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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNIéAL NOTE 2554

THEORETICAL AERODYNAMIC CHARACTERISTICS OF A FAMILY
OF SLENDER WING-TAIL-BODY COMBINATIONS

By Harvard Lomax and Paul F. Byrd

SUMMARY

The aerodynamic characteristics of an airplane configuration
composed of a swept-back wing and a triangular tail mounted on a
cylindrical body are presented. For simplicity, the leading edge of
the wing is considered to be straight and the treiling edge to be
shaped so that the span-loading curve is flat between the fuselage and
the wing-tip regions; the result is a nearly constant-chord swept-back
wing. A method by which other trailing-edge shapes can be studied is

indicated. The analysis is based on the assumption that the free-stream

Mach number is near unity or that the configuration is slender. The
calculations for the tail are made on the assumption that the vortex
system trailing back from the wing is either a sheet lying entirely in
the plane of the flat tail surface or has completely "rolled up" into
two point vortices that lie either in, above,or below the plane of the
tail surface.

INTRODUCTION

The study of lifting surfaces flying at either subsonic or super-
sonic speeds at small angleg of attack has been reduced, by the well-
known process of linearization, to the study of the equation

(1-45%) 9xx + Oyy + @zz = O (1)

where @ 1is a perturbation velocity potential in a field having a
uniform free-stream velocity V, directed parallel to the x axis,
and where Mgy is the Mach number of the free stream.

One basic simplification of equation (1) is brought about by
neglecting velocity gradients along the span of the wing. If the wing



2 NACA TN 2554

is lying in the =z = O plane, this amounts to neglecting the term OQyy
in equation (1), and results in the well-known partial differential
equation by means of which two-dimensional or section characteristics
are studied.

Another basic simplification of equation (1) can be attained by
neglecting the term (1-Mg~) ®yx. Such a procedure is possible when the
Mach number is close to 1 or the wing plan form is so slender that
veloclty gradients in the free-stream direction are negligible in com-
parigson with the gradients in the y and =z directions. Equation (1)
has glready been analyzed in these two connections in references 1 and 2
for certain plan forms. The purpose of this report is to extend this
theory, which has been nsmed slender wing theory, to include an entire
airplene configuration.

Results are presented for a nearly constant-chord, swept-back wlng
mounted on a c¢ylindrical body having a triangular horizontal tail located
aft of the wing trailing edge. Both wing and tail are flat surfaces,
and the results are only those due to changes in the alrplane angle of
attack. . ‘

A list of important symbols is given in appendix A.

T - SWEPT-BACK WING ON A BODY OF REVOLUTION

Partial Differential Equation, Boundary
Conditions, and Form of the Solution

Under the assumption that the free-stream Mach number is 1 or that
the perturbation velocity gradient in the x direction is small, the
partial differential equation which must be satisfied for the solution
of 1lifting surface problems can be written

Pyy + Pzz = 0 , (2)

Equation (2) is simply Laplace's equation in two dimensions, the
variables representing lateral and vertical coordinates in a plane
transverse to the direction of motion.

The boundary conditions associated with equation (2) are given
along a line in this transverse plane and specify that the fluid veloc-
ity is everywhere tangential to the surface of the body. The problem isg,
of course, to find at other points in the plane the potential that
satisfies equation (2) and fits these boundary conditions. Of particular
interest 1s the streamwise component of velocity along the surface of
the wing and body since this is directly related to the loading thereon.
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Solutions to equation (2) are readily available. Two different
analytic forms of these solutions will be used in the following analysis.
One form is concerned with the use of the complex variable, the other
with the use of Green's theorem and the inversion of a real, singular,
integral equation. In general the procedure will be to use concepts
assocliated with the complex variable to map the boundary conditions onto
a s8lit along the real axis, then to solve the resulting problem by
inverting an integral equation, and finally, to use the complex variable
agein to extend such a solution out into space by the principle of ana-
lytic continuation.

Discussion of notation and transformations.- The first part of this
report will be devoted to the analysis of the configuration shown in
sketch (a). The following is a description of
this configuration. Everywhere behind the
leading-edge-fuselage Juncture the fuselage
is a circular cylinder having a radius rq. ™ .
Ahead of this Jjuncture the fuselage comes to /
a point, the manner being arbitrary. The
wing is a flat plate without twist or camber
mounted at zero incidence on the fuselage
and the whole configuration is placed at a
small angle of attack a with respect to
the free-stream direction. The origin of
the coordinate system is located at the -~
wing epex. The leading edge is a straight
line with slope, dy/dx, equel to m. It
wlll be convenient at some places in the g

\

report, however, to use the expression

y = s8(x) for the equation of the leading (a)
edge, hence, s(x) and mx are used inter-
changeably. The trailing edge is repre-

gsented by the line y = t(x) and is, in

general, not straight.l The maximum semispan of the wing is denoted
by 8o. The symbol to, as can be seen in the sketch, refers to the
lateral distance from the x axis to the point at which the trailing
edge intersects a line that is parallel to the y axis and passes
through the last outboard point of the leading edge. Finally, co 1is
the chordwise distance from the origin to the trailing-edge-fuselage
Juncture.

1Tt was considered adviseble at this time to consider only the rather
particular configuration outlined. As the analysis progresses it
will be pointed out where the solution can be generalized to include,
for example, wings with twist and cawmber.
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A second coordinate system will also be used in the succeeding
development. Let the ¥,z plane be represented by the complex
variable &, :

E =y +1iz = peie

then introduce the g, plane,

£y =3 + iz = oyl

so that the £ plane ﬁaps onto the &5 plane by means of the Joukowski

transformation

2
§1=§+15§’— (3)

By means of such a transformation, the circle of radius r, which
represents a section of the fuselage in the £ plane maps onto a portion
of the real axis in the £; plane (see sketch (b));

and the part of the real axis which

& lies outside the circleZ in the §
plane iz plane maps into the remaining part
of the real axis in the 51 plane.

h
J As a consequence of equation (3),
F— the following relations hold for zj
r s ‘equal to zero:
\
& plane i y1 +./ y12-T12
' P A% y = > s Y27y
g <yi< >
-1 n I';! To cos 6 =¥, /2, -r1<¥y <1y
~ /,
1 [ 212
- /1 e-T1
(b) 5, , g =2 1 , <1
2 J
(%)

SThe Joukowski transformation is double valued in that the regions
ingide and outside the circle p = ro both map onto the entire &,
plane. In this report only the field outside the circle is of interest.
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and
r 2
Y. =7+ -?r-, yi>r,®
> (5)
y1 = 2rg cos 6, yio<ry
Further,
r 2 r 2
81 = 8 + —g—, ty =t + —%—, ry = 2ro (6)

From the basic theory underlying the use of complex variables in fluid-
flow theory, induced velocities in the two planes are related by the
expression

dg,

v-iw = (vy-iw,) —=

(7)

from which, since in polar coordinates

dgl = [ 1— <—> cos 26 ]+ i <—> sin 26 (8)
it follows that
- o 2 . A2
v=m l—(-‘-’) cos 29] +wl<—9) sin 20 ]
L. P o)

we=w |1- C) cos 29] -vl<—> sin 20 ? (9)
[vl cos 4w, 8in 6 ] [1- <-> } 2 <_> otn |

Lastly, Laplace's equation must also be satisfied in the &, plane,
hence

Vr

2121t (P1)y,y, =0 (10)

(1)
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Boundary conditions.- In this part of the report (part I), the
effect of a cylindrical body mounted on a nearly constant-chord swept-
back wing will be studied. (Reference 3 containg an analysis of the
effect of a cylindrical body mounted on a triangular wing, and reference 4
presents results for a swept-back wing with no body; both references
use the assumptions of slender-wing theory.) The boundary conditions
will be presented in the y,z space first and can be written

(1) v =0, p =rpo, 0<6<2x
(i1) w =0, z =0, t°<y®<s® (11)
(111) v =0, w=VYoa, p ==, 0<6<2x

Equations (11) represent the conditions for a cylinder located at

p = ro and two wing panels located between i+t and *s8 on the real
axis, both cylinder and wings being at rest in a free stream which is
moving with velocity w = Voo at infinity.

It follows from equations (9) that these boundary conditions
become, in the E; plane,

. 2 2
(1) wyi =0, 0<yis < ri
2 2 2
(11) wy =0, t; <y, <8y (12)
" (111) vy = 0, wy = Voa, py =w, 0<O<L2n

Equations (12) represent the boundary conditions for three wing panels
along the real axis, all at rest wlith respect to the free stream moving
with velocity w,y = Voa at infinity in the transformed plane.

It is more convenient to work with boundary conditions which vanish
at infinity, however, so the final form of the conditions which must be
satisfied is derived from equations (12) by subtracting the free-stream
velocity Vea. There results '

(i) Wy = - Voa., o< y12< 1’12
2 2 2
(11) W = - Vou, t,°<y,%<s, (13)
(111) vy =w =0, p; ==, 0<6<2x
General solution.- The general solution to equation (10) which
gives the vertical induced velocity w; at a point in the £&; plane

due to the jump in the value of the induced velocity v, across the Y1
axis can be written (see, e.g., reference 5)
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B1 (Yl’Y2)AV1(Y2)

1
v1(y1s21) = - 2’;/ =% W= (1)
. -81 (Y1'YE) +Zl

!

where Yy, 1is the variable of integration. Set z; equal to zero and
there results thé value of the vertical induced velocity on the y;
axis. Thus

s N
1.t avy(ys)

2n V1Yo

wl(yl) = wl(yl,O) = = dy= (15)

Equation (15) is the form of the solution which will be used to
analyze the problem previously outlined. It is apparent by reference to
the boundary conditions listed as equations (13) that in equation (15)
the value of w,; 1is the known quantity and Avy, 1s the unknown. Hence,.
equation (15) is an integral equation which must be inverted in order -
that the solution can be written. Such an inversion is not difficult if
the velue of w; 1B known everywhere in the interval -s;<y;<s;. In
the present case, however, there is a subinterval rn2<y,2<t2 in
which w; 1is not specified, and further, in which Av; i1s not neces-
sarily zero (due to the presence of a tralling vortex sheet). It will
be shown in the subsequent development that the assumption that Av,
is zero in this interval (i.e., no vortices are shed by the wing ahead
of the interval) yields a nearly constant-chord, swept-back wing; with
such a restriction the inversion can again be performed. ’

Given the inversion of equation (15), 1t is possible to write both -

wy and vy for certaln portions of the real axis. All along this axis
the functions w; and v; are, of course, real. Hence, if

f( §1) = vl(y]_:zl)"iwl(yl:zl) (16a)
then by anslytic continuation

£(61) = v(&1,0)-1w (&, ,0) ' (160)

Therefore, the inversion of equation (15), together with equation (16),

glves sufficient information to determine the induced velocities through-
out space.
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Particular solution for the nearly constant-chord wing.- Adopt the
notation Avyy, equals Avy in the region of the Yy, axils representing
the body or fuselage in the §&; plane; Av,, equals the value of Avq
in the region of the ¥y, axis representing the space between the fuse-
lege and the wing; and Avyy equals the value of Av, in the region of
the 'y; axis representing the wing plan form. Then if Av;g =0 (the
calculation of the trailing-edge shape corresponding to such a choice
will be presented later), equastion (15) becomes

“t1 Av 1 Av ©1
Wy = = -].'.. f W dya_ .].'. lb P _ _%_
2n J1=Y2 2n Y1 ‘ye J1~Y2 Wa
=831 -3

(17)

Since the airplane is laterally symmetrical, the span loading is sym-
metrical and AP (yi) = AP (-y1). Therefore, Avy has the property
Avi(yy) = - Avi(-y1). By means of this relation for Avy; and the addi-
tional change in notation

2
N1 =¥,
. (18)
s =¥>
equation (17) can be written
512
Avlbdn2 1 Av. 41
- wylny) = - f —L¥_z ' (19)
nl‘ﬂa T2 5 N1-N2
T,
Equation (19) will now be inverted under the condition that
Wy = - Voo for 0<n1<r;® and for %:%2<m; <s;%, and under the addi-
tional condition that (Av;y) Nt ® = (Avla)ne_ 52 " 0, which amounts to
N2

assuming the Kutta condition along the wing trailing edge (see, e.g.,
reference 4). This inversion 1s accomplished by a double application
of the following solution (see appendix B): If

() = - = f AV:(lTlﬁ):ng (20a)

then, under the condition that Av;(a) =0

b
o fm-a o £(np)  fo-n,
avy(ny) = £ / ——f an,, (20b)
i n,/ b-m M -Nz  M2-8
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Now write equation (19) in the form

~Voa + f Avlwdqe f Avlbdng
2 M1-Mp = M-z
and then, since Aw b(O) 0 by reasons of symmetry, apply

equation (20b). For O0O< 'ql<r12, there results the expression

I /1 5% v er, 2
Ay = - 2Vpa 21 +% 21 f iv 2 1 dn,
rn=-m r=-m 4.2 Tll"Tlg LPN
} 1

(21)

Substitute equation (21) back into equation (19), reverse the order of
integration and, for t;°2<1;<83%, there results

Sl a:
Voa = - = / D/ﬁ g(ﬂE) N2 (22)
q1-T22 - 1Mz _

where

g(n,) = av (n,) (23)

ain apply equation (20b), this time to equation (22). In this way
g 1]1) can be shown to satisfy the relation

1,-t .
gln) = - Vegn /2" (2k)

s—
0 1“1

and equating this expression to equation (23) gives

n2(11-t1%)
AV g = - EVOCL/ ’ t12<'ﬂ1 <512 (252)
(

Slz-ﬂl)(ﬂl-rla)
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A repetition of the above process yields®

i 1( t 18"'“1 )

> =— 0<m<n® -(250)
(81" -n1) (r1™-m)

Avyp = - Vo

The results giveﬁ by equations (25) can be extended to other points
in space by analytic continuation. ZEquations (16) indicate the necessary

procedure. Hence, since (v;) = Av,/2,
z,=0

gla(glz'tla)

512‘§ 12) (glz 'r12)

(26)

vl(yl,zl)-iwl(yl,zl) = Voo i+ /(

SWhen the method is applied to a value of w; which has some given
veriation with 17, there results

2
5 N1(t,%-n,) 1w (np) (812-12) (r1Z-n2)
avop(ng) = = = > dnz = +
(r1Z-11) (82%-11) M1-Mp 12(t12-12)

. 2

81
f wy (n2) an /(T]a-rlz)(sle-"ﬂa) 0< <12

2

2 MMz - n2(na-t1%)

ta ‘ )
and

2

2 11(n3-t1%) i wiln2) a (r12-12)(812-12) +
&vyy(ny) = e > = f N2 o2
(sy =) (n1-r1) A N1-12 nalty N2

dnz

2
83
2 2
/\ wl(nz) (no-Ty )(81%-n2) , t2<ny <82
-_— 2
+.2 L Pl P le(na'tl )
1 ;
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Equation (26) has several branch points so it is not uniquely defined
N without specifying the cut from -o» to 83 along the real axis in
the £; plane (see sketch (c)).
In the upper half of the &1 plane | 72z
8, varies between O and = and /
in the lower half, between O ‘ (‘
and ~n. Notice that when &, 1is /
at a very large distance from the //<T.
origin in any direction the mag-
nitude of the term on the right-
hand side of equation (26) tends
to zero, so that the boundary '
: conditions at infinity are satis- .
i fied, It is evident that the Cut in & plane
’ other boundary conditions in (c)
equations (13) are also satisfied.

The Trailing Edge

Special trailing-edge shape.- Equation (26) is a solution to
_ Laplace's equation and represents the flow around a wing and body.
! However, the plan form of the wing has not as yet been evaluated,
l although it has been fixed as that which makes the value of Avy; vanish
in the region between the wing and the body. Since Avy; 1s the
gradient of AP, in the y; dlrection, and further, since (Aﬂh)T.E

(the value of AQ; at the wing trailing edge) equals the total circu-

‘ lation I'y about a given chordwise section, this amounts to the same
thing as assuming that there are no trailing vorticies between the wing
and the body. It is a further consequence of such an assumption that
the span loading ahead of this region 1s a constant for r02<:y02<:t02.
The configuration which will produce such a flow must now be determined.
In particular, if the leading edge is taken to be a straight line, the
equation for the trailing edge 1s unique and needs to be expressed.

One of the simplest ways of finding the shape of the trailing edge
is to find APp g, from equation (26) and solve for t as a function

f
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of 8 for a fixed value of r, and APp g, . The constant represent-

ing APp p, 1is the value of the jump in potential at the point P in

sketch ?d? Here Ap is known (see, e.g., reference 3) since there is
. no gap to make its solution indeter-

minate.
< Consider an-arbitrary section, as
4 AA in sketch (d), downstream of the

b point P. The value of Av,, at such
a section is given by equation (25a)
and the solution for AP,y follows by
definition and is

(27)

{d) X
Equation (27) is an elliptic integral

which can be easily reduced by means of
the substitutions

2 2 2 2
N s y2  baT-Ta 8
R M (28)

812-r3 8,2-1,

and-by using the Jacobian elliptic functions-defined, in this case, by
(sla-tlz)snzu = slz-ylz, en®u = l-sneu, an®u = l-klesnzu

to the form

Ay = Nopa /312'1'12 [E(klﬂfl) ~ky' 2F(k1:ly1):]‘ (29)
2_o 2
v= /2 (30)
) 8,7t

and wvhere the incomplete elliptic integrals E end F are defined in
.the 1list of symbols (appendix A). Equation (29) reduces to the results
given in references 3 and 4 when there is no gap or no body; respectively.

¢

where
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At the trailing edge y; = t1, and equation (29) becomes

(Aq)l)T'E. = 2VOG. /sla-rla <El‘kl'2Kl> (31)

‘where the elliptic integrals are now complete. Transform this to the-
physical plane, using equation (6), and set '

/1 Fr )

(8% -ro")

2

ko' = W 1-ko (32)

then there results

§-r 2 >
APy g, = 2Vo°" ( . > (Eo‘ko’ Ko> z (33a)

At the juncture of the fuselage and the wing trailing edge (the point P
in sketch (d)), s equals mco and t equals rgy, so that
equation (33a) reduces to

(49,5, = 2omeo [1- (22 > ] (330)

As was pointed out, the solution for the equation of the trailing edge
can be obtained by equating these two values of (Aan.E.- Hence

[ (8 2 ot
[EIRE

t2-meot -To- =0 (3L)

Eo-ko' Ko

r 2
(o] ?
[l' .m)]ko

Eo-ko'“Ko

or

Set
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and since s equals mx

kot__< ‘ro>mx
© \ m®x3-r,2

From equation (34) the solution that gives the correct trailing-edge

shape can be written
/.2 =
G + G +hrg (35)
B 2

and from the definition of kq'

.2
- _ t2.ro® + ~/(t2-r02)2+1tk0 t2r ® ' (36)
2ko't

If ko' and ro/me, are fixed, t/mcy is determined from equation (35);
and a fixed ko', ro/meco and t/mco determines x/co from

equation (36). Hence, it is relatively easy to calculate numerically
the shape of the trailing edge.

Sketch (e) shows the shape and position of the trailing edge when
the wing leading edge is swept back 45° and the radius of the fuselage
is 31.6 percent of the extended root chord, co. (A dimensionless

coordinate system is chosen,
y/me however, so that the results

0 5 (/] L0 can be used for various values
1.0 : : of m. and cp.) Shown also,

. for comparative purposes, is
the position of the trailing
edge when there is no fuselage -
the condition in both cases
being, of course, that no
vortices trail back in the
. region directly behind the wing.
1.51 Trailing edges Teble 1 presents coordinates of

the trailing edge for several
X o /’”co ] values of ro/mco.

'EZ o
316

210-
(e)
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Sketch (f) indicates the 10
variation of the local chord ) 1
along the span for ro/mco -
equal to 0.6, 0.316, and O.

It is apparent that the

effect of the body is to mske
the tralling edge more nearly
that of a constant-chord wing.

°0l0

The asymptotic value of the I
wing chord is given by the
equation
=2 (2] o
Co 7T
where _ 0 - :E

yz/me,

. ww<__> (F)

More complete results are
given 1n table 2.

Other trailing-edge shapes.- The procedure just presented can be
generalized and used to calculate trailing-edge shapes corresponding to
arbitrary span-loading curves. Suppose that the span loading in the
transtormed (or §l) Plane is represented by a power series in y; in

the interval r;2<y,2<t;2. Then the circulation in this interval can
be written

m .
r (yl) = bny'ln
4

and, hence, Av,g, the value of Av; in the same interval, becomes

m
Avig, =Z nbnYJ.n-l
n=0

Equation (19) now takes the form

e e e e e e e hs e ©  ————— . A ¢ s
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tlz r12 312
- a 1 Avy gdn, 1 J[‘ Avipdn, 3 Avy yan,
1 — ————— et e — ———————— — ——————
e 7,2 ™ A CRL P £,2 T

The left-~hand side of the latter equation varies with 1, in a given
msnner depending on the bp's 1in the expression for [I'. Hence, the
equation can be considered as identical to equation (19), the left side
being regarded as an effective w; 1in equation (19). The analysis
succeeding equation (19) can now be repeated in terms of the equivalent
W1. There results an equation for the trailing edge which depends on
the bn' Se

By the process outlined, both the trailing-edge shape and the span-
loading curve have been expressed in terms of m + 1 constants. By
varying the number and magnitude of these constants, a large class of
trailing-edge shapes can be obtained.

The Wing Area

Having found the shape of the trailing edge by the methods outlined
in the preceding section, it is now possible to determine the area of
the wing. Denote this area, region 1 in sketch (g), as S; and the area
of region 2, shown also in the sketch, as B5z. It is evident that the
sum of these two areas is simply

_ 1 To _
3 * ] { Sl + 52 = é (mx—ro) K= E[-) =
h/m
m ro\2
% 5 <' Ty
X Replace Sy by its integral

equlvalent and there resultis

QS§\ 2
—gz\\ / 31=2<-%9 -

t(x)

-— s-mx——-l *
' [ e
Co To

(g) '*
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If a dimensionless system based on the length ¢, is adopted, one can
write for the total area (i.e., both panels, see the shaded area in
sketch (hl)) of the wing the equation

x/ Co
S x \2 To 2 Yo € X
== ( — + ([ = -2 2 -2 o al =~
mco Co mco mco ’ mco Co

vhere t/mco 1is given numerically as & function of x/cy, in table 1
(y/mco in the table representing t/mco) . Numerical relations between
the parameters S/mcoz, ro/mco, so/mco, and to/so are presented in
figure 1.

The area of a wing with another
kind of tip shape can be readily 4':1
evaluated once the particular tip ]
shape is specified. For example, the l
area of the wing shown in sketch (h2)
can be calculated by subtracting a
rectangular srea (given by the sum of
the two triangular regions labeled 3
in sketch (h2)) from the area of a
sketch (h1). ‘ b o
r"_‘so‘_“—"

Downwash Behind Wing (1)

The equation for the downwash
behind the wing and in the 2z = 0
plane follows immedistely from
equation (26). In the transformed
£, Dplane the value of w; 1s

| 3\”' \X3
wy = - Vou, 0<y12<r %5t 2<y1%e,® £-- =3

Q)
=

(38a)

and

2/, 2 2
_ Y1 (tl -¥a ) 2 2_y. 2
Wy =~V {1 - > = > S s, T1°< 1<ty
. (81571 5) (715 11%)

(38b)

e e e et v, | e ot e it i T "ow A s s x s



18 NACA TN 2554

In order to transform this value to the physical plane, care must be
teken to go backwards through the boundary conditions in the proper
order. Equations (38) represent the solution for the boundary conditions
presented in equation (13). To find the solution for the conditions
given by equation (12) a free streem Voa must be added. Thus, in
mathematical notation,

(W:,_):L = (w. ) + Voo

where the subscripts 12 and 13 refer to the boundary conditions satis-
fied. Finally, to find the downwash in the physical plane, the transfor-
mations given as equations (9) and (5) must be employed and the free
stream subtracted so that

}’2"1'02
w(y) = l: (W;L)l:3 +V.a :’ 2 - Voo
where (WJ_)l3 now becomes
(W1) 15 = = Vo, O<y2<r¥t8<y®< 6®

and

yP4,? (PP2o") (Pr)
, PR< < 4P
=% () [ | o

Combining and simplifying, one finds

(Wl)l3 =-Vou |1 -

w(y) = - Vou,0< y?<rZt3< y®< 8% (39a)

and

f+ro (7%4%-r0") (+5-5")
w = e r2
(¥) Voo |1 - < ) / ) () | <y2<42

(39p)
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The accompanying sketch shows the variation of -w/Vga in the
intervals for which it has been given. If no wing is attached to the

et cCc
rof —e” =L -
-w
o A | With body — ——
TR ——— Without body -----
12 y/me,
0 . =
- .5
- 1.0
(i)

body (or if the gap is very large) the fluid at the side of the body is
moving upward at a speed equal to that at which the body is moving down-
ward. The presence of the wing restricts this motion and as the wing
panel approaches the body the air in the gap is forced more and more to
move downward with the wing and body. The dotted lines in the sketch

show the veriation of -w/Vgo if no body is present, that is, if rg
equals zero,

Chordwise ILoad Distribution

Loading on the wing.- The loading on the wing can be calculated

by means of the linearized equation for the loading coefficient. This
equation can be written

( (2 2 Ay " "(40a)
ox '
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It is somewhat easier t0 calculate the loading if the derivative of ACPW
is taken in the &y plane. If AP is considered to be a function
of the two independent variables ¥; and 84, equation (lLOa) can be

modified slightly to read
(&) 25w 22 (10)
%

Vo Os, ds dx

AP
The value of ¥  can be obtained by differentiating equation (29),
thus By

asl af 512—r12

E(kq,¥y) -k 2 F(ky, ¥y) ] +

1

J 81511 ——‘"—‘BE(kl’vl) - k% aF(éil,vl) — 2k "F(ky ,¥1) o
8, da

as1 1 81
which becomes

AAP1w

Noa -5
le /Blz-rla

[@(kl,vl)-kl'?F<k1,¢1{] .

2 2
_._____l"*; 2) gy 251 g 2 1-%,% 9%
1-ky" ¥

/ 8,2-1,2 <F(k1, Y1)+

2, 8
d.Sl l-kl \b’l asl

(k1)

The terms dk,/ds, and O¥;/ds1 both involve dt,/ds, which is
proportional to the slope of the trailing edge in the transformed €1
plane. This latter derivetive can be readily obtained from equation (41)
1’cs§if :iz;:iizze value of (Ap/q)W and hence OAQyw/ds; must be zero

on the tr edge, that is, where ¥y equals t; and equal
This yields the relation * ¥p equsis -

. (42)
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by means of which the identities

a}yl _ Bl (WlEl + l-\#12> ]
ds; 81%-r{® ki1Z%K; ¥1k2

and f (43)
dk -8 Ey-k; 'K
g 1 (.L:..L_.i)
dSl 812-1'12 Kl 4

cen be written. Place equations (41) and (143) into equation (40b), and
there results for the loading

2 2
31 -y

( i - [E(kl,‘#l)- K =2 P(x,,¥,) +

%: S92 (k2 ]

14

Transforming this to the & plane, one finds, finally, since
ds; /ds = (82-193) /82

2
( ) e “’° E(ko,¥0) - E; 2 F(ko,¥0) +

32( }'2-1‘02) /( ya"te) ( y2_t2__r04& )
yt(s2-ro2) f (82-y2)(6%y2-ro%)

wvhere k, is defined by equetion (33) and

\b' _ E ( 82'}'2) ( saya"r04) (115)
o ¥y (Sz_te)(82t2_ro4)
In the special cases when there is.no body or when the wing is
triangular, equation (44) agrees with the results presented in

references (4) and (3), respectively. A discussion of the chordwise
load distribution over the wing will be given at the end of this section.

()
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Loading on the body.- The variation of the load distribution over
the body can be calculated in much the same way as that over the wing.
It ig first necessary, therefore, to find the jump in potential between
points directly opposed above and below the z = O plane. In the §&;
plane this difference follows immedistely from equstion (25b) just as
equetion (27) was written for A®Pny. Hence,

t1 2 .2
B, (512‘Y22)(Y22-r12)

S tla'YEz
v, . 46
d1;/1 2 / (5:2-7.2) (2-7.2) dyz (u6)
1

The first of the integrals in equation (46) has already been evaluated
and the second can be reduced by means of the transformation

(t182-y223) snZu = r;2-y»®

After some manipulation, equation (46) becomes

2 2
APy = Voa [El-E(k1:¢3)+k1' F(ky,¥5)-k' Kl] JB18-r1 % +

Vo J/(Blg-Y12)(T12-Y1%) (h?)

t12_y12

vhere k; is defined by equation (28) and

2 o 2
Ty =Y1
Vo= [ 2 (48)
t1%-y1
Using the equations (42) and (47), one can write for the loading on the
body (after differentiation and simplification of equation (47))
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OB

8241

L)

g2

2ko?(82-r2)t /
. [(£B+10%)2-by2t2] [ (s24r07)2-

/

where kg 1s defined by‘equation (33) and

Agein equation (L49) agrees with
previously known results in the
limiting cases when the body
vanishes or when the wing
becomes triangular.

Discussion of the chord-
wige loading.- Equations (44)
and (49) form the basic results
of part I of this report.
Graphs of the loading coeffi-
cient for a wing alone and for

& wing-body combination (ry/meq
equals 0.316) are shown in -
sketch (jl). The results for
the case of zero body radius
could have been obtained
directly from reference L,

They are shown here for the
purpose of a qualitative com-
parison. Unfortunately, the
load distributions on the two .

wings cannot be compared quan- -

tatively on the basis of equiv-
alent plan forms since the
trailing-edge shapes differ
significantly.

The variation

- - By

(j!)

23
E
O .
K-; F(kO:*g) "E(ko:‘#z) +
T 02_y2
==
-2
r°2 i (50)
)2 )_l_yE.tE
0 By . T T
AA, y =1, H -Two- dimensional
‘ “ 1 ] 1
o/ 85,7724 \ Z(ﬂm Gody |
. \
L] o R
i 9km R S, S
I
Section A4 ™\ [}
u , Y
%5 Percent chord 100
104 T T T 10 T T T
X‘ Two - dimensionol Two-dimensional
\ —} T
‘ ‘\/'“”0 body N\ o bady
N, \J
ap N ap PR -
= = ) el N
qoem r\'-‘ gxm
\. T
Saction 85 . Section cc\‘
[+
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10—y T T T 10 1
‘\ Two-dimensional %‘/- Two-dimensional
. —t % +
‘ 3 ZL—ﬂo body 5\ | W0 body
213 N | ZYA NN
qem qam Ny
v I
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] \\ (4
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of the loading along the center line of the body is shown in sketch (32).

¢ T 1 I
r,/mec,=.316
ap | 7y ///ﬂ 1 'A
goem / \ c /|
4 l —_
/ Loading along \
/ section AA S~ ' ]
[ 12
o
0 4 .8 x/c, 1.2 1.6 20
- (j2)

.

On the basis of the load distributions presented in references 3
and 4, the qualitative variation of loading shown in sketch (1) is
obvious. That is, the loading falls steadily from its infinite peak at
the leading edge to zero at the trailing edge. On sections which are
cut by the Mach wave from the trailing-edge fuselage Jjuncture, the slope
of the curve is discontinuous.

The change in the load distribution brought about by the presence
of a wing tip is the same for a wing-body combination as for a wing
alone. The behavior of the loading in the vicinity of a tip has a
straightforwerd explanation in terms of the trailing vortex sheet.

Thus, if the wing is cut off along a line perpendicular to the free-
stream direction, the vortices which were bound in the wing all turn and
trail backwards with the same distribution in strength? as they had when

4This assumes, of course, that the vortices have not begun to roll up to
any significant extent.
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crosgssing the last spanwise section of the wing

(see sketch (k)). Since the vertical induced
velocity along the last spanwise section was made
constant (by finding the appropriate solution to

the integral equation), it must also be constant -
and, in fact, the same constant - everywhere in

the vortex wake. Hence, if a flat surface having
the same angle of attack as the wing is inserted
anywhere in the wake it will in no way disturb the
flow and consequently there will be no loading on
such a surface (just as there is no loading on the
vortex wake itself). The loading is zero, therefore,
or the tip regions marked 2 in sketch (k); the load-
ing in the regions marked 1 being given, of course,
by equation (Llk).

It is interesting to see how the distribution
and magnitude of the loading given by this
(slender wing) theory compare with linearized
theory results at some Mach number other than 1.
The differences caused by considering Mach numbers
other than 1 depend, of course, on whether or not
the new Mach number is subsonic or supersonic.

This discussion must be limited to a comparison
with supersonic Mach numbers only, since theo-
retical chordwise load distributions over swept-
back wings flying at high subsonic speeds are not
available. The change in the loading brought about by
increasing the speed can be divided into two parts:
one, a change caused by the rotation of the Mach
lines which form the boundaries of the various
reglons in =ach of which the shape of the loading
curve takes widely different forms; and the other,
a change in the magnitude of the loading within
each of these regions.

Sketch (1) indicates these effects. Thus, on the wing flying at

RS

Vortex
‘wake

(k)

25

|

supersonic speeds the sharp drop in loading occurring at a critical Mach
line moves farther back along the chord from point b to point a in
sections AA and BB shown in the sketch. This causes a considerably
higher value of the loading for the supersonic wing® in regions 1 and 2.
A similar effect occurs on the body traveling at a supersonic speed where

now, however, the traces of the Mach lines are no longer straight but,

5Solutions showing the effect of crossing critical Mach lines on a
swept-back supersonic wing are given in references 6 and 7.

et o e it e ot -— et e oy
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due to the curvature of the body, form
helices. Region 3 in the supersonic case
would be a region of zero loading and region L
would be a region of high loading relative

to the sonic value.

The relative magnitude of Ap/qa within
the various areas bounded by the wing -edges
and the pertinent Mach lines changes as the
reference section moves outboard along the
wing span. Along inboard sections shead of
region 1 in the sketch (i.e., ahead of the
sonic Mach line from the trailing edge root)
the loading on the sonic wing is higher than
that on the supersonic wing. It is well
known, for example, that in the case of a
trianguler wing without body, slender-wing
theory gives a loading E +times the loading
obtained at a supersonic Mach number (where
E is the complete elliptic integral of the

second kind with modulus ./1-m“p® and is given

closely by - 1 + 1 m=p2 <}n lt - %;) for

_ 2 mp 2

small values of mB). On the other hand,
along sections farther outboard, the magni-
tude of Ap/qa on the sonic wing must become
lower than that on the gupersonic wing. This
follows immediately from simple sweep theory,
since the component of velocity normal to the
leading edge is closer to the speed of sound
than that for the sonic wing. In fact, it is
easy to show that at distances tar enough
outboard so that simple sweep theory applies8
the supersonic wing has a loading

-1/2
é - m252> / times that obtained from
slender wing theory.

By an ‘application of the sbove consider-
ations, it is possible to obtain an estimate
of the absolute value of the loading on a
wing-body combination at supersonic Mach

6sketch (jl) indicates the manner in which the loading approaches that

given by simple sweep theory as the reference station moves outboard.
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nunbers. Another manner in which the results of slender wing theory can
be extended to Mach numbers other than 1 (or to plan forms which are not
sufficiently slender) is to form the ratio of the resulting values for
the wing plus body to those for the wing alone and apply this ratio to
solutions for the same wing or body at the required flight Mach numbers
(or slenderness factor). As has already been mentioned, the formation,
of such a ratio for the load distribution is not possible from the solu-
tlons presented herein sgince the wing traliling edges change to a certain
extent with the addition of the body. It is reasonasble to expect, how-
ever, that a ratio of the integrated loading characteristics (i.e., 1lift,
drag, and pitching moment) formed by dividing the result for a wing-body
conbingtion by those for a wing alone willl be useful in estimating the
interference effects even if the wing trailing edges differ slightly.

Aerodynamic Characteristics >

The results developed in the preceding section can now be converted
into forms which represent the aerodynamic ‘characteristics of the wing
and body. Hence, the following will present the span loading, aversage
chord loading, 1ift, drag, pitching moment, and center of pressure for
the wing-body combination.

Spen loading.- The development of the span loading on the wing and

body will be considered separately. Firsgt the span loading on the wing
can easily be determined from the value of AP given in a preceding

section. Thus
¥ )3
-— = — dy dx
3 T Y
wing plan form

and since A9 at the leading edge is zero

I<'1’E =V25 f (A9 5, &
; Sen

where (A®)qp i, 1s the value of AQ on the trailing edge of the wing.
Since (AQ)p . @lso represents the total circulation about the wing

chord, there results for the circulation IL; developed by the wing and
the total wing 1lift L
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Iy = (A9 g,

LW=pVOfI'Wdy ~ (51)
span
N The equation for Iy can now be
o 5 b So determined from equation (29).
~-—y Between =To and y = to (see
y=mx sketch (m% the value of I, is a
constant (this being the condition
Co ] by which the shape of the trailing
edge was determined). Between y= to
L___ and ¥y = 8g, Iy is given by the value
of A® along the section AA since
there is no loading between this
, sectlion and the traillng edge. Hence
<~ — A
st « 7o\’
Iy = 2Voacom | 1- Moy » ToSYSto
1 (522)
(m)
and
B 2T 2 : 2
I'y = 2Voa (—‘—’;——°—> [E(ko,‘lfo)-ko' F(ko,¥0) ] » to<¥<so (52b)
o

where ko and V¥V, are defined in the table of symbols.

Some care must be taken in order' to find the span loading on the
body. Since we are concerned here with the loading developed behind the
wing-leading-edge fuselage juncture, it is necessary to subtract the
value of AP, at this station, shown as station AA in sketch (n), from
APy at station BB also shown in sketch (n). For the total spen loading,
then, it will be necessary to add to this value the load accumulated
on the nose of the body. Denote by (I‘~D )o the increment of circulation
developed by the nose of the body and by (ry )1 the increment of circu-
lation developed behind the wing-leading-edge fuselage juncture, that
is, between stations AA and BB.” Rence,

731ender wing theory gives zero loading behind station BB as long as
the trailing vortex pattern does not vary.
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"

(I‘b)l (ACP)T_E. - (Aq))L.E.'

(53)

(Lb)l Dovof (Pb)l dy

The value of (AQ)1, g., see sketch (n),
can be obtained from equation (L47) by
gsetting t; and s8; equal to ri.
By transformetion of the result into
the physlcal plane, one obtains

(Aq))L.E. = )-I-VO(L ,/1‘02-}"2

The span loading on the body is then
N given by

/ (). =2v 507 T0% | Bo-B(ko,¥,) tho' F{ko,¥a) ko' Ko | +
b)) = aVol ——1;5-— 0 Vo Y2

T ) - o
: 222 ﬁs°2+r02) ooy e VD, S } (5%)

(t02+r02) 2-1+t02y2

where k, and V¥, are given in the table of symbols.
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Sketch (o) shows the
variation of the span loading

over the wing and body for a

body radius factor, ro/mco;
equal to 0.316 and a wing
semispan factor, so/mco
equal to 1.7.

Section 1ift.- The wing-
section 1ift coefficilent can
be calculated readily by
dividing the section chord
into the value of the span
loading at the same span sta-
tion. Along sections not
influenced by the tip cut-off
this 1s egpecially simple
since the span loading is
constant. The value of the
section 1ift curve follows
immediately, therefore, from

table 2. Typical results are shown for a body radius factor equal to O

and 0.316 in sketch (p).

70 T
Asympltote /
_A_
6.0 1

]
me / /’ .

)y

0/

4.0
(pl]

2 y/mc, 3
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Section drag.- The value of the section drag can be written

cqg = acy + (eq), (55)

where (cd)s repregents the suction force gt the section leading edge.
The magnitude of (cg), can be evaluated (see, e.g., reference 8) by the
equation .

(ca) = qi gi‘“y (56)

where dF/dy is the suction force in the free-stream direction per unit
length normal to the free stream, and ¢ 1is the local chord.

Define a new set of coordinates, as shown in sketch (q), such that
¥n lies slong and x, lies perpendicular to the leading edge of one
wing panel. Then if

—  lim un(Xn,¥n) | .
G—Xnéoﬁn Vo n r\q !
(57) Leading
o1 edge
the suction-force component F (positive
in the positive x, direction) in the
free-gtream direction is given by the
equation - ~\\
(q) i -y
dF onq .2 q
— = - — G (x,Y) (58)
dy Bn

Now by differentiating equation (29) with respect to x and dividing
by 2 (to convert Au into u), there results

s3(y2-153)  Ay®-t®) (y%t%-ro*) }

2, 2 A
u = mVpa (?LEE;Li>[E(ko:¢o)- Ei F(ko,¥o)+ Tt(s2102) ./ (62-32) (s2y2-1o%)

y/mco 21
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and similarily v becomes

2.2 212
3T 8 t2-r t2-y2

v == Voa y 3o <—> (y o*) (t2y2) y/mcoz 1
y2 (s2y2-r %) (s2-y2) ’ ‘

Since the normal component up is given by the equation

mi-v

1+m=

Un =

there results

Voo (¥y3-t3) (y3t2-ro*)

2/;]]1_ <32+ro ) [E(ko,xlro)- ];—g F(ko,‘ifo)}-i- ytJ]:,? (P32 (5272 c)

I: 2(8%41,%) (y5-r %) N s(y2+r ?)

2 2 ‘ v

:], y/mc0 >1
8 -ro

" By means of equation (57), G can now be calculated. Hence, since

Bn = 1/4/ L4 ,

G =

a(y2red) /(yz-te)(yzt%ro*)

yt(1+m2) /% . oy(y4ro?)

Fina.]_'l:y, therefore, the suction force can be written

(59)

ar a®(y3rs) [ (y2-t%) (y%65-ro*) }

=~ 2x
dy ¢ =2 2y(y°-ro°)

and, by using equations (55) and (56), the section drag coefficient can
be w:ritten
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o e _stoma () |- - () (BI],

y/meo>1

Pm am  (c/co) : 1 _(ro

y
(60a)

In the region where the leading-edge suction force cannot be affected by
the trailing-edge shepe, equation (60) reduces to the simpler form

a®m am (c/co)

4
fq _ g1 xly/meo) [1 - (fyi’ ] rofncoSy/meo<l  (60b)

The variation of the section drag coefficient is shown in sketch (r)
for two wings: one without a body, and the other with a body radius
factor equal to 0.316.

6
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Total 1ift.- The 1ift on the wing, the body, and the combination
can nov be eveluated by means of equations €5l) and 253) gsince the
expressions for I' are given by equations (52) and (54). The integra-
tion required is somewhat involved algebraically, but the final result
can again be expressed in terms of elliptic integrals. Thus, defining

A k,¥) bY

Doli,¥) = & LKE'(k,ﬂr) + EF (k,¥) - KF' (k,xy)] (61)

(tabular'valﬁes for Ap can be found in reference 9), the total 1ift
carried by the wing is

2 .2 2.2 o0 o ﬁ
-I;w- =2 S0 ~To { to #To [‘Ez'ko'sz-j -ll-ro LEo-ko’zKo_' } -

qo 8o to w

2 2 .. 2\2 2,2\ 4.4
(Y () oo (225 (55 |
to Bo to

8o

(62)

Equation (62) agrees with the results presented in references 3 and 4
when to = ro (the case of & triangular wing on a body) and rg = O
(the case of no body), respectively. Vhen s, equals 1y, that is,
when there is no wing, Iy equals O.

The 1ift on the body will be computed in two parts just as was the
span loading on the wing: the 1ift on the portion of the body behind the
wing-leading-edge fuselage Juncture (Lb)l, and the 1ift on the nose of
the body(Lb)o° Tt ie a well-known result of Munk's airship theory that

the 1ift on the pointed nose is Jjust

I0)o _ prro? (63)

q@ -

= 2nrg

and is independent of the shape of the nose.2 The value of the lift in
the vicinity of the wing follows from the integration of equation (54)
according to equation (53). The total 1ift on the body can then be
written

8TIn this report, it 1s assumed that the nose is always ahead of the wing,
that is, the portion of the body on which the wing is mounted 1s every-
where a circular cylinder.
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80 -T2

) (Iy, )o+(Lb)1

qa

)
aa

=Je)

)25

[( +ro> <‘bo -To ) :l Ao(ke:‘{’.;,) ) 2:tr02

Setting to = ry, one finds the result given in reference 3 for a trian-
gular wing mounted on the cylindrical portion of a pointed body.

It t4

equation (63)s If 1, =0, Iy

1
2k K

2

35

)]+

(64)

=Ty = Bp, the wing disappears and equation (64) reduces® to
reduces to zero.

Finally, the sum of equations (62) and (64) gives for the total
1ift of the wing-body combination, including the nose of the body,

4

L o, .

......:21[
qo

'to4+1'
't 2

%)
(65)

Sketches (s) and (t) show
the total 1ift on various wing-
body combinations together with
its division into the component
parts carried separately by the
wing and body. Various 1ift
coefficlents, depending on the
choice of the reference ares,
can be formulated by means of
the area-span relationship
given in figure 1.

<%04+To
g 2

(e]

Total drag.- In general,
the vortex drag can be calcu-

lated by finding the momentum
transport through a plane perpen-
dicular to the x axis and
located infinitely far behind
the airplane. In slender wing
theory the calculation of the
total drag is simplified in two

1.6 //
N
\<’o:'8
1.2 — =
L /
4qxs, |-
f/s,-'é\
8
ALY
e y \\0
/1
4 ///
//////
0
0 2 4 .6 8 1.0
(s) o/ Se

“Note that Ag(k,1) = 1.
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ways: first, the vortex drag becomes the
o= 1o Lift on  total drag (neglecting, of course, vis-
cosity), and second, in the calculation of
. this drag the reference plane can be located
——— Wing immediately behind the airplane since the
Pilow there is the same as it is infinitely

Bo d)’ far back.

Hence, a momentum balance gives for

L]

the dr
0 /s, |/ o8
. : So g3
fo/sd: 8 D=- Po waAq)dY‘*'pOrOf (‘vr)rqo((P )1'=T0de
1 To °
L f
= Wing (662)
Body where w is the value of the vertical
induced veléelty behind the wing in the
/ / 2z = 0 plane. It is more cqonvenient to
o % o perform this integration in the £, plane.
(1) Equation (66s) can be put in the form

r
v Aq)ldyl—pof w AP dy, (66b)

N Bl
D= - EQJf (1 :
2 ["‘""‘
.y y'I -rl 0

where w a.nd AP, are given in the following.

For r12< y12<+t12, that is, between the body end the trailing edge,
it is seen from equations (39b) and (31) that

\

2
Y1~ J¥18-1r1 2 :I 11271

2 2
2 B1°-y1

2
1
Acpl = EVQG: ’Slz-rlz (El_kl Kl)

W=~ Vo [1-2y1

Ty

¢ (67a)
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For t12<y12<s:2 that is, on the wing, it is seen from equations (39a)
and (29) that .

w = -Voa
| . (67b)
APy = 2V ,/ 813-112 [E(kl,’{fl) - kl' F(kl,\la'l)]

Finally, for y,2<r.% that is, on the body, equations (38a) and (47)
give

w = -Voo
2
A9y = 2V a ./ 8y2-r,2 E‘:":L"E(kl:‘i’a) + I " Fk,¥s) - ? (67c)

2_v.2)(r.2-y.2
k'EKl] + 2V /(51 J1 )( 1 Yl)

1 2 __2
571 J

The substitution of equations (67a), (67b), and (67c) into.
equation (66b) yields after integration

D _ L 2
w?® 2 b(sy2-r;2) (By-k, " K (B, -k, %K, ) (68)

vhere L/qu is given in equation (65); In the £ plane equation (68)
can be written in the dimensionless form

D L 2-ro

@2502 quSOE

) (Eomko' “Ko) (Bo' ~k67Ko") (69)

vhich for ry = O agrees with the results of reference 4. Equation (69)
also checks with the result obtained for the drag by the method, pre-
sented in the preceding section on sectlon drag, based on the calculation
of the suction force along the wing leading edge.
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.8 - Sketch (u) shows the
total drag on verious wing-

x body combinations. .

Chord loading.- In
order to find the center of
.6 pregsure and pitching moment,
7 it is convenient to find
D firgt the chord loading,
which we will define as the
value of [(Ap/qu)dy where
the integration is carried

4 ‘L /$,='.8\\ / /< over the wing and body. The
4

chord loading can also be
obtained by evaluating the
\ ﬂ

expression d(L/qw)/dx
since the latter term is
equal to [(Ap/qa)dy. As

t=s a check, both methods were
used to derlve the following

/ / / expressions.
-~

4
/ For the part of the
chord loading contributed
by the wing it can be shown
that

Bo/p T4
2f <£ dy T w-— <I.:_W =
ax /iy dx ao
to

Wbyt »
.—LEO_._I'_O._)_m - arc sin _239.:.[‘0_> R ro/ms x< Co (708.)
8o 8o24ro2
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L(s t-r 4)
OREORS-,
Bo
ko, ¥ t2+r
{ -) e *)J e G (- B} wos
So°-To%
(‘70v)
For the part contributed by the body behind the leading-edge fuselage
Juncture it can be shown that
To
a (In) 4op t
<-A£ dy = = 1= H(so%-To*) m arc sin —259T0 Ty ro/mSXSco
Q, dx qgo 802 8024ro2
(T1e)
o a (o) W(agtrgt
5 Ap (80%-ro%) o
qw dx qa B8o3
o

(-8 ) 3 aomara + 2 "f)( 2-5)]

The total chord loading can be obtained by combining equations (70)
and (71). There results the expressions

for ro/m§x§co

d L s d-r 4
& (LY., <.___0 0) o8
= <qm> s oS (72a)

and for co<x

2@ )
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Sketch (v) shows the variation of the chord loading with x
for ro/mcg equal to 0.316.

.2 | i
it 4
/ m=1
8 VX 1 I =316 / /
. A | Co= / [
yi 7
/ I S | | 1 A Wing —-
dy g
‘?“'f 7 / \ / & “plus body
4 ‘b{ ) / /(l\ ~——

. / L7 \ - ____-_‘ —————
A/ wingh" | gody

S ———

o 4 .8 L2 1.6
(v) X

Center of pressure.- The results of the last section can be used to
determine the center of pressure X, p,- The value of Xq,p, 1s given
by the equation '

So/m
X d—l-' ax
. I'o/’Jl dx

(73)

&=

Xec.p.
L

which excludes the loading on the nese. By means of equation (73)
sketch (w) was constructed.
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1.2 | q.T I
L?.. ' \;c.p.— A
—L ///
4 Lt
g | I e

f =~ | A m:
Xep b — Hep” A r, =.316
va i/Lx_L/ Co =

w . g,

IT - ADDITION OF A HORIZONTAL TATL

It is possible to use the calculations given 1n the first part of
this report to find the forces and moments induced on & horizontal tail
by the presence of the wing and body. The same assumptions that were
used for the solution of the load distribution over the wing and body
will be made here. Hence, the results will be principally vaelid for air-
planes having highly swept wings and tails or flying at Mach numbers
approaching 1.

In addition to the baslc assumptions by which slender. wing theory
is defined, however, some additional assumptions must be made concerning
the behavior of the vortex sheet trailing behind the wing and passing by
the tail. Actually these tralling vortices provide the only means by
which the wings can signal thelir presence to the tail, and except for
them the slender wing theory analysis of the tail effectiveness would be
identical to that described in part I for the wing. Only two types of
trailing vortex patterns wlll be investigated. One composed of a flat
vortex sheet situated entirely in the z = O plane (the plane of the
wing), and the other composed of two completely rolled up point vortices
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situated symmetrically with respect to the y = O plane, located a
distance h above the 2z = 0 plane and a distance a <from plane of
symmetry. These patterns represent the two extremes of the actual phys-
ical behavior of a trailing vortex wake. It is to be expected that the
sheet is more representative of the true wake when the tail is located
only a short distance behind the wing. On the other hand, the two point
vortices should be valid for tails located a large distance behind the
wing. An indication of the magnitude of the distances at which the two
agsumptions are accurate can be obtalned in reference 10.

Method of Solution and Boundary Conditions

The partlal differential equation that governs the flow in the
vicinity of the tail is, of course, identical to the one studied in the
first part of this report, namely, Laplace's equation applied to a 3z
plane (equation (2)). In fact, the general discussion of boundsry con-
ditions and forms of solution given in part I stlll epplies here. Hence,
the Joukowski transformation can again be used, the ¢ plane having the
seme relation to 'the &, plane as before and the integral relationship

given as equation (15) still applying. -

The only mathematical difference between the study of the wing and
tail can be seen at once in the application of equation (15). In the
case of a flat wing, the vertical induced velocity w 1in equation (15)
was known to be a constant over the region occupied by the wing plan
form. In the case of a flat horizontal tail, on the other hand, the
value of w over the region occupied by the tail plan form is composed
of two parts: one, the constant value fixed by the inclination of the
surface to the free stream, and the other, a distribution that is Just
equal and opposite to the vertical velocity induced over the region by
the vortices trailing from the wing. Effectively, therefore, the analy-
sis of a horizontal tail is the same as that for a wing with a given
variation of twist and camber.

The additional notation necessary for the description of the
pertinent tail parameters is shown in sketch (x). The distance from
the x axis to the tail leading edge 1s represented by o, and the
slope of the tail leading edge is designated by #. In this report,
only triangular taill shapes will be considered; however, more complicated
shapes could be analyzed by the method presented.
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Solution for Trailing Vortex Sheet

Since the vortex sheet from the wing is assumed to lie entirely in
the z; = 0 plane, and since the outer extremities of this sheet are
at ts; (see sketch (y)), the study of this case can commence with the
inversion of the integral equation (15) of part I.

Bl .
A .
a(n) = - L -;’;L-(za—) . (74)
17v2

-Sl

For t;°<y,?<s;% the value of Av,(y,) 1s given by equation (25a) and
for o0;23<y13<t,3,

, . avily,) =0 (75)
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L4 Physical plane

\ Wing vortex wc:ky
4

/["—,"I i J
|~

Sy

s

Y72, rransformed plane

Wing vorfex wak7
g

LN

(v)

Substitute these two values of Av; into equation (74) and apply the
boundary condition that w; equals =-Vga in the interval 0<y;2<0,2.
Then, assuming t,2 >012, that is, the vortex sheet from the wing does
not cross the taill® (the condition shown in sketch (y)), there is
obtained, after inversion (see appendix B) and some manipulation, the
value of Avy,; on the teil. Thus

for 0<y,2<0;2 and for t,%>0,%

2
8
av () = = 2V yy 2V ayy fl dn (Tl"tlz)('ﬂ"clz) (76)
B JoiZ-n2 w02 y,2-1 (8,2-1) (n-r,®)
g1 =-J1 /01 -¥1 tlg 1 1 1

This solution for Av, can now be used to determine the aerodynamic
characteristics of the tall in the presence of the vortex sheet trailing
back from the wing. ‘

107mig assumption applies to all subsequent analysis of the tail and
vortex sheet combinations.
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Span loading.- The spanwise variation of circulation generated by
the tall surface is given by the expression

APy = [ yAV(ya) dya (17

where Av 1s given in the ¢; Dplane by equation (76). On the portion
of the &, plane that i1s covered by the tail surface (i.e.,
for r;2<y;2<0;2) this ylelds

8,2
2V 1-t,2
AP, = 2V 02_y2___9,__f
w 1 1 x (512""]) ( Tl'rla)
t,®

(78)

To determine the span loading on the body it is necesssary to subtract
the value of AP+ at the tail-leading-edge fuselage juncture. This
value 1s obtained from equation (78) by placing o; = r;.  The span load-
ing on the body (i.e., for 0<y,2 §r12) is then given by the formula

AP = Vo <«/;12'Y12 - »./1'12’3’12> +

2
8
2Voa * 1-t,% r, %y, 2
s 2 =y orc ten [———— dn - ,
1.2 & (822-1)(n-r;®) =Ty
1

812 —
2Voa f S . 01%-y:2 N (79)
arc ten | ———— an 79
T £,2 4/(512—’])(’1-1‘12) M-0 12

Equations (78) and (79) have been transformed to the ¢ plane and the
results are shown in figure 2(a). In this and in all following numeri-
cal examples the wing will be fixed as the special type studied in
part I having the measures E;O/mcO = 1.7, to/mco = 1.091 and

ro/meg = 0.316.

e e e e —— = e v am e e e . e e e e e -
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Chordwise load distribution on the tail.- The distribution of load
over the tail surface can be calculated from the equation

) _ 2 A0 2 Ay doy (80)
@/ Voo Ox  Vom Joy ax

where the value of aAqut/Bal, determined from equation (78), is given
by the expression '

2.
AP, 4 _ Voo . oVouo fl (n-t,2) an
doy [6,2-y,2 x [o,2-y,2 ) 2 (812-1)(n-r,2)(n-0,2)(1-%,2)
1
(81)
By means of the substitutions
(612-r;%) (5,%%,%) (8:%-0,2)(n-t,%)
k,2 = 12 1:2 1‘2 12 , snu = 12 12 1‘2 (82)
(31 -0y )(tl -Tq ) (31 -ty )(ﬂ-ol )
equation (81) can be reduced to
APy,
== - (83)
1
where
¥g = (8k4)

Hence, the -loading on the tail can be written in the closed form

(Z) - “ete (85)
ao /& \

/ 012 _yla dx

and since

2 2

dx o2

W
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the final expression obtained by transforming equation (85) to the
¢ plane is

< )-I-(O' ;ZO )IJ- o(k4’*8) (86)

where k, and Vg are the transformed values of kg and Vg and are
given in the table of symbols.

Total 1ift on the tail.- The total 1ift on the tail can be evaluated
by use of the equation

[s)
Lt _ - 2 [ ay) ay (87)
qo Voa. ‘

which becomes in the £31 plane,

0y
It 1 YIAcPl(YI)dyl
2g_or. - VOG- j; Aq)l(yl)dyl + —— f yl -rl (88)

Ty

The value of AP; is given by the equations (78) and (79). Substitute
these expressions into equation (88) and, after integration, there
results

£ - (£ 2-r,2-8,2+0,2) Ag(kg,¥g) +

2qa
2 [ (812-0,2) (t,2-7,2) [Es - (*‘1—;—"1-2) K, ] (89)

817 -0y
In the £ oplane this can be written
2
Ly (862-142) (852t52-T*) (052-r2)
—_—=— - Ao(k,,¥g) +
2qa. 8,262 02
2(t52-ro%)

‘ . 2
,/(302-002)(802002-1‘04) <E4 - ==z K4> (90)

toso

A plot of this equation is shown in figure 3(a) for ro/mco = 0.316.
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Drag.- The drag of the tail can be calculated from the equation

Dy = aly + Fy (91)

where Lt 1is given by equation (90) and F¢ 1is the suction force at
the leading edge. In a manner similar to that given in the first part
of this report under the subheading "Section drag," this force is
obtained from the equation

o
2n
Fy = - _B__q_» ¢®ay (92)
n T,
As before

1im un(xn,¥yn)

G = ——
foo> 0 By - J Xn | (93)

the values of u, and x, being, respectively, the normal velocity to
and the normal distance from the leading edge. Substituting these values
into equation (93) gives -

2 yé-r 4 -
%= cc/_ ( : > Ay2(ky,¥g) (9k)
2 l+u2 ys

and the expresslion for the suction force can be written

i 22 y Y"”—ro
Ft = - VO s p‘)‘[ ys
To

Hence, the total drag becomes

4) APk ¥)dy  (99)

-D—-t=L-l"-2u .U<c4-ro4>A2 ¥
=-2 [ - o (ks ¥e)dy (96)
(o]

This equation is plotted in figure 4(a) for r,/me, = 0.316.

Chord loading.- A closed formula for the loading can be obtained by
carrying out the integration [ (Ap/qa)tdy over the tail or by evaluating
d(Lt/qe) /dx. However, since the term Ay(k,,¥s) in the expression
for Ap/qa does not involve y, it is easier to evaluate [(Ap/qu)+dy.
Thus, using equation (85), the chord loading in the £; plane is glven by
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2 i
U<A—13 ay = °1.B dy +f01 1\G@ )P
q%/t

o Yiz-rla

T1
= by A (kg ¥y) o (97a)
In the & plane this becomes

(This checks with the result found by differentiating Lt/qe with
respect to x).

Center of pressure.- The center of Pressure can be calculated by
means of the formula :
Oo/K

JF X %%f dx »
Xe.p. = Tolu It (98)

where st/dx is the result just obtained in the previous section
end Lt 1is given by equation (90). Placing these values into
equation (98) yields

o y
b (o} 4 .. 4 N
*e.p. = == f =2 ) nolka,¥e) ax (99)
p L . 0'2
' [e]

A graph of this result is shown in figure 5(a) for ro/meq = 0.316.

Solution for Rolled Up Vortices

As was pointed out in the preceding section where the method of
solution was discussed, the manner in which the present problem will be
attacked is as follows: First, thé velocities induced at the surface of
the wing and body by two point vortices located somewhere in space will
be calculated; second, a solution will be formulated (by methods identi-
cal to those used in part I of this report) that will just cancel the
vortex induced veloclty component normsl to the surface of the wing or
body; third, an additional solution will be formulated that will fit the
boundery conditions prescribed for the tail surface (in this report only
a flat-plate taill surface will be considered).
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As usual, it is simpler to work with the transformed £; plane
than with the physical ¢ plane. Hence, again the Joukowskl transfor-
mation will be applied to the field equation and boundary conditions at
the outset of the problem. See sketch (z).

N The velocity potential
at a point (y1,z1) in the

Aiz Physical plane ¢; plane induced by a pair of
Vortex /location point vortices located at
J—/ ¥y = a7 and zy = h; 1is
M given by the equation
A n| g .
\\j‘ ‘/ I ¥ > @, = 'y 1 (z1-hy )dy»
=7 2t J,  (1-ve)(za-by)®
a ) (100)
1.z Transformed plane where Iy is the strength of
- the circulation carried by the
Vortex location wing panels and trailing back
i ; from the wing tips. The value
of Ty/Voame, that corresponds
: h, 5 to the swept-back wings studied
f >~ in part I of this report is
~ ’7'4 given by equation (32a2), thus
o,

/ |
r ro \2
Voameq me,

The values of a; and h; depend, of course, on the span of the wing.
In order to compare the following results for the rolled up vortices with
those obtained for the sheet vortices in the preceding section, the
numerical results presented in the succeeding examples will be for

8ofmeo = 1.7, to/meg = 1.091, and ro/mep = 0.316. This particular
choice of parameters fixes the span-loading curve for the wing to be that
shown in sketch (o). A reasonsble choice for the value of a can be
calculated by replacing the figure in sketch (o) bounded by the lines

Yy =9, I =0 and the curve for I'/Vjamc, by a rectangle with the same
height and area. The value of a 1is then given by the sum of the base
length of this-rectangle and the quantity ro/mco. This procedure was
carried out and the result a/mcO = 1.545 was obtained. In order to
obtain a more complete picture of the effect of the point vortices on
the aerodynamic characteristics of the wing, four different locations
were chosen for the positions of the vortices, two in the 2z = O plane
for values of a/me, equal to 1.545 and 1.3, and two at a height

h/m.co = 0.3 &bove the z = O plane for the same two values of a/mco.
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From equation (100) it:can easily be shown that the value of the
vertical induced velocity in the =z, = O plane is

-a +a
Wy = acPV> -&T[ Y1781 _ it J (101)

dz1/, =0 o WmZH(y1-82)%  byPe(yr+e)2

The particular inversion of equation (15) that fits the present boundary
conditions (see appendix B) can be written

fcl w(yz)
€ /0’1 ...yl Y1-¥2

Place the value of wy given by equation (101) into equation (102) and
add the condition that the tail be a flat-plate 1ifting surface at an
angle of attack a, and there results

avy(y1) = 1%-y2% dye (102)

avi(ys) = -2Vo0yy I'y 'w/th?‘ola . v/b12'°12
NS/ = - —
/ 0-12_yl2 O 0'12_yl2 yl+bl y.l-':bl
b,2-0,2 b12-g,2
A/ 1 1 + l— 1 (103)
V1-by . Yi-by
where
bl = 81 + ihl
bi = a1 = iha (10L)

and where the radicals are defined uniquely if the complex plane is cut

along the real axis between -w and o,. (For exemple, 4/b;2-0;2 can
be set equal to plei¢1 where @, must lle between -n and =x.) _
Although the above expression for Av can be put in real terms by
applying the transformations

il

a3 = 0y cosh y, cos w;

|hi| = oy sinh 7, sin w, ' (105)

it is easier in deriving subsequent quantities from Av,; to use
equation (103) first and to make the transformetion afterwards.
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Span loading.- The span loading can be determined from the relation

wy= [V oy &y (106)

o
where Av is given by equation (103). There finelly results

— 2k
APt = Vel 4 2_.:'1--2 - _.;_ arc hLan

«/[ 0,2 ( Binharl-coagml)+y12]2+1+012(012-y12) ginh®y, cos®w, -0y 2(sinh®y; -coe®y }-1n 2

—
203 ,/0y2-7;2 sinh 7, cos w,

r1B<y8< 0, ® ' (107=)

and on the beody

2
APyt = Voo <./crla-y12 - ,/rla-y12> - “_w arc tan

./[612(sinhayl—coseml)+y12‘]2+)4012(c_12-}/‘12)Binhz'rlcosauﬁ - 0,2(sinh®y, ~cos2w,}-y12 2y .
L + — arc ten

L
* 20y »f 012-y1® sinh 7, coe w, ‘

ﬁrlz( s1nh27, -coslu, ) +y; 2] Zibr 2(r 2y, 2) 81nh27 scos2w, ~1,2(8inh®7,, -cosu, ) -y, 2

—_— ) Ype<r,®
2r, ./rl-'a--:,rl'2 sinh 7, cos w,

(107b)

HeGe HL YOVM
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The terms sinh 7,, sinh 75, sin w;, and sin wy; are all defined in the
table of symbols. Equations (107a§ and (107b) can, of course, be trans-
formed to the physical plane by transforming each symbol therein from
the &, system to the ¢ system.

The variation of the tail span loading, as given by equations (107a)
and (107b), is shown in figures 2(a) and 2(b) for the various vortex
posltions discussed. -

., Chordwise load distribution.- The loading on the tail can be
calculated from the relation

AP) _ 2 aA‘P-b _ 2 aAqu;t_ dO'l
qa t_-Vba dx  Voa Jo; dx

(108)

The value of a&#&t/aclt follows from equations (107); thus

aA Voo 1 1
fut o1 [1 + P—W< +  (109)
o1 J012-712 " \JSbz-0z  [B2-0:2
Hence, ’ \
t

Ap b, I'y sinh 7, cos w, doy
=)= [1 . (110)
g’y N 012-71 2 Voantoy ( 8inh®77 +8inw, ) ax

Equation (110) when -transformed to the ¢ plane gives the surface load
distribution over the tail due to the presence of the two point vortices
a8 well as the inclination of the tail to the free stream.

Total 1ift.- The total 1lift can be obtained by integrating the span
loading. Thus, 1f Lt represents the 1ift on the tail,

o
It . 2 29y dy (111)
@ V@ J

Carrying out this integration yields

L ) -
2t n(o,2-r;2) - ggg (r, sinh 7, cos w,-0, sioh 7,cos wl)

(112)

I e T I e e —— o —— s P
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This result was transformed and plotted in figures 3(a) and 3(b) Ffor the
values discussed.

Total drag.- The total drag is given by the relation
D.t=CI.Lt+F-t (]—13)
where F¢ 1is the suction force on the tail leading edge. As in previous

steps (see, e.g., equation (92)) the calculastion of Ft depends on the
evaluation of the function G. In this case G2 is

@2 [ye-rot [1 I ( L 1 )]2 (114)
2 ye Vot “/.512'0 12 ﬁla'ola

1+p2

The final result, in the £, plane, for the total drag can be written

Gy \2
Q_t_ = 1((0'12_1'12) + i X in
qa @ 2n \Voo

(812-h12-0;2)2+ha;2h 2 +(a;2-h2-0,2) / (2,2 -h,2 50 2)2 +ha 2h,2 (115)

( 8.12 -hlz "'I'12 )2+)-|‘8.12h12+( 8.12 -hla -I'le ) /( 8-12 -h12 -r12 )2 +)+8.12h12

A plot of the drag is given in figures 4(a) and L4(b).

Chord loading.- As before, in the development of equations (97a)
and (97bl for example, the chord loading can be calculated either by
performing the integration f(Ap/ )t dy, or by differentiating with
regpect to x the total 1ift (Lt?iﬁ). These two different approaches
serve to check each other and both lead to the same result, namely,

g
2/‘ (A_1_>> &y = Yo, dgy [1 _ Ty sioh 7, cos W, J (116)

01 7(8inh®y; +8in®w,

Center of pressure.- Results for the center of pressure Xc.p,
(where xc.p. = -Mt/Lt) are shown in figures 5(a) and 5(b).
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CONCLUDING REMARKS

When an airplane is slender enoughll (in the longitudinal sense) or
1s flying close enough to the speed of sound, the mathematical descrip-
tion of its attendant flow fleld is greatly simplified - so much so, in
fact, that the analysis of whole wing-body-tail combinations is feasible.
This simplification comes from the fact that the induced velocities in
each lateral plane are completely independent of the nature of the air-
Plane or flow field behind the reference plane and are affected by
disturbances ahead only through the presence of free vortices trailing
dovmstream from the 1ifting elements. In the case of a tail, these free
vortices stream back from the wing tralling edge.

In this report, special wing plan forms were studied: special in
that they produced flat span-loading curves between the wing tips and
fuselage. For such wings, the free trailing vortices were concentrated
entirely in the region directly behind the wing tips. In general, the
trailing vorticity would be concentrated predominately in this region.
The behavior of this trailing vortex system is bounded by the behavior
of two extreme models: a vortex sheet lying everywhere in the plane of
the tall, and two laterally symmetric polnt vortices lying in or above
the plane of the tall. Each of these models was examined.

One polint vortex was placed in the plane of the tall-at a distance
from the fuselage in the spanwise direction determined by replacing the
wing-span loading curve by a rectangle of the same height. As shown by
figures 2 through 5, the results for this polnt vortex were not signifi-
cantly different from those for the vortex sheet. In either case, the
presence of the trailing wing vortices reduced by about 40 percent the
effectiveness of the triangular tail surface in producing 1ift for the
range of tall spans and body dlameters considered. For the same condi-
tions the tail drag was reduced only 18 percent.

For the particular locations chosen for the point vortices, it was
found that both the 1ift and drag decreased as the vortices moved closer
to the tail. On a percentage basis the decrease was roughly the same.

11The assumptions underlying slender wing theory are obviously violated
along lines such as the leading edge, x = mcp, and the Mach wave from
the trailing-edge-fuselage Juncture, x = co. Along these lines the
pressure gradient is discontinuous and (Mp2-1l) @xx is not bounded.
Similar situations eppear repeatedly in the linearized analysis of
aerodynemic flow phenomena and in each case agreement with experi-
mental results cannot be anticipated.
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The position of the center of pressure on the triangular tail was
insensitive to the presence of the wing vortex system regardless of the
vortex pattern chosen. In the extreme case, when the point vortices were
nearest the tail, the location of the tail center of pressure with refer-
ence to the tail apex as 5 percent forward of the position obtained when
the wing was absent.

Ames Aeronautical Laboratory
Wational Advisory Committee for Aeronautics
Moffett Field, Calif., Aug. 20, 1951
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APPENDIX A
LIST OF IMPORTANT SYMBOLS
horizontal distance fram y=0 plane to vortex
(See sketch (z).)
aj + ihj *
&y - 1h,
local chord

characteristic chord !
(See sketch (a).)

section drag coefficient ( éi—c->
section 1ift coefficient ( -l->
ge

section drag force

drag force

i 1 =
l-ko t
complete elliptic integral of the second kind bl 12 dt

A-x2t2
incomplete elliptic integral of the second kind . d'l>
d -

suction force at leading edge of lifting surface

incomplete elliptic integral of the first kind
[rter)
(1-x2t3)(1-t2)

vertical distence from 2z=0 plane to vortex
(See sketch (z).)

complete elliptic integral of the first kind

1
<Jc: Jﬁ-koit(l-ta) >

modulus of elliptic integrels

S 1-k2
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v (83t2-10%)(83-12)

t( 8 2—1’0 2)

Jﬁ)

ko in the &3 plane <
NAFTEETY

orowf (8263-15%) (82-t3)

(8%-r03) (t3r03)

(02-r52) ¥ (83-12) (8221 4%)

(t5-ro )Me-crz)(s%z-ro‘*)

k4 in the §&; plane <'J

(013-r12)(8:2-1t,2)

(sl -019) (% 2—r12)

section 1ift force
1ift force

slope of wing leading edge
(see sketch (a).)

pitching moment, positive when tail is forced down
free-stream Mach number

local static pressure

loading coefficient (%ﬂ)

free-stream dynsmic pressure <%. poV02>

radius of body
(see sketch (a).)

distance from x axlis to wing leading edge
(See sketch (a).)

maximim value of s
(See sketch (a).)

wing ares
distance from x axis to wing trailing edge
(see sketch (a).)

maximm value of t
(see sketch (a).)



NACA TN 2554

U, VW

A ,AV AW

Vr
Vo
XyYs2

Xe.p.

sinh 7

ginh 7,

perturbation velocity components in the x,y,z
resgpectively

59

directions,

Jump in velocities across 2z=0 Dplane, u,-u;, V,-V3, W;~W;,

respectively

radisl component of perturbation velocity in & Y,z plang

free-gtream velocity
Cartesian coordinates

distance to center of pressure
(See sketch (w) and fig. 5.)

angle of gttack of airplane
A Mo 31

|hq]
(o1} sinw,

|n,|
r; sin wo

total circulation sbout wing section [CQQ)T.E;J

y_2

pélar angle in y,z Dlemne
§ KE(k',¥) + (E-K)F(k',¥)]

slope of tail leading edge
(See sketch (x).)

complex variable (y+iz)
polar distance in y,z plane (& y3+22)
free-gtream density )

distance from x axis to leading edge of tall
(see sketch (x).)

perturbation velocity potential
jump in @ across z=0 plane (Py-P7)

value of AP at trailing edge



60

Ve

V7

Vs

¥s
s:l.n2 Wy

2
sin™ ws

12

18

argument of elliptic integrals

(8321 *) (523242

N (8B 2Zrp4)(s2-t2)y2

o 1n 1, e ( LEEEE
'Y, 81 "tl

2t WroZ-y7
a/(t2+r 2)2 _ 242

¥ 1in &; plane

(=)

S ( t2+1'02 )
t( 52+r02 )

¥, in &; plene (2—})

52 —I'02
2 2
8 +Tro

VYg in &3 plane

/ 2 2
8,

s(tf-rs)
t(Be—l'o )
NZ-n®
Yg in E1 plane —_—
. N 8 -I1
[ 612-212-h;3+ 4/ (212+h2-0,2)2 + Lo;Zh,2]
3

20'1'

[r12-832-h; 3+ «/ (a12+h;2-r12)2 + lir;2h; 2]
or

Subscripts

NACA TN 255k

complex plane resulting from the application of the Joukowski

transformation to the physical plane
boundary conditions given by equations (12)

boundary conditions given by equations (13)
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a wake

b body

l lower surface of z=0 plane

n component normal to leading edge
t tail

u upper surface of 2z=0 plane

v rolled up ’vortex

w wing

61
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APPENDIX B

INVERSION OF AN INTEGRAL EQUATION

The integral equation

b
1f bv(no)dn
£(n,) = - ~ | L¥indnz (B1)
(Tll) . Bn o M1-12
can be inverted by applying operational techniques. Consider the
operator
b .
h(nJdny
— (B2)
a A-T1

where h(nJ) is a function to be chosen later. Operating on both sides
of equation (Bl) yields

b b b
hing)f(ngdny _ _ 1 AV(n 2h(n 1)
£ lx-nl ex ~/a: dnlj; 2 (n1-n2)(A-n2) (23)

vhere the order of the integral and differentisl signs on “the right-hand
side of the equation indicates that the 1o integration is to be per-
formed first.

The next step is to reverse the order of integration in the double
integral term in equation (B3). Since an inherent singularity exists in
the area of integration at the point 173 = 112 = A, however, some care
must be used in order to obtain this reversal. Designating by R(2) the
difference between the term taken first with one order of integration and
then with another, thus

b b , b b \
R(A) = | @ an o Av(n2h(na) [ 5 an. _A7(n2)h(n2)
* ~/; ML e  n ) ‘/a‘ n2°£ " (02 Gen )
(BY)

R()\) cean be evaluated by isolating the singularity and studying the
difference only in its vicinity. Hence,

[
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s () P av(ya)n(m)

R 3 Pl Avinz)h{ni _ a dny2¥ina hini
0 = [f nlf e (n1-n2)(A-11) x‘—/‘e HZ)L M(nl-ne)(x—nl):l
, (B5)

Using the transformations 13 = A-€x; &and 1z = A-€Xa, equation (B5)
can be reduced to the form

Av(n)h(r) [-flﬂlillﬁi;a'fdl&Jl xl(x::lcl) ]

1 -1

il

R(2)

i

1
mv(x)h(x)f &, g 1
o X1

J4+x7
=-AY(1)R()) ' (B6)

Substitute equations (B6) and (BY) into equation (B3) and there
results

b b b
h(ny)f(ny)dny _ 1| _=2 h(ny)an
l — [ 7“Av{x)h(n) +/;Av(n2)aq2a TR Tr— }

or

_ h(nz )dny © h(n; )f(n1)dny
PaS = — | Av a BT
Vi) :th().) [ [ (n2 ) (ny-15)(A-n1) +[ A-Ta ] (=7)

If hiny) = ~/(b-nl)(nl—a) equation (BT7) becomes

b
= 2 i £(na) /(b Tll)('ﬂl-&)
Aav(n) P RIS [ 2/; Av(no)dn, +/; -~ dn ]

(B8)

Since, However, equation (B8) contains both Av and its integral, it
does not represent a unique solution for Av. In order to obtain a
unique solution, some additionel condition must be imposed. If this
condition is that Av(a) 0, then the proper choice of h(n;) in equa-
tion (BT) is ’




6h

h(n,) = /112
. b-n,
which leads immediately to the unique result

_2 [re £(n 2dn
avn) = b-xf AT, g

/b-ny
1 l"a'

NACA TN 2554

(B9)
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TABLE I.- POSITION OF TRATLING EDGE

ro/meo = 0o 10.100/0.224}0.316{0.447]0.500]0.600{0.700[0.800{0.900
x/co | y/meol|y/meo|y/meo|y/meo|y/meo |y /meo| y/meo| y/meo| y/meo| ¥ /meo
1.00 0 0.100}0.22410.316|0.447{0.500]0.600{0.700{0.800{0.900
1.05 L1681 .213| .323 .413| .542| .593| .690] .T91| .883| .970
1.10 .2561 .290| .387] .u473| .598] .6L49| .Th6]| .84h| .933]|1.020
1.15 .332| .361| .47l .526| .648| .699| .T796| .890| .982|1.067
1.20 oot 425l ..504| L5791 .698) .Th8| .845] .933{1.031]1.113
1.30 5261 .545( .614| .682] .797| .845] .941}1.028}1.126|1.213
1.40 .6hkl .A61) 721} .786| .896| .9h1}1.033|1.123|1.221}1.312
1.50 7561 7731 .826) .888| .993|1.036{1.128]|1.217|1.315|1.410
1.60 .867| .884%| .931] .990[1.090{1.130|1.222}1.312 1.&12 1.506
1.80 1.083{1.096|1.140]1.192|1.283]1.323}1.413|1.504|1.606{1.703
2.00 1.297/1.30811.394}1.393({1.482]1.522{1.610(1.700(1.800{1.800
2.20 1.507|1.516|1.555[1.596(1.676]1.723]1.803}1.893|1.996{2.100
2.60 1.91 |1.92 |1.96 }2.00 |2.07 (2.12 {2.20 |2.29 |2.39 |2.50
3.00 2.32 [2.33 |2.37 |2.40 |2.47 |2.52 [2.60 [2.69 {2.79 {2.90
3.50 2.83 |2.84 |2.87 |2.91 |2.98 }3.02 |3.10 |3.19 |3.29 [3.39
4.00 3.33 [3.3Lk |3.38 [3.41 [3.49 {3.52 |3.60 |3.69 |3.78 |3.89
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TABLE II.- VALUES OF LOCAL CHORD
r/mco=| 0 [0.100{0.221]0.316{0.447 [0.500{0.600 {0.700{0.800]0.900
y/mco C/Co c/Co c/Co c/Co c/Co C/Co c/Co C/Co c3/00 C/Co
0 1.000f= = =)= = =f= = =f= = e = 2 = o] o 2l o - - -
100 | .926]0.900f~ = =|- = == = =} = =fc = e = |- = =]- - -
227 | .910] .831]0.776|- = == = =f= = == = =]e = <= = =}~ - =
.316 | .826] .802] .732[0.68h4]- - ~]- =~ == = =} = =f- = =]~ - -
A7 o790 LT7T2] .TO3) .633]0.553|- = =|= = =]e = =|= - |- - -
500 | LTTT7] .T761] .695] .627] .522|0.500|- = =]~ = «]- « =]~ ~ -
600 | .T60] .TW6| .685] .620| .50hk| .462[0.400|~ = ~|= = |- = =
700 | 748 .735] .679( .617| .498{ .u51| .36210.300|~ = -|- - -
.8 1381 724 .673] .61k{ .500{ .u52| .355] .262{0.200|- - -
.9 7281 .715] .668] .612| .503| .459| .358| .260{ .170}/0.100
1.0 .722] .709| .665]| .610]| .505| .u6h} .365) .269] .170| .082
1.1 .719] .704] .661} .608] .508| .468] .372] .278| .175| .OT9
1.2 .708) .697] .658] .607| .512| .k72]..376] .285( .180( .08L
1.3 .T703| .692f .653] .606] .515| .k75( .381| .290f .185| .087
1.4 .699{ .688( .651| .605| .518| k77! .385( .294] .189( .09k
1.6 .692| .682| .645]| .603| .522] 480t .392( .299{ .196{ .098
1.8 68T 6TT| .6h2| 601) 524 481 .396| .302) .200{ .100
2.0 682 .672| .639| .599| .525| .482( .398( .305| .20L4}{ .100
2.5 674 663 .631] .595| .522] .484| .403| .311} .212} .101
3.0 669 .657| .625( .593( .519| .485] .Lko6l| .315| .218] .102
k.o 660] 6481 .613[ .592! .514| 485 .410] .318] .225| .102







69

NACA TN 255k

S represents

< .

5
| — 1 NI

— | N .
”UL YﬂHHU/ . /\

I ] ¥ O /
~ o~ .

: NS V\
NN

f wing panel
only
% /
&y
24 %
ke Lol s,

3.4

L0

(a) Gonstant r,/mc,

Figure |.- Relations between the wing are

d

a, wing span, an

diameter.

body



T0

S represenis area
of wing panels

///

L/5,° .8

NN

Y
\§§

4 4 .6

/S,
(b) Gonstant 1 /s,
Figure |.— Concluded.

— -

NACA TN 2554



———t e T ——— — T i+ =

' Co me,
1.6 p > b
=109/
r / r,/mc, = 36 \4 me,
! 7 AN "" s" ] 4
(-]

z _0 T T A
~ L7 ome, represents /
4

&1
\ loading developed
\behind section AA '} /N

mx 2 -7

b
n

' Yoeme, P \\ A~ AT A £.316
.2 7/V N \ mC‘o
— T Sl K - o]
RN Y . I I
/4: \‘\ ' \\-.\ o\ l ’ l |
» AN \\\.\ \ Vortex sheet -
.8 7 N - \
-y N N \ Rolted vp - ______
e /1 S, \ \ vorfices -
// '} N \ N\ \ (h=0
L ]1 \ WA a/me,=1545)
4 F— A ‘ : 7
No wing —_——
L__,_»-'F’// o, /MC,= . 704~ \\ G/ MCy= /.09I/ \ ’
1 |
\ ~wE
oL 1 \ |
o 2 4 .6 y/me, g 10 1.2 ) 1.9

{al Vortex sheel.
Figure 2.— Variation of the span loading on the tail.

01

H7GG2 NI YOVN

L



1€

K Vortex
0, /mG,=1.09/ locations
r,/me, = o g 7
L2 mc, T,
/ |1545 o
I, 1545 3
A
8 <
hY
py o A\
\\\ \
\\
ﬁ‘—"—:-'f' =] AN
\\\\
hY
\\
0
o L0 .
‘W

(b) Point vortices.
Figure 2.- Concluded.

HGGE NI VOVM



11

NACA TN 2554

4 +
: Vortex sheer /’ i
Rolled up
vortices ~TTTT°C /
th=0 /
3 a/me, = 1.545)
No wing —_—— /
L /
4qocss
.2 /ﬁL /
7
/7
r/mc,=.3/6
A
7/
>
L -~
0
2 4 .6 .8 10
a;/mc,
(a) Vortex sheel.
3 [ I T /,’
Vortex positions ol
| . | / / /
. . // ’/
2 . / 22
& //,//”‘
Lf ] ) ,’,
4goes? ' /,?9
7 s
J //,’
7 r,./mc,= 316
|~ Z !
/ / T
o l
2 4 6 8 10O
g /mq

(b) Point vortices.

Figure 3.~ Variation of the lift on the tail.

73



Th NACA TN 2554

3 N R E—
Vortex sheet
[~ Rolled up
';ZHIS” """"
2 — a/mc,=1545) /
D No wing —_——— // !

/ ;

4qofsE - f
ol |

= | |

L~

2 4 .6 R-4 L0 '
A /ﬂ“)(.'° {

(a) Vortex sheet.

-3 T 1 T
' Vortex positions
| | |
( .. y
. - z ]
LI TN
0, //* A~
4qast [ A5
4
A . 2
A
r/mc = .3/6
0 "] : 1 ?
2 4 6 K- 1.0
a,/mc, ~TE

(b6) Point vortices.

Figure 4.- Variation of the drag on the tail.




12 NACA TN 2554

.8

1 T T T T
Vortex sheet rn/mc,=.3/6
— folled up _______
vortices
(h=0
6 — a/mc,=1545) —
No win —_——
. MXep g / ]
mc, / \
/ Xep
2
2 4 .6 .8 0
g, /mc,
(a) Vortex sheet.
.8
A
r,/me, = .316 / i //
: .6 /
ﬁ ~%p / J L
'4 / . .
] I [ ,
Vortex positions
2 1 1 I
2 4 6 8 o

g,/mc,

(b) Point vortices.

L.
R

Flgure 5.-Variation of the center of pressure location
) on the tail.

NACA-Langley - 11-31-81 - 1000

[



