.
‘m pa It is also to be noted that the contribution to the loading

of the first component given by equation (31) increases without limit
as x+ m, whereas the span lotig of the higher-order components is
finite.

Family of complete combinations.- To obtain the span loading for the

family of combinations for which & = 4, it is necessary to consid= the

loading of both the wing slone smdrthe Fourier components. The necessary
calculationshave been carried out and the span loadings for the family
of combinationsbased on one and four Fourier components sxe both shown
in figure 21. The loading due to the wing alone is also shown. No
effect of wing tips has been included. It is to be noted in figure 21
that, whereas the loading on the wing due to its own pressure field is
constant, there is some loss on the body because of the fact that the
pressure field of the wing alone acts on the body only if xa~a sin ~.
However, if an afterbcdy is included, some of the lift lost can be recov-
ered. As has ~eady been pointed out, the pressures due to the first
Fourier components are positive on the upper U of the wing-baiy combi-
nation and produce a loss of lift, as figure 21 shows. When the effects
of four Fowier components are taken into account, the net Uft is
slightly higher than that for one Fourier component, but the difference
is not si@ficant. For most engineering purposes, one Fourier component
is sufficient for determining the span loading when S>4.

pa

Same insight into the mechanism of wing-body interference can be
gained by comparing the span loading for the combinationwith those for
two reference loadings: (1) the complete reflection case for which the
blanketed area of the wing acts effectively at ~, and (2) the
no-reflection case for which the blanketed area of the wing is supposed

.- —.. — _.. —- —--- -- --—
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effectively at zero angle of attack. The span loading correspond-
the first case of complete reflection of the wing pressure pulses
body is, in fact, the span loading msrked ‘wing alonetrin fig-

~e 21. A-com&ison of this curve with that based on one or four
Fourier components shows that the loading given on the assumption that
the wing blanketed srea is fully effectim in lift is too optimistic.
Under the conditions of the second reference loading, the sole purpose of
the blanketed srea is to support lift generated by the wings. A compari-
son of the span loading for this case with the true loading shows that
the average load on the body is weIl predicted, but that the loading on
the wing is, of cowse, underestimated. A comparison of the true load-
tigwith those for the two reference cases reveals the interesting fact
that the body is somewhat less than 50 percent effective in reflection
for this particular family of configurations.

f
Lift

For values of *<4. the pressure distributions already presented

are sufficient for obt~g span loading or lift on either the wing or
body for ald combinationshaving sufficiently large aspect ratios to
avoid effects of the tips on the wing-body interference. This is the
case for @>2. For values of & larger than four, the lift results

are presented in terms of a nonilhuensionalparameter kw, defined as the
ratio of the lift on the exposed half-wings in combination (exclusive of
that on the bcdy) to that on the exposed half-wings joined together.

.

.

~>4 the value of ~ can be obtained by
‘or pa
form of the span loading given by equation (Q).

(33)

using the asyqtotic

[ ‘- -Llog(?+&)-*log(F+l)lY(:** .C*
kw .-u1- / . J

c*+m (34)
4

The zmlues of
tions of figure 18

S>4.
‘Ues ‘f pa

kw
for

The

have been determined from the pressure distribu-
&<4 and from equation (34) forvalues of ~a .

effect of t~= wing tips has been taken into

— —— - — —
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account by utilizing reference 13. The results
wherein ~ is given as a function of ~ for$a
ratios of 2 and @eater. It should be borne in

.
25

are shown in figure 22
various effective aspect

mind that the results of
the figure are for a combination of body smd rectangular wing or an all-
movable, rectangular control surfacecwith no gap. It is noted in the
figure that the exact results for ~<k can be faired into the asymptotic

‘>4, thereby providing a design chart for engineering pur-‘etits ‘or $a
poses for the entire range of ~. The curves of figure 22 illustrate the

decrease of kw .as A increases at constant effective aspect ratio,pa
and the slow increase of kw toward unity as the wing chord becomes
very large. The loss of lift is most serious for M= 2, being about
15 percent in the worst case.

A practical point in connectionwik the loss of lift on the wing
due to interference is that this loss occurs no matter what the body
angle of attack, even though the calculations are made for ~ = O. It
occurs either in the case of a wing mounted on a body or in the case of
a deflected all-movable control surface. For wings with swept leading
edges for which all of the wing area lies in the region affected by the
interference, even larger losses than occur with rectangular wings are to
be anticipated. Howeverj the loss of lift at the design condition can,
at least in principle, be largely prevented by designing the fuselage
so that it conforms to the first Fourier component in the wing-alone
flow. This would involve contracting the fuselage above the horizontal
plane of symmetry in a rotationally symmetric fashion and expanding a
like smount beneath
such a change would
by experiment.

the horizontal plane of synmetry. Whether or not
improve the lift-drag ratio can best be deterndned

Center of l?ressure

The center-of-pressurelocations have been calculated for the same
condition as the lift results of figure 22. The center-of-pressureloca-
tion in chord lengths behind the leading edge are presented in figure 23.
For large values of c*, sm asymptotic result has been calculated for
xc.po/c risingthe methods of Laplace transform theory and considering
only one Fourier component.

11

[

__+l+&)++s&j)]log 2C* + 2—-— -
Xc.p. 2 3W PC* flc* NC*
—m

c

‘w (1 -k)

as c*+m (35)

- -— _ .—. , -. .————..
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,
xc.p.The values of — have been determined from the pressure distri-

butions of figure 18 f~r values of 9<4 and by equation (35) for

~>4. The loss of lift %ar the tips has been taken into
‘Ues ‘f pa
consideration. The exact results for ~<k have been faired into the

pa
asymptotic results for large values of & by dashed curves to provide

an engineering design chart covering the entire range of
g“

It iS

again mentioned that this chsrt is applicable both to the wing of an
airplane or missile or to an &El.-movable,rectangular control surface

with no gap. The curves of figure 23 stat at values of ~ corre-

sponding to those for the wing alone at q. 0. ~ c increases for
pa G

constant @ there is a forward movement of the center of pressure
because of the loss of lift due to interference which is mostly effective
on the rear of the wing. For the lowest effective aspect ratio of 2
there is about a 4-percent forward movement of the center of pressure
due to interference in the extreme case. For large effective aspect

ratios the forward movement is not nearly so large. A ‘he ‘due ‘f &
increases for constant @ there is an asymptotic approach of the center
of pressure back to the wingyslone value.

Drag

+’

.

The results of the lMt calculations can be used directly to deter-
mine the effect of interference on the wave drag at zero angle of attack
of a symmetrical, double-wedge, rectangular wing mounted on a circular
cylinder. In fact, it
drag coefficient basal

is not &fficult to derive the result that this”
on the area of the exposed wing is given shpl.y as

&)~(2’A~ %’)-4(1 -*)~(’A’c*) ‘3’)

Equation (36) is for the msxhm-thiclmess position at the midchord,
although Other msxhrum-thiclmess positions can easilybe handled.

The values of the drag psrameter given by equation (36) have been
calculated for effective aspect ratios of 2, 3, and 4 us~ the values
of ~ from figure 22. The results of the calculations are shown in

“P%
figure 24 wh=ein — ~ for constant values

(t/c)2 ‘s ‘ldted ‘t pa

1%of $’. At —=0 — is equal to the wing-alone value of 4.
~a (t/c)2

,.

“

..——- ————.——
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increases, there is an increase in drag which in the extreme case
~+
amounts to about 4 percent f~r ~ = 2, and thereafter there is a steady
decrease in drag until at — = 12, the up~r range of the calculations,

pa
there is about a 4-percent decrease in drag from the tig-alone value.
For other effective aspect ratios the changes are inversely proportional
to the effective aspect ratio. It can thus be said for rectangular

wings of the present type tith ~>2 and -S-~~ that no ~ofi~t
pa

effects of interferericeon the minhcml drag occur. For missile-~ke con-
figurations for which the wing contributes only a small part of the drag,
the effects of interference on minhumdrag willbe negligible. For
wing-bdy combinations having a large part of the wing 1- behind the
Mach waves from the leading edge of the wing-body junctures, there can
be appreciable effects of

A
obtain
a wing

theoretical method
the pressure field

Interference on mininn& -wave drag.

CONXUDIITG REMARKS

has been developed that makes it possible to
acting on a wing-body combination composed of

with supersonic leading and trailing ed~es and a circu& bodv.
The method has been applied ~ the calcula~ion-of the pressure fiel&
acting on combinations of bodies ~d rectangular wings with the bodies at
zero angle of attack. The exact calculations are for cumbhations for
which the effective aspect ratio of the exposed wing panels joined together
is greater than 2, and for which the effective chord-radius ratio is 4 or
less. For the fsmily of combinations for which the effective chord-radius
ratio is 4, it was found that the blauketed area of the wing acts effec-
tively at zero angle of attack and served primarily to support lift carried
over from the wing onto the body. It was determined that for this family
of combinations the body was somewhat less than 50 percent effective, com-
psred to a perfect reflection plane, in reflecting pressure waves back
onto the wing.

By compar~ the contributions to the span load3ng of the various
Fourier components, it was determined that for rectangular wing-body
combinationswith effective chord-radius ratios of 4 or greater, the
loss of lift due to interference is associated principa13y with the first
component. On the basis of t~s fact it is possible to obtain s@le
asymptotic formulas for wing lift and wing center-of-~essure positions
for large values of the effective chord-ratius ratio. The restits of
the exact calculations and of those based on the asymptotic formulas
enabled the construction of design charts showing the wing lift and
center-of-pressureposition as a function of effective aspect ratio and
effective chord-radius ratio. These charts are applicable to wings or
control surfaces deflected in the presence of a round body. The charts
show that as a result of interference the lift of the wing panels in com-
bination canbe reduced as much as 15 percent,from that of the halF-wings

———— . ..—__ — - -—— _____
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jotied together, and that the center of pressure of the wing can move
forward as much as k percent of the chord. I?olarge effects of inter-
ference on the wave drag of symmetrical double-wedge rectangular wings
with the &dlmlm thickness at the midchord were found.

Ames Aeronautical Laboratory,
National Advisom Comittee for Aeronautics,

Moffett Field, CaMf., January 8, 19520

.
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DETERMHW?ION

APPENDIX A

OF FUNDAMENTAL SOLUTIONS

COMI?ONENT coMBmoNs

Von K&m& and Moore determine the potential

FOR FOURIER -

for a body of revolu-
tion by distributing along the axis of the body fundame -ntal solutions of
an axially symmetric type. This naturally suggests the use of fundamen-
tal.solutions varying P.s cos 2ne for the Fourier component combinations
for which the yotential varies as cos 2n0. such tidamentd solutions
satisfy the boundary condition given by equation (5). The boundary con-
dition givenby equation (6) canbe satisfied by making the fundamental
solution ima@nsry in the forecone, that is, by making ~C proportional

to [(x-~)2-r2]m’2 where m is an cdd integer. These conditions make
the desired fundamental solutions of the form

cos 2n0 [(x-g)2-@]m’2 $(x~,r)

where $(x-g,r) is a functioq tobe determined in such a manner that the
fundamental solution obeys the wave equation. The parameter ~ is the
position on the x sxis where the.fundamental solution is located. In
the case of a wing-body combination, ~ will vary from -1 to ~. HOW-
ever, a value of ~ = O is used in the derivation of the fundamental
so@tion so that it will be at the origin. If, as a simple possibility,
~(x,r) is takenas a power of r (or x) and the fuudamehtal solution is
substituted into the wave eqyation in cylindrical coordinates (see fig. 1
for coor-te system)

two possible sets of fundamental solutions are obtained

+x2-r2
Cos 2ne #11

(Al)

(A2)

Cos 2M
#n

(A3)
(x2-r2)a+

“Thefirst solution is singulsr along the body axis (r = O), and the
second solution is singular along the Mach cone (x = r). Derivatives of
the above solutions with respect to x are again possible fundamental
solutions.

A set of fundamental solutions having its singularities SLOW the
body sxis wouldbe better Jhan a set

—.— .—.—.—.-———

ha~g its s&ulsrities on ~he

— _ — —_— .—____
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“

Mach cone since it was desired to get the ~ernal flow field about a
combination. However, when the foregoing fundamental solutions with the
singularities on the axis were used, it was discovered that the functions

,,

defining the strengths of the distributions along the body axis had
unmanageable singularities. In fact, only by using the (2n-l)tth deriv-
ative with respect to x of these solutions was another set of funda-
mental solutions obtained which gave manageable singulxofitiesin the
strengths of the distributions along the axis. The set of fundamental
solutions, Pa*(xyr, e)J

qa*(x,r,e) = COS2w3a=-l
&n &2n-1 (&-# )=-* (A4)

are those adopted for this re~ort. For n = O, the pxtial differential.
tion convention of equation (A4) is taksn to indicate an titegration
with regard to x.

.

— —-—.
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DETERMHMTIOli

Y.

AJ?PENDIXB

OF AXIAL STRENGTH FUN2TIOl!lSFOR FOURIER

COMPONENTCOMKCNATIONS

The distribution along the axis of the fundamental solution is deter-
mined by the boundary condition of equation (9), that is, the distribu-
tion is to produce a given velocity amplitude function fa(x). If the
distribution of g=*(x,r, e) (equation (A4)) along the body sxis
from -1 to co to prcduce a step function of fzn(x) were known, then
the axial strength distribution to produce the given function f2n(x)
could be closely approximated by step functions as shown in figure 25.
Let hm(x-l) be the distribution along the axis from -1 to UJ to pro-
duce a unit step in fan(x) at the origin. Then to obtd.n the axial
strength function to produce the stepwise apprmimation to fan(x) shown
in the figure, the following sum must be formed:

~ h=n(x-x,+,-l)
j=o

If g n*(x-l) is the strength distribution along the da for the actual

7fa(x distribution found by letting the h’s approach zero, then
since fro(0) = O .

f

x
g2n*(x-1) = han(x-l-~)fa’(~) d~ (Bl)

o
with the definitions

g~n*(x-l) = gzn(x) (B2)

han(x-l) = = M,n(x)
(4n!)

there is obtained

(33)

(B4)

The changes introduced by equations (IQ) and (B3) -e convenient for
future work. By equation (B3) the function ~(x) is a simple fraction
of h~(x-1), the axial strength distribution necesssry to produce a unit
‘step in f=(x). The functions M=(x) have been studied and evaluated
numerically in.reference 5, and the numerical values are tabulated in

— .-— -— ——. . ..— .—— .— ——-——— — --
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.

.

table I. A plot of these functions is shown in figure 5. These func-
tions, together with equation (~), give a simple means of obt~g the
axial strength distributionby means of numerical or graphical integra- .

tion for any desired f=(x). The possibil.ltyof finding universal
functions Ma(x) for doing this is a consequence of the fact that the
body iS CylilldriCd.In the&m&n-Moore method no such simple rela-
tionship is possible because the body is of arbitrary shape.

.- — ——— .—— —— ————
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APPENDIX c“

ALTERNATE METHOD OF OBTAIITINGBODY PRESSURE COEFFICl131?I’

OF FOURIER COMPONENT COMBINATION

33

A method of obtain@ the body pressure coefficient involving only
one numerical integration is now given. Consider a disturbance at the
origin formed by a bump on the surface of the body as shown in figuxe 26.

The nondimensional smplitude of the bump + is to be zero except

just at the origti where the area under the f=(x) curve is unity, that
is, the disturbance is a “delta function”. The smplitude is to vary
as cos 2nf3. Now if the pressure,coefficient in the wing-body juncture
is -2 W=(X) due to the unit disturbance at the origin, then the con-
tribution to the pressure coefficient at a downstream distance x due
to a distribution of disturbances from the origin to the point in ques-
tion is

f

x
5Pa = - $ cos~e f’~(E)w2n(x4)& (cl)

o

This integral is the effect of all disturbances forward of the point @
5s additive to the effect of the disturbance exactly at the point. The
local value is that given by the Ackeret theory, namely,

2az
P=-—

K

where al is the local angle of attack

f=(x)
al = — costie

v

The pressure coefficient due to all disturbance

(C2)

(C3)

iS thus

J
x

P= =$ cos~e fen(x) - $ coshe f2n(5)W=(x-~) d~ (C4)
o

The advantage of this method of obtaining the pressure coefficient at the
body surface is that the pressure coefficient is obtained &Lrectly as a
function of the boundary condition, fa(x), without first determining an
axial strength function.

The W=(x) functions introduced to determine the body pressure dis-
tributions are universal functions that have been studied in reference 5.

. . ...— .———--—— -- -—— -- —. —— .—
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They are presented
ure 7. The values
ence 11.

.

in table II, and curves of them are presented in fig-
of W.(x) have been tabulated by G. N. Ward in refer- .

Several interesting facts sre illustrated by figure 7. The ampli-
tude of the pressure distribution due to a unit disturbance of the type
shown in figure 26 has exactly 2n points of zero pressure, and these
points are nesrly evenly spaced. The large number of potits of zero
pressure for the higher harmonics makes their lift contributionsmuch
less significant than their pressure contributions. Another interesting
feature of figure 7 is that the W=(x) functions damp mmih more rapidly
in the downstream direction for the higher harmonics than the lower hsr-
monics ● In fact, for n = O the damping to 4 percent of the maximum
value occurs about 7 body radii downstream, whereas for n = 5 the same
damping occurs in about 2 bdy radii. ,

— —
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TABLE I.- VALUES CIF M=(x)

x

o
.05
.1
.15
.2
.25
●3
.35
.40
.45
.50
.6

:~5

.85
●9
.95

1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0
2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
3.0
3.1

X
3.4
3.5
3.6

;::
3.9
4.0

Jo(x)

-m

----

L.3=.
----

-.868
----
----
----
-.538
----
----
-.378
----
----
-.292
----
----
----
-.224
----
-.~80
----
-.147
----
-.122
----
-.102
----
-.096
----
-.073
----
-.062
----
-.053
----
-.045
----
-.038
----
-.031
----
-.@6
----
-.022
----
-.018
----
-.016

-m

----

-.787
----
-.166
----

.131
----
.304

--—
—--
.450

----
----

.457
----
----
----

●3%
----

.2;4
-—-

.Wi3
----

.088
----

.005
----

-.05
----

-.100
----
-.123
----

-.126
----

-.IJ9
----

-.103
----
-.083
----
-.061
----
-.040
----
-.022
----
-.007

M*(X)

-m

-.531-
.405

----
.ya?

----
.83

----
.560

----
.245
-.040
-.253
----
-.386
----
-.434
----
-.412
“.337
-.231.
-.115
.000
.095
.163
.204
.211
-197
.164

----
.069
.020

-.022
-.053
-.073
----
-.080
-.071
-.060
-.038
-.019
-.0CX2
.O11
.021
.027
●W
-025
.022
.015

-w

-.716
1.334
1.155
●735
.279
-.U9
-.417
-●595
-.675
-.655
-.417
-.070
.095
.235
.340
.406
.433
.420
.306
.123
-.062
-.lfl
-.256
-.239
-.162
-.062
.036
.105
.134
.M21
.C@
.036

-.013
-.053
-.(%3
-.059
-.042
-.019
.005
.@2
.030
.028
.019
.008

-.002
-.o11
-.014
-.103-

fIWITE that b(x)+ - * ~ as X+o.

—.. —— —. —c. .— —. —..— ..



38 NACA TN 2677

TABLE II.- VALUESOF w=(x)

x

o
.05
.10
.15
.20
.25
.30
.35
.40
.~o
.60
.70
.80
.85
.90
●95

1.0
1.1
1.2

:::
1.5
1.6
1.7
1.8
1.9
2.0
2.1
2.2
2.3
2.4
2.5
2.6
2.8
3.0
3.2
3.4
3.6
3.8
4.0

WJX)

0.500
----
----
----
.4319
----
----
----
-3755
----
.3284
----
.2887
----
----
----
.2550
----

.2262
----
.2014
----
.1801
----
.1616
----
.1454
----
.1313
----
.=89
----
.1080
.0983
.@98
.0822
.0754
.0693
.0638
.0590

w*(x)

O.ylo
----
----
----
.7*1
----

----

----

.878
----
.892
----
.826
----
-—-
----
.706
----

*557
----
.4a2
----
.255
----
.128
----
. cr26
----

-.048
----

-.097
----

-*I22
-s28
-.122
-.104
-.082
-.0%
-.035
-.017

W4 (x )

O.yx
—--
--—
----

1.644
----
----
----

1.929
----

1.428

:%
—-
----
----
-.024
----
-.464
----

-“558
----

-.418
----

-.142
----
.081
----
.195
----
.196
----
.Im
.025

-.049
-.078
-.068
-.035
-.003
--—

W=(x)

0.500
----

2.022
—--

2.888
3.037
3.008
----

2.462
l:@&

----
-.940
----
----
----

-.974
----

-.150
--*-
.457
----
.455
-—-
.073
----

-.222
----

-.217
----

-.035
----
.106
.098

-.001
-.043
-.050
-.008
.046
.024

w~(x)

0.500
--—
3.136
3.884
4.176
4.021
3.486
----

1.7W
-.215
-1.458
-1.697
-1.u6
---
-.163
----

.634

.930

.741
----

-.213
-.479
-.514
----

.022
-—-
.276

—--

.043
----

-.173
----

-.053
.075

----

-.049
-.030
.old.

----
----

w~o(x;

0.50(
2.7ti
4.45$
5.261
5.16!
4.21:
2.857
1.20$
-.34:
-2.296
-1.9%
-.461
.98c

1.317
1-345
1*1W

.676
-.279
-.803

.638
-.045

*399
.475
.251

-.129
-.297
-.214
-.005
.1$
.167
.061

-.0%
-.108
.007
-O*

-.066
-.017
.022

----
----

—

.

*

0
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Figure 24- Effect of interference on h% minimum wave drug of a rectanguhr double -

wedge wing mounted or? o circular body, maxhwm thickness at wing midchord
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Figure 26. - Fourier componenf interference combinofion with
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