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By Jack N. Nielsen and William C. Pitts
SUMMARY

An exact theoretical method is developed that permits the determina-
tion of the pressure field of a wing-body combination having a cirvular
body and a wing with supersonic leading and trailing edges. Detailed
calculations have been performed for wing-body combinations composed of
rectangular wings mounted at incidence on bodies at zero angle of attack
for effective chord-radius ratios of 4 or less. For large effective
chord-radius ratios some asymptotlc results have been obtained. It was
determined that for the family of combinations having an effective chord-
radius ratio of 4 the area of the wing blanketed by the body does not
generate any lift itself but rather acts to support the 1ift generated
by the exposed wing, and that the body is less than 50 percent effective
in reflecting 1ift back to the wing. For chord-radius ratios less than UL,
the relative amount of reflection increases.

The significant fact was determined that for rectangular wing-body
combinations for which the effective chord-radius ratio is greater than k,
most of the loss of 1ift due to interference can be estimated from the
first term of the Fourier series used in the analysis. This fact weas
used to determine asymptotic 1lift results for the reglon where no exact
calculations were made. The asymptotic expressions, together with the
calculations, allowed the construction of design charts showing the 1ift
and center-of-pressure location of the exposed wing panels as a function
of effective aspect ratio and effective chord-radius ratio. The charts
show that as a result of interference the 11ft on the exposed wing panels
in combination with the body can be reduced as much as 15 percent below
the value for the wing panels joined together, and that the eenter of
pressure of the exposed wing panels can move forward as much as U percent
of the wing chord.

INTRODUCTION

In recent years the problems of supersonlc wing-body interference
have occupied the attention of many workers in serodynemics. The large
amount of effort expended on the subject ls a result of the important
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effects that interference can have on the over-all aerodynamic character-
istics of wing-body combinations. The trend towerd using large bodies
and small wings at supersonic speeds, especially for missiles, is the
prime reason for the increased importance of wing-body interference at
these speeds.

Much significant work has already been done in the field. In ref-
erence 1, Spreiter has shown that, when a wing-body combination is slender
in the sense of his paper, simple expressions for the 1lift and moment
coefficients can be derived. These results were obtained by reducing a
three-dimensional problem for the wave equation to a two-dimensional
problem for Laplace's equation. Another approach is that of simplifying
the differentlial equation by using conical boundaries. Following this
approach, Browne, Friedmen, and Hodes in reference 2 obtained a solution
for the pressure field of a wing-body combination composed of a flat
triangular wing and a cone both with a common apex. The use of all-
conical boundaries reduces the problem to one of conical flow for which
powerful methods of solution are availsble.

Several investigators have presented methods for determining the
pressure field, including the effect of interference, acting on wing-body
combinations employing circular fuselages and wings not necessarily
slender. 1In reference 3, Ferrari has given an approximate method of
obtaining the "interference of the wing on the streamlined body, assuming
that the induced field generated by the wing is that which would exist
around the wing if it were placed in the uniform stream alone.” Simi-
larly, the interference of the body on the wing has been determined. The
results of Ferrari thus represent a first approximation and, while a
second approximation using the method is possible in principle, it appears
that too much labor would be involved.

Another method for estimating the effect of interference on the aero-
dynamic properties of wing-body combinations which are not necessarily
slender is given in reference 4. In this reference the method is applied
to determining the drag of symmetrical wing-body combinations; it is also
applicable to the calculations of the 1ifting pressures acting on combi-
nations employing wings with supersonic edges. In reference 5, an essen-
tially new method of solving a wide class of wing-body interference pro-
blems has been presented. The method is based on decomposing the inter-
ference of a wing-body combinetion into a number of Fourier components
and solving the problem for each component in a manner similar to that
used by von Karmsn and Moore in reference 6 for bodies of revolution.

To summarize the present situation, it can be said that the existing
interference methods fall into two categories. The first category
includes those attempts to solve difficult boundary-value problems as in
references 3, 4, 5, and T. These methods have the shortcomings that they
all involve a great deal of labor, and that, with the exception of ref-
erence 5, they represent approximations to the true linear-theory solu-
tions. The second category includes simpler methods such as those of
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references 1, 2, and 8 and existing approximate engineering methods.
These methods have the disadvantages of being applicable only to special-
ized configurations or of being based on assumptions of unknown validity.

At the present time, there is a definite need for a simplified gen-
eral theory of wing-body interference that will give results of engineer-
ing accuracy for a wide range of wing aspect ratio, taper ratio, leading-
edge sweepback angle, and span-diameter ratio. The reasons that none has
yet been developed are twofold: first, the lack of systematic experi-
mental results makes an empirical theory difficult; and second, incomplete
knowledge of the mechanism of wing-body interference, because of the
shortage of exact solutions, makes it difficult to develop a reliable
rational method. The development of a simple general theory of wing-body
interference seems thus to be dependent on obtaining a few exact solutions
that will give sufficlent insight into the mechanism of interference to
permit valid simplifying assumptions. Such solutions are also necessary
to assess the validity of the assumptions underlying present theories.

In reference 5, a solution has been obtained to a wing-body problem
that is exact within the limitations of linear theory. It is the pur-
pose of this paper to present a résumé of reference 5 with special
emphasis on the physical principles underlying the interference. It is
hoped that the insight gained into the mechanism of interference in this
paper will be sufficient to allow the development of & simple, reliable
engineering method.

In this paper, a physical description of the interference problem
will be glven, and an 1llustrative example of a rectangular wing at inci-
dence on a round body at zero angle of attack will be presented in detail.

SYMBOLS

a / body radius

A aspect ratio of wing formed by Jjoining exposed half-wings
together

c chord of rectangular wing

c* effective chord-radius ratio(}ii)

Cp minimum wave drag coefficient of wing based on exposed
wing area

cp chord at wing-body Juncture-

Cg chord at. wing tip
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velocity amplitude function of n'th Fourier component
axial strength function of n'th Fourier component

axial strength function for unit step in f.,(x) at
origin

Luc
Ly

function used in determining Py,

1ift on exposed half-wings Joined together

1ift on exposed half-wings in combination with body
1lift

1ift due to n'th Fourier component

odd integer

free-stream Mach number

characteristic functions

number of Fourier component

pressure coefficient <— %

interference pressure coefficient due to n'th Fourier
component
free~stream dynamic pressure

cylindrical coordinates: y = r cos 8, z = r gin 6
(See fig. 1.)

semispan of wing-body combination

maximum wing thickness
thickness ratio of double-wedge wing

axial, lateral, and vertical perturbation velocities,
respectively
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Pon
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¥(x,r)

Cartesian coordinates: x, axial coordinate; y, lateral
coordinate; z, vertical coordinate
(See fig. 1.) ‘

center of pressure of wing 1ift measured from wing lead-
ing edge

free-stream velocity

body angle of attack

local angie of attack <— %)

upwash angle of body-alone flow
wing engle of attack

JMEL

effective aspect ratio

gin~1lx

Ct
taper < c—r->

dummy variables of integration

sweep angle of wing leading edge

interference perturbation velocity potential
combination perturbation velocity potential
wing-alone perturbation veloci£y potential

n'th Fourier component perturbation velocity potential
fundamental solution for n'th Fourier component

undetermined function of x and r

PHYSICAL, PRINCIFLES

Prior to a mathematical formulastlon of the wing-body interference
problem, it is well to define Interference and to explalin how it arises.
With a stationary wing or a statlonary body in a uniform parallel flow,
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there are associated the wing-alone and body-alone flow fields. If the
wing is immersed in the body-alone flow field, the fluld velocity due to
the body-alone field will not, in general, be tangential to the wing (or
conversely). For this reason, the sum of the body-slone plus wing-alone
flow fields will not be the flow field for the body and wing together.
The difference between the flow field of the body and wing together and
the sum of the body-alone and wing-alone flow flelds is defined to be the
Interference flow field.

Effect of Forebody on Wing

The effects of wing-body interference on the flow fleld of a wing-
body combination are illustrated by considering separately the effects of
each component on the others. For the purposes of this discussion
figure 1 shows & wing-body combination divided into the part in front of
the leading edge of the wing-body Jjuncture, henceforth called the nose,
the winged part and the part behind the wing trailing edge, henceforth
called the afterbody. The wing may be twisted and cambered, but it is
assumed to have supersonic leading edges. Consider now the flow as it
progresses past the body. At the body nose the flow is that around a
body of revolution, and it can be treasted by existing methods such as
those of references 1, 6, and 9. When the body is at angle of attack ag,
there is an upwash field in the horizontal plane of symmetry of the body.
If the body is sufficiently slender, the flow field in a plane at right
angles to the body axis corresponds to that around a circular cylinder
in a uniform stream of velocity, V sin ag. This gives an upwash field
in the horizontal plane of symmetry of the body of

g =ap (1 +a2/y2) (1)

The effect of this upwash on the wing can be obtained by considering the
wing to be at angle of attack and twisted according to equation (1) and
by applying the formulas ot supersonic wing theory. The wlng pressure
Pfield so obtained is exact, within the limitations of the theory, for
that section of the wing outboard of the Mach line emanating from the
leading edge of the wing-body Jjuncture. If the wing 1s located close to
the body nose so that there is a chordwise variation in the upwash field
due to the body, then the wing is effectively cambered, and the solution
is more difficult. However, for most wing-body combinations it is pos-
sible to disregard the etfect of the nose, and to asgume that the wing-
1s attached to a circular cylinder that extends upstream indefinitely.

Mutual Effects Between Body and Wing

The mutual interference between the body and wing on the winged part
of a combination causes an interference fleld acting on the body and on
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the wing inboard of the Mach line emanating from the leading edge of the
wing-body Jjuncture.

The wing-alone flow field does not, in general, produce flow tan-
gential to the position to be occupied by the body surface. An inter-
ference flow field must arise that cancels the velocity induced by the
wing-alone flow field normal to the body while not changing the hody
shape. Alternately, the origin of the interference field can be explained
in the following manner. The wing and body can be thought of as sources
of pressure disturbances that radiate in all directions in downstream
Mach cones. The wing disturbances which radiate toward the body are in
part reflected back by the body onto the wing and in part transmitted
onto the body giving rise to interference pressures. Likewise, the dis-
turbances originating on the body pass onto the wing and affect-the pres-
sureg there. It is apparent that the determination of the interference
pressure field on the body and on the wing inboard of the Mach line of
the juncture is the crux of the wing-body interference problem.

Mutual Effects Between Wing Panels

To determine the region of influence of one wing panel on another,
it is necessary to trace the path of a pulse from one wing panel across
the body onto the other. The path traced across the body by the pulse
originating at the leading edge of the wing-body Jjuncture 1s the forward
boundary of the region of influence of one wing panel on the body. (See
fig. 1.) It is clearly the helix intersecting all parallel elements of
the cylinder at the Mach angle. The boundary crosses the top of the body

14
a distance of E?«/Ma—l downstream and reaches the opposite wing-body

juncture a distance waa/M2-1 downstream. A pulse originating et a
point on one wing panel and traveling to & point on the other panel can
travel around the body on its surface to the opposite Juncture and then
along the wing to a given point, or it can leave the body tangentially
before reaching the opposite wing juncture in a straight path to the
point. The second means of transmitting the impulse is shorter in dis-
tance than the first and is the one which determines the forward bound-
ary of the region of influence of one wing panel on the other. Applying
this consideration to the pulse originating at the leading edge of one
wing-body Jjuncture, it is easy to show that the forward boundary of the
region of influence of one wing panel on the opposite wing panel is
given by the equation

X
M2

This boundary is also shown in figure 1, and it becomes parallel to the
Mach direction at distances far from the body.

= <J‘[ - cos’l% a + J}TZT&E (2)
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Effects on the Afterbody

As far as the interference effect of the body on the wing is con-
cerned, it 1s confined to the winged part of the combination, but’ the
effect of the wing on the body is felt also on the afterbody. If the
downwash were known everywhere in the wing wake, then the wake could be
conslidered as an extension of the wing with twist and camber. The wing
wake and afterbody could then be incorporated with the winged part of
the combination and treated in the same menner. However, the actual
downwash pattern in the wing wake depends on the interference effect of
the body on the wing. It is thus apparent that the solution of the after-
body problem requires that the interference problem for the winged part
of the combination be solved first. Only the winged part of the coambina-
tion is analyzed in detall 1n this report.

MATHEMATTCAL FORMULATION OF THE PROBLEM

Throughout the analysis, the body radius is taken as unity and M2
is taken as 2 so that B = 1. Any formula can be generalized to any body
radius by dividing all length symbols by a, and to any Mach number by
dividing all streamwise lengths by B, by multiplying all pressure and
1ift coefficients by P, and leaving all potentials, 1ift forces, and
span loading unaltered. It is necessary to specify the wing alone before
any detailed interference calculation can be carried out. However, in
the theoretical solution of the problem the wing-alone definition is
arbitrary. The flow field about the combination does not depend on the
definition of the wing alone.

The analysis is confined to the cases for which the aspect ratios
are sufficiently large that the Mach lines from the leading edges of the
wing tips do not intersect the wing-body Juncture. This is the case if
the aspect ratio obeys the following inequality:

BAS 4
<1 + x) <——’°’?A + 1>

Under such circumstances, the tips have no influence on the wing-body
interference of the winged part of the combination.

The wing-body combinations being considered in this report are those
possessing a vertical plane of symmetry. To eliminate any questions of
the symmetry of the boundary conditions above and below the wing, the
assumption is made that the wings have supersonic leading and trailing
edges. This assumption, together with that concerming tip effects, is
sufficient to insure the fact that pressure communication between the
upper and lower wing surfaces can have no effect on the interference on
the winged part of the combination. Thus it is immaterial whether the
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problem at hand is symmetrical or antisymmetrical with regard to the
horizontal plapne of symmetry. Attention will henceforth be focused above
the horizontal plane of symmetry.

The assumptions with regard to tip effects and the sweep of leading
and tralling edges eneble the drag of a symmetrical wing-body combination
at zero angle of attack to be obtalned from solutions for lifting sur-
faces. BSuppose the problem solved is that for a flat wing at angle of
attack ai mounted on a body at zero angle of attack. The pressures
are antisymmetric with respect to the horizontal plane of symmetry. How-
ever, considering the same pressures as positive and symmetrical ylelds
the solution for the pressure field of a single-wedge wing of half
angle ay at zero angle of attack. This fact is of use in obtaining the
drag coefficient at zero angle of attack, as will be 1llustrated.:

General Decomposition of Boundary-Value Problem

The general case of the wing and body at different angles of attack
is considered. Following the suggestion of Lagerstrom and Van Dyke in
reference 10, the problem can be broken down into several simpler prob-
lems on the assumption that the wing boundery conditions can be applied
in the plane of the wing and those for the body can be gpplied on a
cylindrical surface. Figure 2 shows the decomposition of the wing-body
combination into three components. Component (a) is simply the body
alone, which creates an upwash field «, in the region that is to be .
occupied by the wing. Components (b) and (c) are combinations with wings
of the same plan form; but while component (b) has the wing-alone angle
of attack, component (¢) hes a wing with angle of attack -0;- The sig-
nificance of this particular method of decomposing the general wing-body
problem is that component (a), the body alone, can be solved by known
methods and components (b) and (c) with bodies at zero angle of attack
can be solved by the methods of this report. Henceforth the analysis is
confined to combinations with bodies at zero angle of attack.

Wing alone and interference potentials.- Consider now a combination
with the body at zero angle of attack and let ¢, be its potential.
(See fig. 3.) This potential can be considered the sum of a wing-alone
potential @y and of an interference potential o.

P =R + O (3)

The essential problem is to determine ¢. First, select a convenient
way of extending the wing through the body to form the wing alone, thereby
specifying ®Py. The wing-alone flow field in general produces veloc-

ities _S; normal to the surface that will enclose the circular cylinder

as i1llustrated in figure 3 for the region above the wing. In figure 3
and the subsequent figure, all bodies are shown as cylinders parallel
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to the x axis. While the bodies of the actual configurations in some
cases are slightly distorted cylinders, they are nevertheless shown as
true cylinders. This procedure is compatible with the fact that the
boundary conditions are to be applied on a true cylinder. The value

of E?H varies with 6 and with x. This means that a body conforming

r
to the wing-alone flow field is distorted in a complicated fashion. Now
gsince the body must be circular, there must erise an interference poten-

tial @ that identically cancels 9%% at the body surface, thereby
straightening it.

%;L’:-?ggatr:l (4)

There are two other conditions to be fulfilled by ®. It must not dis-
tort the shape of the wing when added to @y to produce @gp. Thus
when 6 =0,

é? =0 (5)

or Oy = 0 for the interference combinations as shown in figure 3. The
last condition is that the interference potential must be zero shead of
the winged part of the combination.

P=0x=20 (6)
Equations (%), (5), and (6) are the essential boundary conditions on @.

The normal velocity %g? to be induced at the body surface by the

interference potential can be analyzed at any given streamwise position
as & Fourier cosine series. The amplitudes of the various Fourier
coslne terms, fzn(x), vary with x, the streamwise distance. Thus,

3% _ | Xy

— = f.(x) cos2n = - 2L at r=1 T

arzm - (7)
n=o0

Only even multiples of 6 are considered because of the vertical plane

of symmetry. Consider that the interference potentiel is decomposed into

a series of potentials such that each cancels one Fourier component of
the velocity at the body surface, that is,

?= ) oy (8)
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with

O%en

<= = fon(x) cos 2n6 at r = 1 (9)

Then the combination giving the interference potential ¢ can be decom-
posed in a series of combinations each giving one of the @5, values.
The decomposition is illustrated in figure 4. For n = 0,

dp

—_0 fo(x)

or

and there is no variation of the normsl velocity, pressure, or potential
with 6. Thus the first interference combination is a body of revolution.
The pressure field acting on the body of such & combination can be deter-
mined by the method of reference 11. This n = 0 interference combina-
tion has the very simple significance that its flow normal to the

r =1 cylinder, ag;, subtracted from %g reduces. the flow across the

body to zero when averaged from 6 = 0 to 8 = ® at any streamwise loca-
tion. For n =1,
oP

—= = f£,(x) cos 260

or

and the normal velocity, pressure, and potential will vary as cos 26.

To summarize briefly, it has been shown that the general inter-
ference problem of a body and wing at different angles of attack can be
broken down into wing-body problems with bodies at zero angle of attack
ag shown in figure 2. Combinations with the body at zero angle of attack
are decomposed into wings alone plus interference combinations as in
figure 3. The interference combinations are finally decomposed into
thelr Fourier components as in figure L.

A general method for determining the characteristics of any Fouriler
component will now be given. It will be shown that good accuracy can be
obtalned for the interference potential with few Fourier components.

Method of Solution

The problem to be solved is that of a supersonic wing-body ccmbina-
tion subject to the conditions already mentioned, but with the wing and
body possibly at different angles of attack. This problem is reduced to
a body-alone problem and two wing-body problems with the body at zero
angle of attack as shown in figure 2., The body-alone problem can be
solved by existing methods such as references 6 and 9. The procedure

R




12 ! NACA TN 2677

necessary to solve either wing-body problem as given in reference 5 is
now sumearized.

Wing-alone potential and velocity amplitudes.- The first step in
the solution is to determine the wing-alone potential, Qy. The methods
of wing theory available for doing this will not be discussed here.
From the velue®*of @y the value of the normal velocity induced at
the r =1 cylinder follows readily. This normel velocity distribution
is expanded in a Fourier cosine series of even multiples of 0.

% = - Z fon(x) cos 200 at r =1 (10)
n=0

The functioms fon(x) are called the velocity amplitude functions and
are part of the boundary conditions for the interference potential.

Interference potential.- The solution for the interference potential
is obtained by summing the potentials for the series of Fourier component
potentials. The determination of the potential for any one Fourier com-
ponent (as illustrated by fig. U4) has been carried out formelly in ref-
erence 5 by Laplace transform theory. It was shown that the formal
mathematical solution is equivalent to distributing fundamental solutions
for @ along the axis of the combination in a menner similar to that of
von Karmén and Moore in reference 6. Let Pop*{(x~¢,T,6) be the funda-
mental solution located at x = £ to be used in determining the poten-
tial of the n'th Fourier interference component. Let g *(&) be the
distribution of this solution along the body axis from x = -1 t0 X = o
to satisfy the boundary conditions. Then the potential of the n'th
Fourier component is

X~
Pon(x,7r,6) =f Q>an*(x-§;1‘,9) gan*(g) dt
-1

First, the set of fundamental solutions @, *(x,r,8) will be presented,
and then the method of obtaining g,,*(§) will be discussed.

Axial strength function.- The boundary conditions to be satisfied
by each Fourier component of the interference potential are glven by
equations (5), (6), and (9). The first two boundary conditions are
satisfied by choosing an appropriate set of fundemental solutions. Such
a set of fundamental solutions, derived in appendix A, is

2n-1 21
. Pop*(x-E,7,0) = °°;§‘ﬂ9 gxzn_l [ (x-£)2-r2]?""2 (11)

The fundemental solution is located at the point x = g, and the value
of & wvaries from -1 to +w. For n = 0 an integration is to be per-

formed. The last boundary condition is satisfied by distributing
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fundamental solutions, as given in equation (11), along the body axis in
variable strength. 1In appendix B the following eguation is derived for
determining the axial strength function

_ oo (2al) ¥ _ '
gon(x) = 2 S——(lml)fo Map(x-t) £2,7(8) at (12)

The evaluation of genﬂx) from this equation is done numerically or
graphically. The values of fen'(x) are obtained on the basis of equa-
tion (10). A table of the functions Mp,(x) are included as table I for
use in equation (12), and figure 5 illustrates these functions. The
properties of Man(x) are discussed in reference 5.

Potential or span loading.- Once the axial strength distribution of
the fundamental solutlon is known, the determination of the Interference
potential or pressure follows readily. Consider the general point P,
shown in figure 6, where the potential is to be determined. The funda-
mental solution along the axis from -1 to x~-r influences the potential
at P which is given as

X-r 2n-1 1

(13)

By making a unit translation of the varisble of integration so that the
lower limit 1s zZero, there is easily obtained

q)gn(er:e) =

cos 2n9‘/Px-r+l y=n-1
I.21’1 ° axan-l

-
[(x-g+41)2-r215772 g (£) ag (14)

Equation (14) serves to determine the potential anywhere in the flow
field once the axial strength function gen(x) has been obtained. Since
the integrated 1ift per unit span up to a given streamwise position x
1s proportionel to @ at that position, equation (lh) also glves the
span loading.

Pregsure coefficient.- On the basis of linear theory, the preasure

coefficient is
P=-29_ o 09/ox (15)
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With the aid of equation (15) it is readily shown from equation (14) that

X-r+1
Pop = -2 99§VEEQJ(: Ko (T57) gop (x-r41-7) ar (16)

where-

1 %[ (r+2r)]E
Kzn(T:I‘) = 720 Sren

The procedure in obteining the pressure coefficient 1s first to
obtain the axial strength function from equation (12) by mmerical or
graphical integration, and then to obtain P,, for any point in the
flow field from equation (16) by the same means.

Body pressure coefficient.- The determination of the pressure coef-
ficient by the method outlined requires two numerical or graphical inte-
grations. In appendix C a simpler method involving only one integration
is derived for the body pressure coefficient. The result for the pres-
sure coefficient is

P

X
N2
o = % cos 2n8 fon(x) - < cos 2nf /; Fon (€ Wopn(x-€) at (aT)

at r = 1l. The functions Wzn(x) are universal functlons. They are
tabulated in table II, and are plotted in figure T.

Combination potential.~ The combination potential is obtained by
simply adding the wing-alone potentisl to the interference potential @.
The interference potential ¢ 1is obtained as already described by add-
ing together the interference potentials of a number of Fourier compo-
nent combinations. The 1ift or pressure coefficients for the combina-
tion are similarly obtained simply by adding to those for the wing alone
those for the interference combination.

Referring again to figure 2, the detailed method for solving either
cases (b) or (c) has been summarized. To solve the general case of both
body and wing at angle of attack, both (b) and (c¢) must be solved. The
wing alone for each case is dffferent. The simplest interference problem
is that for the body at zero angle of attack. TUnder these circumstances,
a, 1s zero, and only case (b) must be solved. This case will be calcu-
lated for a rectangular wing-body combination as an illustrative example.

e e e o A o e -
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PRESSURE FIELD ACTING ON A COMBINATION WITH RECTANGULAR WINGS

One of the simplest wing-body combinations of technological impor-
tance is that formed by a rectangular wing mounted at incidence on a cir-
cular body at zero angle of attack. The complete pressure fleld acting
on such a combination will now be determined. The results are inter-
preted in terms of 1ift and center of pressure presented as a function
of effective aspect ratio and effective chord-radius ratio. As pre-
viously mentioned, the wing alone can be specified in any convenient
manner and, for the purpose of the example, the wing alone is taken as
the rectangular wing extending straight through the body from side to
side. Although the analysis as carried out is for M = /2, the results
are presented in a form applicable to a range of Mach numbers. The steps
in performing the calculation are: (1) to determine Py, the wing-alone
potential; (2) to determine the velocity amplitude functions, fen(x),

(3) to determine the axial strength functioms, g, (x); and (4) to deter-
mine the potential or pressure, as desired, anywhere in the field. No
tip effects are considered until the results are presented as a function
of wing aspect ratio.

Wing-Alone Potential

The wing-alone flow, exclusive of tip effects, can be determined
from the Ackeret theory. The flow at a spanwise station out of the
region of influence of the wing tips is illustrated in figure 8. The
potential for the flow ebove the wing is

Py = Vx when z2x (18)
Py = Vx + agV(x-z) vhen z<x (19)

The sidewash produced by such a potential 923 is zero and the downwash
%y
oz
face r =1 in amount -auV sin 6. This means that for a body conform-
ing to the wing-alone flow, the deformation is zero at the wing-body
Junctures and a maximum on the top of the body. The interference combi-

nations when added to the deformed body straighten it out Fourier com-
ponent by Fourier component.

is uniformly —aWV. The downwash causes a flow normel to the sur-

Fourier Amplitudes of Body Normal Velocity

The Fourier amplitudes of the normal velocity induced by the wing-
alone potential at the body is determined by expanding :%% et r =1
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in a Fourler cosine series of even multiples of 6. The normal veloclty
distribution is shown in figure 9. For x>1 the body is totally
immersed in the wing downwash field. With the usuel equation for obtain-
ing the Fourier amplitudes of a function, there is obtained

o sin~1x
folx) = ;f oV sin 6 46 (20)
(o]

L sin™1x
fonlx) = ;f oV sin 6 cos 2n6 de (21)
)

The integrations give

£o(x) = .21."4_ 1 - Vl-x2> when x<1 (22)
1
£o(x) =§J§’W_ when x>1 (23)

_ Vo | 2 cos (2n-1)% 2 cos (2n+1)d _ _ L ]
Ton(x) = - [ ) el ) when xSl(eu)
fonlx) = -——lwi—w— when x2>1 (25)

7(4n=-1)

vhere & = sin‘x. The fop(x) functions are shown in figure 10. The
constant velues of fyopn(x) for x21 are noteworthy.

Axial Strength Functions

The calculation of the axial strength distributions has been carried
out with the aid of equation (12). The integrations were performed
mmerically by means of integration formulas given in reference 12. Two
separate cagses occur, x<1 and x>1. For x<1 =& typical plot of the
integrand and its components is shown in figure 11(a). ‘It will be
observed that the Mg(x-£) function has a singularity at the upper limit
of integration. Since the singularity is of the square root type, it is
easily handled. For x>1 the determination of go(x) is complicated
by the fact that f£,'(£) has a square root singularity at £ = 1, but
simplified Yy the fact that f£,"(E) is zero for § >1. A typlcal plot
of the integrand and its components for x>1 is shown in figure 11(b).
The singularity of M,(x-£) has been replaced by that of £o'(E) at the
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upper 1imit of integration. For x = 1 +the square root singularities
of My(x-t) end £,'(£) both occur at ¢ = 1, reinforcing each other in

such a manner that (x) has a logarithmic singularity at x =1. In
fact, it can be shown that

gan(x)—;-%%_'-l (-1)" <%> E‘;ﬂ log|1-x|

in the neighborhood of x = 1. The function 82n(x) minus the logarith-
mic term passes smoothly through x = 1.

A plot of the gzn(x) functions for n =0 ton =3 1s shown in
figure 12, The main effect noted is that the number of times the curve
crosses the zero axis increases as the order of the ggn(x) functions
Increases. The singularities at x =1 are also illustrated.

Pressure Distributions

Obtaining the strength functions of g,,(x) is tantemount to getting
the potential or pressure coefficlent anywhere in the flow field as given
by equation (14) or (16). If only the span load distribution is required,
then one calculation using equation (14) suffices for each spanwise
station; but if the detailed pressure distribution is required, then
many calculations using equation (16) must be made for each station. The
detailed pressure distributions have been calculated using equations (16)
and (17). In equation (16), the factor

appears inside the integral as an influence coefficient for converting
exial strength function into pressure coefficient. The factor plays an
important role in determining the accuracy of the numerical work. In
figure 13 plots of K,(7,r) and Ky(7,r) are presented showing the singu-
larities of Kgn(T,r) st the origin of +~. These singularities, together
with those of g, (x-r+l-7) at T = x-r, bring about two different cases
in the determination of the pressure coefficient. If x<r, only

the Kon(T,r) singularity occurs in the integration as illustrated by
figure lh(a) However, for x>r there are two singularities as shown
in figure 14(b). For x = r +the two singularities come into confluence,
but they still produce a finite pressure coefficient.

Interference pressure distribution.- The interference pressure dis-~
tributions have been calculated for the first four Fourier components
and are presented in figure 15. In this figure the sbscissa is propor-
tional to distance behind the Mach line originating at the leading edge
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of the Juncture, as illustrated in the figure. Although the calcula-
tions have been carrled out for M = qﬁi, that is, B = 1, and for unit
radius, they are generalized to all Mach numbers and body radii by replac

ing x-r+l1 by 35-—-§-+ 1 and Ppy by PPy, &8 has been done in the

figure. From the figure it is apparent that the cusps in the pressure

distributions are propagated downstream along lines of constant

L _241 or x~pr; that is, along the downstream characteristics. As

a a
Ehe pressure distributions move outward from the body along the down-
stream characteristics, they are distorted and decreased in magnitude.

Increasing the order of the Fourier harmonics causes two important
effects: fTirst, the number of points of zero pressure 1s increased and,
second, the pressure coefficlent damps more rapidly. As a result of the
first effect the contributions of the higher hermonics to the combination
span loading are proportionally less than their contributlons to the
pressure coefficient; while as a result of the second effect the more
remote a point is from the leading edge of the wing-body Juncture, the
fewer the number of Fourier components that must be included to obtain
its pressure coefficient accuraetely. All interference pressure distribu-

tions exhibit discontinuities in slope at X _ L + 1 = 1. This behavior

a a
is a consequence of the fact that the body Eecomes totally immersed in
the wing-alone flow field for this condition. When the pressure dlstri-
butions of the various Fourier components are added together to obtain
the interference pressure distributions, the discontinuities in slope
tend to cancel so that the pressure distribution for the combination will
be smooth.

A deteiled examination of the interference pressure distribution
for the first Fourier component illustrates several points of interest.
The importance of the component arises from the fact that it accounts
for most of the effect of interference on the span loading. The reason
for this is that the pressure coefficients for n = 0 are of invariable
sign. The effect of the first Fouriler component is to reduce the veloe-
ity induced normal to the body by the wing-alone flow field to zero
average around the body for 6 = 0 to 8 = n at any streamwise locatlion.

For purposes of comparison with the exact results for n = 0, some
approximate results have been included in figure 15(a). For values

of i§<:l on the body, the Ackeret value of P, (twice the local stream

angle divided by B) is a close approximation to the true pressure coef-
ficient. This is the result of the Pacts that the part of the body
affecting the interference is effectively plane for points near the lead-
ing edge of the wing-body Juncture and that there is no variation of any
quantities with 6 so that an approximate two-dimensional situation pre-

vails. As g% increases beyond unity on the body, there is a rapid
decrease in the pressure coefficient below the Ackeret value due to the
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effect of all disturbances in front of the point in question as repre-
sented by the integral of equation (17).

In reference 5, the following approximate results were obtained for

small and large values of -&‘a - -'E + l> for the pressure coefficient:

2
BPoy —> hﬂ’—%‘-’—j% <g—‘a-§-+1>; K-Z+1 >0 (26)

)-ldw . X z o
BP;—> mjpe pe s 1> (27)

Figure 15(a) shows that for values of == — % + 1<0.6 equation (26) is

a good approximation for n =0 a.lthcugah it is of 1ittle value for

higher-order harmonics. There is a general tendency of P, to approach a
r

uniform value independent of r as X P 1 becomes large, as shown

a

by equation (27). The damping in the characteristic direction, although
initially inversely proportional to the square root of x, is ultimately
independent of =xr.

The pressure distributions of filigure 15 were determined by equa-
tion (17) for r = 1, and by equations (12) and (16) for r = 1.5, 2.0,
and 3.0. However, the values for r = 1 were checked by equations (12)
and (16) before these equations were applied to the higher values of «r.
For r =1 equation (17) gives more accurate results than equations (12)
and (16) since it requires only one numerical integration. The accuracy
of both methods of calculation decreases as n and = — X + 1 increase

a a
because the small values of the pressure coefficiengs under these condi-
tions are the result of large counterbalancing influences.

Pressure distribution in juncture of wing-body combination.- By
adding the interference pressure coefficients of the various Fourier
components to that for the wing alone, the pressure distribution for the
combination is obtained. The addition has been carried out for the wing-
body Jjuncture using four Fourler components and six Fourier components,
and the results are presented in figure 16. The pressure coefficient
with interference is less in magnitude than two, the value without inter-
ference, showing that significant losses of 1lift occur in the wing-body
Juncture. A comparison of the results for four components and six com~
ponents shows that four components glve good over-all accuracy for all

values of % greater than 1. For small values of B% in the wing-
body juncture, the curvature of the body insofar as the flow is concerned

18 not large so that the body is effectively a vertical boundary on which
a given distribution of normal velocity is producing an interference
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field. Supersonic wing theory applied to this condition gives for the
net interference pressure coefficient (reference 5)

BR 5 M hem X 50 (28)
Wy 3nBa Ba

It is clear that the calculated results can be Jolned smoothly to this
result. Using the result of equation (28) enables satisfactory results
to be obtained with four Fourier components.

The critical region in the convergence of the solutlion 1s that near
the leading edge of the wing-body Jjuncture. The higher harmonics have
their most important effect near here, and rapidly demp downstream along
the body. Hence more and more Fourier components would be required to

get accuracy for smeller and smaller values of Bi-. However, with the
) a
result of equation (28), this extra work is unnecessary.

One point of interest in figure 16 is the fact that when E% equals

approximately 3, the pressure coefficient increasses in magnitude. Thils
is due to the fact that for —%Zn the influence of the opposite half-

wing is felt In the wing-body Juncture.

Presgsure distribution on top meridian of wing-body combination.-
The pressure distribution on the top meridian of the wing-body combina-
tion 1s obtained in the same fashion as that at the wing-body juncture,
the difference being-that the pressures due to the even number Fourier
components have the same sign at the meridian as at the Jjuncture, whereas
the odd numbered components have reversed signs. The pressure distribu-~
tlions based on four and six Fourier components are shown in figure 1T7.

Several interesting effects are exhibited by the results. The step
in the wing-alone pressure at 'La =1 1s effectively canceled by the
interference pressures of the Fourler components from "XE =1 to _B_z_cg = /2,
and for -B:ia>1t/2 the pressure increases rapidly and tends toward the two-
dimensional velue. The effect of the interference pressure in canceling
the effect of the wing alaope on the top of the body from Ejf: =1
to % = %/2 18 to be expected since the wing of the combination can
have no effect on the top of the body unless F};—Z x/2, as has been
already pointed out. If an infinite number of Fourier components had
been taken, the pressure coefficients would be identically zero

from E’% =0 to .;-‘E = n/2. The general behavior in this regard is evi-
dence of the plausibility of the calculated results.
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The tendency of the pressures to approach an asymptotic value is also
illustrated by figure 17. This asymptotic value represented by the sum
of the wing-alone pressure plus the asymptotic results for the first
Fourier component is given by the following equation:

B® ~ o 4 X
oy 2+:rrx/ﬁa when 5 >2.h (29)

For é%:>2.4, the results of this equation are in good agreement
with the results of figure 17.

Some evidence is furnished from the pressure calculations for the
Juncture and top of the body concerning the number of Fourier components
necessary for accuracy. Comparisons made in figures 16 and 17 show that
about four components are sufficient, and that the additlon of two more
is not worth the extra work.

Pressure distributions for wing of wing-body combination.- The dis-~
tribution of the pressure acting on the wing of the cambination can be
determined in a menner similar to that for the wing-body Juncture by
adding to the wing-alone pressure those due to the Fourier components.
The resultant pressure distribution for the wing based on four Fourier
components is shown in figure 18. A drawing of the pressure field for
the complete configuration is included as figure 19. TFor small values

of 3% the higher-order oscillations in the pressure coefficient as

shown in figure 16 have been ignored and the curves have been faired
through them.

Since the region of influence of the body on the wing 1s confined to
the wing region dowmstream of the Mach lines emanating from the leading
edge of the Juncture, in front of this line the pressures are uniform
at the two-dimensional velue and behind the line there is a decrease in
the magnitude of the pressure coefficient. If the body were a perfect
reflector, that is, a vertical wall of infinite extent, then there would
be no pressure loss. However, the pressure pulses originating on the
wing are only in part reflected by the circular body. The efficiency of
the body as a reflector is discussed subsequently in connection with span
loading. The tendency of the pressure to increase in magnitude near the
inboard trailing edge is due to the effect of the opposite wing panel

which at the wing juncbure is felt downstream of the point ﬁ% = .

Span Loading

The spen load distributions for a range of rectangular wing-body
combinations with the body at zero angle of attack can be determined
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from the pressure distributions of figure 18. For purposes of specify-
ing the span loading the following equation is used:

gL ()]s
L e

The span loading is taken as the quantity inside the brackets.

(30)

The pressure results of figure 18 are for values of the effective
chord-radius ratio of 4 or less and for values of the effective aspect
ratio of 2 or greater. Span loadings for any combination of ii (or c¥*)

and PA in these rariges can be obtained by integrating the pressure dis-
tributions. The span loading evaluations have been made for c* = 4

and PBA>2. First the span loadings due to the various Fourier components
are discussed, and then the span loadings for the actual wing-body combi-
nations are presented. '

Fourier component combinations.- In figure 20, the contributions to
the span loading for the first three Fourier components are shown.
For n= O the pressure field does not depend on 6, being axially sym-
metric, and a constant loading exists on the body. However, on the wing
as the spanwise distance increases there is & decrease in the span load-
ing due primarily to decrease in the length of chord over which the
interference pressures act. The span loading due to the first Fourier
component causes a loss of 1ift everywhere along the span.

A comparison of the results of figure 20 for n = 0O and n = 1 shows
that the first Fourier component accounts almost entirely for the effect
of interference on the span loading of the combination. For the body
this fact is even more true than for the wing. This fact is of consider-
able importance since it gives a simple means of extending the 1lift and
moment results to larger values of i% than those for which the pressure

distributions have been calculated. Also, it suggests a simple means of
minimizing the adverse effects of interference on 1lift as will subse-
quently be pointed out.

With the techniques of Laplace transform theory, it is possible to
obtain asymptotic formulas for the span loadings of the various Fourier
components. For the first Fourier component the following asymptotic
result has been obtained by the standard methods of Laplace transform
theory. (See reference 5.)

8 r/2
-2f Qr‘wdx—>ﬂ10g< 3-‘-—>oo (31)

x Ba
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The asymptotic result for the span loading given by this equastion, when
compared with the results of the exact calculations in figure 20, is
seen to be slightly high. However, for values of ﬁ% greater than L

the difference between the results decreases, and equation (31) thus pro-

vides a satisfactory means of extrapolating the results of the present

calculations for span loading to larger values of é%.

The asymptotic result has also been determined for the higher-order
Fourier components as a matter of interest. The span loading is

an 1 -
-fx EQ dx—> 8 cos 2nf — l6<r N r2n> (lm 1)1005 e as 4 > w
o) Ay an(4n2-1 )r22 x(2nt )2(1&12_1)24]1_1 <%>‘m Ba

(32)

A comparison between the results of equation (32) and the exact solution
for n =1 in figure 20 shows agreement and corroborates the fact that
the span loading of all but the first Fourier component is negligible
for J%:>h. It is also to be noted that the contribution to the loading

of the Ffirst component given by equation (31) increases without limit
as X —> », whereas the span loading of the higher-order coamponents is
finite.

Family of complete combinations.- To obtain the span loading for the
family of combinations for which £ = 4, it is necessary to consider the

a

loading of both the wing alone and the Fourier components. The necessary
caelculations have been carried out and the span loadings for the family
of combinations based on one and four Fourier components are both shown
in figure 21. The loading due to the wing alone is also shown. No
effect of wing tips has been included. It is to be noted in figure 21
that, whereas the loading on the wing due to its own pressure field is
constant, there is some loss on the body because of the fact that the
pressure field of the wing alone acts on the body only if x>fa sin 9.
However, 1f an afterbody is included, some of the 1ift lost can be recov-
ered. As has already been pointed out, the pressures due to the first
Fourier components are positive on the upper half of the wing-body combi-~
nation and produce a loss of 1ift, as figure 21 shows. When the effects
of four Fourler components are teken into account, the net 1ift is
slightly higher than that for one Fourier component, but the difference
is not significant. For most engineering purposes, one Fourier component
is sufficient for determining the span loading when é%>>h.

Same insight into the mechanlsm of wing-body interference can be
gained by comparing the span loading for the combination with those for
two reference loadings: (1) the complete reflection case for which the
blanketed area of the wing acts effectively at ay, and (2) the
no-reflection case for which the blanketed area of the wing is supposed
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to act effectively at zero angle of attack. The span loading correspond-
ing to the first case of complete reflection of the wing pressure pulses
by the body is, in fact, the span loading marked "wing alone" in fig-

ure 21. A comparison of this curve with that based on one or four
Fourier components shows that the loading given on the assumption that
the wing blanketed area is fully effective in 1ift is too optimistic.
Under the conditions of the second reference loading, the sole purpose of
the blanketed area is to support 1ift generated by the wings. A compari-
son of the span loading for this case with the true loading shows that
the average load on the body is well predicted, but that the loading on
the wing is, of course, underestimated. A comparison of the true load-
ing with those for the two reference cases reveals the interesting fact
that the body is somewhat less than 50 percent effective in reflection
for this particular family of configurations.

Lift

For values of £%<:hr the pressure distributione already presented

are sufficient for obtaining span loading or 1ift on either the wing or
body for all combinations having sufficiently large aspect ratios to
avoid effects of the tips on the wing-body interference. This is the
case for BA>2. TFor values of ﬁ: larger than four, the 1litt results

are presented in terms of a nondimensional parameter Lk;, defined as the
ratio of the 1ift on the exposed half-wings in cambination (exclusive of
that on the body) to that on the exposed half-wings joined together.

_ Lwc
=T (33)

For £%:>h the value of Lk, can be obtained by using the asymptotic
form of the span loading given by equation (31).

2 1 2 BA . 1 ) L <§Ac* ) }
- - 1 A, L ) T
[ﬂc* 2c*¥°  me¥ og( E | 2o* Ke*2pA 1og 2 " .

Ky ~ 1 3
( o1
2BA

c¥ — ® (3"")

The values of X, have been determined from the pressure distribu-
tions of figure 18 for values of é§w<h and from equation (34) for

values of g%:>4. The effect of the wing tips has been tasken into
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account by utilizing reference 13. The results are ghown in figure 22
wherein ky 1s given as a function of ﬁ: for various effective aspect

ratios of 2 and greater. It should be borne in mind that the results of
the figure are for a combination of body and rectangular wing or an all-
movable, rectangular control surface with no gap. It is noted in the
figure that the exact results for §—~<h- can be falred into the asymptotic
results for B =>hk, thereby‘providing a deslign chart for engineering pur-
poses for the entire range of EE The curves of figure 22 illustrate the
decrease of ky .as é% increases at constant effective aspect ratio,

and the slow increase of ky toward unity as the wing chord becomes
very large. The loss of 1ift is most serious for BgA = 2, being about
15 percent in the worst case.

A practical point in connection with the loss of 1ift on the wing
due to Interference is that this loss occurs no matter what the body
angle of attack, even though the calculations are made for ap = 0. It
occurs elther in the case of a wing mounted on a body or in the case of
8 deflected all-movable control surface. For wings with swept leading
edges for which all of the wing area lies in the region affected by the
Interference, even larger losses than occur with rectangular wings are to
be anticipated. However, the loss of 1ift at the design condition can,
at least in principle, be largely prevented by designing the fuselage
so that it conforms to the first Fourier component in the wing-alone
flow. This would involve contracting the fuselage above the horizontal
Pplane of symmetry in a rotationally symmetric fashion and expanding a
like amount beneath the horizontael plane of symmetry. Whether or not
such a change would improve the lift-drag ratio can best be determined
by experiment.

Center of Pressure

The center-of-pressure locations have been calculated for the same
condition as the 1ift results of figure 22. The center-of-pressure loca-
tion in chord lengths behind the leading edge are presented in figure 23.
For large values of c¥, an asymptotic result has been calculated for

.P‘/c using the methods of Laplace transform theory and considering
only one Fourier component.

11 _[log2c*+ 2 1 <l+9_§gé>log <l+c_*g>]
Xc.p. 2 3pA 2c*2 we*  BAc*S 2 / 2

c
1
kw <l - '2——!

88 Cc¥* -3 . (35)
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The values of EEéEL have been determined from the pressure distri-
butions of figure 18 for values of i%<:4 and by equation (35) for
values of é§¢>h. The loss of 1ift near the tips has been taken into

consideration. The exact results for é%«(h have been faired into the

agsymptotic resulis for large values of é% by dashed curves to provide

an engineering design chart covering the entire range of é%. It is
again mentioned that this chart is applicable both to the wing of an
airplane or missile or to an all-moveble, rectangular control surface

with no gap. The curves of figure 23 start at values of EEéRL corre-
sponding to those for the wing alone at L =0. As L. increases for
a

constant BA there is a forward movement of the center of pressure
because of the loss of 1ift due to interference which 1s mostly effective
on the rear of the wing. For the lowest effective aspect ratio of 2
there is about a Y-percent forward movement of the center of pressure
due to interference in the extreme case. For large effective aspect

c

ratios the forward movement is not rearly so large. As the value of Ba

increases for constant BA there is an asymptotic approach of the center
of pressure back to the wing-alone value.

Drag

The results of the 1ift calculations can be used directly to deter-
mine the effect of interference on the wave drag et zero angle of attack
of a symmetrical, double-wedge, rectangular wing mounted on a circular
cylinder. In fact, it is not difficult to derive the result that this-
drag coefficient based on the area of the exposed wing is given simply as

Gi_:l;_z.=8<1;ﬁ>kw<2BA >-h<1-—kw(BAC*) (36)

Equation (36) is for the maximum-thickness position at the midchord,
although other maximm-thickness positions can easily be handled.

The values of the drag parsmeter given by equation (36) have been
calculated for effective aspect ratios of 2, 3, and 4 using the values
of k,; from figure 22. The results of the calculations are shown in

B
CDa is plotted against = for constant values
(t/e) pe

of BA. At — =0 __EEQE is equal to the wing-alone value of L.
pa (t/c)

figure 24 wherein
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As é% increases, there is an increase in drag which in the extreme case
amounts to about 4 percent for BA = 2, and thereafter there is a steady
decrease in drag until at é% = 12, the upper range of the calculations,

there is about a l-percent decrease in drag from the wing-alone value.
For other effective aspect ratios the changes are inversely proportional
to the effective aspect ratio. It can thus be said for rectangular

wings of the present type with PA>2 and B%SlQ that no important

effects of interferernce on the minimum drag occur. For missile-like con-
figurations for which the wing contributes only a small part of the drag,
the effects of interference on minimum drag will be negligible. TFor
wing-body combinations having a large part of the wing lying behind the
Mach waves from the leading edge of the wing-body junctures, there can
be apprecisble effects of interference on minimm wave drag.

CONCLUDING REMARKS

A theoretical method has been developed that maekes it possible to
obtain the pressure field acting on a wing-body combination composed of
a wing with supersonic leading and trailing edges end a circular body.
The method has been applied to the calculation of the pressure fields
acting on combinations of bodies and rectangular wings with the bodies at
zero angle of attack, The exact calculations are for combinations for
which the effective aspect ratio of the exposed wing panels Joined together
1s greater than 2, and for which the effective chord-radius ratio is 4 or
less. For the family of combinations for which the effective chord-radius
ratio is L, it was found that the blanketed area of the wing acts effec-
tively at zero angle of attack and served primsrily to support 1lift carried
over from the wing onto the body. It was determined that for this femily
of combinations the body was somewhat less than 50 percent effective, com-
pared to a perfect reflection plane, in reflecting pressure waves back
onto the wing.

By compering the contributions to the span loading of the various
Fourier components, it was determined that for rectangulsr wing-body
combinations with effective chord-radius ratios of 4 or greater, the
loss of 1ift due to interference is associated principelly with the first
component. On the basis of this fact it is possible to obtain simple
asymptotic formulas for wing 1ift and wing center-of-pressure positions
for large values of the effective chord-radius ratio. The results of
the exact calculations and of those based on the asymptotic formilas
enabled the comstruction of design charts showing the wing 1ift and
center-of-pressure position as a function of effective aspect ratio and
effective chord-radius ratio. These charts are applicable to wings or
control surfaces deflected in the presence of a round body. The charts
show that as a result of interference the 1ift of the wing panels in com-
bination can be reduced as much as 15 percent from that of the half-wings
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Jolned together, and that the center of pressure of the wing can move
forward as much as 4 percent of the chord. No large effects of inter-
ference on the wave drag of symmetrical double-wedge rectangular wings
with the maximum thickness at the midchord were found.

Ames Aeronsautical ILaboratory,
National Advisory Committee for Aeronautics,
Moffett Field, Calif., Jenuary 8, 1952.
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APPENDIX A
DETERMINATION OF FUNDAMENTAL SOLUTIONS FOR FOURIER -

COMPONENT COMBINATTIONS

Von Karmen and Moore determine the potential for a body of revolu-
tion by distributing along the axis of the body fundamental solutions of
an axially symmetric type. This naturally suggests the use of fundamen-
tal solutions varying es cos 2n6 for the Fourier component combinations
for which the potential varies as cos 2n6. Such fundamental solutions
satisfy the boundary condition given by equation (5). The boundary con-
dition given by equation (6) can be satisfied by making the fundemental
gsolution imaginsry in the forecone, that is, by meking 1t proportional

to [(x-§)2-r2]m/2 where m 1is an odd integer. These conditions make
the desired fundamental solutions of the form

cos 2no [(x-¢)2-r2]™/% ¥ (x-£,r)

where $(x-§,r) is a function to be determined in such a menner that the
fundsmental solution obeys the wave equation. The parameter ¢ dis the
position on the x axis where the.fundamental solution is located. In
the case of a wing-body combinetion, &¢ will vary from -1 t0 4+w. How-
ever, a value of § = 0 1s used in the derivation of the fundamental
solution so that it will be at the origin. If, as a simple possibility,
¥(x,r) is taken as a power of r (or x) and the Pundamental solution is
substituted into the wave equation in cylindrical coordinates (see fig. 1
for coordinate system)

?
° oo _

1 =
et r Pt 2T P T O (A1)

two possible sets of fundamental solutions are obtained

cos 2né6 —5a (A2)
cos 2n —— L (3)

The first solution is singular along the body axis (r = 0), and the
second solution is singular along the Mach cone (x = r). Derivatives of
the above solutions with respect to x are again possible fundamental
solutions.

A set of fundamental solutions having its singularities along the
body axls would be better than a set having its singularities on the
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Mach cone since 1t was desired to get the externsl flow field sbout a
combination. However, when the foregoing fundamental solutions with the
singularities on the axis were used, it was discovered that the functions
defining the strengths of the distributions along the body axis had
unmenageable singularities. In fact, only by using the (2n-1)'th deriv-
ative with respect to x of these solutions was another set of funda-
mental solutions obtained which gave managesble singularities in the
strengths of the distributions along the axis. The set of fundamental
solutions, @, *(x,r,6),

2n-1 -1
Og*(x,7,0) = SO0 S (22022 (ak)

are those adopted for this report. For =n = 0, the partial differentia-
tion convention of equation (Al) is taken to indicate an integration
with regard to x.
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APPENDIX B
DETERMINATION OF AXTAL, STRENGTH FUNCTIONS FOR FOURIER

COMPONENT COMBINATTIONS

The distribution along the axis of the fundemental solution is deter-
mined by the boundary condition of equation (9), that is, the distribu-
tion is to produce a given velocity amplitude function fén(x). If the
distribution of @, *(x,r,0) (equation (A4)) along the body axis
from -1 to @ to produce a step function of fon(x) were known, then
the axial strength distribution to produce the given function fén(x)
could be closely approximated by step functions as shown in figure 25.
Let hpp(x-1) be the distribution along the axis from -1 to » to pro-
duce a unit step in f,,(x) at the origin. Then to obtain the axial
strength function to produce the stepwlise approximation to fan(x) shown
in the figure, the following sum must be formed:

. X4++X 1
5 v (o) (2559 s
J=0

Iif g nj*(x-l) 1s the strength distribution along the axis for the actual
fan(x§ distribution found by letting the Ax's approach zero, then
since f,,(0) =0

X
Eon¥(x-1) = f hon(x-1-€ )£o, ' (&) At (B1)
o]
with the definitions

Bon*(x-1) = gapn(x) (B2)
and
22%(ont)
hop(x-1) = Maon(x) (83)
(4n?)
there is obtained
=22n(2n!) x -t t () 4 BY
a(x) = L0 fo Mon (x-8) £ (E) & (B4)

The changes introduced by equations (B2) and (B3) are convenient for
future work. By equation (B3) the function Mop(x) is a simple fraction
of hpn(x-l), the axlal strength distribution necessary to produce a unit
‘step in foy(x). The functions Mpy(x) have been studied and evaluated
numerically in reference 5, and the mumerical values are tabulated in
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table I. A plot of these functions is shown in figure 5. These func-
tions, together with equation (B4), give a simple means of obtaining the
axial strength distribution by means of numerical or graphical integra-
tion for any desired fop(x). The possibility of finding universal
functions Mon(x) for doing this is a consequence of the fact that the
body is cylindrical. In the Karman-Moore method no such simple rela-
tionship is possible because the body is of arbitrary shape.
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APPENDIX C
ALTERNATE METHOD OF OBTAINING BODY PRESSURE COEFFICIENT

OF FOURIER COMPONENT COMBINATION

A method of obtaining the body pressure coefficient involving only
one numerical integration is now given. Consider a disturbance at the
origin formed by a bump on the surface of the body as shown in figure 26.

The nondimensional amplitude of the bump fz%ﬁfl is to be zero except

just at the origin where the area under the fon(x) curve is unity, that
is, the disturbance is a "delta function". The amplitude is to vary
as cos 2n9. Now if the pressure coefficient in the wing-body Jjuncture
is -2 Wén(x) due to the unit disturbance at the origin, then the con-
tribution to the pressure coefficient at a downstream distance x due
to a distribution of disturbances from the orlgin to the point in ques-
tion is

X
8B, = - % cos 2n6f £ (& Wop (x-& ) dE (c1)
Q

This integral is the effect of all disturbances forward of the point and
18 additive to the effect of the disturbance exactly at the polnt. The
local velue is that given by the Ackeret theory, namely,

2ay
P = - S (C2)
M™-1
where a, 1s the local angle of attack
fon(x
@y = —Egﬁ—l cos 2nf (c3)

The pressure coefficient due to all disturbance is thus

<

P,

x
on cos 2n8 fon(x) - % cos 2n6u/\ fon( & )Won(x-£) at (ch)
)

The advantage of this method of obtaining the pressure coefficient at the
body surface is that the pressure coefficient is obtained directly as a
function of the boundary condition, f,,(x), without first determining an
axial strength function.

The Wan(x) functions introduced to determine the body pressure dis-
tributions are universal functions that have been studied in reference 5.
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They are presented in table II, and curves of them are presented in fig-
ure 7. The values of Wg(x) have been tabulated by G. N. Ward in refer-
ence 11.

Several interesting facts are illustrated by figure 7. The ampli-
tude of the pressure distribution due to & unit disturbance of the type
shown in figure 26 has exactly 2n points of zero pressure, and these
points are nearly evenly spaced. The large number of points of zero
pressure for the higher harmonics makes their 1lift contributions much
less significant than their pressure contributions. Another interesting
feature of figure T is that the Wop(x) functions damp much more rapidly
in the downstream direction for the higher harmonics than the lower har-
monics. In fact, for n = 0 the damping to 4 percent of the maximm
value occurs about T body radii downstream, whereas for n = 5 +the same
damping occurs in about 2 body radii. ,
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TABLE I.- VALUES OF M,(x)

x | Mo(x) [Ma(x) | Ma(x) [Mg(x)
0 -~ - - -
05| ~=== | ===-= |-.531 [-.T16
1 |-L.321 | -.787 1 .bo5 [1.334
A5 wmem | mmme | meee |1.155
2 | -.868 [ -.166] 902 | .T35
25 e e e 279
o3 | ——-- JA31 | .831 |-.119
35| wmmm | mmee | —eee |-l
Lo -.538 | .30k | .560 [-.595
R -.675
50| ~mem | —mmm 2k5 |-.655
6 1 -.318 | .450 | -.0k0 |-.417
Iy G - [ -.253 [-.070
T | === | | == -095
8 | ~-.292 ] 457 }-.386 | .235
85| ~mem | e | ~--- .3%0
o9 | ~eem [ e =34 | ko6
S e 433
1.0 | ~.224h | .392 |-.k12 | .ke2o
1.1 | ~=== f==-= |=-.337 | .306
1.2 {~.180] .29% |-.231 | .123
1.3 | ~e== | === | ~.115 |-.062
1.k }~.b7 | .188 | .000 [-.197
1.5 | ~—== [===m .095 |-.256
1.6 | -~.122 | .088 | .163 |-.239
1.7 | ~=== | ==-- 204 |-.162
1.8 |~.102 | .005 | .211 |-.062
1.9 |[==== [|==-- ] .297 | .036
2.0 |~-.086 |-.058 | .164 | .105
2.1 |~—an |oeem | emmm .13
2.2 |-.0T3 |~-.200] .069 | .122
2.3 | ~men | ammm .020 | .085
2.k | -~.062 [-.123 | -.022 | .036
2.5 |===~ |==== |-.053 |-.013
2.6 |-.053 |-.126 | -.073 |-.053
2.7 |===m lomme | omee |-.063
2.8 [-.045 |-.119 | -.080 |-.059
2.9 |~—== |[~~== |-.071 [-.0k2
3.0 |-.038 |-.103 |{-.060 |-.019
3.1 |eme= {===- |-.038 | .005
3.2 |-.031 |-.083 |{-.019 | .022
3e3 |~ewe [==== [-.002 | .030
3.4 {~.026 |-.061 | .011 | .028
3.5 fe-m= |-=-- .021 | .019
3.6 |-.022 |-.0h0 | .027 | .008
3T === [ mm== .027 [-.002
3.8 |~.018 [-.022 | .025 |-.011
3.9 |wmee | m=mm .022 |-.01k
.0 |~.016 |-.00T | .015 }-.103

NOTE

:
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TABLE II.- VALUES OF Wop(x)

NACA TN 2677

x Wolx) | Walx) | Welx)| Welx) | Wal(x) | Wyo(x)
0 0.500 | 0.500 | 0.500| 0.500} 0.500| 0.500
05 | == — N o [— 2.787
5 Ko ) IEpe—— —— ——| 2.022| 3.136| 4.459
I 53 [E— — ———— | mmee | 3.884 | 5.264
20| 4319 .75h1 | 1.644] 2.888| L4.176| 5.164
25 3.037| %.021| Lk.213
30| —--- — -—--| 3.008| 3.486| 2.857
35| —--- ———— —— | | e 1.209 | -
Jo | .3755] 878 |1.929| 2.h62| 1.702| -.345
50 | —m-- — -——- 1.545| -.215| -2.296
60| .3284| .892 {1.428| .5081 -1.458 | -1.986
I (o] JEp— ——— m——e | meem | 21697 | - k61
.80 | .2887| .826 .T06 | -.940 | -1.116 .980
85 == ——- RN (S — 1.317
90 | =-—- —— cmem | e | =163 1.345
95 | == — SR iy p— 1.107
1.0 2550 | .706 | -.02h| -.97h .634 676
1.1 —— —— R — 930 | -.279
1.2 2262 557 | -.464| -.150 LT | -.803
1.3 —— ——— ORISR [ — .638
1.4 2014 | ko2 | -.558] A457| -.213| -.045
1.5 -———— ——— e | = | =479 -399
1.6 801 | .255 [ -.418| 55| -.51k 75
1.7 —— —— SNVERSY [N [ .251
1.8 JA616 | .128 | -.1k2 | .0T3 022 | -.129
1.9 ———- ——— SR I —— -.297
2.0 JAhsh | L026 081 | -.222 276 | -.214
2.1 —— ———— T T pp—— -.005
2.2 .1313 | -.048 195 | -.217 .043 2154
2.3 _— —— e | cmae | emea .167
2.4 21189 { -.097 1961 -.035| -.173 .061
2.5 —— — S I . -.058
2.6 .1080 | -.122 120 .106| -.053 | -.108
2.8 .0983 | -.128 0251 .098 .075 .00T
3.0 .0898 | -.122 | -.049 | -.00L | ---- .058
3.2 0822 | -.10% |-.078|-.043 | -.049 | -.066
3.4 L0754 | -.082 | -.068|-.050| -.030| -.OLT
3.6 .0693 | -.058 |-.035]| -.008 .011. .022
3.8 .0638 | -.035 |-.003]| . ——— -—
k.o .0590 | -.017 —_ .02k | -—-- —

‘C::Eé;?’
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i 0 o
e T,
ls . 3
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Figure 2.- Decomposition of wing-body combination into component
configurations.
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Qy Qy
J\;
Ve,
P = P + ¢ ~TE”

Figure 3.— Wing-body combination as the sum of wing alone plus
interference combination.
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p La—Mach lines

Figure 8.— Flow field produced by wing alone.
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Figbre 9.- Variafion of normal velocity induced at body surface
by wing alone, unit body radius.
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Figure (1.~ Singularities encountersd in determining axial strength
functiens.
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Figure 15.- Interfsrence pressure distributions of various Fourier components.
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Figure 15.— Concluded.
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Figure [9.- [somealric drawing of pressure distribution acting on combination of body and

rectangular wing.
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Figure 2/.- Complete span loading for combination of body and
rectangular wing having effective chord-radius ratio of 4.
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