
N A S A T E C H N I C A L

MEMORANDUM

USERS MANUAL FOR
THE VARIABLE DIMENSION t .

' AUTOMATIC SYNTHESIS PROGRAM (VASP)

by John S. White und Homer Q. Lee

Ames Research Center

OCTOBER 1971

"~" ~~-
1. R e m No.

~ ~~

NASA TM X-2417
2. Government Accession No. 3. Recipient's Catalog No.

. . -. . . . - ~~ ~ ~-
4. Title and Subtitle

USERS MANUAL FOR THE VARIABLE DIMENSION AUTOMATIC
SYNTHESIS PROGRAM (VASP)

5. Report Date

I
October 1971

6. Performing Organization Code

7. Author(s) 8. Performing Organization Report No.

John S. White and Homer Q. Lee A-3882
10. Work Unit No.

9. Performing Organization Name and Address 125-19-20-02
NASA Ames Research Center
Moffett Field, Calif. 94035 11. Contract or Grant No.

13. Type of Report and Period Covered
12. Sponsoring Agency Name and Address

National Aeronautics and Space Administration
Technical Memorandum

14. Sponsoring Agency Code Washington, D. C. 20546

15. Supplementary Notes

16. Abstract

VASP is a Variable dimension Fortran version of the Automatic synthesis Erogram, a computer implementation of thl
Kalman filtering and control theory. It consists of 31 subprograms for analysis, synthesis, and optimization of complicatec
high-order time-variant problems associated with modern control theory. These subprograms include operations of matrix
algebra, computation of the exponential of a matrix and its convolution integral, solution of the matrix Ricatti equation,
and computation of dynamical response of a high-order system.

Since VASP is programmed in Fortran, the user has at his disposal not only the VASP subprograms, but all Fortran
built-in functions and any other programs written in the Fortran language. AU the storage allocation is controlled by the
user so the largest system that the program can handle is limited only by the size of the computer, the complexitv of the
problem, and the ingenuity of the user. No accuracy was lost in converting the original machine language program to
Fortran.

The principal part of this report contains a VASP dictionary and some example problems. The dictionary contains a
description of each subroutine and instructions on its use. The example problems give the user a better perspective on the
use of VASP for solving problems in modern control theory. These example problems include dynamical response, optima
control gain, solution of the sampled data matrix Ricatti equation, matrix decomposition, and pseudo inverse of a matrix.
Listing of all subroutines are also included.

The VASP program has been further adapted to run in the conversational mode on the Ames 360/67 computer. The
necessary procedures are given in appendix C.

17. Key Words (Suggested by Author(s1)

Matrix computation
Optimal control
Kalman filtering

18. Distribution Statement

Unclassified - Unlimited

-. I

19. Security Classif. (of this report)
~~

20. Security Classif. (of this page)

S3.00 167 Unclassified Unclassified

22. Price' 21. NO. of Pages

For sale by the National Technical Information Service, Springfield, Virginia 22151

TABLE O F CONTENTS

Page

SUMMARY . 1

INTRODUCTION . 1.

FEATURES OF THE PROGRAM . 3
Universal Features . 3
System-Dependent Features . 5

THE VASP DICTIONARY . 5

EXAMPLE USES OF VASP PROGRAM . 281
Example 1 . Transient Response . 28
Example 2 . Transient Response Using TRNSI 34
Example 3 . An Optimum Control Problem 4)
Example 4 . Sampled Data Ricatti Solution , 49
Example 5 . Matrix Decomposition . 53
Example 6 . Use of the Pseudoinverse Routine 64

APPENDIX A . DESCRIPTION OF INTERNAL SUBROUTINES 69

APPENDIX B . LISTINGS OF ALL VASP SUBROUTINES 90

APPENDIX C . USE OF VASP ON AMES TSS 151

iii

I

USERS MANUAL FOR THE VARIABLE DIMENSION AUTOMATIC SYNTHESIS

PROGRAM (VASP)

John S. White and Homer Q. Lee

Ames Research Center

SUMMARY

VASP is a Variable dimension Fortran version of the Automatic Synthesis Program, a computer
implementation of the Kalman filtering and control theory. I t consists of 3 1 subprograms for analy-
sis, synthesis, and optimization of complicated high-order time-variant problems associated with
modern control theory. These subprograms include operations of matrix algebra, computation of
the exponential of a matrix and its convolution integral, solution of the matrix Ricatti equation, and
computation of dynamical response of a high-order system.

Since VASP is programmed in Fortran, the user has at his disposal not only the VASP
subprograms, but all Fortran built-in functions and any other programs written in the Fortran
language. All the storage allocation is controlled by the user so the largest system that the program
can handle is limited only by the size of the computer, the complexity of the problem, and the
ingenuity of the user. No accuracy was lost in converting the original machine language program to
Fortran.

The principal part of this report contains a VASP dictionary and some example problems. The
dictionary contains a description of each subroutine and instructions on its use. The example prob-
lems give the user a better perspective on the use of VASP for solving problems in modern control
theory. These example problems include dynamical response, optimal control gain, solution of the
sampled data matrix Ricatti equation, matrix decomposition, and pseudo inverse of a matrix.
Listings of all subroutines are also included.

The VASP program has been further adapted to run in the conversational mode on the Ames
360/67 computer. The necessary procedures are given in appendix C.

INTRODUCTION

The VASP, the Variable dimension Fortran version of the Automatic Synthesis Program, is the
new Fortran IV version of the ASP, the Automatic Synthesis Program. It is intended to implement
the Kalman filtering and control theory. Basically, it consists of 3 1 subprograms for solving most
modern control problems in linear, time-variant (or time-invariant) control systems. These subpro-
grams include operations of matrix algebra, computation of the exponential of a matrix and its con-
volution integral, and the solution of the matrix Riccati equation. The user calls these subprograms
by means of a FORTRAN main program, and so can easily obtain solutions to most general prob-
lems of extremization of a quadratic functional of the state of the linear dynamical system.

Particularly, these problems include the synthesis of the Kalman filter gains and of the optimal
feedback gains for minimization of a quadratic performance index.

The VASP is an outgrowth of ASP, which was developed for NASA under contract with the
Research Institute for Advanced Studies, a division of the Martin Company. There are two urgent
reasons for reprogramming ASP into the present Fortran version. First, ASP was programmed in
FAP (Fortran Assembly Program) and could be used only on the IBM 7090-7094. Second, many
complicated time-variant analysis, synthesis, and optimization problems tax the capability of the
ASP and other programs written in the Fortran language. Fortran IV language makes the program
adaptable to a much wider class of computers and expands its versatility.

The VASP is based exten;ively on a Fortran version of ASP, called FASP (Fortran ASP) by its
programmer Mr. Don Kesler of Northrop, Norair. ’

Two basic questions the user will inevitably ask are:

(1) How accurate is VASP compared with ASP?
(2) What is the highest order of system that VASP can handle?

The answer to these questions depends on the number of significant digits carried by the user’s
computer and the amount of available storage in the computer. To answer the first question in a
more concrete way, the check cases given in the ASP manual were duplicated and the results were
compared with those in the manual. The accuracy of VASP was found to be the same as that of
ASP. The second question can best be answered by first noting some of the basic differences
between FASP and VASP. The pertinent difference between the two is that VASP has variable
dimensioning and more efficient storage. To allow a computer to handle the highest order system
possible, all matrix storage is assigned by the user’s main program. Consequently, as an illustrative
example, a 125,000-byte version of the IBM 360/50 can easily determine the solution of the matrix
Riccati equation for a 30-order system (perhaps 40, depending on the size of other related matrices).
Another basic difference between these.two Fortran versions is that VASP diagnostics are more
self-explanatory.

To recapitulate, the objectives of VASP are flexibility and versatility so that it can serve the
maximum number of users. To achieve these goals FASP was revised extensively so as to have, for
example, variable dimensioning, more efficient storage, and more self-explanatory diagnostics.

In this report, no attempt will be made to discuss any details of the theoretical background and
the algorithms associated with the appropriate subprograms since they are well documented in the
ASP manual, an NASA contractor report (NASA CR-475, 1966). This report does not repeat
information from the contractor report, and the user is urged to consult that manual so that he may
utilize VASP proficiently.

This program can be obtained from the centralized facility known as COSMIC, located at the
Computer Software Management and Information Center, Barrow Hall, University of Georgia,
Athens, Georgia, 3060 1.

2

FEATURES OF THE PROGRAM

The advantages of VASP over ASP are (1) a more versatile programming language, (2) a more
convenient input/output format, (3) some new programs, and (4) variable dimensioning.

Since VASP is programmed in Fortran, it can be used in a very large class of machines.
Moreover, as VASP is part of a larger main program, all the Fortran built-in functions are available
to the main program. Furthermore, any subroutine available in the Fortran language may be used.
In other words, the user has at his disposal the combined capabilities of VASP, Fortran built-in
iunctions, and all other subroutines written in Fortran.

The input/output subroutines have been changed and now consist of READ, RDTITL, and
PRNT. In addition, LNCNT has been added to control paging. The VASP allows the user the
option of using the existing standard VASP format, or of supplying the output format of his own
choice. For a more detailed explanation of how to exercise this latter option, see the dictionary
entry under PRNT (p. lo), or Example 2.

Our experience with ASP is that certain groups of statements are often repeated. For the
user’s convenience, these groups of statements are incorporated as new subroutines in the VASP.
They are AUG, UNITY, and SCALE. Detailed explanations of them are available in the VASP
dictionary in this report.

To utilize the storage space as efficiently as possible, the subroutines are written with variable
dimensioning, with the storage allocation controlled by the user’s calling program. Consequently,
it is necessary to provide some dummy storage space as a part of the argument of the subroutine.
From the user’s point of view, the price for efficient storage is inconvenience. All the subroutines
are written in double precision for adequate accuracy; that is, all matrix and scalar variables, except
integers, are assumed to be in double precision.

Universal Features

The arguments in the subroutines are arranged in the following order:

Input arguments
Output arguments
Dummy arguments

These are also arranged so that matrices occur before scalars.

An array of length two must be allocated by the user to store the dimensions of the matrix,
and this array must be included in the subroutine call statements. For example, the add subroutine
is called by

I

CALL ADD(A,NA,B,NB,C,NC) ;

and performs the matrix operation

3

C = A + B

Here NA, NB, and NC are arrays of length two which contain the dimensions of matrices A, B, C,
respectively. In other words, the numbers of rows and columns of matrices A, B, and C are stored in
NA, NB, and NC, respectively. Specifically, the number of rows of A is stored in NA(1) and the
number of columns of A, in NA(2).

In general, the dimension array associated with an input matrix contains input information to
the subroutine, while that associated with an output matrix contains output information. The dic-
tionary shows the few cases where this rule is violated. In the example above, dimension arrays NA
and NB’ are inputs (since matrices A, B are inputs) and must be loaded before entering this sub-
routine. On the other hand, NC is an output, since C is an output. That is, the values of NC(1)
and NC(2) are computed in the subroutine and are available to the calling program upon return.

When a dummy array is required, it must be appropriately dimensioned in the calling program.
The required size is given in the appropriate dictionary entry.

Most of the routines check the array dimensions for compatibility and reasonableness, and
check for adequate storage available in the DUMMY array. The “reasonableness” test is to see
that all matrix dimensions are greater than zero, and that the product of the matrix dimensions is
less than the constant MAXRC. In the program MAXRC has been set at 6400. It is recommended,
however, that the user reset MAXRC to equal the size of his matrices, and thus prevent accidental
overflowing of the matrix dimensions. If the matrices are incompatible or unreasonable, or if a
mathematical error is found, a self-explanatory error message is printed, and no further computations
are made in that subroutine. However, computation does go on to the subsequent steps, which are
likely to be wrong also. After 10 such errors, the program is terminated.

The VASP program uses double-precision arrays, so that the user’s main program must define
each matrix t o be double precision, and to contain a sufficient number of cells to accommodate the
matrix. The dimension statement may classify the array as one- or two-dimensional, or even more.

For example, to use the matrix A, which is a 5 X 5 matrix, any of the following dimension
statements will be adequate:

DOUBLE PRECISION A(25)
DOUBLE PRECISION A(5,5)
DOUBLE PRECISION A(3,lO)
DOUBLE PRECISION A(100)

The important factor is the total number of cells reserved, and the user may reserve more cells than
the matrix requires, or, conversely, he may put a smaller matrix than originally planned in a specific
array. The VASP program stores data in an array as a string of columns, just as Fortran does.

The convention used here, and throughout this report, is that the name of a dimension array is obtained by
prefixing the letter N to the matrix name.

4

However, it stores the matrix A according to the dimension given in NA, whereas Fortran stores
A according to the dimensions in the Fortran dimension statement.’

Consider the following example. The Fortran statements are:

DOUBLE PRECISION A(5,5), B(5,5), C(5,5)
DIMENSION NA(2), NB(2), NC(2)
CALL READ(3,A,NA,B,NB,C,NC,. . .)

The first card in the data deck specifies NA = 5,5, followed by cards with 25 data words for A; then
NB = 4,4, followed by 16 data words of B; finally, NC = 6,6, followed by 36 data words of C. Since
the storage of data in VASP is controlled by the VASP dimensioning, the 25 words for A will
exactly fill the reserved storage and the 16 words for B will fill the first 16 cells of the storage
reserved for B. The 36 words for C will completely fill the reserved storage for C and overflow
into something else. The user can prevent this overflow by setting the test constant MAXRC to 25.
The error test in the READ subroutine will note that the product of NC(1) and NC(2) is greater than
MAXRC, and will return an error message. This selection of MAXRC will limit all other VASP arrays
to 25, so i t is frequently desirable to dimension all arrays the same.

Occasionally the user may wish to refer to a single element of a matrix. Since FORTRAN
statements use the FORTRAN dimension statement, a reference to B(4,4) in the previous example
will select the 19 element in the B storage. However, VASP, using the VASP dimension, has stored
B(4,4) in the 16 element of B, which is not the same. To actually select a specific element, say
B(i,j), one must refer to B((’j--l)*NB(2)+1,1). In the above example, references to A(ij) will be
correct, since the FORTRAN and VASP dimensions are the same.

System-Dependent Features

Two subroutines in the VASP package are system dependent. The first is BLKDTA. Data
statements i n this subroutine control the printing. They require a printer with at least 1 1 5 charac-
ters per line, and place 45 lines on each page. These requirements may be changed as needed. The
second is ASPERR, which calls a system subroutine for error tracing. The description of ASPERR
indicates any necessary changes to match the system.

The VASP programs frequently generate very small numbers. The computer operating system
may detect these small numbers as underflows, and print error messages. If so, the user should
arrange to turn off the underflow error messages.

THE VASP DICTIONARY

A detailed description of all the subroutines is g’ven in this dictionary. Each entry is
organized into subheadings that describe the subrouiine and explain how to use it. Other

‘The storage in VASP is also compatible with the storage of “general” matrices in the IBM scientific subroutine
package.

5

subheadings, such as motivation and remarks, are sometimes added to offer the user a better
understanding of the theoretical background of the s ~ b r o u t i n e . ~

The dictionary proper lists only those routines that the user is expected to call directly. Several
additional subroutines, used internally, are also a part of VASP. The user may, however, wish to call
these routines himself, since they are quite flexible. These additional routines are described in
appendix A, and a complete listing of all programs is given in appendix B.

Several procedures have been written to facilitate the use of VASP on Ames time-share system.
Their usage and listings are given in appendix C.

Table 1 lists all subroutines with their calling sequence, and the TSS procedures, for easy
reference, while table 2 lists the approximate storage used by each of the VASP subroutines when
compiled on the NASA Ames 360/67, OS system. Table 2 also lists the external references for each
subroutine.

3Some of the subroutines are almost direct copies from the Northrop FASP. The detailed description of the
theory is either obvious, or is given in the ASP manual (NASA CR-475). Other routines were written by one of the
authors. These were quite simple, and needed little description. Subroutines ANDRA, BDNRM, DECOM, and PSEU
were written by John Andrews, Information Systems Company. Since no description of these subroutines is available
elsewhere, a detailed description of their theory and usage is included. Because there were various programmers, the
nomenclature internal to the various subroutines is not completely consistent.

6

TABLE 1.- SUBROUTINE CALL STATEMENTS IN VASP - 1 -

1
1
i
1
I
1
I
1
I
1
L

L

L

L

L

L

L

L

1

L

I

I

1

L

1. CALL READ(I,A,NA,B,NB,C,NC,D,ND,E,NE)
2.
3.
4.
5.
6.
7.
8.
9.
0.
1.
2.
3.
4.
5.
6 .
7.
8.
9.

!O .
!l.
!2.
!3.
!4.
!4a.

!5.
!6.
!7.
!8.
!8a.
!9.
!9a.
io.
Il.

52.
53.
54.
$5.
56.
57.
58.
59.

CALL RDTITL
CALL PRNT(A,NA,NAM,IP)
CALL LNCNT(N)
CALL ADD(A,NA,B,NB,C,NC)
CALL SUBT(A,NA,B,NB,C,NC)
CALL MULT(A,NA,B,NB,C,NC)
CALL SCALE(A,NA,B,NB,S)
CALL TRANP(A,NA,B,NB)
CALL INV(A,NA,DET,DUM)
CALL NORM(A,NA,ANQ)RM)
CALL UNITY(A,NA)
CALL TRCE(A,NA,TR)
CALL EQUATE(A,NA,B,NB)
CALL JUXTC(A,NA,B,NB,C,NC)
CALL JUXTR(A,NA,B,NB,C,NC)
CALL EAT(A,NA,TT,B,NB,C,NC,DUMMY,KDUM)
CALL ETPHI(A,NA,TT,B,NB,DUMMY,KDUM)
CALL AUG(F,NF,G,NG,RI,NRI,H,NH,Q,NQ,C,NC,Z,NZ,II)
CALL RICAT(PHI,NPHI,C,NC,NCONT,K,NK,PT,NPT,DUM,KDUM)
CALL SAMPL(PHI,NPHI,H,NH,Q,NQ,R,NR,P,NP,K,NK,NCONT,DUM,KDUM)
CALL TRNSI(F,NF,G,NG,J,NJ,R,NR,K,NK,H,NH,X,NX,T,DUM",KDUM)
CALL PSEUDO(A,NA,B,NB,DUM,KDUM)
CALL DECGEN(R,NR,G,NG,H,NH,DUM,KDUM)
CALL DECSYM(R,NR,G,NG,H,NH,DUM,KDUM)

Programs 25 through 3 1 are called internally and need not be used by the programmer. They
are described in appendix A.

CALL READl(A,NA,NZ,NAM)
CALL ASPERR
BLKDATA (nonexecutable)
CALL PSEU(A,B,C,EE,DEP,IP,D)
CALL PSEUP(A,B,C,EE,DEP,IP,D)
FUNCTION BDNRM(NR,CT,EE,D,KRV)
CALL TTRM(NR,CT,EE)
CALL ANDRA(B,T,DPR,JP)
CALL DECOM(A,B,C,E,JL,DCM,KP,D)

The remainder of the items are procedures to facilitate the use of VASP on the Ames TSS.

VASP$$ [inputdsname] [,outputdsname]
CHNGIN [inputdsname]
CHNGOUT [outputdsname]
CMPL
CLRVASP
CONVASP [matrixsize] [,$A=name] [,$B=name] [,$C=name] [,$W=name] [,$X=name] [,$Y=name] [,$Z=name
RECMPT
REWRT [n]

7

TABLE 2.- APPROXIMATE STORAGE REQUIREMENTS AND EXTERNAL REFERENCES

Subroutines

1 . READ
2. RDTITL
3. PRNT
4. LNCNT
5. ADD
6. SUBT
7. MULT
8. SCALE
9. TRANP

10. INV
11. NORM
12. UNITY
13. TRACE
14. EQUATE
15. JUXTC
16. JUXTR
17. EAT
18. ETPHI
19. AUG
20. RICAT
11. SAMPL

?2. TRNSI
?3. PSEUDO
!4. DECGEN

!5. READ1
!6. ASPERR
!7. BLKDATA
!8. PSEU
!9. BDNRM
10. ANDRA
11. DECOM

COMMON/MAX/
COMMON/LINES/
COMMON/FORM/

TOTAL
I

Storage
decimal bytes

1000
400

1400
500
800
800

1100
700
800

2500
1000
700
700
700

1000
1100
3200
2300
3300
5100
3700

5000
900

2600

800
400

None
5900
1500
2000
1500

200

53,600

External references

READ1 , PRNT*
LNCNT

None
*

*
*
*
*
*
e

*
SCALE*
*
*
*
*
ADD, MULT, SCALE, NORM, UNITY, EQUATE*
ADD, MULT, SCALE, NORM, UNITY, EQUATE*
MULT, TRANP, EQUATE*
ADD, MULT, I N V , EQUATE, PRNT*
ADD, SUBT, MULT, TRANP, PSEUDO, PSEU, BDNRM

ADD, EAT, SUBT, MULT, PRNT, EQUATE*
PSEU, BDNRM, ANDRA*
MULT, TRANP, I N V , NORM, EQUATE, DECOM, PSEU

PRNT*
None
None
MULT, NORM, BDNRM, ANDRA*
MULT, NORM
LNCNT
MULT, NORM, PSEU, BDNRM, ANDRA*

ANDRA, PRNT*

BDNRM, ANDRA*

*LNCNT and ASPERR are additional external references.

8

1. READ

DESCRIPTION

This subroutine reads 1 to 5 matrices from cards, along with the names and dimensions, and
prints the same information. For each matrix the routine first reads a header card containing a four-
character title, followed by two integers giving the row and column size of the matrix, using format
(A 4,4x, 214). Then the matrix data are read using READ1, each row of the matrix starting on a
new card, using format (8F10.2). If the card data is in exponential form, it must use a D exponent.
The matrix title and the matrix are then printed using subroutine PRNT.

If the header card contains no row and column size (i.e., n = 0), then the matrix in storage is
unchanged, no data cards are read for that matrix, and the previously stored matrix is printed.

USAGE

CALL READ(I,A,NA,B,NB,C,NC,D,ND,E,NE)

Input Arguments

Control constant: I

where I is an integer from 1 to 5 and indicates the number of matrices to be read. If I is less than
5, the extra matrices in the call list may be dummy variables, or repeated references to the same
matrix; for example,

CALL READ(1 ,A,NA,A,NA,A,NA,A,NA,A,NA)

Output Arguments

Matrices:
Dimension arrays:

The first I of the matrices A,B,C,D,E
The first I of the arrays NA,NB,NC,ND,NE

2. RDTITL

DESCRIPTION

This subroutine reads a single card in hollerith format, and loads it into the array TITLES. It
then calls LNCNT(100). This latter program in turn skips the printer to the next page, prints the
hollerith information in the array TITLES, and positions the output to print next on line 3.

USAGE

CALL RDTITL

It has no arguments.

9

3. PRNT

DESCRIPTION

This subroutine prints a single matrix, with or without a title line, and either on the same page
or a new page. The matrix is printed using format (1P7D 16.7) for the first line, and (3x, 1 P7D 16.7)
for all subsequent lines. The "3x" indents continuation lines for easier reading.

REMARKS

The standard format is stored in arrays FMTl (for the first line) and FMT2 (for subsequent
lines) both of which are stored in labeled COMMON as follows:

COMMON/FORM/NEPR, FMT 1 (6), FMT2(6)

where NEPR is the number of columns of data to be printed (7, in the standard case). The standard
format is loaded into COMMON in the BLKDATA program. If other formats are desired, they can
be obtained either by changing the BLKDATA program, or by having the users main program change
the contents of COMMON.

CAUTION

In writing a data statement for the formats, put FMTl and FMT2 in separate statements, as in
the BLKDATA program. If they are loaded in one statement, they will probably load incorrectly,
because of the dimensionality of FMTl and FMT2. Also NEPR must be consistent with the numbers
in FMTl and FMT2.

USAGE

CALL PRNT(A,NA,NAM,IP)

Input Arguments

Matrix: A
Dimension array: NA
Matrix name: NAM

If NAM = 0, a blank name will be printed. NAM should contain four
hollerith characters. It can be written in the calling sequence as
4HAbbb. If written IHA, the last three characters of the printed
name will be garbage.
IP= 1 heading, same page

2 heading, new page
3 no heading, same page
4 no heading, new page

Control constant:

Output Arguments

None

10

4. LNCNT

DESCRIPTION

This subroutine keeps track of the number of lines printed, and automatically pages the output
as required. It is completely internal, and the user need not refer to it unless he has WRITE state-
ments of his own. In that case, the user may (should) put the statement CALL LNCNT(N) before
each WRITE statement, where N is the number of lines to be printed.

Page length is controlled by the variable NLP set in the BLOCK DATA program to 45. This is
an installation-dependent variable, and may be changed as necessary.

The subroutine provides one line of print at the top of each page. This line contains 92
characters, of which the first 72 are available for the programmers use and may be loaded by use of
RDTITL. The remainder contain “VASP PROGRAM.’’ The 92 characters are contained in the
array TITLES, which is, in turn, contained in the COMMON area LINES. If N > NLP, the printer
will automatically skip to the top of the next page, and print the title line.

USAGE

CALL LNCNT(N)

Input Arguments

Constant N = number of lines t o be printed

Output Arguments

None

5 . ADD

DESCRIPTION

This subroutine computes the matrix sum

C = A + B

USAGE

CALL ADD(A,NA,B,NB,C,NC)

Input Arguments

Matrices: A,B
Dimension arrays: NA,NB

1 1

Output Arguments

Matrices: C
Dimension array: NC

REMARK

Matrices A and C may share the same storage space or matrices B and C may share the same
storage space.

6. SUBT

DESCRIPTION

This subroutine computes the matrix difference

C = A - B

USAGE

CALL SUBT(A,NA,B,NB,C,NC)

Input Arguments

Matrices: A,B
Dimension arrays: NA,NB

Output Arguments

Matrices: C
Dimension array: NC

REMARK

Matrices A and C may share the same storage space or matrices B and C may share the Same
storage space.

7. MULT

DESCRIPTION

This subroutine computes the matrix product

C = A E3

12

USAGE

CALL MULT(A,NA,B,NB,C,NC)

Input Arguments

Matrices: A,B
Dimension arrays: NA,NB

Output Arguments

Matrix: C
Dimension array: NC

8. SCALE

DESCRIPTION

This subroutine multiplies every element of matrix A by S and stores the resulting value in B,
that is,

Bij = S Aij

where S is a scalar.

USAGE

CALL SCALE(A,NA,B,NB,S)

Input Arguments

Matrix: A
Dimension array: NA
Scalar: S

Note: If S is a constant, it must be written as a double precision constant (i.e., 2.D0, O.DO,
etc.).

Output Arguments

Matrix: B
Dimension array: NB

Note: A and B can be the same matrix.

13

9. TRANP

DESCRIPTION

This subroutine rearranges the elements of matrix A so that

B = A'

or

USAGE

CALL TRANP(A,NA,B,NB)

Input Arguments

Matrix: A
Dimension array: NA

Output Arguments

Matrix : B
Dimension array: NB

10. INV

DESCRIPTION

This subroutine computes the matrix inverse of A and stores this inverse in A, that is,

Note that after the inversion is performed, the values stored in the original matrix A are destroyed
and replaced by the corresponding elements of its inverse.

USAGE

CALL INV(A,NA,DET,DUM)

Input Arguments

Matrix: A
Dimension array: NA

14

Output Arguments

Matrix:
Scalar:

A, the inverse of the original A
DET, the determinant of A

Dummy Argument

Matrix: DUM, work vector of length 2*NA(1)

This subroutine is a slightly modified copy of the inverse routine given in the IBM scientific
subroutine package.

11. NORM

DESCRIPTION

This subroutine computes the norm of the matrix A as follows:

CALL NORM(A,NA,ANORM)

Input Arguments

Matrix: A
Dimension array: NA

Output Arguments

Scalar: ANORM

12. UNITY

DESCRIPTION

This subroutine computes the unit matrix

A = I

USAGE

CALL UNITY(A,NA)

15

I

Input Argmnent

Dimension array : NA

Output Argument

Matrix : A

13. TRCE

DESCRIPTION

This subroutine computes the trace of the matrix A

n

i= 1

TR = Z aii

USAGE

CALL TRCE(A,NA,TR)

Input Arguments

Matrix: A
Dimension array : NA

Output Argument

Scalar: TR

14. EQUATE

DESCRIPTION

This subroutine copies the values stored in matrix A into matrix B as follows:

B = A

USAGE

CALL EQUATE(A,NA,B,NB)

Input Arguments

Matrix: A
Dimension array: NA

16

Output Arguments

Matrix: B
Dimension array: NB

15. JUXTC

DESCRIPTION

This subroutine takes the m X n matrix A, the m X p matrix By and forms the m X (n+p)
matrix

C = [A Bl

USAGE

CALL JUXTC(A,NA,B,NB,C,NC)

Input Arguments

Matrices: A,B
Dimension arrays: NA,NB

Output Arguments

Matrix: C
Dimension array : NC

16. JUXTR

DESCRIPTION

This subroutine takes the m X n matrix A, the p X n matrix B, and forms the (m+p) X n
matrix

USAGE

CALL JUXTR(A,NA,B,NB,C,NC)

17

Input Arguments

Matrices: A,B
Dimension arrays: NA,NB

Output Arguments

Matrix: C
Dimension array: NC

17. EAT

DESCRIPTION

This subroutine computes

B = e At

and

t
c = eAr dT

0

For a linear time-invariant system, the system equation is

X = A X + G U

Then,

or

x(t) = Bxo + CGu

See ASP manual, page 92, for reference.

USAGE

CALL EAT(A,NA,TT,B,NB,C,NC,DUMMY,KDUM)

Input Arguments

Matrix: A
Dimension array: NA
Scalar : TT

where TT is the value of t used in equations *
18

. -- . . - _... , , ,, ,, . , , . , I , ,,

Output Arguments

Matrices: B,C
Dimension arrays: NB,NC

Dummy Arguments

Matrix: DUMMY
Constant: KDUM

Note: KDUM contains the size of the DUMMY matrix, which must be at least 2*NA(1)*NA(2).

18. ETPHI

DESCRIPTION

This subroutine computes the matrix exponential

B = ,At

See ASP manual, page 92, and also EAT, page 18 of this manual for reference.

USAGE

CALL ETPHI(A,NA,TT,B,NB,DU"Y,KDUM)

Input Arguments

Matrix: A
Dimension array: NA
Scalar: TT

where TT is the final value of time.

Output Arguments

Matrix : B
Dimension array: NB

Dummy Arguments

Matrix: DUMMY
Constant: KDUM

Note: KDUM contains the size of the DUMMY matrix, which must be at least 2*NA(1)*NA(2).

19

I

19. AUG

DESCRIPTION

This subroutine computes

and

Z = r F G,R" G]

+H'QH

The matrices C and eZt are then used in RICAT to calculate the covariance and weighting matrices.

These matrices arise from a linear system of the form

X = F X + G U

with output equation

y = H x

and cost function

J = (x'H'QHx + u'Ru)dt I
See ASP manual, page 2 12, for reference.

In the special case where

y = x

then,

and the cost function is

J = I (x'Qx + u'Ru)dt

A control index I1 is used to distinguish the two cases.

20

REMARKS

The inputs to this program are the matrices F, G, RI, H, Q.

(a) F must be square.
(b) Q, R must be symmetric.
(c) R must be invertible.

The Fortran symbol for R1 is RI.

USAGE

CALL AUG(F,NF,G,NG,RI,NRI,H,NH,Q,NQ,C,NC,Z,NZ,II)

Input Arguments

Matrices:
Dimension arrays:
Control constant:

Output Arguments

Matrices:
Dimension arrays:

F,G,RI,H,Q
NF,NG,NRI,NH,NQ
I1
I1 # 1 General case
I1 = 1 Special case, H is not used in AUG

CYZ
NC,NZ

20. RICAT

DESCRIPTION

This subroutine computes P(t) and K(t) by the following equations:

P (t + T) = [e z 1 + e , , p (t) ~ [e , , + e , , p (t) ~ - ~

K(t) = CP(t)

See ASP manual, page 9, for reference.

MOTIVATION

A standard control problem will be used to illustrate how this matrix Riccati equation arises.
Given the system equation,

i = F x + G u

the output equation,

21

y = H x

and the performance index,
T

J = I (x‘H’QHx + u’Ru)dt + x’(T)H’S(T)Hx(T)
0

where Q,R,S are symmetric matrices and R is invertible. We wish to find a control law which
minimizes the performance index J. Introducing the auxiliary variable A(t) into the system of
equation, we have the following Euler-Lagrange equationsY4 [I= -GR-’ G’

-H‘QH -F’ 1
which have for a solution

The optimal control law is

u(t) = R” G’A(t)

Letting P(t) be a linear transformation from the state variable x(t) to the auxiliary variable A(t),
that is,

A(t) = P(t)x(t)

we obtain from the Euler-Lagrange equation the following Riccati equation,

-P = F‘P + PF - PGR-1 G‘P + H’QH

where the initial condition for this differential equation is

P(t) = H’S(T)H

The optimal control, in terms of the state variable x(t), is

u(t) = -K(t) x(t) = - R” G’P(t)x(t)
~

AUG computes Z rather than -Z, so that the exponentiation for 0 uses positive time increments.

22

and the optimal feedback gain K(t) is

K(t) = - R-’ G’P(t)

then,

K(t) = CP(t)

REMARKS

1. This subroutine will be terminated when
-I I r n 1

or NCoNT(2) steps have been taken.

2. Matrices P(t) and K(t) will be printed out every NCONT(1) steps, as controlled by
NCONT(3).

3. Matrices 8, , 8 , O 2 , are submatrices of 8. Their dimensions are n X n where n is
the order of the system (i.e., the dimension of the F matrix). They are partitioned from the 8
matrix as follows:

e = - - - - I - - - - - [::: ! :::]
The Fortran symbol for 8 is PHI.

USAGE

CALL RICAT(PHI,NPHI,C,NC,NCONT,K,NK,PT,NPT,DUM,KDUM)

Input Arguments

Matrices: PHI, C, PT
Dimension arrays: NPHI,NC,NPT
Control array: NCONT(1) Number of steps per print

NCONT(2) The maximum number of steps
NCONT(3) Printout control

l - + n o P , n o K
2 + P only
3 -+ K only
4 + P a n d K

23

Output Arguments

Matrices: K,PT
Dimension array: NK

Dummy Arguments

Matrix: DUM
Constant: KDUM

Note: KDUM contains the size of the DUMMY matrix which must be at least NPHI(1)**2.

Note: PT is used for both input and output arguments. The initial value of P must be placed in
PT before calling the subroutine. The value of P is updated every iteration in the subroutine until
the final P is reached. This final P is one of the outputs of the subroutine,

21. SAMPL

DESCRIPTION

Subroutine SAMPL calculates the covariance and weighting matrices associated with the
discrete case of either the control problem or the filter problem.

Consider the following filter problem.

Given the system xi+l = $xi + u where u = gaussian random sequence
with variance = Q, and observations yi = Hxi + v where v = gaussian
random variable with variance = R.

The optimum estimate of the state is (see p. 234 in the ASP manual)

where

K~ = ~ P ~ H T (H P ~ H T + R)#
pi+ = pi - P~HT(HP~HT + R)#HP~

= pseudo inverse

Here Pi is the solution of the matrix Ricatti equation, which is obtained by SAMPL. The subrou-
tine has for inputs @, H, Q, R, Pi, and for output, Pi+n and Ki+n-l where Pi+n is written over Pi.

REMARKS

1. The routine will take n steps at a single call where n is an input parameter. Further, if P
becomes constant, then the routine will stop and exit before completing the n steps. The actual
test is as follows:
24

I

2. The routine will print the value of Pi and/or Ki-l every j steps, and also when either exit
occurs. NCONT(3) controls which arrays are printed.

USAGE

CALL SAMPL(PHI,NPHI,H,NH,Q,NQ,R,NR,P,NP,K,NKyNCONTyDUMyKDUM)

Input Arguments

Matrices: PHI,H,Q,R,P
Dimension arrays: NPHI,NH,NQ,NR,NP
Control arrays: NCONT

NCONT(1) = j = number of steps per print
NCONT(2) = n = maximum number of steps
NCONT(3) = print control

1 no print
2 print P only
3 print K only
4 print both P and K

Output Arguments

Matrices: PYK
Dimension arrays: NP,NK

Dummy Arguments

Matrix: DUM
Constant: KDUM

Note: KDUM contains the size of the DUM matrix, which must be at least 6*NPHI(l)*NPHI(2).

22. TRNSI

This subroutine computes

where

u(t) = J R - Kx(t, + i tz)

25

and u is held constant for any interval specified by

it2 < t - t o < (i + l) t 2 i = O , 1, 2 , . . .

The system output y(t) is given by

The state vector x and system outputs y are printed every tl intervals. Also t2 must be a
positive integral multiple of t l . The program terminates at t > t f

See ASP manual, pages 1 20- 12 1 , for reference.

USAGE

CALL TRNSI(F,NF,G,NG,J,NJ,R,N~,K,NK,H~NH,X,NX,T,D~MY,KD~)

Input Arguments

Matrices: F,G,J,R,K,H,XYT
Dimension arrays: NF,NG,NJ,NR,NK,NH,NX

Note: Dimension of T is 4 where

T1 tl
T2 f 2

T3 tf
T4 t0

Dummy Argument

Matrix: DUMMY
Constant: KDUM

Note: KDUM contains the size of the dummy matrix, which must be at least
4*NF(I)*NF(2).

23. PSEUDO

DESCRIPTION

This subroutine computes the Moore-Penrose generalized inverse of the input matrix. It sets
up a standard set of options for use by PSEU, which does the actual inversion. For details of the
method, see PSEU, p.70.

26

USAGE

CALL PSEUDO(A,NA,B,NB,DUM,KDUM)

Input Arguments

Matrix: A
Dimension array: NA

Output Arguments

Matrix : B = A #
Dimension array: NB

Dummy Arguments

Matrix: DUM
Constant: KDUM

Note: KDUM contains the size of the dummy matrix, which must be at least 3*NA(1)*NA(2).

24. DECGEN
24a. DECSYM

DESCRIPTION

This subroutine decomposes a real matrix R with dimensions m X n and rank r < min(m,n)
into two matrices H and G such that R = HG. Further, both H and G are of maximal rank, with
dimensions m X r and r X n, respectively. It uses subroutine DECOM to provide matrices from
which H and G can be computed. The writeup of DECOM, p. 85, describes the method in detail.
Subroutine DECOM requires for input a matrix A which is positive semidefinite symmetric. Sub-
routine DECGEN computes this matrix by letting A = RRT or RTR, whichever is smaller, and uses
the former if R is square. I f the user knows that R is already positive semidefinite symmetric,
this step may be omitted by a call to DECSYM, in which case A = R.

USAGE

CALL DECGEN(R,NR,G,NG,H,NH,DUM,KDUM)

if R is general, or

CALL DECSYM(R,NR,G,NG,H,NH,DUM,KDUM)

if R is positive semidefinite symmetric.

27

Input Arguments

Matrix: R
Dimension array: NR

Output Arguments

Matrices: H,G
Dimension arrays: NH,NG

Dummy Arguments

Matrix: DUM
Constant: KDUM

Note: KDUM contains the size of the DUM array, which must be at least
7*min(NR(1)2,NR(2)2).

EXAMPLE USES OF VASP PROGRAM

The examples given demonstrate directly the use of the principal subroutines EAT, ETPHI,
AUG, RICAT, SAMPL, DECGEN, and PSEUDO. In addition, they exercise all of the subroutines
except TRCE. They can be used to indicate whether the programs are working properly. They do
not, however, provide an exhaustive test of the VASP program.

The first example discusses the user’s main program in great detail to explain some of the
system features. The remainder of the examples simply state the problem, and present the main
program listing, the data listings, and the results.

Example 1 - Transient Response

A set of equations for a linear plant can be written as:

x(t) = Fx (t) + Gu(t), x(0) = x.

where x, u, and y are, respectively, the state, control, and observation vectors. The system, distribu-
tion and observation matrices are F, G, and H, respectively. I t is known that

t
x(t) = eFtxo + Jo eF(t-T)G(T)u(T)dT

is the solution for x(t). If G and u are constant, then

28

x(t) = e Ft x. It eF('-') d r Gu
0

By letting s = t - r the integral becomes

t Io eFsd(-s) = I eFs ds
-t 0

Thus, the solution to the system equation can be written

x(t) = Bxo + CGu

where

B = e Ft

and
t

C = $ eFsds
0

It is desired to generate the transient response of such a system in response to a given initial
condition x. and fix control u. In particular, given

find x(t) for 0 < t < 2.0. Also print x(t) and y(t) every 0.01 second.

The user's main program to solve this problem is shown in figure l(a), the corresponding data
deck is shown in figure l(b), where each line represents one card, and the beginning of the results is
presented in figure l(c).

29

I

w
0

(a) User's main program.

Figure 1 .- Example 1. -

.

TEST PROGRAM 1 GENERATES TRANSIENT USING EAT
001 00 1 2 . 0 0
F 3 3
1.0 0.0 0.0
0 00 2 00 0 00
0 00 0.0 3.0
G 3 3
1.0 0.0 0.0
0 00 1.0 0.0
0 00 0.0 1.0
H 2 3
1 00 1.0 1.0
0 00 1.0 0.0
U 3 1
1.0
0 00
0 00
x0 3 1
1.0
2 00
3 .O

”.

(b) Data deck.

Figure 1 .- Continued.

w
T E S T PROGRAM 1 G E N E R A T E S T R A N S I E N T USIhlG E A T
.

\ / A S P P R O G R A M
. . . -" .

F M A T R I X 3 ROWS 3 COLIJMNS
n n n

0.0 2.0000000D 00 0.0
0.0 0.0 3.0000000D 0 0

~. .- " " " - ." -. - - - - - - _" - - - - _ _ -

. . " -. - . - - - . . - -.

G M A T R I X 3 ROWS 3 COLIJMNS
. - . . . - " - " - - - - - " - -. -

1.00000000 00 0.0 0.0

0.0
" "_ ". . -.. "

0.0 1.0000000 D 00

H-.... B T R I X ... 2 BO!& - 3 COLUMNS -. . . " . - .. - -, . .

1.0000000D 00 1.OOOOOOOD 00 1.00000000 00
0.0 1~0000000D 00 0.0

.. " - " - "" - "_ ." -. -. "_ -" __
U M A T R I X 3 ROWS 1 COLUMNS

-._I__

1.000OOOOD 00

0.0
.--La" .. . - - . -. - . - - . - - - - - - - . -. -. .-

xn" ITRlX ~Rab!.s- .. -.- -. ". - . -._ . - " " .
1.00000000 00
2.00000000 00

" - "- -

--7.nnnnngQR QO- - - ~ ...

T I M E RESPONSE
"" " .

T T X T (1)
" -

X T (2)
- . ._ . _. w* ~

XT(3) Y T (1) Y T (2) YT(3)

atll . . - . O ~ ~ Q Z Q L Q D D 01 .n,zo404030. QL. ~ + ~ C I Q ! X U I 01 0.61518A7D -Ql~- L,Z&QAQ.3g.gl---

0.02 0.1040403D 0 1 0.20816220 0 1 0.31R5510D 01 0.630753'40 0 1 0.20816220 0 1
__ . "" " .- -. . -

0.03 0.1060909D 01 0.21236730 91 0.32825230 01 Oeh467105D 01 0.21236730 0 1

L Q 4 - . . .L lQ&L62ZD 0 1 021665740 0 1 0.33824910 01 0.6630bR6D Q L . . -6L2sQlZEi34a. .8L----

0.05 0.1102542r) 01 0.22103420 01 0.34855030 01 0.67983R70 01 0.2210342D 0 1

0.06 0.11236731) 0 1 0.22549940 0 1 Om3591652D 0 1
..... . . - " - -. ____""_

0.69703190 0 1 0.22549940 0 1

0.07 0*1145016'7 01 0 .23095480 01 0.37010340 0 1 0.71465980 01 Q.3300548D 0.1..

(c) output

Figure 1 .- Concluded.

The user's main program- This program will be discussed. statement by statement, using the
line numbers on figure I(a) as a reference.

Lines 1 and 2, These two statements allocate the necessary storage for 'the variables to be used and
define them as double precision. Also, the dimension arrays NF, NG, etc.,are allocated storage.
The dimensionality of F, G, etc., could have been included in the double precision statement
instead of the dimension statement, and they could have been dimensioned as F(9) instead of
F(3,3). The W array has been set up for dummy storage, and is dimensioned 18, as required
by the EAT subroutine:

Lines 3 and 4. Common variables to be needed later are made available to the program. Although
the variables listed in line 4 are not needed in this program, they are shown for reference.

Line 5. Since the basic matrices are (3,3), MAXRC is set to 9, to prevent overfilling the matrices.
Note this will not protect from overfilling the arrays XO, XT, etc., since they are expected to
be 3 X 1 vectors, and are dimensioned 3.

Line 6. This statement reads the first card of the data deck (see fig. l(b)), places its contents in the
TITLE array, and prints the first line of the output (see fig. l(c)).

Lines 8 and 9. The initial time, the time increment, and final time are read from the second data
card.

Line 10. The arrays F, G, H, U, and X0 are read from the remainder of the data deck, and are
printed (fig. l(c)). Note that the dimensions used by the program are those given on the header
card for each matrix. If these were specified as (2,2) this same main program would solve a
second-order problem, rather than the third-order problem.

If the initial conditions were already stored in the X0 array and you did not wish to disturb
them, then the header card for the X0 array would contain only the matrix title, no dimen-
sions, and the associated data cards would be omitted. The matrix X 0 would still be printed.

Line 11. Line 1 1 contains the information to head the main output.

Line 12. Line 12 is the data format. For this program the transient output was printed using the
programmers write statement rather than PRNT. The use of PRNT for this purpose is shown
in the third example, p. 40.

Line 13. Line 13 tells the line counter that the program will print 4 lines.

Line 14. Line 14 does the actual printing.

Lines 15 through 25. Lines 15 through 25 form a loop which increments TT (line 23) and stops
when TT is large enough (line 24).

Line 15. Line 15 computes the B and C matrices for time TT. When C is computed, the limits of
the integral are 0 and the present TT. Note that W is specified for dummy storage and the
" 18" tells EAT the size of W.

33

Line 16. Line 16 computes BXO and stores the result in V1. Array V1 is set up for the
programmers working storage. Since W is also available a t this point in the program, it could
have been used instead of V1 if desired.

Line 17. Line 17 computes CG and stores the result in Al, another working storage array.

Line 18. Line 18 computes (CG)U and stores the result in V2, still another working storage array.
Note that MULT obtains the product CG from A 1.

Line 19. Line 19 adds V 1 and V2 to obtain XT. Since the ADD subroutine allows the matrices to
be repeated in the call, the array V1 could have been eliminated, then line 16 would have
stored its results in XT. Line 19, then, would have added XT and V2 to obtain the complete
XT.

Line 20. Line 20 multiplies H times X to obtain Y.

Line 21. Line 21 tells the counter we are going to print 2 lines. If this will not fit on the present
page, LNCNT will advance to the next page, print the title as on the first line of the first page of
output, and increment the line counter to allow for the paging and the two lines about to be
printed.

Line 22. Line 22 prints the variables XT and YT, skipping a line between each print line, as
required by the 1HO in FORMAT 102. Note that YT(3) is not printed.

Example 2 - Transient Response Using TRNSI

This example uses the same equations as Example 1 , except that u is piecewise constant,
that is,

u(t) = JR - Kx(to + i tz) it,< t - to < (i + l)t,

where i is a non-negative integer and J, R, K are constant matrices. The first term, JR, represents
a forcing function and the second, Kx, is a feedback term. (See ASP manual, p. 12 1 , for detailed
explanation.)

It is desired to generate the transient response of such a system in response to a given initial
condition x. and a time varying control u. In particular, given

F = F a i] 0 0 0 0 0

0 0 0 0 2

34

H =

-
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
1 0 0 0 0
0 1 0 1 0 -

[:
1
1

x o = 1
0
1

t l = 0.5 sec
tz-= 2 seh
tf = 3.5 bec
t o = 0 sec

I

The system is monitored at intervals t l , while the control u(t) is changed only at sampling
intervals tz (tz must be a positive integral multiple of t l) . Specifically, the control u(t) is updated
by the equation:

u(t) = JR - Kx(to + i tz) i tz < t - to < (i + l) tz

The x,y vectors are computed at time intervals t, , and these vectors together with the time t, and
the control u (for the subsequent time interval) are printed out each time. The problem terminates
when the final time tf is reached. The matrix T has elements t l , tz, tf , to in that order.

The user's main program to solve this problem is shown in figure 2(a), the corresponding data
deck is shown in figure 2(b), and the results are presented in figure 2(c).

(a) User's main program.

Figure 2.- Example 2.

35

TEST PROGRAM GENERATES TRANSIENT USING TRNSI
F 5 5
0. 0. 0. 0. 0.
0. .5 0. 0. 0.
0. c!. 1 . 1 . 0.
0. 0. 0. 1. 0.
0. 0. 0. 0. 2.
G 5 2
1. 0.
1. 1.
0. 0.
1. 0.
0. 1.
J 2 1
0.
0.
R 1 1
0.
K 2 5
1. 0. .5 0. 2.

_" - -

0. 3. 0. 1. 0. -
H 7 5-
1. 0. 0. 0. 0.
0. 1. 0. 0. 0.
0. 0. 1. 0. 0.
0. 0. 0. 1. 0.
0. 0. 0. 0. 1.
1. 0. 0. 0. 0.
0. 1. 0. 1. 0.
X 5 1

___-

1.
1.
1.
0.
1.
T 4 1
- 5
2.
3.5
0.

(b) Data deck.

Figure 2.- Continued.

36

T E S T P R O G R A M G E N E R A T E S T R A N S I E N T U S I N G T R N S I V A S P P R O G R A M

F M A T R I X 5 ROWS 5 COLUMNS
0.0 0.0 0.0 0 .o 0.0
0.0 5 0000000D-0 1 0 0 0.0 0 00
0.0 0.0 1.00000000 00 1 ~ O O O O O O O D 00 0.0
0.0 0.0 0.0 1.00000000 00 0.0
0.0 0.0 0.0 0.0 2 0 00000000 00

" -
b M A I K I A 3 K f i 3 L L m

1.00000000 00 0.0
1.00000000 00 1.00000000 00
0.0 0.0
1.00000000 00 0.0
0.0 1 ~ O O O O O O O D 00

J MATR I X 2 ROWS 1 COLUMNS
0.0
0.0

R M A T R I X 1 ROWS 1 COLUMNS
0.0

K M A T R I X 2 ROWS 5 COLUMNS
1.00000000 00 0.0 5.0000000D-01 0.0 2 00000000 00
0.0 3~0000000D 00 0.0 1.00000000 00 0.0

H M A T R I X 7 ROWS 5 COLUMNS
1~00000000 00 0.0 0.0 0.0 0.0
0.0 1 ~ 0 0 0 0 0 0 0 D 00 0.0 0.0 0.0
0.0 0.0 1 ~ 0 0 0 0 0 0 0 0 00 0.0 0 00
0.0 0.0 0.0 1 ~ 0 0 0 0 0 0 0 0 00 0.0
0.0 0.0 0.0 0.0 1 .0000000D 00
1 ~ 0 0 0 0 0 0 0 D 00 0.0 0.0 0.0 0.0
0.0 1 ~ 0 0 0 0 0 0 0 0 00 0.0 1.00000000 00 0.0

(c) output

Figure 2.- Continued.

w
03 T E S T PROGRAM G E N E R A T E S T R A N S I E N T U S I N G T R N S I V A S P P R O G R A M

- -
A P l m x 3 K U W 3

1. OOOOOOOD 00
1.0000000D 00
1 ~ O O O O O O O D 00
0.0
1 OOOOOOOD 00

T M A T R I X 4 ROWS 1 COLUMNS
5.0000000D-01
2. OOOOOOOD 00
3.5000000D 00
0.0

F M A T R I X 5 ROWS 5 CULUMNS
0.0 0.0 0.0 0 00 0.0
0.0 5 . 00000000-0 1 0.0 0.0 0 00
0.0 0.0 1 . o o o o ~ u u 00 1 . o o o o ~ o o u 00 0.u
0.0 0.0 0.0 1~00000000 00 0.0
0.0 0.0 0.0 0 00 2 . 00000000 00

E A T M A T R I X 5 ROWS 5 COLUMNS
1~00000000 00 0.0 0.0 0 00 0.0
0.0 1.28402540 00 0.0 0.0 0 00
0.0 0.0 1.64872130 00 8.24360690-01 0.0
0.0 0.0 0.0 1.64872130 00 0.0
0.0 0.0 0.0 0 00 2.71828190 00

1 N T M A T R I X 5 ROWS 5 COLUMNS
5.0000002D-01 0.0 0.0 0.0 0.0
0.0 5.68050860-01 0.0 0.0 0 00
0.0 0.0 6.46721310-01 1.75639380-01 0.0
0.0 0.0 0.0 6.48721310-01 0.0
0.0 0.0 0.0 0.0 8 .59140970-01

(c) Output - Continued.

Figure 2.- Continued.

-."

T E S T P R O G R A M G E N E R A T E S T R A N S I E N T U S I N G T R N S I V A S P P R O G R A M

T R A N S I E N T R E S P O N S E * * I N D I C A T E S C O N T R O L C H A N G E S
T I M E F I R S T 5 E L E M E N T S C O N T A I N X * N E X T 7 E L E M E N T S C O N T A I N Y = HX, L A S T 2 E L E M E N T S C O N T A I N U =JR -KX

* 0.0 1 ~ 0 0 0 0 0 0 0 0 00 1 ~ 0 0 0 0 0 0 0 0 00 1 .OOOOOOOD 00 0.0 1 ~ 0 0 0 0 0 0 0 0 00 L ~ O O O O O O O D 00 1 ~ 0 0 0 0 0 0 0 0 00
1.00000000 00 0.0 1 ~ 0 0 0 0 0 0 0 D 00 1 ~ 0 0 0 0 0 0 0 0 00 l~OOOOCT000 00 3.5000000D 00 5.0-UFODOOD 00

1.03398350 00 -2.21052460 00 1.40859030 " 01 /.5000008D - - 01 4 * 6 / 8 8 2 9 n) 00 -3.50- 00

- -
0.50 -7.50000080-01 -2.40830520 00 1.03398350 00 -2.27052460 0 0 1.40859030-01 -7.50000080-01 -2.40830520 00

1.00 -2.50000020 00 -6.78465570 00 -7.8171846D-01 -6.01398680 00 -2.19452840 00 -2.50000020 00 -6.78465570 00
-7.81718460-01 -6.01398680 00 -2.19452840 00 -2..5000002D 0 0 -1.27986420 01 -3~50000000 OO - 3 ~ 0 0 0 0 0 0 0 0 00

1.50 -4.25000020 00 -1.24040010 01 -6.86126800 00 -1.21859130 01 -8.54276980 00 -4.25000020 0 0 -1.24040010 01
-6.86126800 00 -1.21859130 01 -8.54276980 00 -4.25000020 0 0 -2.45899140 01 3.50000000 00 3.00000000 - -

* 2.00 -6.00000030 00 -1.96193830 01 -2.19726440 01 -2.23616990 01 -2.57990800 01 -6.00000030 00 -1.96193830 01
-2.19726440 01 -2.23616990 01 -2.57990800 01 -6.0000003D 00 -4.19810820 01 6.85844820 01 8.12198490 01

2.50 2.82922420 01 5.99046920 01 -4.2614736D 01 7.62400570 00 -3.49872850-01 2.82922420 01 5.99046920 01
-4.26147360 01 7.62400570 00 -3.49872850-01 2.82922420 01 6.75286970 01 6.8584482D 01 8.12198490 01

3.00 6.25844840 01 1.62015630 02 -5.19287560 01 5.70620750 01 6.88282470 01 6.25844840 01 1.62015630 02
-5.19287560 01 5.70620750 01 6.882R2470 01 6.25844840 01 2.19077700 02 6.85844820 01 8.12198490 01

3.50 9.68767270 01 2.93128660 02 -2.65301790 01 1.38571670 02 2.56873881) 02 9.68767270 01 2.93128660 02
-2.65301790 01 1.38571670 02 2.5687388D 02 9.68767270 01 4.3170034D 02 6.85844820 01 8.12198490 01

(c) Output - Concluded.

Figure 2.- Concluded.

The user's main program- A brief explanation of the statements using line numbers on
figure 2(a) as reference follows:

Lines 1, 2, and 3. Lines 1, 2, and 3 allocate storage, same as lines I and 2 of example 1.

Line 4. Common variables to be needed later are made available to the program.

Line 5. This statement reads the first card of the data deck (see fig. 2(b)), places its contents in
TITLE array and prints the first line of the output (see fig. 2(c)).

Lines 6 and 7. The matrices F, G, J, R, K, H, X, and T are read in from data deck (see fig. 2(b))
and are printed.

Line 8. Line 8 calls the TRNSI subprogram, performs the computation, and prints outputs as
explained in the example.

Example 3 - An Optimum Control Problem

Given a system

X = F x + G u y = Hx x(0) = x.

where x, u, and y are, respectively, the state, control, and observation vectors. The system,
distribution, and observation matrices are F, G, and H, respectively.

We wish to define an optimal control u(t), where u(t) = -Kx(t), so as to minimize the
performance index

(x'H'QHx + U'RU)dt

The solution to this problem is

K = R" C'P

where P is the solution of the matrix Ricatti equation.

The VASP program finds P by means of the subroutines AUC, ETPHI, and RICAT, as follows.

First, subroutine AUG is used to generate the matrices

(Note: This is the negative of the Z given on page 2 12 of the ASP manual.) Subroutine ETPHI is
then used to compute the special transition matrix

40

e = 1 = e 27

Finally, the P matrix is computed by subroutine RICAT for a time increment of r , by repeated
application of the formula

The computation is repeated for several steps, until P(t + 7) x P(t), which is the desired
solution. Subroutine RICAT will also stop after a specified number of steps, if P has not con-
verged to a solution. Finally, having P and K, we can compute the transient response of the system
with optimum feedback from any desired initial condition. The differential equation becomes

X = FX - GKx (F - GK)x = F*x

and the solution is

The time history of the control is

U(t) = -Kx(t)

An alternate solution, used in this example, is to first calculate the transition matrix

A2 = e
F*r

where 7, is the time increment at which the solution is desired, then compute

~ (t + 71) = A2 x(t), ~ (0) = x0

The listing of a main program to solve this problem is given in figure 3(a), the data for a particular
case is given in figure 3(b), and the first part of the results is given in figure 3(c). In this problem,
H = I so the special case of AUG is used. As a result, H is not used in AUG, and need not have
been used as an input.

41

(a) User's main program.

Figure 3.- Example 3.

P w

(a) User's main program - Concluded.

Figure 3.- Continued.

P
P

TEST PROGRAM 2A GENERATES TRANSIENT USING X (I + l) = E X P (F * T) * X (I)
0 00 1.0 0.01 3.5
F 3 3
-0.2767 1.0 -0.0372
-17.0872 -0.1785 -12.1983
0 00 0 00 -6.67
G 3 1
0.0
0 00
6.67
x0 3 1
1.0
0 00
0.0

1.0 0 00 0.0
0 00 1.0 0.0
0 00 0 00 1.0
Q 3 3
0 02 0 00 0.0

- - 0 . 00 . -. - 0.2 0.0
0 .o 0 .o 0.0
R 1 1
1.0
PO 3 3
0 .o 0 00 0.0
0 00 0.0 0.0
0 00 0 00 0.0

- H 3 3

"-

"

"""_

(b) Data deck.

Figure 3.- Continued.

G M A T R I X 3 ROWS 1 COLl lMNS
0.0

ho6700000D 00
I La."" " . " . . -. . . . -. . . . -. . .

. -x0 M A T R I X 3 RO!.IS 1 COLUlVrlVS
1.0000000D 00
0.0

....-&. Q . . ~. . _._ .. . - . - ..

H M A T R I X
I,Q€L€VJOOQD QQ
0.0
0.0

- . ._ . _. . . .- . - . .
0 MATR I X

2 . 0 0 0 0 0 0 O D - 0 1
0 .o
0.0

3 ROWS
8-0
1. 0000000D 00
0.0

.. ,

3 ROWS
0.0
2~QOOOOOOO-01
0.0

3 CCILIJMNS
0.0
0.0
1.00000000 0 0

3 COLUMNS
0.0
0.0
0.0

... R . . ~ .MAJRIX 1 ROWS 1 COLUMNS
1.00000000 00

PO M A T R I X 3 ROWS 3 CflLlJMNS
0.0 0.0 0.0
0.0 0.0 0.0

1 T T E R A T I O N S
-n.a . 0,o 0.0

(c) output.

Figure 3.- Continued.

3 COLUMNS
5 16454380-01

3 Gflt CCMNS
1.1035042D-01

-5.45126590-02
7 7429442D-F)2

3 COLUMNS
5 s 303612OD-01.

3 COLUMNS

V A S P P R Q G F A M

-. .

(c) Output - Continued.

Figure 3.- Continued.

P (T) M A T R I X 3 ROWS 3 COL IJMNS
.. - 4 - a M - N -2,€3&171R-Q2 € . l 3 1 * 8 W . 1
-2.17641710-02 5.64703970-02 -5.53529500-02

I 1.13136840-01 -5.53529500-02 7.95144720-02

I FSTR M A T R I X 3 ROk!S 3 COLUMNS
~ - 2 .76700000-01 1~00000000 00 -3.72000000-02
c . - - - l ~ o a or . .. - uaU)om~-aL . = . ~ ~ ~ n ? n n n 81

i-" "_ ~ ... - - - - . I""

-5.03333380 00 2.4625919D 00 -1.02075110 01

A2 M A T R I X 3 ROWS 3 COLUMNS
. ---sL9&4ula-QL - 9.-%5€#1-g-83 - -%414&91-80-c$4

-1.67390330-01 9.9592474D-01 -1.15736830-01
-4.97750550-02 2.31282830-02 9.01578260-01
"" "" "" -_

(c) Output - Continued.

Figure 3.- Continued.

T E S T PROGPAM 2 h G E N E R A T E S T R A N S I E N T O S I N G X (I + l) = E X P (F * T) * X (I) V A S P P R I I G Y A M

T I M E RESPONSE
T 1 f.1 t

n . 0
0.01
0.07
0 .03
n .04
0.05 0. Oh
0.07

0.09

0.11
0.12
0.13
0.14
0.15
0.16
0.17
0 . l R
0 . l Q
0 2 0
0.21
0.22
0.23
0.24
0 .75
0.26
0.27
0.28
0.29
0.30
0.31
0.32
0.33
0.34
0.35

0.37
0.3R
0.39

T T

n.08

n . l n

o .M

(c) Output - Concluded.

Figure 3.- Concluded.

The user’s main program- Some of the details of the main program are discussed briefly. The
various matrices are first dimensioned and stated to be double precision. The problem will be solved
using basically 3 X 3 matrices, but Z and PHI are 6 X 6 matrices so MAXRC is set to 36 (line 6). A
double size dummy array is required in ETPHI, so DUMMY is dimensioned at 72, and KDUM is set
to 72 (line 7).

In line 8 the timing information is read in. TT is the initial time, DELTl is the time increment
used in the computation of P, DELT2 is the time increment, T ~ , desired in the printout of the
transient and TFINAL is the final time for the transient.

Lines 9 and 10 read data cards t o fill a total of 7 matrices.

Lines 14, 15, and 16 set up the appropriate constants for RICAT, specifying a print every step
(line 14), the maximum number of steps to be taken by RICAT (line 15), and that both P and K
should be printed (line 16). Lines 17 and 18 store the initial values of x. and Po in the running
matrices, and lines 19 through 23 do the necessary computations to obtain P and K (called CK in
program). Then F* and the transition matrix A2 (lines 28 through 32) are computed and printed.
The transition matrix is labeled on the output (lines 29 through 31). Lines 33 through 39 page the
output, print a heading for the transient response, and print the first point. Lines 40 through 47
then increment the solution and the time, and print x(t) and u(t) (called XT and DELTC in the
program).

Example 4 - Sampled Data Ricatti Solution

This example is provided to show the general use of the subroutine SAMPL. The theory of the
example is given in the ASP manual, page 222, and very briefly in the dictionary description of
SAMPL, page 24, in this manual. A listing of the main program is shown in figure 4(a). The data
deck is shown in figure 4(b), and the output in figure 4(c).

The main program is reasonably self-explanatory. The statement NCONT(2) = 4(line 13)
indicates that SAMPL is to compute P for four successive time intervals and then stop. Both P and
K (line 14) are to be printed at every step (line 12).

As mentioned in the dictionary, K is the weighting matrix corresponding to the beginning of
the interval, and P is the covariance matrix corresponding to the end of the interval. This is appar-
ent in the output. For example, the first entry to SAMPL prints step number 0 and the K matrix,
followed by step number 1 and the P matrix. On exit from SAMPL, P and K contain the data
corresponding to Pi and which is the last interval. If printing is requested, the exit value of P
and K will always be printed, and will be the last set of data.

49

It

c CHECK PROCEDURE FOR S A M P L E SEE P A G E S 2 3 4 AND 2 4 4 OF A S P M A N U A L
000 1 D I M E N S I O N N P H I (~) T N Q (~) ~ ~ I R (~) , N P (~) T ~ ! ~ (~) T ~ I C O N T (~) ~ ~ ' H (~)

- 3 n w l Y . " C D D E r T C T W 7 .. " " I L D1-1 ' 1 ' 3 7) 2: F-:; 2;
1 DUM (5 4 1

0003 COMMON / M A X / M A X R C
nnnl- M A Y C) ~ a

000 5 hlDUM=54
0006

000 8 10 C A L L READ (4 , P H I , N P H I ,HTNHTB,NO,RTNRTRTNR)
0009 N P (l) = N P H I (l)
" -NW"Pd-F4 l : : ' l) -

0011 CALL UNI .TY (PyNP)
0 0 1 2 N C O N T (1) = 1

00 14 NCONT (3) = 4
0 0 1 5 C A L L S A M P L (P H I ~ N P H I T H , N H , O ~ N Q ~ R , N R , P I N P , K , N K , N C O N T T ~ U M T N D U M)

0017 GO TO 10
0 0 1 8 END

- _ _ _ _ _ ~ - - -

7 P 1 - 1
I L# 1 1 L

"

"" __

T I ? 1 I.
. L , I

-Q4)iT_t""" ___" "

(a) Main program.
T E S T P R O G R A M F O R S A M P L C A S E 1 F R O M A S P M A N U A L P 2 3 4 A N D P 2 4 4
P H I 3 3
0 1 00
0 0 0
0 0 2 00
H 2 3
0 00 2 00 0.0
0 00 0.0 1.0

3 -0 1.0 0.0
1.0 1.0 0.0
0 0 1.0

- Q 3 3 -~

R 2 2
1 00 1.0
1 .o 2 .o

(b) Data.
Figure 4.- Example 4.

T E S T PROGRAM FOR SAMPL C A S E 1 FROM A S P MANIJAL P234 AND P244

PHI M A T R I X 3 RObIS 3 COLUMNS

VASP PROGRAM

- "
0.0
0 .o

""""" " - - v

0.0 0 .o
0.0 2 0000000 D 00

H M A T R I X 2 ROWS 3 COLlJMNS
0.0 2 ~ 0 0 0 0 0 0 0 0 00 0.0
n n n n I m n nn
"

0 M A T R I X 3 ROWS 3 COLUMNS
2 -n 1- "" - - "_ _. - " . " - "- -

1 ~ 0 0 0 0 0 0 0 D 00 1 ~ 0 0 0 0 0 0 0 0 00 0.0
0.0 0.0 1 OOOOOOOD 00

R M A T R I X 2 ROWS 2 COLUMNS
1 ~ 0 0 0 0 0 0 0 D 00 1 ~0000C)OOD 00
1 nn 9 "05 " _ _ . "" ~

L .

S T E P NUMBER= 0 I N SAMPL

K (T) M A T R I X 3 ROWS 2 COLUMNS
- "

4.28571430-01 -1.42857140-01
"-- _" "

-1.42857140-01 7.14285710-01
"~

S T F P NllMRFR - 1 TN CAMPI -

P (T) M A T R I X 3 ROWS 3 COLUMNS
" U 5 ? 142 98-c!?

2.85714290-01 0.0 3.5714286D 00
1.00000000 00 1.00000000 00 0.0

(c) output.

Figure 4.- Continued.

STEP NUMBER= 1 I N SAMPL
- ~ - _ _ K (T) M A T R I X 3. ROWS "7- " - "

h)
. " "" - -. .. " -

4.1489362D-01 -7044680850-02
0.0 0.0

1 1 A. 27-n 2-

S T E P NUMBER= 2 I N SAMPL
P (T) M A T R I X 3 R 0 \.I S 3 COLUMNS

' . . < I

~ "_ . "

3.1702128D 00 1 ~ 0 0 0 0 0 0 0 0 0 0 5.319148'70-01
1.OOOOOOOD 00 1 ~ 0 0 0 0 0 0 0 0 00 0 00
s ; " y q l u Q n - n l n .n E; l Q 7 7 2 4 Q Q 4 n

STEP NUMBER= 2 I N SAMPL
""

K (T) M A T R I X 3 ROWS 2 COLUMNS
"_ "___ ~

4.1054403D-01 -5.27201350-02
A n n n . ., ."

-3.05103760-01 1.52551880 00

P (T) M A T R I X 3 ROWS 3 COLUMNS
9 n r r 1 n
2. A.A. v u L . U 38 nn

1. O O O O O O O D 00 1 . OOOOOOOD 00 0 .O
6.10207520-01 0.0 6049186760 00

STEP NUMBER= 3 I N SAMPL

K ! T ! M U I Y a RQ,JC - 7 r w ~ c
4.09648010-01 -4.8240037D-02
0.0 0.0 - 1a7n "" - -
"

S T E P NUMBER= 4 IN SAMPL

P (T) M A T R I X 3 ROWS 3 COLUMNS
3.1807040D OO 1.OOOOOOOD 0 0 6.2633587D-01

6.26335870-01 0.0
l = W 1" - "&a" " ____

6.63702280 00
(c) Output - Concluded.

Figure 4.- Concluded.

Example 5 - Matrix Decomposition

This example is a test program to check the operation of DECGEN. It first generates a matrix
R to be decomposed, then proceeds with the decomposition, and checks the result, printing all of the
associated matrices. The general procedure is to input a diagonal matrix ZL and transform it into the
matrix R to be decomposed. Figure 5(a) is a listing of the main program; figure 5(b) is a listing of
the subroutine ORTH; figure 5(c) is the data deck; and figures 5(d) through 5(f) are the output.

In the main program, all matrices are dimensioned 100, although the actual matrix size used is
2 X 2 and 4 X 4. Accordingly, MAXRC is set to 100. The dummy matrix is dimensioned 700,
since DECGEN requires that much. The input matrices ?re read at line 8.

Subroutine ORTH, called at line 9, produces a n X n orthogonal matrix, uking the original T
matrix, and places the results back in T. The procedure is as follows.

First, generate an elementary rotation matrix Eij. This is a unity matrix, with elements eii and
ejj replaced by COS tij and elements eij = -eji = sin tij.

Then,

T = II Eij

Lines 10 through 17 set up indices for referring to the seven dummy matrices. The input
matrix, ZL, is then transformed by the matrix T, so that

ZL, = T*ZL*T'

Note that ORTH leaves T' in DUM3. Also, if the T at input was the null matrix, the rotation will
be the identity matrix, so that R = ZL. Lines 19 through 27 then juxtapose either the matrix EXR
or the matrix EXC, using JUXTR or JUXTC, depending on the compatibility of the dimensions. I f
both sets of dimensions are incompatible, no juxtaposition is done. In any case, the result of this
operation is placed in R. The decomposition routine is called next. If the original ZL matrix had
zero in element (2 , l) and no juxtaposition was done, then R is assumed symmetric, and the
DECSYM entry is used. If ZL was not symmetric, the program will produce errors. Otherwise,
the DECGEN entry is used (lines 29 to 31). Finally, the resulting matrices H and G are tested
using

R, = H G

R E = R - R I

and all resulting matrices are printed.

In figure 5(c), blank lines represent blank cards. In the data cards for case 4 the header card
for EXR has no dimension information and no associated data cards. This indicates that the
matrix EXR is t o be left unchanged, and that no data cards are to be read for EXR. In case 7,
EXR is again left unchanged. A blank data card follows the EXC header card.

The output (figs. 5(d) through 5(f)) contains the results of decomposing three different matrices.
Figure 5(d), case 1, is a 2 X 2 rank 1 matrix; figure 5(e), case 4, is a 2 X 3 rank 2 matrix; and

53

000 2 DOUBLE P R E C I S I O N Z L (1 0 0) , T (1 0 0) ~ E X R (1 0 0) , R (l O O ~ ~ G (l O O ~ ~ H (l O O) ~

"- C" ""--"

0004 MAXRC=100
0005

000 7 20 CALL RDTITL
0008 CALL R E A D (4,ZL,NZL,T,NTvEXR,NEXR,fXC,k!EXC,T,NT)
44" "L&*T"---
00 10
0011 M 2 = M * M + 1

1 DUM(700),R1(100),RE(lOO~,EXC(lOO~
_ _ _ ~

I I, n
U I \ W ".". ".

~

M=NT (1)

0013 M3=M2+MS
00 14 M4=M3+MS
nnlr;" M 5 " -
0016 M6=M5+MS
0017 M7=M6+MS

"" . . - r . ..

""

(a) Main program.

Figure 5.- Example 5.

(a) Main program - Concluded.
Figure 2.- Continued.

(b) Subroutine ORTH.
Figure 5.- Continued.

T E S T PROGRAM FOR DECGEN Ah!D DECOI.1 C A S E 1 2 X2 R A I\!K 1
Z L 2 2
1.0 1.0
2.0 2.0
T 2 2

-

EXC 1 1

TEST PROGRAM FOR DECGEN AND DECOM CASE 4 2 x 3 R A N K 2
71 7 7
I.

2,o
T 2 2 -

07

EXR
EXC 2 1
2.
5 .

TEST PROGRAM FOR DECGEN AND DECOM CASE 7 I L L - C O N 0 4x4 R A N K 3
Z L 4 4
1.

2.

1 0-6
T 4 4

e 2 e 3 04

EXR
E XC I I

(c) Data.

Figure 5 . - Continued.

I

TEST PROGRAM FOR DECGEN AND DECOM CASE 1 2 x 2 R A N K 1 \ / A S P PROGRAM
-_ . - .______ - - .- " "_

Z L MATR I X 2 ROWS 2 COLUMNS
r\ 1
u J.. 6 C

2 ~ 0 0 0 O O O O D 00 2~00000000 00

" - " T - ~ x " - - - - - - - " " - ~ ~ ~ ! s -

0.0 0.0
0.0 0.0

E XR MATR I X 1 ROWS 1 COLUMNS
0.0

E X C M A T R I X 1 ROWS 1 COLUMNS
0.0

T M A T R I X 2 ROWS 2 COLUMNS
1~00000000 00 0.0
lLIl"".- 1 ___

T * T l M A T R I X 2 ROWS 2 COLUMNS
n n n "

0.0 1 . 0 0 0 0 0 0 0 D 00
-

- R _- MATRJJ"-- 7_BQ& 2 w s . " . - .- - - -
1~00000000 00 1 ~ 0 0 0 0 0 0 0 D 00
2.00000000 00 2 ~ 0 0 0 0 0 0 0 D 00

R 1 M A T R I X 2 ROWS

-2..&-*-. -.Fa" 06" -
1~00000000 00 1 . 0 0 0 0 0 0 0 D 00

2 COLUMNS

. - - .. . -. . - . -. . " ""

R E R R M A T R I X 2 ROWS 2 COLUMNS -
4 . 4 4 0 8 9 2 1 D - 1 6 4 . 4 4 0 8 9 2 1 D - 1 6

I 1 , lr\ 7 ,
2u L U

" "", """- r . L U

(d) Case 1.

Figure 5.- Continued.

- . ." " . . "UU" -2. &Qr"S - - .. - - &-&W "
1 . 4 1 4 2 1 3 6 0 00
2 . 8 2 8 4 2 7 1 0 00

"-
G M A T R I X 1 ROWS 2 CL)L\JMI\JS

7 .07106780-01 7 .0710678D-01
-~ ~ "" - ". . -" . "

R A N K M A T R I X 1 RO Id S 1 COLURNS
__ ~

-__-

1.0000000D 00

(d) Case 1 - Concluded.

Figure 5. - Continued.

T E S T P R O G R A M FOR D E C G E h l A N D D E C O M C A S E 4 2X ~ a d K 2 V A S P PROGRAM

ZL M A T R I X 2 ROWS 2 C O L U M N S
1 m n nn n n .."
" v " V "I"

0.0 2 .00000000 00

- " T A m X " 3- 2-G-
7.99569850-01 6.00573110-01

-6.00573110-01 7.99569850-01

E X R M A T R I X 1 ROWS 1 C O L l J M N S
0.0

~ ___"_ ~ "" ~ ""

E XC M A T R I X 2 ROWS 1 COLUMNS
2 .00000000 00

A _.- - "

T M A T R I X 2 ROWS 2 C O L U M N S - - K l l E1q+@& - " -
" / w v a A & A _

5.6511539D-01 8.25011880-01

T t T I M A f R 1 y 7 QQJdc - 3 r m
1 ~ 0 0 0 0 0 0 0 0 00 0.0
0.0 1 ~ 0 0 0 0 0 0 0 0 00

R M A T R I X 2 R01.I.S 3 C O L U M N S -

1.31935540 00 -4.66226910-01 2.00000000 00
3 nn -
2 1

R 1 M A T R I X 2 ROWS 3 C O L U M N S

-4.66226910-01 1.6806446D 00 3.0000000D q O

(e) Case 4.

Figure 5.- Continued.

RFRR M W Y - 3 R N C .. ., 2 J r w c V I u

2.2204460D-16 -2.49800180-16 4.4408921D-16
-907144515D-17 2.2204460D-16 4.44089210-16
" ". -~ ~

H M A T R I X 2 ROWS 2 COLUFlNS
__ "_ ..

2004935730 00 1.3259717D 0 0
n n 7 nn - -
" 0 " 2. vu

G M A T R I X 2 ROWS 3 COLIJMNS
7 n1 E M . I. 59f3-W-H "4.6-3 ~ 7 8 W - e E - ___-___

-1.3435357D-01 4.84314830-01 8.6451620D-01.

RANK M A T R I X 1 RO\.IS 1 COLUMNS
3 nn "
" V "

(e) Case 4 - Concluded.

Figure 5.- Continued.

m
N

T E S T PROGRAM FOR DECGEN AND DECOM C A S E 7 ILL-CON0 4x4 R A N K 3 VASP PROGRAM
" -.__ _______" "-

ZL MATR I X 4 ROWS 4 COLUMNS
n n .n n n n n

0.0 2.00000000 00 0.0 0.0
0.0 0.0 0.0 0.0

- " - " V "I"

n Q-5 n n 1"

T M A T R I X 4 ROWS 4 COLUMNS
--8,77M#4J304:
-3.93291460-01 7.68929180-01 2.06672230-01 4.59735070-01
-2.64263040-01 -5,48465770-01 6.97672110-01 3.77629410-01 - 2 . 2 3:

1 r A . ".

A . 2 V I J. r l.

* 7 .
E X R M A T R I X 1 ROWS 1 COLUMNS

E XC MATR I X 1 ROWS 1 COLUMNS
- o w ! ?

T * T c M A T R I X 4 ROWS 4 COLUMNS
9 7 17 1 777 n * - P
L W 1 L r A. I l l u L I

2.77555760-17 1~00000000 00 4.16333630-17 -4.16333630-17
-1.38777880-17 4,16333630-17 1.OOOOOOOD 00 0.0

G C I 1 IFI n-17 17 A n 1
L *

(f) Case 7.

Figure 5.- Continued.

R E R R M A T R I X 4 ROWS 4 COLUMNS
A -17 "17 1. 1- 1 7 -

-5.55111510-17 2.22044600-16 -1.73472350-18 8.32667270-17
4.16333630-17 0.0 5.89720360-08 -2.90473790-07

-"""~-984"-~7f33i3" " . . " " -.

H M A T R I X 4 RObIS 2 COLUMNS
'I 9 n q "-
I L. V I

0 00 1.27196770 00
1.17671260-01 1.18438510-02
I. I 7 n1 c I T - 17% ~" __ .. -
7 . V I - l l L

G M A T R I X 2 ROWS 4 COLUMNS
a 77 n'I n n
V., I V I V.V I. L I u I I L U L I'. 0 I 1

, "7, - 1 - n.8 v

-2.42956120-01 1.27196770 00 1,18438510-02 5.65837100-01

(0 Case 7 - Concluded.

Figure 5. - Concluded.

finally, figure 5(f) , case 7, is a 4 X 4 matrix of rank 3, with one very small eigenvalue equal to I O - 6 .
The error matrices of the first two decompositions are extremely small, but that from the third one
has errors of the order of 1O"j. These are caused by the built-in pivot rejection device, which
rejects all pivots smaller than 2X times the largest of the diagonal elements (see DECOM, p. 85
and PSEU, p. 70). This last matrix, case 7, was also tried with an eigenvalue of 1 0-3 , and the errors
were then on the order of 10" '.

Example 6 - Use of the Pseudoinverse Routine

This program is designed to check the operation of PSEUDO. The procedure is as follows:

First the input matrix A is read; then B = A# is computed. The accuracy of the pseudoinverse
is then checked by the first two Moore-Penrose axioms

B A B - B = A ,

ABA - A= B,

All the various matrices are printed.

Figure 6(a) is the program listing and figure 6(b), the output. Three cases are presented; the
first two are the examples presented in the ASP manual; and the third one contains several zeros.
The first matrix printed for each case is the input matrix and each has a different label. The other
titles are abbreviations chosen to fit the allotted four character space as follows:

APSE -+ A#
AASA +. AA#A
AERR +. A or B,
ASAA +. A$AA#

It can be noted that the size of the numbers in the AERR matrices is 10" 6 , which is very good

Ames Research Center
National Aeronautics and Space Administration

Moffett Field, Calif., 94035, July 12, 197 1

64

(a) Main program to check PSEUDO.

Figure 6.- Example 6.

% P S E U D O T F S T P R n G R A M C A S E 1 F R O M A S P M A N U A L P A G E 146 V A S P P R O G R A M
..... - - - .. "

""

B M A T R I X 3 ROWS
7-
- 2 ~ 0 0 0 0 0 0 0 0 00 5.00000000 00

2.00000000 00 1 ~ 3 0 0 0 0 0 0 D 0 1

1
&

..-

A P S E M A T R I X 4 ROWS
9.50296970-02 -5.65801810-02

".--n,n.. 3w34.35-
-6.73648020-02 3.18849640-02

5.06408250-02 -3.67302280-02

4 C O L U M N S "- 2" __". __"_I I"""" ..--.-
-1.00000000 00 -3.00000000 00
- 9 ~ 0 0 0 0 0 0 0 0 00 -5.00000000 00

. - " .. - - . " - -. _ .

3 C O L U M N S
2.03188500-02

-3.90747110-02
._.""- -...-...- .-.. " .- ... - ..-." .

-8 .90903410-03

A A S A M A T R I X 3 ROWS 4 C O L U M N S
4.00000000 00 -1.0000000D 00 -3.0000000D 00 2.0000000D 00

- u w n n - m . . - ~ n a ~ a . . - . = ~ ~ ~ Q(I.-.--WWXXWIO 80
2.00000000 00 1 . 3 0 0 0 0 0 0 0 0 1 - 9 ~ 0 0 0 0 0 0 0 0 00 -5.0000000D 00

A E R R M A T R I X 3 ROMS 4 cI1LUMrci
-6.66133810-16 6.66133810-16 202204460D-16 -6.66133810-16

1.33226760-15 0.0 -8.88178420-16 6.66133810-16
"2+22o4LctroL;lr1.5" ' 3 - a m 90=15 ---L2"?.%4S - -&."l33a1*l4j _

A S A A M A T R I X 4 ROWS 3 C O L U M N S
9.5029697D-02 -5=65801810-82 2.03-188508-0?

-300790872D-02 3.31353550-02 3.78243200-02
-6073648020-02 3.18849640-02 -3.90747110-02
.-5.-Q.~!-~ ... T - U ~ ~ C) ~ . ~ R B - = . . . ~ - ~ Q ~ & & t Q . $. . . -- -.

. .

(b) Output.

Figure 6.- Continued.

PSEIJDn T F S T P R n G R A M C A S E 7 FROM ASP MAhlllAL P A G E 1.37

"a" A"..&.-. -4-@ 4 " . . "&&wwwFT -08.
1.00000000 00 2.5000000D 01 -8.0000OOOD 00 he0000000D 00

- 2 ~ O O O O O O O D 00 -R.OOOOOOOD 00 4 ~ 0 0 0 0 0 0 0 0 0 0 0.0
4-&"0"88 .- &€LWWOOB 00 8-8- - . 4-W" 00

A M A T R I X 4 R OW S 4 COLUMNS

A P S E M A T R I X 4 ROMS 4 COLUMNS
-5F-07nr.3"-""--"-C)r3283~
-1.1026095D-03 2.9737044D-02 -7055120450-03 9.75642350-03
-4.6911023D-02 -7.5512045D-03 4.2366935D-02 5.14551100-02
--&32FI?-n2" "9,7564258-83 5d4551188"02 7 . 5 ~ 1 l 0 9 6 0 - 0 2

A A S A M A T R I X 4 ROWS 4 COLUMNS
"D"" -=ma- 80 - d _ n n n n n n n D . 00

1~OOOOOOOD 00 2.5000000D 01 - 8 ~ 0 0 0 0 0 0 0 0 00 6.00000000 00
-2.0000000D 00 -8.0000000D 00 4.0000000D 00 -2.22044600-16
-2annnnnnn no - uummm~ 00. LO 4,OC)OOOOOD 00

A E R R M A T R I X 4 ROlJS 4 COLUMNS
" ... - - -"3381&-€6
-404408921D-16 -305527137D-15 2.22044600-16 4.44989210-16

6.6613381D-16 6.66133810-16 -h.66133810-16 -2.22044600-16
.&za44#&%J& - ."~"lQ - "- - -4,4408921c)-16

A S A A M A T R I A 4 ROWS 4 C O L UM ius
+ ! e - + e & " - . - l 7 ~ ~ - "%oi3"0il"- --6s-328310%3+)-2
-1.10260950-03 2.9737044D-02 -7,55120450-03 9.7564235D-03
-406911023D-02 -705512045D-03 4.23669350-02 5.1455110D-02
= e , G a - s m w - - . - - .MSW+~W"O~- ~.~wsK)o-Q;, 7.51 IIQ%D-W

A E R R M A T R I X 4 ROWS 4 COLUMNS
, r Z - . n n , " . ""1U .' 4r%7774B"? -

0.0 0.0 2.60208520-18 8067361740-19
R.6736174D-18 1.7347235D-18 -5.20417040-18 -1.12757030-17
.1,38777880.~11. ..-3,hn3a8528-18 -8d13361-34D-€8 -1+387778aO-1.7

(b) Output - Continued.

Figure 6.- Continued.

V A S P PROGRAM

. . ^ .. . - .

._ ,- -

. -

m
00

PSEUDO T E S T P R O G R A M C A S E 3 V A S P P R n G R A M
- - " . - ... -.

C MATR I X 4 ROWS 2 COLIJMNS
4." - "" "._""""""-I. "" - -" .""""

0 . 0 -3 .91000000 0 0
3.50000000-02 0 . 0

,3s;annnnnn" 3,lnnnnnng*Q& - " . ." .

A P S E M A T R I X 2 ROWS 4 COLUMNS
"-.. "&- &"-.L$"$".."_.._.._.

0 .0 -2.55754170-01 2.80460740-04 3.8798916D-06

"-AASB"MAI RLX A. u-2r.nlllMblT-. . . " -

-1.08894560-17 -3.91000000 00
0.0 0.0

2" - n3 LC! "I."""."..-.."""- "._ .._" - -
-2 .53000000 00 3.10000000-01

"AERQ- AlA1BLx" -A,." "" " 3"-. " ._ "_" -

-1.08894560-17 4.44089210-16
0.0 0.0

VIV V I V

2.22044600-16 0.0

" "l" RnWC &.- __ _ _ _ _
0.0 -3.13314710-02 5 .50129300-03 -3.95180810-01
0.0 -2.55754170-01 2.80460740-04 3.87989160-06

A E R R M A T R I X 2 ROWS 4 COLUMNS
0 .0 0 . 0 0 .0 0.0

".@& "" ". . 3+&"-'"3C'.L"-'B - ""

(b) Output - Concluded.

Figure 6.- Concluded.

APPENDIX A

DESCRIPTION OF INTERNAL SUBROUTINES

25. READ1

DESCRIPTION

This subroutine reads a single matrix from cards, without a header card. I t is called by READ,
after the latter has read the header card. The dimensions of the matrix to be read are in array NZ.
If this is zero, no array will be read. In any event, the routine then prints either the array just read,
using NZ for dimensions, or, if NZ = 0, the array already stored, using NA for dimensions.

The subroutine reads the data from cards, each row of the matrix starting on a new card, using
format (8F10.2). If the card data is in exponential form, it must use a D exponent.

USAGE

CALL READl(A,NA,NZ,NAM)

Input Arguments

Matrix: A (if NZ = 0)
Dimension array : NAY NZ
Constant: NAM, containing a four-character (or less) name for the matrix,

which will be used by PRNT

Output Arguments

Matrix: A (if NZ f 0)
Dimension array: NA

26. ASPERR

DESCRIPTION

This is an installation dependent subroutine. I t is called by the various subroutines when they
detect an error. I t is intended to provide an error walkback, so that the programmer can determine
which call of a given subroutine is in error. I t also counts the number of errors and calls EXIT
after ten entries into ASPERR.

69

USAGE

CALL ASPERR

It has no arguments. The user may, if he wishes, call this program to help him track down errors.

Subroutine ASPERR calls in turn a system program which provides the actual walkback. In
Ames OS this system routine is called ERRTRA, while in Ames TSS, it is called TRACE. The
calling statement should be changed to match the user’s operating system, or else deleted altogether.

27. BLKDATA

DESCRIPTION

This is an installation dependent subroutine. It loads certain common areas used by VASP
with appropriate constants as follows:

1. COMMON/F$ORM/NEPR, FMT1(6), FMT2(6)

These three variables control the printing procedure, and are set to 7, (1P7D16.7), and
(3x,lP7D16.7), respectively. They assume a line length of at least 11 5 characters.

2. COMMON/LINES/NLP, LIN, TITLE(23)

NLP controls the number of lines per page, and is set at 45 to agree with the NASA-Ames
system. It should be changed to match each installation.
LIN is a counter which keeps track of the number of lines printed on each page. I t is
incremented and used only in LNCNT.

TITLE contains 72 blank characters, which can be loaded as desired by use of RDTITL, plus
20 more characters containing “VASP PROGRAM.” Subroutines LNCNT prints TITLE at
the head of every page.

3. COMMON/MAX/MAXRC

MAXRC is used by most subroutines to check the reasonableness of the matrix dimensions.
The user should set MAXRC to match the storage available for each matrix. It is preset to
6400.

28. PSEU

SUMMARY

PSEU is a FORTRAN routine to find the Moore-Penrose generalized inverse of a non-negative
definite double-precision matrix. I t has a separate entry PSEUP for input of a matrix that is
already symmetric. A symmetric matrix is always used for the actual diagonalization process. This

70

process is done in a self-contained subroutine, ANDRA. The routine “never” fails, since it includes
the singular case. However, it may fail to give the correct rank. To control this, an option to do side
calculations is available. After the first pivots have been found, if the rank is not maximum, the
result of each pivot step is used in two axiomatic expressions (subroutine BDNRM). This side cal-
culation yields a measure of the worth of the pseudoinverse obtained so far. This result is multi-
plied by a parameter factor raised to the power of the current rank (nonlinear penalty function).
The routine can backtrack from the first bad step and stop with the previous rank. It has an option
to do the minimum calculations for getting a rank only. The generalized inverse is useful for least-
squares solutions of Ax = b; it works when A is singular. This method is best suited to syhmetric
matrices. The routine has suitable error exits.

USAGE
I

CALL PSEU(A,B,C,EE,DEP,IP,D)

CALL PSEUP(A,B,C,EE,DEP,ID,D)
or

Note: PSEUDO uses PSEU entry.

Input Arguments

Matrix: A

Control arrays: DEP

DEP 1

DEP2

Description
The array. to be inverted, left intact, must be
symmetric if PSEUP call is used. Non-negative
definite, or nearly so.

Values DEPl , DEP2, DEP3

Default: If zero, user gets 2.D-6 used instead.
This number is multiplied times the largest mag-
nitude on the diagonal of B at start. If any
trial pivots are found less than this, they are
avoided as zero.

Default: If zero, user gets 1 .DO used instead.
Needed only if iteration. The routine computes
two numbers, p, q, which would be zero if the
first two Moore axioms were satisfied. This num-
ber is raised to the power of the number of
pivots found as a factor to use to make the
product with the sum of p and q larger. Mak-
ing this product larger tends to make the routine
reject the current pivot. Values between 1 and
2 work for ordinary purposes.
Note: PSEUDO uses default values of DEPl
and DEP2.

71

Output Arguments

Matrix:

Matrix:

Matrix:

DEP3

IP

IP 1

IP2

IP3

IP4

B

C

EE

This is for output only. It holds the last pivot
actually accepted. This gives the user or calling
routine an estimate of the size of pivots found,
in case effective rank is not that desired, operat-
ing with given value of DEP 1 . If iterating, this
may be the last pivot rejected.

Parameter array of integers IP1 , IP2, IP3, IP4.

If zero, do not iterate with side calculations.
If 1, iterate.
Note: Other values should not be used, since
DECOM employs peculiar values.

If zero, do all calculations, otherwise do rank
only.
Note: Setting this to zero for each call is very
useful in avoiding confusion between ranks
determined from different calls. Used also to
output the effective rank. PSEUDO sets IPI
and IP2 to zero.

The row size of the matrix input.

The column size of the matrix input.
Note: IP4 need not be specified for PSEUP
entry.

Holds the pseudoinverse output. (In rank only
case, holds a diagonal matrix with 0’s and 1’s
corresponding to pivots accepted or rejected.)

In nonsingular case, holds the matrix T of the
diagonalization case. In singular case, holds that
certain matrix U described in ASP manual.

Holds the pseudoinverse of the original B.
Note: A and B are the same size. The other
matrices are square, of the size of C, which is
determined by thesnzaller dimension of A. D is
either five times the size of C, if iterating, or the
same size as C.

72

Matrix: D In the nonsingular case, D holds a copy of the
B formed from A. (It equals A for a PSEUP
entry.) In the singular case, it holds a pseudo-
inverse for a “B” permuted so that independent
variables are all moved to the left-most positions.
Note: D has possibly four other matrices. Let
these be Dl , D2, D3, and D4, in order. They are
used only if iterating (Dl also used by DECOM).
D 1, D2 hold old results. D3, D4 holds intermedi-
ate values when doing the side calculations.
PSEUDO does not provide for D l through D4.

Notes on Usage

Symmetry

This method is well suited to symmetric, non-negative definite matrices. The PSEUP entry
assumes this. Matrices formed by computer arithmetic will not always be symmetric. Hence, the
routine always forces the symmetric matrix B to actually be symmetric, by taking the average of
the element and its transpose. The nonsymmetric entry, unfortunately, approximately squares the
ratio between largest and smallest eigenvalue. There is a nonsymmetric feature. The routine choses
AAT, instead of the other way around, if A is a square matrix. This arbitrary choice agrees with the
DECOM routine and the ASP routines. As a result, in the singular case, multiplying A by its pseudo-
inverse from the left is more likely to give a diagonal matrix of 1’s and O’s, than multiplying from
the right side of A.

Pivot Size

DEPl is used to compute a “smallest allowable pivot.” In no case is it reasonable or desirable
to worry about exact equality in the use of such tolerances. Fortunately, work with ill-conditioned
systems shows a series of pivots that decrease steadily in magnitude. Furthermore, the first “bad,”
erroneous pivot is, at most, 10 to 1000 times smaller than its predecessors. Since ANDRA is choos-
ing largest pivots first, the user has considerable latitude in actual choice. All positive elements can
be accepted, if the matrix is known to be nonsingular, by choosing DEPl very small.

By choosing DEPl very large - say, nearly 1.0 - the routine can be forced to reject pivots after
the first. At present, there is no way of making it start iterating without having found at least one
pivot. In other words, ANDRA always finds all the pivots it can before any side calculations are done.
If this first rank is maximal, it never iterates. The first pivots are not in doubt, so these rules are more
efficient. The routine always uses a tolerance for pivot acceptance; however, it uses a new tolerance
50,000 times smaller than the last pivot found, for each call to find one pivot in iterative mode. The
expensive test of matrix norms is avoided when no new pivot occurs. The PSEU routine has only a
finite number of tries to find a new pivot before it quits. The exact number is the same as the maxi-
mum rank. Since ANDRA has usually found several pivots initially, this is ample.

73

Iteration

If DEP2 is larger than 1, it is raised to a power, used as a factor, and tends to make the
routine stop with a smaller rank. DEP2 of 1 actually works for most iterations.

Subroutine ANDRA

The basic algorithm can be used as a separate routine by itself (see ANDRA documentation).
The routine requires considerable setting and testing of parameters. It has an escape exit for too
many iterations (calls to find only one pivot) without finding any. It returns a matrix, T, such
that, if X if pseudoinverse of positive definite matrix A, then

T ~ T = x
Accuracy

In double precision, the accuracy has been very good. Maximum accuracy can be obtained by
using symmetric matrices and the PSEUP entry. The test program included in this manual as
example 6 shows errors (determined by calculating AA # # A-A and A # # AA -A) on the order of
10" or less.

The routine was also tested on the ill-conditioned 7 X 7 matrix in the ASP manual (NASA
CR 475, p. 150). The exact inverse is given on page 15 1 , and the error obtained from the ASP
program using the equivalent of the PSEW entry (p. 152) is on the order of 10" . The error
obtained using the VASP program and the PSEU entry was on the order of lo-' or less.

Singular Case

The routine forms a new inverse from the original symmetric matrix. Since there are several
steps more between the inverse and the original input A, it is only natural that accuracy should fall
off. In many cases, this inverse will give a diagonal matrix of 0's and 1's when used as a left inverse
of A (or possibly as a right inverse). The work of reinverting B requires no extra matrices; it does
destroy the usual values of C and D. No iteration can be done in the stage after B is found to be
singular. It can be asked for in the starting stage. Error exits are made if the rank changes during
reinversion. The smallest allowable pivot is redetermined.

Error Exits (Messages)

The error exits are reasonably self-explanatory. Unless otherwise noted, the errors cause a
return from PSEU without completion of the calculations. Subsequent calculations in other portions
of the program are suspect.

Message
Dimension error

Diagonal elements of matrix = 0

Explanation
The total number of matrix elements was too
large or too small.

Symmetric matrix B has no positive diagonal
elements. Check input A.

74

Rank has decreased

Rank has increased

Rank greater than matrix size

Singular case. Reinverting, and the new rank is
less than that of the earlier phase.

Singular case. Reinverting, and the new rank is
greater than in the earlier phase. Computation
continues.

RANK returned from ANDRA is greater than
maximal rank.

Timing

The ANDRA routine by itself is very fast. The iteration mode is slower by a large factor than
the regular mode of subroutine PSEU.

The time estimates below (in hundredths of a second) are as used on the NASA Ames 360/50.
High and low estimates are given, because real-time figures reflect an unknown percentage of time
devoted to another CPU user.

Case
PSEU, 2 X 2 matrix

High Low -
2 1

PSEW, 4 X 4 matrix, reinvert 14 10

PSEU, 7 X 7, no pivot rejection 42 30

PSEU, 7 X 7, rank 6, reinversion 103 62

PSEU, 7 X 7, iteration, no tests 53 30

PSEU, 7 X 7, iteration, one test 182 118

PSEU, 7 X 7, iteration, some tests of pivots 253 170

PSEU, 7 X 7, iteration, many pivot tests 501 286

PSEU, 7 X 7, iteration, nearly all tests 607 324

PSEU, 4 X 2, reinversion 3 1

PSEU, 4 X 2, reinversion 2 2

METHOD

Summary of Method

PSEU has two entry points. The nonsymmetric entry forms AtA or AAt, whichever is
smaller. At the end, At is used again to form the pseudoinverse. Square A uses AtA. The result

75

is always forced symmetric afterward, even for symmetric entry. ANDRA is called to diagonalize
this result in B. Most of the pivots are found and the steps made on the first call. If not iterating,
this part is not repeated. If singular (rank of symmetric input not maximal), a transforming matrix
is computed. A copy of the original symmetric B is transformed and reinverted by ANDRA. The
result is retransformed by premultiplication and postmultiplication. If iterating, the pivot tolerance
is decreased and ANDRA is called to find one pivot at a time. A side calculation is done to measure
the quality of pseudoinverse formed at each step. The routine backs up one step and stops with
rank one less if it makes a bad step. The result, if singular, is sent through the reinversion above. The
use of PSEUP by DECOM avoids reinverting in the singular case, also it never uses a nonsquare input.
There is a “find rank only” option.

If PSEU is used without iteration, four 1/0 matrices are needed plus a dummy matrix.
Iteration uses four additional dummy matrices. Iteration cannot be done during the reinversion.
Besides those mentioned, entries BDNRM, MULT, and NORM are used for iteration. TTRM is also
used except in rank only case.

ANDRA (diagonalization algorithm). For a detailed description of the method, see the
documentation of ANDRA itself. A mathematical description and examples are given in NASA
CR-475. Subroutine PSEU calls ANDRA to do each pivoting step, after first forming a symmetric
matrix B, which is indeed forced to be perfectly symmetric.

The first call of ANDRA is an initialization call. An identity matrix T is formed. The rank
counter is set to zero. On an initialization call, the routine proceeds to search the diagonal for
pivots, as always. But after finding a pivot, it always goes back and looks for another pivot,
regardless of the iteration option. The process of searching for pivots continues until the number of
tries is one greater than the row size (no such test is made in the iteration case). If the routine fails
to find a single pivot in the initialization call, it exits with an error message. Pivots are accepted if
and only if they are not less than a threshold input at every call. Supposing that a pivot has been
found in the diagonal, the next step is always the same. First the pivot is reduced to unity. That is,
both the pivot row and column are divided by the square root of the pivot in B. Only the row of T
is so reduced. The next step is to eliminate the pivot coefficient from all other rows not yet used as
pivots. This part is the same as in other inversion methods. Both B and T are treated exactly alike
here. Note that the actual algorithm checks the diagonal of a row to see if it is already marked as a
pivot. If so, that entire row, and the row in T, are skipped. The pivot is then marked by an artifi-
cial code. The routine always tests for this code and does not use this row again. The code is put in
the actual pivot position. Thus the rows and columns are left in their starting places in the working
matrix B. PSEU converts the result to a matrix of 1’s and 0’s that shows the independent and
dependent variables.

The code is tested for an integer. This is a considerable economy. The resulting T is never
singular. If B were nonsingular and X the desired inverse of B,

T ~ T = x

76

This part is done by subroutine entry TTRM, using coding shared with the iteration method. The
final answer is put back in matrix B. (PSEU always uses the original A again rather than the origi-
nal B, after this to give an answer for A. Thus, ANDRA is always supplied with a symmetric
matrix B.)

I f B were singular at the start, a further reinversion would have to be done. See the next
section.

The Singular Case

Suppose that the rank of B in the diagonalization by ANDRA does not turn out to be maximal,
then PSEU must perform a number of matrix multiplications and call ANDRA and TTRM to reinvert.
The accuracy is bound to suffer, even though the reinversion is done on an exact copy of the original
B. A very short justification is given belo\- , followed by a close description of how the work is
actually done.

There exists a permutation matrix P, such that
-
E = P T B T ~ P ~

is a matrix of 0’s and 1’s (were it not for round-off error), with all the 1’s contiguous, starting in the
first diagonal. If B had been so permuted before diagonalizing, then this different T resulting
would be the one that gives an inverse that corresponds correctly to the old. But, since one is using
a premultiplication and a postmultiplication, simple substitution of a permuted matrix does not
work. (I t would if matrix multiplication were commutative.) Thus, if it is necessary to transform
the original starting B, reinvert, then transform back again.

The permuted form of T (which does not actually occur) has a nonsingular corner submatrix,
followed by the rest of diagonal set to 1’s. These latter 1’s correspond to the dependent equations
of the original.

The rule for constructing the transforming matrix U is given below. This matrix is made from
T and put into the same storage T. The explicit construction of U is more efficient (in FORTRAN).
From here on, the explanation concerns what is actually done, rather than the mathematical reasons.

Let di denote the ith diagonal element of B. (In case the reader has forgotten, this has been
changed to a diagonal matrix of 0’s and 1,s.) Given T, there are two cases:

Case One: For Uij not on the diagonal
Use -tij, if di = 0;
Use 0, if di = 1

Case Two: For Uij on the diagonal
Use the corresponding value of di

Next, using a copy of the original B, form

C = UtBU

77

The result is actually put in the same storage that held B originally. The smallest allowable pivot
for ANDRA is recalculated. This result, C, is sent to ANDRA to do the diagonalization again. The
fact that C has rows and columns of 0’s that ANDRA has to skip makes the diagonalization ineffi-
cient, but this cannot be helped. No iteration is done here. Let T, denote the result of this second
ANDRA call. Then the new pseudoinverse is:

X, = T, tT2

Transform this back to get a correct answer:

x = UX2Ut

The rest of the computation is as usual. Note that i f the rank changes in the second ANDRA call,
error exits are taken.

Iteration

The main method itself is purely algebraic. The iteration option is a way of estimating the
amount of error in the generalized inverse and using this to stop with a smaller effective rank. Let
B denote a matrix and X its pseudoinverse (after taking so many pivot steps in ANDRA). Then the
two Moore-Penrose axioms read:

BXB = B
XBX= X

If the iteration mode is selected, ANDRA first finds all the pivots it can. Then subroutine BDNRM
is called twice. Each call returns the value

norm(Q*P*Q - Q)/norm(Q)

The values of P and Q are B and X in one call, X and B in the other. The resulting two small
scalars (which would be zero if the axioms were perfectly satisfied) are added together. The result
is taken as a factor times DEP2 raised to the current number of pivots. From successive iterations,
one obtains a sequence of positive numbers, decreasing as one approaches the largest possible rank.
As long as the new result is not larger, then a new pivot is searched for. I f not, PSEU reverts to the
previous values, before the current pivot was used.

In practice a number of modifications are made. First, the pivot used last is returned as DEP3,
even if rejected, so that the user can reconsider acceptance of it. Second, if maximum rank is
achieved prior to iteration, no side calculations are done. Third, the smallest possible pivot allow-
able is set to 0.00002 times the most recent pivot in order to reject many spurious pivots without
doing the lengthy side calculations. This modification is based on actual observation of pivot
behavior. The successive pivots of an ill-conditioned matrix usually decrease fairly rapidly. But
there is usually a hugh jump in order of magnitude between the last good pivot and the first bad one.
Parts of the side calculations are actually done in single-precision, to save time. Please note that a
single iteration, besides the ANDRA call, makes ten subroutine calls, and one library routine call.
Naturally, this is slow.

78

Matrix Storage Flow

This section uses the same names as the Fortran IV routines. I t tells what is put into each
matrix of PSEU at various times. The call is CALL PSEU(A,B,C,EE,DEP,IP,D). The matrices A
and B are the same size (possibly nonsquare). Matrix C is square with dimension equal to the
smaller dimension of A. The other matrices are the same size as C. Matrix D is divided into five
matrices. Let these be denoted as D, D l , D2, D3, and D4. The last four are used only in iteration.

Maximal Rank Case

A symmetric matrix from A is placed in B (either directly, as in PSEUP, or indirectly, from
matrix multiplication). A copy of B is put in D, unless the rank only, no iteration is used. ANDRA
is called to diagonalize B and place the result in C.

If the result is accepted, lTRM puts the generalized inverse of B into EE. Then the inverse
of A is put into B. The A transpose may have to be used to get an answer for A.

Singular Case

The matrix U of the method is computed from C and put into C. (D holds original B.)

E E = C ~ X D
B = E E X C

ANDRA is called to diagonalize B. Answer goes to EE. TTRM puts pseudoinverse of B into D.

B = C X D
E E = B X C ~

The pseudoinverse is now in EE, where the maximal rank case puts it. Routine now forms
pseudoinverse of A in B.

Iteration

Before each call of ANDRA the current values of B and C are stored in Dl and D2,
respectively. B and C are changed when a new pivot is used in ANDRA. BDNRM computes a
number to decide if the pivot is to be rejected. EE, D3, and D4 are used as working storage in
BDNRM. EE actually has a matrix put in it that would be zero if the Moore-Penrose axiom were
perfectly satisfied. If the pivot is rejected, the old values from Dl and D2 are put back into B and
C. The work of the singular case is done next if the call was not made from DECOM.

Rank Only

If iteration is used, a full complement of matrices must be used. In the ordinary case,
matrix D may be omitted, and also matric E is not used. Naturally, no pseudoinverse is returned.

79

03
0

I

r

Figure 7.- Information Systems Co. flow chart - subroutine PSEU (A,B,C,EE,DEP,IP,D).

Q 9 Set IR = Rank Compute
Matrlx U From C:
Store into C

Ollglnal B
D Holds

+i B = E E x C '

Set JP3

IR = Rank

CALL TTRM

Y- l B = C ' x D

'$ Error Exists

Figure 7.- Concluded.

29. BDNRM

DESCRIPTION

This subroutine computes the quantity

norm(QPQ'" - Q)/norm(Q)

where the values of P and Q are in the square arrays CT and EE or EE and CT, depending on the
sign of NR. If P = Q#, the return value is zero. This routine can thus be used to test the quality of
a pseudoinverse.

USAGE

CALL BDNRM(NR,CT,EE,D,KRV)

Input Arguments

Matrices: CT, EE with dimensions NR X NR

Constants: NR, size of matrices and the sign controls multiplication procedure

Output Arguments

None: This is a function subroutine

Dummy Arguments

Matrix: D dummy array of size 5*NR2

Constant Array: KRV designates location of submatrices of D
KRVl = NR2
KRV2 = 2*NR2
KRV3 = 3*NR2
KRV4 = 4*NR2

30. ANDRA

SUMMARY

ANDRA is a Fortran routine to diagonalize a positive definite symmetric matrix. The routine
was originally designed to be used by subroutine PSEU. The routine has a parameter to command
it to initialize on the first call. Two different modes can be used for pivoting steps. I n the first
mode, the routine does only one pivot to eliminate only one row at a time. In the second mode, as
many pivots as possible are done in one call. Pivots are chosen in order of decreasing magnitude.
They are rejected if smaller than a parameter threshold. The original matrix input is destroyed and

82

replaced with artificial values. However, symmetry is kept after each pivot. The answer matrix, T,
is such that if X is the inverse of the input,

x = T ~ T

The routine has error exits for matrices of the wrong size, and for those that allow no pivot on the
first try.

USAGE

CALL ANDRA(B,T,DPR,JP)

Name
B

T

DPR

DPR 1

Description
Input symmetric matrix. Destroyed.

Answer. T ~ T = inverse of B.

Parameter array of size 2.

DPRl is the tolerance for trial pivots. Any less
than this are rejected as zero.

DPR2

JP

JP 1

JP2

JP3

JP4

JP5

DPR2 is the last pivot actually used. Unchanged
if no new pivot found.

Integer parameter array of size 5 .

Zero if all pivoting to be done on one call;
nonzero if only one pivot per call.

Zero if initialization call. Subroutine sets to one
when a pivot is found.

Holds the effective rank = number of pivots
found.

The integer giving the row and column size. May
range from one to a nominal figure.

The integer row where the last pivot was found.
The rows are left in the same positions as in the
input matrix.

83

Q ANDRA

EF = Single.precision

< 1 Or Too
Is ClNT

Large

INITIALIZE

MATRIX T
FORM IDENTITY

FMX = 0
Zero Maximum Dlagonal
Element; And Index Of Max

Initialize
L. Diagonal Index

To Current Diag.
Update Index L

T DDI = B l L l

I

Choose New Max.
DMX = DDI

Save Index

I M f O 1

N~ NOTE: Do not use reciproeal
for single precision

DRS =

I Initialize Indices I
To Start Of Pivot
Row, Pivot Column

Do Loop: 41
I Is Index of Row

TIL) = T(L1 x DRS
DDM = BIL) x DRS

B(LI = DDM
Reduce T Row. Pivot Row

(Symmetry)
Reduce Pivot Column

B(K1 = DDM

*I K Next Element

6 Figure 8.- Information Systems Co. flow chart - subroutine ANDRA (B,T,DPR,JP).

Q

w Jp3 = QKR

(3 Return

Figure 8.- Concluded.

Q
call, No Pivot
or Tries loo Many

METHOD

Mathematical

The method is described in the ASP manual, pages 137 to 139.

The square matrix T is initialized to be the identity.

Step 1

The diagonal of B is scanned to find the largest pivot. Pivots are only taken from the
diagonal. If no pivot is found, skip to step 3 .

The square root of the pivot is taken. The pivot row and pivot column are divided by the
square root. Thus, the pivot, at the intersection of the row and the column, is reduced to unity.
The corresponding row of T is also divided by the square root.

Step 2

The new, reduced pivot row is used to eliminate the elements of the pivot column. Let K be
the pivot row and column. The pivot row is multiplied times the element in the j,k position. The
resulting row-vector is subtracted from the jth row. This process is repeated for each row j that
has not yet been a pivot row. Exactly the same operations are carried out on the corresponding
rows and columns of T, except that, of course, the multiplier for a pivot row comes from B. Then
the pivot row of B, except for the pivot, is set to zero. The pivot row and its corresponding row in
T are never used again.

Step 3

If the rank is maximal, exit. If no pivot has been found, a test is made to see if this should be
an error exit, or normal exit. Otherwise, repeat step I .

Computational

In practice, a number of modifications are made. The actual calculations are rewritten to
optimize speed and storage. The reciprocal of the square root is used, instead of a division. For
single precision, straight division would probably be best. In step 3 , an artificial code is put into the
pivot position. This code is chosen as one that cannot be the result of floating-point arithmetic.
Such a technique works in a great many different Fortrans. If a row is found to be marked by a
pivot code, it is skipped in steps I , 2, and 3 above.

The pivot position is forced to be exactly 1 before step 2 is applied. The pivot-code is actually
tested for as an integer. The pivot size is tested for in single precision. These modifications are for
speed. A count is kept of the number of pivot searches. If this count is one greater than the num-
ber of rows, the routine always stops searching for pivots. The result, if B has maximum rank, is
a matrix T such that TtT = inverse of B. The input B consists of 0's everywhere except the
diagonal, which holds pivot codes.

86

Error Messages From ANDRA

Message
Dimension error

Finds no pivots

Explanation
The total number of matrix elements was too
large or too small. The parameter JP(4) cannot
be less than one nor more than MAXRC.

ANDRA could find not a single pivot in its
very first search of diagonal.

31. DECOM

SUMMARY

Fortran IV subroutine DECOM generates four double-precision output matrices from the
symmetric, non-negative definite input matrix B. One output is a matrix S such that if E is a
unity matrix of rank r, then

B = S E E W

This matrix is obtained as the inverse of a matrix T, by calling subroutine INV; T comes from
subroutine PSEU. It is defined by TBTt = E, a diagonal matrix with elements 0 or 1 . E is also
returned, along with a permutation matrix P such that

PEPt = I,

a diagonal matrix with all 1’s moved to the uppermost left corner. Given these matrices, and the
ability to find a pesudoinverse of A, a decomposition of any matrix is possible. PSEU and DECOM
are called and the matrices then multiplied as described in the method to give a Kronecker decom-
position. The routine calls PSEUP and INV to do most of the calculation. Besides returning the
matrices P and E, it does nothing that could not be done by successive calls of other matrix
routines. It has parameters and error exits similar to that of PSEUP.

USAGE

CALL DECOM(A,B,C,E,J,DCM,KP,D)

Arguments
A

B

C

Description
The symmetric non-negative definite input.

The output matrix E, diagonal of 0 and 1, with
1’s in the independent columns. B, C, E, J , D,
and Dl are all of same size as A.

The output T, such that TATt = diagonal of
0’s and 1’s.

87

E

J

DCM

DCM 1

DCM2

DCM3

KP

KP 1

KP2

KP3

KP4

D

Holds the inverse of A (B does not hold the
inverse of A). (Not E of ASP.)

A square integer matrix for housekeeping in
INV and DECOM.

Parameters, just' as in subroutine PSEUP.

Multiplied times the largest magnitude of diagonal
of A, to give a lower limit for an acceptable pivot
in PSEUP. Set at 2(10)"j if zero is input.

Used only if the user elects to iterate in PSEUP.
Set at 1 .DO (no effect) if zero is input.
Note: DECGEN uses the default options for
DCMl and DCM2.

The last pivot accepted by subroutine PSEUP,
during diagonalization of input matrix A.

Integer control parameters, just as for subroutine
PSEUP.

Zero, do not iterate in PSEUP. One, iterate in
PSEUP.

Zero, d o all calculations. Nonzero, do rank only
Changed to reflect the rank on output. Should
be set to zero or minus one before each call.
Note: DECGEN uses KPI and KP2 = 0.

The row size of the matrix input.

The column size.
Note: This parameter is forced negative as a
signal if T cannot be inverted by INV.

D has five parts, as does the "dummy" array in
PSEUP. Let these be denoted D, D l , D2, D3,
and D4. These five equal arrays must be included
in the size of parameter D if iteration by
PSEUP is selected. I f no iteration is used, D2,D3,
and D4 may be omitted. D holds the inverse of
output C. Dl holds the permutation matrix P.
Note: If rank oidy is computed, Dl is computed,
but D is not. A, B, C, and Dl are thus the only
matrices with useful values returned.

88

METHOD

The results from DECOM are an effective rank r; matrices B and D, which are used in
further calculations to get a Kronecker decomposition, or to see which variables are dependent; and
the permutation matrix P in D 1. This section describes the sequence to obtain the Kronecker
decomposition in two different cases. The goal is two matrices G and H. DECOM does not produce
these matrices; they are produced either by DECGEN or by the user according to the following steps.

Let R be the matrix to decompose. Matrices G and H are desired such that

R = H G

H is to have only r nonzero columns; G is to have only r nonzero rows. Small r is the rank of
R.

Case 1

Matrix R is symmetric, non-negative definite. Input R as the square input A to DECOM
Then H and G are produced afterward from the matrices in the call statement as follows:

Parameter B is a diagonal matrix with r 1’s; H and G are computed by:

H = D X B
G = (D X B)t

A = original = D B B ~ D ~

Case 2

R is nonsymmetric, possibly not even positive definite. Form RRt (subcase a) or else form
RtR (subcase b). The subcases are chosen to give the smaller dimensions. I f R is square, use RRt
to agree with both PSEU and DECOM. Let this symmetric result be the input A to DECOM as
in case 1. Obtain D and B as before and save them. I n subcase a, X = Rt X E, but in subcase b,
X = E X Rt. Then for subcase a, take

H = D B
G = (X D B) ~

Similarly, in subcase b, take

H = X ~ D B
G = (D B) ~

Note: The H and G matrices produced have the same dimensions as the smaller dimension of R.
If the rank of R is not maximal, there will be zero rows or columns in H and G. If the matrix Dl
is used instead of B in the above calculations, the zero rows or columns will be at the right or bot-
tom, and the dimensions may be easily reduced. This latter is the procedure used in subroutine
DECGEN.

89

Computation

In practice, the subroutine is very short; it calls on PSEUP and INV to do the computations.
No flowchart is needed, since there are no loops of any consequence.

Step I

The matrix size is tested for reasonableness, with an error exit if it is not. KP(1) is set to
special negative values to suppress reinversion by PSEUP, and to change somewhat the matrix
outputs. This change is not discussed in PSEUP.

Step 2

Entry point PSEUP is used to diagonalize the input. C holds a matrix T such that
TATt = B, a matrix of 0’s and 1’s. If the rank only option is input, the routine skips to step 4.

Step 3

Subroutine INV puts an inverse of T into D. The flag PIV is tested. If zero, INV
failed; the routine prints an error message. INV uses matrix J.

Step 4

The matrix E, which is matrix of 0’s and I’s, is scanned along its diagonal. A matrix p of
0’s and 1’s is constructed such that

PEPt = I,

1, has all 1’s moved to extreme upper left corner. A record of successive diagonal positions that
are 0 is kept. As each 1 is found in the diagonal in position k, the record is checked to see if
there is an earlier 0 (or 1) that needs to have a 1 permuted into its place j by permutation p.
If so, a 1 is put into position j , k of P. Premultiplication by P will move position k, k to j . k.
Postmultiplication by Pt will move j , k to position j, j . Position k, k is also marked as a
hole that could be filled by a 1 lower on the diagonal, since it vacates its old position. The
record in the first column of J has the structure of a queue. Matrix P is in D I , the second
matrix of dummy array D.

Step 5

Return.

NOMENCLATURE

The nomenclature used in DECOM is compatible with that used in PSEU, but differs
from that used in the ASP manual description of the decomposition routine, p. 154. Also,
since DECGEN requires dummy storage, the nomenclature there is different again. The
following table lists the correlations:

90

DECOM

A

B

C

E

D

D l

J

DECGEN

DUM1

DUM(N7)

DUM(N4)

DUM(N.5)

DUM(N2)

DUM(N3)

DUM(N6)

ASP

AAT

E

S

P

91

APPENDIX B

LISTINGS OF ALL VASP SUBROUTINES

92

\D S I J H R O 1 I T I N E P R N T (A K , N A R , N A M , I P)
C S U H R P R N T P R I N T S D U r J R L E P R E C I S I O N M A T R I X

COMMON / F l l R M / N E P R , F M T 1 (6) , F M T 2 (6)
C O M M O N / L I N E S / N L P I L I N I T ~ T L E (~ ~)
C OMM ON /MA X / MAXRC

C- N O T E N L P N O o L T N E S / P A G E V A R I E S W I T H T H E I N S T A L L A T I O N .
D A T A K Z , K L . ! q K R / l H O , 1 H 1 , l H /
R E A L * 8 A R D

NAMF = NAM
D I M E N S I O N A R (l) , N A K (2)

C - I F I P = l , H E A D L I r \ l E S A M E P A G E , I F I P = 2 9 H E A D L I N I E t NEW PAGE
c, I P = 3 , NO H F A O C I N E ~ S A M E P A G E , I P = 4 1 \'(.I H E A D L I N E , -hIEbJ PAGE

T T = TP

10 CALL L N C N T (1 0 0)
11 C A L L L N C N T (2 1

3 W R I T E (6 9 1 7 7) K Z , N A M E , N R , N C

G O T O 1 3
1 2 C A L L L N C N T (1 0 0)

G O T O 1 3
132 CALL LNCI\ IT(2')

W R I T E (6 ,891)

NLPW = 3

CALL ASPERR

E ND

I

I

300 f3(1)=A(1) : kS
1000 RETURN

999 C A L L L M C N T (1)
W R I T E (6 9 5 0) N A

50 FORMAT (1 n I M E N S I 1 3 N E R R O R I N S C A L E I \ I A = 1 2 1 h)
C A L L A S P E R R
R E T U R N
E NO

I F (N R .LT .~ .OR.L .LT.~ .OR.L .GT.MAXKC) c,n T O 9 9 9
IR=O
D O 300 I = l , N R
I J = I - N R

I J= I J + N R
I R = I R + l

300 B (I R) = A (I J)
RETI.JRN

999 C A L L L N C N T (1)

DO 3 0 0 J=l,NC

W R I T E (6 ,501 N A
5 0 FORMAT (I DTMENS10h I ERRnR I N T K A N P NA='2Ih)

CALL ASPERR
RETIJRN
END

K J = K - N

170 7 5 J= 1,
K J = K J + I \ l

I F (J - K) 709 7 5 , 7 0
70 A (K J) = A (K J) / H I G A
7 5 C O N T I N I J E

C PRUDUCT OF P I \ I O T S
D E T = D E T * R I G A

A (K K 1 = l . / P I G A
C R E P L A C E P T V O T t 3 Y K E C I P R n C A L

D O 110 J= 11 bJ
.JK = J O + J
HOLD = A (J K 1
J I = JR + J
A (J K) = - A (J I)

110 A (J I) = HOLD
120 NPK=N+K

J=L (N P K 1

1 2 5 K I = K -
I F (J - K) 100, 100 , 1 2 5

Df l 130 I= 1,
K I = K I + N
H O L D = A (K I)
J I = K I - K + J
A (K I 1 = - A (J I)

130 A (J T 1 = H n L n

w 0

MAR = M A (1)
NAG = N A (2)
L=NAR* hlAC
IF (N A R .LT.l.OR.L.LT.l.OR.L.(;T.lvIAXKC) G O T O 999
COLMAX = 0 .
R O W M A X = n.
K = 0
no 300 I = 1,LIAC
SUM = 0 .
DO 3 0 1 J = 1 T N A R
K = K + l

I F (COLMAX.LT.SIJM) COLMAX = SIlivi
3 0 1 SUM = SLIM + D A B S (A (K 1)

300 C O N T I N U E
DO 302 I = 1 T N A R
SUM = 0.
K = I - hlAR

K = K + LIAR

I F (ROWMAX.LT.SIJM 1 KO!.JMAX=SlIM

DO 303 J = l T N A C

303 S U M = SUM + D A R S (A (K 1 1

302 C ONT I NIIE
AhlORM = @ M I N I . (COLMAX,ROWMAXI
R E T I I R N

999 C A L L L N C N T (1)
W R I T E (6 . 9 5 0) N A

S O FOR.MAT (D I M E N S 1 ON ERROR I N N U K b i 1\14=12 I 6 1
C A L L A S P E R R
R E T I J R N
E ND

J = - N A (1) -
N A X = N A (1 j
D O 3 0 0 I = l , N A X
J=NAX +J+ 1

G O T O 1000
300 A (J) = l .

999 CALL LNCNT (1)

CALL A S P E R R
1000 RET(IRhI

"

END

COMMON /MPX/MAXRC
I F (N A (1) . M F . N A (2)) G O TT) 6 0 0

W R I T E (6 ,1600) N A
1600 FORMAT (I T R A C E R E Q U I R E S S O I J A R E M A T K I X h!h= ' 9 21 h)

C A L L A S P E R P
R E T U R N
END

e
0
03

300 B (I) A (I)

999 CALL LNCNT (1 1

- -
1000 RETURN

!dRITE (6 7 5 0) NA
50 FORMAT (1 D I M E N S I O N ERRnR IN EQUATE I \ I A = l Z I h)

CALL ASPERR
RFTIJRN
END

S U B R O U T I N E J U X T C (A , N A , R , N R , C , N C)
D I M E N S I O N A (1) , 8 (1) , C (l) , N A (2) , N H (2) , I \ I C (2)
DOUBLE P R E C I S I O N A , B , C

-

COMMON /MAX/MAXRC

N C (l) = N A (1)
N C (2) = N A (2) + N B (2)
L = N A I 1) * N A 1 2)
N N C = N C (l) + N C (Z)
I F (NA(l).LT.l.OR.L.LT.l.OR.L.GT.MAXRC) GO TO 6 0 0
I F (NC(2).LT.l .OR.NNC.GT.MAXRC) GO TO 6 0 0
MS=NA(1) *NA (2 1

I F (N A (l) o h l E o N I 3 (1)) G O T O 600

10 C(I) = A (I)
M B S = N A (l) * N R (2)

J=MS+I
2 0 C (J) = B (I)

D O 2 0 I = l , M B S

R E T U R N
600 C A L L L N C N T (1)

W R I T E (6,1600) N A , N B
1600 FORMAT (; D I M E N S I O N E R R O R I N JIJXTC, NA= I , 2 Ih ,5X, 'h!R=' 7 2 1 6)

CALL ASPERR
R E T U R N

NB (1) =NR
NB(2 1 =NCC
L D= N R * NCC
I F (MR.NE.NCC.OR.~IR.LT. 1 . ~ K . L ~ . G T . M A X R C 1 GO -ru 998

T = T T
CALL N@RM(A ,NA V A M A A 1
TMAX= 10 .01 /ANAA
K=O

101 I F (T M A X - T 1 103,104,104
103 K = K + 1 - - T/7*sK

I F (K-1000) 10 1 ~ 1 0 2 ~ 1 0 2
104 S C = T

CALL SCALE(ATNA ,A ,NAY T)
D O 4 0 1 I = 1, 2

431 N B (1) = N A (1)
CALL UhIITY(B,NB 1
CALL S C A L E (R T N B T D I J M M Y (~) ~ N B , T)
S = T/2.

I 1=2

W R I T E (h y l l n)
110 F O R M 4 T (E R R O R IN E A T K I S N E G A T I V E ')

P

I

IF(KDUM oLToNDD) G O T O 998
hlDD= tr)A (1 1 M I A (1) +1
T =TT
CALL NORM(AyNA,ANAA)
T M A X = 10.0 1 / A N A A
K = O

101 I F (T M A X - T 1 103,104,104
103 K = K + 1

T=TT/2**K
I F (K-1000) 10 1 9 1 02,102

1 0 4 S C = T
CALL SCALE(A,MA ,A T N A T T)
CALL UNITY(BpNB1
I I = 2
N = 35
CALL A D D (A ~ N A , B , t r I B , D U M M Y (l) r N D)
CALL E O U A T E (A , N A , D U M M Y f N D ~) T N ~)

106 CALL MIJLT(A,NA ,DIJHMY(NDD) T N D T B T ~ I ~ I
S = l . D O / I I
CALL SCALE(R,hlB,DUMMYIMDD),ND,S)
CALL A O D (D I J M M Y (N D D) , N D , D I I M M Y (l) T N D T B T N B)
CALL E O U A T E (B , N B , D U M M Y (l) , ~ I ~) %..I

N=N- 1
I F (N) 107,107,105

105 I I = I I + l
+
+ G O T O 106
w

107 I F (K) 10991089212
109 CALL LNCNT (1)

110 FORMAT (8 E R R O R I N E T P H I K I S NEGATIVE')

2 1 3 K = l

W R I T E (6,1101

1 1 2 I F (K - 1) 21392129212

212 nrl 111 J=l ,K
T = 2 2: T

I. "

M P 2 = N S O + N P l
NP3=NSO+NP2
MP4= NSO+hIP3

401 CALL L K N T (1)
W R I T E (6 9 5 0) N T O T
CALL PRNT (K , h ! K T ' K (T l ' T l)

G O T O 4 0 3
402 CALL LNCNT (1)

W R I T E (6 9 5 0) NTOT

I F (A L - . 0 0 0 0 1) 2 1 0 ~ 2 1 0 ~ 4 0 3
403 C ONT INUE

c REARRANGE PHI M A T R I X
210 CALL EBUATE(PHI(l)rNM,W(l),NM)

I L S T = I
T=I+1
I F (A L . L E 0 . 0 0 0 0 1) G O TC) 300
I F (1 . G E . h I F I N) G O Tn 310

c f N T F R M E D I A T F P R I i\lT

DATA S T A R / I * I /
I F (N F (Z) o N E o N G (l) o O R o N J (2) o N E o N R (l) o O R o N K (2) o N E o N X (l) o O R o

l N J (1 1 N t NK (1 1 11K N K (2 1 N t N X (Z 1 IJK N H I Z) N t X (1 1 CIK 0 0 0 0 0 0 0 0 0 0 N 0 0

Z N F (2) o N E o N X (1)) G O T O 999
M A X = h F (l) * (N F (Z) + N G (2) + 1) + N H (l) + N K (l)
I F (KDIJM . L T . M A X) G O T O 9 1 0
I1 = 1
MSO = N F (I 1) * N F I I l)
NX4 = NSO *4

C

C TRNSI P R O G R A M
I F (KDIJM . L T 0 NX4 1 G O TO 900

N2 = I 1 + NSO
N3 = N 2 + NS(3
N4 = N3 + NSQ
L 3 = N 2 + N F (I l) * N G (2)
L 4 = L 3 + N J (I l) g < N R (2)
L S = L 4 + N H (1)
L 6 = L 5 + N J (T l) * N R (2)
T l = T (1)

NXR = N X (I l)
LAST = L h - I1 -

TT = T (4)

"

N = (T (2) + o S * T l) / T l
-

- - -. . _____ .

CALL PRNT (FvNF, I F ' 9 1)

CALL E A T (F , N F , T ~ ~ ~ U M M Y (N ~) T N N F T ~ I J M M Y (N ~) , N N F T ~ U M M Y (I ~) T K ~ ~ . J M)
100 FORMAT(1HO 1 P R t l h . I)

CALL PRNT(DIJMMY(N3)r NFT ' E A T ' 9 1)
CALL E O U A T E (D I J M M Y (N 3) , N F , D U M M Y o 1 N N F)
CALL PRNT(DUMMY(N41, NFT. ' INT ' 9 1)
CALL MULT(DUMMY(N4)? ~ F T G , N G t D I l M M Y (N 2) t h l N G)
CALL MULT(J ,NJrR(NRtDlJMMY(L3) ,NII)

~" _ _ . _ ~ "~

CALL LNCNT (1 0 0)
CALL LNCNT (3)

-. -

5 0 FORMAT(1HO 'TRANSIENT RESPONSE, * INDICATES CONTRnL CHANGES')
W R I T E (6 , 5 1) N X R T N H (I l) , N K (I l)

5 1 FORMAT(1HO 4 X y ' T I M E F I R S T ' p I 3 , ' ELEMENTS CONTAIN X T N ~ X T ' T ~ ~ T '
1 ELEMENTS CONTAIN Y = HX, L A S T ' T I ~ , ' ELEMENTS CONTAIN U =JR - K X '
7)

"

202 CALL WULT(DlJMMY(I1)T NNFT X, NXT DIJMMY(L6 I T N N X)
CALL WULT(DUMMY(N2)TNGT DUMMY(L5)r NU, X, NNX)
CALL ADD(XrNXrDUMMY(L6)*NNX, XINNX)

G O T O 2 0 3
C
C DIMENSION ERROR DIAGNOSTIC

999 WRITE(6 , 990)
990 FORMAT(1HO 'DIMENSION ERROR I N T R N S I ' / 2 5 X y ' C O L S I Z E OF 1ST MATRIX

1 ROW S I Z E OF 2ND M A T R I X ')
W R I T E (6 r 9 9 1) N F (2) r N G (1)

1 S I Z E OF R I S ' 1593Xq 'OF X I S ' 1 5)
9 9 5 FORMAT(1HO ' H X ' 1 7 X , I 1 5 , 2 O X , I 8)
996 FORMAT(1HO 'EXP(FoT1 X ' l O X 9 I 1 5 ~ 2 O X ~ I 8)

G O TO 1000
900 W R I l t (6 , 52) NX4tKUUM

52 FORMAT(1HO 'DUMMY MUST B E DIMENSIONED AT LEAST' 1 4 9 ' X 1' 'BIJT I S
1 DIMENSIONED ONLY' 1 4 9 ' X 1 ')

G O T O 1000
910 W R I T E (6 9 5 2) MAX9KDUM

1000 CALL ASPERR
R E~TU R N
END

0 0 10 I=1,2
D E P (I) = O . O

10 I P (I) = O
20 I P (3) = N A (l)

E N D

G O T O 1 5 0

C A L L T R A N P (Y y N H , G y N G)

e
w
0

DOUBLE PRECISION A
I F (N Z (l l . F O . 0) G O Tfl 410
NR=I\IZ(1)
ryC=NZ (2 1
h lLST=NR*NC
J F (N L S T .GT. MAXRC .OR. NLST .LT. 1 .OR.NR.LT. l) G O T O 16
D O 400 I = 11 NR

400 R E A D (5,101) (A (J) , J = I , N L S T , N R)
NA (1 1 =NR
N A (2 1 =NC

410 C A L L P R M T { A , M A , N A M , l)
101 FORMAT (8 F l 0 . 2)

R E T U R N
1 6 CALL L h l C N T (1)

S U B R O U T I N E A S P E R R
D A T A I / l o /
C A L L T R A C E

C ERRTRA I S T H E 360/67 T R A C E R a l T I N E T R A C E I S FOR T S S
C C A L L E R R T R A
C T H I S I S A N I N S T A L L A T I O N D E P E N D E N T S U R R O I l T I I \ ! F :
C S U B R O U T I N E E R R T R A I S A S U B R O U T I N E S U P P L I E D B Y THE AMES OPERATING
C S Y S T E M T O P R O V I D E A N E R R O R W A L K B A C K
C T H E S T A T E M E N T C A L L E R R T R A S H O U L D BE E T T H F R
C 1) C H A N G E D T O M A T C H T H E I I S E R S 0 P E K A T I N G SYSTEM,
C OR 2) OELETED ALTOGETHER.

I=I-1
I F (1.GT.O) RETURN
I= 10
W R I T E (6,100)

100 FORMAT (1 TOO MANY ERRORS. E X I T C A L L E D ')
C A L L E X I T
R E T I I R N
F Nl3

C O M M O N / L I N E S / M L P , L I N , T I T L E (2 3)
C OMM ON /MA X / MAXRC
D A T A M A X R C / 6 4 0 0 /

C- N O T E N L P N O . L I N E S / P A G E V A R I E S W I T H T H E I N S T A L L A T I O N .
D A T A L I N , N L P / 1 , 4 5 /
D A T A N E P R y F M T 1 / 7 , 1 (1 ~ 7 n i 6 . 7) ~
D A T A F M T 2 / ' (3 X , l P 7 D l h * 7) ' /
D A T A T I T L E /19*1 7 1 \ /ASP PROGRAM ' /
END

C- SUBR TO COMPUTE PSEUDO-INVERSE CF G E N E R A L M A T R I X , R E T U R N F I N A L P I V O T
C o o . N O T E I M P L I T S T A T E M E N T S MUST BE - F I R S T - CAhl RE R E P L A C E D B Y T Y P E

I M P L I C I T R E A L * 8 (D l , I N T E G E R * 2 (0)
COMMON /MAX/MAXRC

I N T E G E R * 2 M
C D O U B L E P R E C I S I O N I S T H E O N L Y T H I N G E S S E N T I A L .

D O U B L E P R E C I S I O N A V B T C T E E , D
D I M E N S I O N A (4 0 0) , B (4 0 0) , C (4 0 0) 1 E E (4 0 0) 1 1 7 (2 0 0 0) ~

1 K R V (4) ,
2 D E P (3 1 , D P R (2) 9 I P (4) T J P (5)

DATA ICC, DFZO / 240000000 , 0.DO /
E Q U I V A L E N C E (D D I , F D I ~ I D D) 1 o M X , F M X)
E Q U I V A L E N C E (D D I , D S U M) ~ (D F Z O I F Z O ~ F Z R O , I Z T ~ Z) ~ (~ L L ~ ~ R ~) T (K R V (l) , K R C) ,

OPS = 1
G O T O 1000

Q P S = I Z
I P (4) = I P (3)

1000 C O N T I N U E
D P 1 = D E P (1)

1 (K R V (7) r K R C 2) r (K R V (3) r K R C 3) r (K R V (4) r K R C 4)

E N T R Y P S E U P (A , R I C , E E ~ D E P , I P T D)

E F 2 = S N G L (D E P (2))
C- S E T D E F A U L T V A L U E S OF TOLERANCES

I F (D E P (1) .EQ. DFZO) D P 1 = 2.0-6
I F (E F 2 .EO. F Z R O) E F 2 = 1.0
NCA = I P (4)

C NUMBER OF ROWS OF O R I G N A L I N P U T M A T R I X
~.

OR = I P (3)

ONT = (3R*NCA
C- SET SW FOR =Ot D O ALL STEPS, NOT=O, THEN .WANT RAhlK T)I\lLY.

C- T E S T D I M E N S I O N S I N P U T FOR REASONARLENESS.
I F (Q N T . L T . 2 .OR. ONT .GT. MAXRC.OR.OR.LT.1) GO TO 691

C- I F D I M E N S I O N S ABSIJRD, PSEIJ ERR E X I T 1.
ODCM = I P (1)
O I T R = QDCM

* I F (O D C M . L T . 0 2) O I T R = QDCM +1
% NR = QR

L

w c- T E S T T O SEE I F S Y M M E T R I Z A T I O N I S NEEDED.
P

I F (0 P S 1 16, 150. 1 6
c- T E S T T O FIND SMALLER DIMENSION OF MATRIX.
16 I F (n K - N C b) 1 8 T 1 8 , 1 9
19 RI R = NC A

O L L = OR
(STP = 1 7
G O T O 170

O X = f\!R
O R 2 = 1
O L L = NCA
O T P = 1

1 8 C OMT I hlllE

170 C O N T I N U E
C- S E T ROM-CCLIJMN L I M I T T O A P P R O P R I A T E C A S E , E I T H E R ROW OR C n L M D I M E N S .

0 0 1 8 1 I = l r WR
D O 1 8 1 K N R
DSIJM = D F Z O

G O T O 1 8 8
C- H E R E M O V E A T n R. A I S A L R E A O Y P O S I T I V E D E F I N I T E .
1 5 0 DO 1 5 1 L = 1 7 OhlT
1 5 1 R (L) = A (L)
C-• F O R C E S Y M M E T R I Z A T I O N OF R e T O COMPENSATE FOR R O U N D - O F F , M I J L T I P L I C .
18.8 D O 1 8 9 I = I T NR

D O 189 K =1, hlR
C c R (I , K) = R (K , I) = 1 / 2 I R (I , K) + R I K T I) 1

L = I + (K - 1) * N R
M = K + (I - l) * N R

DSUM = (B (L) + R I M) 1 * 0.500
B (L) = nSllM

1 R 9 R I M 1 - - I IM
C HERE SET UP CALL - I N I T I A L - OF ANDRA. ONLY COMES HERE ONCE PER MATRIX .

ONT = NR*NR
KRC = ONT
K R C 2 = OhlT + KRC
K R C 3 = ONT + KRC2
K R C 4 = OhlT + K R C 3

C - * O M I T S A V I N G OF B , I F R A N K ONLY AN13 N O ITERATICIrV
I F (I P (2) .NE. I Z .AND. Q I T R .EO. 1 2) GO TO 2 0 0
DO 1891 I =1, QNT

1891 D l 1 1 = B (1)
200 C O N T I N U E
C- S E A R C H D I A G O N A L OF I N P U T FOR LARGEST ELEMENT. r l S E T n I I E F I N E F L . P T .

O R 1 = NR + 1
L = l
DMX = OF20
M = I Z
DO 23 I = 1, NR
D D I = D A B S (B (L) 1
I F (F M X .GE. F D I) GO T O 2 3

-

M = L
FMX = F O I

2 3 L = Q R 1 + L

C- SET TI71 FRANCE FOR ANDRA L I M I T OF S I Z E O F D I A G O N A L
I F (M .EQ. 1 2) G O T O 6 9 2

C TOLERANCE OF ZERO I N ANDRA CALL.
D P R (1) = D A R S (D P l * B (M))

J P (1) = I Z
C - ASK FOR ALL ROWS, DONE I N 1 C A L L ..

C- JP2 F I R S T T I M E I N I T I A L I Z A T I O N FOR ANDRA

I F (O I T .NE. 0 2) G O T O 5 6 1
J P (4) = NR
M = I Z
SOCD = - E F 2

t; c " H A V E F I N I S H E D P R E L I M . P A R T
C I N I T I A L I Z A T I O h I F O R A N D R A (D I A C , O N A L I Z A T I O N) NOW COMPLETED.

w - C A L L A N D R A - T O D I A G O N A L I Z E S Y M M E T R I C M A T R I X .
o\ C C A L L A N D R A R E D U C E S ROWS B Y M O O I F I E D G A I J S S M E T H O D , I J S I N G S O R T (P I V 0 T) .

30 C ONT I NUE

C- S A V E OLD V A L U E S I N C A S E P I V O T I S R E J E C T E D , l l N 0 E R I T E R A T I O N O P T .

I J - ~ I S I IK o t l l o l J L l b U I U 5L

DO 31 L =1, ONT
J = K R C + L
K = K R C 2 + L
D t J) = B (L 1

3 1 D (K) = C (L)
32 C A L L A N D R A (B T C p D P R , J P)

J P (1 1 = O I T R
I R = J P (3)

C- CHECK C O M P L E T I O N - I S M A T R I X A L L DCI\JE I S M A T R I X I N V E R T I B L E . .
I F I B I T R .EQ. I Z .OR. I R .EO. NR .AND. Q T T .F0. I Z) GO T f l 700 0

CHECK I F I T E R A T I N G h ! I T H K H O T E S T OR N O T
C* O l I T I F hln I T F R A T I O N OR N O NEId P T V U T FOIJIW
C,- O M I T I T E R A T I O N C A L C S . I F N f l hlEW P I V O T . O E C R F A S E T O L E R A N C E

C C O M P U T E R H O F O R E S T I M A T I N G T H R E S H H D L D TO STOP S S I S RHO
I F (J P (5) .FO. M) G O T O 2 2 0

S S = (B n ~ I R M (N R , C , E E , D , K R \ /) + RDNRM(-NR,C,EEID ,KRV) 1 * E F 2 ** I R
C WHY O N L Y S h l G L E P R E C . / T H I S I S ONLY A ROI lGH T E S T T O S T O P I T E R A T I O N .
C T H A T - S WHY. S I M I L A R L Y , O T H E R I J S E S OF S I N G L E P R E C .

I F (S 0 L D .LT. S S .AND. S X O .GT. F Z R O) G O T O 650
C- I F S U B S T A N T I A L I M P R O V E M E N T T R Y A G A I N ,
C t O T H E R W I S E O I J I T T R E T U R N JHF A P S E U D O I N V E R S E , € \ / E N I F OFF.
730 CONT I NlJE

O I T = 0 1 7 +1
S O L D = s s

M = J P (5)
I F (O I T .EO. N R) G O T O 700

DPR (1) = DPR (2 1 * 2.D-5

C / S A V E P R E V I O U S ROW I N W H I C H A P I V O T WAS FOLIND

C- P U T IN S M A L L E R T O L E R A N C E I N C A S E D I A G O N A L T O O S M A L L O T H E R W I S E .

C- T R Y T O R E D I J C F 1 MORE ROW.

h 5 0 C ONT I NIJF
C* R E S T O R E B AhlO C T O T H E I R P R E V I O U S V A L U E S . T H E L A S T P I V I I T H A S B E E N

I F (I R - N R) 307 700, 606

C R E J E C T E D (B A C K - T R A C K) 9 W H I L E I T E R A T I N G .

J P (3) = J P (3) -1

J = KRC + I
K = KRC2 + I
B (I) = D (J)

DO 6 5 3 I =1, QNT

6 5 3 C (1) = D (K)
700 C ONT I hllJE

I R = J P (3)
M = I Z

L = l
DO 704 I = 1, NR
D D I = B (L)

C- H E R E W I S H T O R E P L A C E M A R K E R S I N D I A G O N A L W I T H L E G I T I M A T E 1.DO

I F (I D D) 7019 7 0 2 , 7 0 1
7 0 1 I F (1 D D .MF. I C C) G O T O 7101

B (L) = 1.DO
G O T O 704

C A T 7101 FORCE SMALL TRASH T n ZERO.
7101 R (L) = DFZO
7 0 2 M = 1
704 L = O R 1 + L
C - I F A L R E A D Y T R I E D A N O T H E R R E D U C T I O N , T O G E T I 4 A T K I X I N -1IPPES- I I I A G a
CQR O M I T P A R T OF C A L C U L A T I O N S I F ONLY RANK IS D E S I R E n .

I F (I P (2 1 .NE. 1 2 1 G O TO 877
b

OOCM SUPPRESSES L A S T P H A S E I F D t C O M WAS C A L L t R . .
ZF(M .LT, 1 .OR. QDCM .LT. O Z) GO TO 8 0

C BELOW H A V E S I N G . M A T R I X T H A T NEEDS FURTHER bIORK.
C- HAVE M A T R I X D I A G O N A L I Z E D W I T H 1 s t O S I N T E R S P E R S E D (A I S S I N G I J L A R) C- RE-00 T O GET PS-INV T H A T M O V E S A L L 1 s OF DIAGONAL TO UPPER LEFT DIAG.
"

C,To CmPUTE IJ MATRX AS I N ASP, FOR T R A N S F O R M I N G O R I G R I N S I N G U L A R C A S E
L =t
DO 527 I = 1 9 N R
D O 525 J = 1 ~ NR
K = (J - l) * N R + I
I F (B I 4) 1 5 2 1 , 5 2 2 9 5 2 1

572 C(K) = - C (K)
C (L) = D F Z O

+
w G O T O 525
4 5:l C (K) = D F Z O

e
w C4L) = 1.DO
ca 525 CONTINUE

57 7 L = OR1 + L
<-SAVE RANK S O FAR, SHOULD B E SAM.E S I Z E A F T E R R E - I N V E R S I O N

O R 2 = IR
D O 5 4 I = 1, NR
DO 5 4 K =1q NR
DSUH = DFZO

- - (K - l) * N R

H (J - l) * N R + J
L = Q N + J

L = Q N + I
EE(L) = DSUM

DO 5 3 3 = 1 , NR

5 3 OSUn = C (M) * D (L) + DSUM

54 CONTINUE
DO 5 6 I =1, NR
Do 56 K =I, NR
DSUM = DFZO
QN = (K-l)*NR
00 5 5 J = 1 , NR
t = (J - l) * N R + I
W = Q N + J

L = Q N + I
B (L) = DSIIM

55 DSUM = E E (L) B C I M) + DSIJM

5 0 CONTINUE
C T S E T IJP FOR SECONDARY A N D K A C A L L F O I T E R A T I n N J.P4 = IVR

O I T = 1
C G O F I N D L A R G E S T D I A G . E L E M E N T A G A I N

5 6 1 J P (3) = I Z

I R = J P (3)

-
Ga T O 200

C A L L ANDRA (6 , E E T D P R T J P)

C- T E S T F O R A C H A N G E I N R A N K . . . ERROR

568 C A L L T T R M (N R T E E T D)
C- T R A N S F O R M C SHARP IN D.. R S = ((U)::: D :k(U T R P))

I F (O R 2 - I R) 6 9 3 9 56RT 694

DO 5 8 I = l e NR

DO 58 K =1, NR
DSUM = D F Z O
ON = (K - 1) * N R
DO 57 J = 1 ~ NR
M = (J - l) * N R + I

5 7 DSUM = C (M) * D (L) + DSUM
L = O N + I
B (L) = DSlJM

5 8 C ONT I NUE
DO 60 I =1,MR
DO 60 K = l r NR
DSUM = D F Z O
DO 59 J =1, NR
ON = (J-1)::NR
M = Q N + K
L = O N + I

. .
59 DSIJM = B (L) * C (M) + DSUM

L = (K - l) * N R + I
-

EE(L) = DSIJM
60 C O N T I N U E
C- NOW R E - E N T E R M A I N S E Q U E N C E W I T H P S - I N V . IIV €E.

G O T O 808
C G O F I X U P 6 PSIJEDO-INVERSE. PRESUMABLY H A V E D I A G O N A L I Z E D
C. H A V E D I A G O N A L I Z E D W I T H A L L 1s I N UPPER L E F T
C- HERE WE H A V E F I N I S H E D D I A G O N A L I Z . WANT TO GET PSlJEDO INVm I N R.
870 I F (0 D T . M . I T . (37) G f l T O 8 7 7
C N E E D T O S A V E D I A G O N A L I Z E D R FOR USE B Y DEGUM CALL (ODCM r\lEG. F L A G)

DO 871 I = 1,ONT
C- A WAS SYMMETRIC. J IJST MOVE EE T O 6 RETURN FRnM PSE l lP ENTRY
8 7 1 B (I) = E E (1)

8 0 C O N T I N U E
C NOW FORM (T T R P) * T = APPROX 6 SHRP PSUEDIN\ I I N MATRX EE

G O T O 877

CALL T TR M (N R I C T E E)
808 I F (Q P S .EO. O Z i G O T O 8 7 0

I F ((S T P 1 819, 8 1 9 , 8 1 8

D O 8181 J = 1,NR
DSUM = O F 2 0
Q N = (J - 1) * N R

~~~~~~ 

D O  8182  K = l , N R - ~ -  
L = ( 1  - 1 ) * Q R  + K 
M = O N + K  

8 1 8 2  DSUM = DSUM + A ( L ) * E E ( M )  
L = ( J - l ) * N C A  + I 

8 1 8 1  R (  L )  = O S I I M  
G O  T O  877 

8 1 9  D O  8 1 9 1  I = l T N R  

DSUM = D F Z O  

L = ( K  - I . ) * O R  + J 
M = I K  - 1 ) * N C A  + I 

8 1 9 2  DSUM = DSUM + A ( L ) * E E ( M )  

L = ( J  - 1 ) * N C A  + I 

DO A192 K = l T N R  

C- MOTE  NCA I S  USED, BECAUSE  A-SHARP I S  T R A N S P n S E D  I N  DIMENSIONS 

C HERE B = EE ( A  T R A N S )  = ( A  T R P * A ) - S H R P  * ( A  TRANS)   NRA  .GT.  INCA 

C- H E R E   G E T   R E A D Y   T O   R E T U R N  
877 C O N T I N U E  
C- M O V E  RANK TO R E T U R N   P A R A M E T E R  

. .  

I P ( 2 )  = I R  
DEP ( 3 )  = D P R ( 2 )  

R E T U R N  
C. A R f l V F   R F T l J R N   F I N A I   P I V C r r   F R O M   A N D R A   A L G .   D I A G O N A L I Z A T I O N  

691 CALL L M C N T (  1) 
W R I T E  (6 ,1691)  OR,NCA 

1691 FORMAT ( 4  D I M E N S I O N   E R R O R  I N  P S E U  N A = l Z I h )  
G O  T O  1700 

6 9 2   C A L L   L N C N T (  1) 
W R I T E  ( 6 9 1 6 9 2 )  

1 6 9 2   F O R M A T  ( '  ERROR I N  PSEIJ - D I A G O N A L   E L E M E h I T S  nF M A T R I X = O l )  
G O  T O  1700 

693 CALL L N C N T ( 1 )  
W R I T E  ( 6 9 1 6 9 3 )  

1693 FORMAT ( 1  ERROR I N  PSEtJ  RANK  HAS  LIECREASED  C( lMPl lTATI0N E N D E D I )  



141 



P 
h) F U N C T I O N   R D N R M ( N R t C T , E E t n , K R V )  

I N T E G E R * 2  OF 
D O U B L E   P R E C I S I O N   C T T E E t D ,  AN,BRY DFZO,DSIlI4 
D I M E N S I O N   C T ( 4 0 0 ) , E E ( 4 0 0 ) 1  11(2000)9  h ! \ / ( 2 ) ,  K R V ( 4 )  

C- D HOLDS 5 M A T R I C E S .   T H E   F I R S T   A N D   T H E  L A S T  2 A R E  llSEn P E S E  
D I M E N S I O N   P P P ( 2 )  

D A T A  D F Z O  / O . D O /  
E B U I V A L E N C E ( A M , F N )  7 ( B R T F R )  

C T  E Q U I V A L E N C E S  BELOW J U S T  T O  S A V E   S T O R A G E  
E O U I V A L f N C E ( D F Z O ~ I Z ) , ( A N 1 D S U M ) , ( B R , P P P ( 1 ) ~ 1  ) T ( P P P ( ~ ) ~ K ) ~  

1 ( N V ( ~ ) ~ L ) T ( N V ( ~ ) ~ M ) I ( I R , ~ I L )  
C T E S T Y ,  I F  NR NEG.,THEI\I T R A N S P O S E   R O L E S  UF L) A h1II ( C T T R P, ill S :::C T 1 

OF = NR 
K D 3  = K R V ( 3 )  
K D 4  = K R V ( 4 )  
I F ( N R 1  109 10, 20 
E N T R Y   T T R M ( N R 9 C T V E E )  

C T O  D O  T T R  * 7 O N L Y   E N T R Y   T T R M  
OF = IZ 
GO T O  20 

10 NR = -NR 
20 I R  = NR 

DO 30 I = 1, I R  
L L  = ( I - l ) * I R  
DO 30 K - I R  
OSUM = D F Z O  
KK = ( K  - 1 ) * I R  

- 

DO 2 9  J = 1 9  IR 
L = J + L L  
M = J +  KK 

29 DSUM = DSUM + C T l L ) * C T I M )  
C ABOVE F O R M A I N G  T T R A N S P O S E   T I M E S  T. W H I C H  I S  APPROX . OF H SHARP 

L = ¶ + K K  
I F ( 0 F )  3 1 9  399 32 

31 KK = K O 3  + L 



G O  T O  30 
C-39 COMPUTE T TRbNSPOSE * T oF\ILY.. P R O V I D E S   I N V E R S E  R SHARP 
39 E E ( L 1  = DSUM 

GO T O  30 

C A L L  N O R M ( n ( K n 3 + 1 ) , ~ t \ / , R K )  
C O I J O T I F N T   N F A R S  0.0 A S   B S H R P   A P P R O A C H E S   T H A T   F I T T I I \ ! G  2 MO(lR-PEMRSE AXIf l lv l  

9 R E T I I R N  
RDNRM = F N  / FR 

66 BDNRM=FN 
C 6 6   I S  A DUMMY REALLY  WANT  MATRX  MIJLT.  OIVLY. 

G O  T O  9 

END 
C S I D E   C O M P U T A T I O N S  J W ANDREldS  INF.   SYSTEMS Cn. MAY 1969 

c 

w P 



c 
P 
P S U B R O U T I N E   A N D R A ( B   , T , D P R I J P )  

C- S U B R O U T I N E   A N D R A   D I A G O N A L I Z E S   P O S . 0 k F . S Y M P I .  J ANDREWS I . s. cn. 
C - S U E R   A N D R A   C A L L E D  B Y  PSEIJ  J W A N D R E \ z S )   I N F o   S Y S T E M S  G O .  A P R I L  1969 

I M P L I C I T   R E A L * 8  ( D l ,  I N T E G E R * Z  ( 0 )  
D O U B L E   P R E C I S I O N  B ,  T 
D I M E N S I O N   P ( 4 0 0 ) y   T ( 4 0 0 ) ~   D P R ( 2 1 ,   J P ( 5 )  
E O U I V A L E N C E ( D D I , F D I , I D D ) , ( D C C , I C C ) ( ( D M X , F ~ ~ X ) ~ ( ~ R S T I I S )  
E Q U I V A L E N C E   ( D F Z O T F Z R O ~ I Z )  
D A T A   I C C ,  D F Z O  / Z 4 0 0 0 0 0 0 0 ~  O.DO/ 

C - D P R 1  I S  M A G N I T U D E   T H A T  I S  C O N S I D E R E D  Z R O   P I V n T  MIJST RE Nn SMALER.  
C- D P R ( 2 )  I S   T O   R E T U R N   F I N A L   P I V O T ,  S O  T H A T   U S F R  M A Y   T E S T   S M A L L N E S S .  
CC- ANORA  CAN BE U S E D   A L L   B Y   I T S E L F   T O   G E T   I F \ I V O T   R A N K  OF P0.S  SYMM. 
C N O T F   T H A T   D S Q R T   H A S  T O  B E  T A K E N  OF P I V O T S   A L O N G   T H E   F ) I A G O t \ [ A L .  
C- N O T E  I AM D E L I B E R A T E L Y   A L L O W I N G  S O M E  PARAMETERS T O  CHANGE ON S I J R S E -  
C - O U E N T   C A L L   D P R ( 1 )   C H A N G E S   P I V O T   S I Z E  A ROIJGH  T l lLERANCE  FOR ZRO.  

C- T E S T -  I S  T H I S  AN I N T I A L I Z A T I O N   C A L L /  

C I N T I A L I Z E -  F O R M   I D E N T I T Y   M A T R I X  
1 (3s = J P ( 4 )  

- - GI f D P R ( 1 )  1 

I F ( J P ( 2 ) )  2 9  1, 2 

ONT = QSSOS 
I F ( O $  .LT. 1 .OR. QNT  .GT. 6 4 0 0 )  G O  T O  691 
D O  1 8  I = 1, QNT 

L = l  
O R 1  = OS + 1  
DO 1810 I = 1, O S  
T ( L )  = 1.DO 

1810 L = O R 1  + L 
D P R ( 2 )  = D F Z O  

C- S E T   R A N K   T O  ZRO. T R I A L   P I V O T   V A L I J E   T O   Z E R O .  
O K R  = IZ 

C S E T   P I V O T   C H O I C E   I T E R A T I O N   A T  0 ALLOWANCE CIF Nfl. R O W S + l   I T E R .  
Q I T R  

2 C O N T I N U E  
2 00 C O N T I N U E  - 

18 T ( I )  = D F Z O  

- - 

- Rn n l l T  M A X  T)TAG, A N D   C T  DTAG. T F M P n R A R Y   V A K I A R I  F S  



FMX = F Z R O  
I = IZ 
M = IZ 

L = 1 - O R 1  

I = I + 1  
L = O R 1  + L 
DD.1 = R ( L )  

C- BELOW SEE I F  ALL D I A G  E L E M E N T S   T E S T E D   Y E T  

30 IF(I .EO*  OS) G O  T O  40 

C- G E T   C U R R E N T   D I A G .   E L E M E N T   F O R   I N T E G E R ,   S I N G L E   P R E C  T E S T  
C-  IJPDATE L TO  GET  -NEXT-   D IAG.   ELEIV IENT 
C-BELOW  TEST  FOR D I G .  E L E M E N T   a A L R E A D Y @   R E O U C E D   T n  1. (CODEMARKED)  ,ICC 

I F (  I D D  .EO. I C C )  G O  T O  30 
I F ( F D 1  - F M X )  3 0 9 3 0 ,  32  - 

C- T E S T   F n R   N E G L I G I B L E   F L .   P T .   O T Y o - T K E A T   T H E S E ,  AND i’IEG., AS  ZEROS. 
32 I F ( F D 1   . L T *  E F )  G O  T O  30 
c- S E T  NEW M A X ,  ~ R L E  P R E C  ., S A V E  B E S T  KnW FOR PIVOT X V V I K ~  

OMR = I 
D M X  = D D I  
M = L  

a 

G O  T O  30  
40 S O N T I N U E  

R (  L )  = DDM 

R ( t 0  = DDM 
K = K + l  

L1 L = O S + L  

C”SYMMETRICALLY,   FORCE COL(JYM T O  SAME V A L t I E  I N  B @NLY 

. C  F O R C E   P I V O T   E L E M E N T   T O   E X A C T   V A L U E  OF U N I T Y  
R ( M )  = 1.DG - 

R C- NOW REDlJCE  ALL  ClTHER KOWS OF 8 ,  T, E L I M I N A T I N G   C O L ( J M h l  OF P I V C l T   V A R I A R  
D O  460 I = 1, O S  



c. 
p C- T E S T   F O R   P I \ I O T A L  ROW. O T H E R  RnWS 
a? I F (  I .EO. O M R )  G O  T n  460 

J = I - O S  
K = (3S:kI + J 
D R S  = B ( K )  

I F (  I I S  .EO. ICC) G U  T O  460 

K = Q M R % O S  + J 
DMM = - R ( K )  
L = 0 14 R 
K = I  

- C n E F F ,   T O   R E  ZEKClEO C A N  NnT R E  P R E V I O U S   P I V U T .  

c, RELOW T E S T  FOR A ROW A L R E A D Y  REDIJCEU, TU S K I P  

C- G E T   C O E F F   I N   P J V O T   C O L U M N   T O  B E  E L I M I N A T E O  

DT) 47 J = I T  0s 
C- L I S  ROW USE0 T O  R E D U C E 9   b J I T H   P I V O T .  
C  K I S  C I J R R E N T  ROW T H A T   P I V O T   G E T S   E L I M I N A T E D  FROM. 

R ( K )  = B ( K )  + B ( L ) * D M M  
T ( K )  = T ( K )  + T ( L ) * D M M  
L = Q S + L  

47 K = O S + K  
460 C O N T I N U E  

L = OMR 
D O  461 I = 1 9  O S  

C F O R C E   M O S T  OF P I V O T  ROW T O  Z E R O .   C O P i P L E T E S   P f U l I C T I 0 N   W I T H  1 P I V O T /  

461 L = Q S  + L 

B (  MI = OCC 

J P ( 2 )  = 1 

O K R  = O K R  +1 
D P R ( 2 )  = DMX 
J P ( 5 )  = OMR 

I F ( O K R  .EO. O S )  G O  T O  480 
I F ( J P ( 1 )  .EO. I Z )  G O  T O  490 

B ( L )  = D F Z O  

C F O R C E   P I V O T   T n  3CODEn7  FOR  ONE 0 .  

C- S I G N A L  N O  L O N G E R   F I R S T   T I M E   C A L L E D .  

C" l J P D A T E   E F F E C T I V E   R A N K   F O U N D  

C- NOW T E S T  - I S  T H I S   A N   I T E R A T I O N   T O   O N L Y  1 RC)M A T  A T I M E /  

c (  A T  THIS P O I N T ,  EITHER S T O P  WITH m E  R O W  O K  T R Y  N E X T .  
C H E R E   G E T   R E A D Y   T O   R E T U R N .   R A N K   P A R A l w I l f T E R .  



480 JP( 3 )  = OKR 
R E T U R N  

C I F  ENOUGH T R I E S  T O  D A L L  ROWS PLlJS 1 PIORE, O I I I T .  
490 I F ( Q 1 T R  .EO. O R 1 1  G O  T O  480  

O I T R  = Q I T R  +1 

691  C A L L   L N C N T ( 1 )  
W R I T E  (6 ,1691)  QSTONT 

1691 F n R M A T  ( 1  D I M E N S I O N   E R R O R  I N  ANDRA N R = ' * I 4 , 5 X , ' N R ~ N C = ' I 4 )  
R E T U R N  

692 C A L L   L N C N T (  1) - 

W R I T E - (  6,16923 
1692 FORMAT ( '  ERROR I N  A N D R A ,   F I N D S  NO P I V U T S ' )  

CHECK F O R   D I A G O N A L   A L L O W I N G  NO P I V O T S / /  
505 IF(JP(~)  .E@. I Z  .uR. OKR .GT. O K 1 )  GO TO 692 

G O   T O  480 
END 



c 

~" C- S E T  S P E C I A L   P A R A M S  FOR P S E U   C A L L   T H E S E   A R E   T O   S l l P P R E S S   T H E   W n R K  OF 
C R F - I N V E R T I N G   P S F U O O   I N V E R S F  I N  T H E   C A S E   I r l H E R E  A SINGIILAR.. .  

K P ( 1 )  = - K P ( 1 )  -1 
C- C A L L   P S E I J  P T O  G E T  M A T R I X  T. I N  C 
C M O T E   T H E   L A S T  3 M A T R I C E S  OF T H E  5 I N  0 U S E D   f l N L Y  I F  P S E U P   2 I T E R A T E S i i )  

I = K P ( 2 )  

K P ( 1 )  = O L  
I F ( 1  .NE. I Z )  G O  T O  38 

CALL  PSEIJ  P(A,B,C,E,DCM,KP,  D l  

C /  P L E A S E  D O  N O T   T R Y   T O   T A K E  A.S.P. N A M E S  FClR M A T R I C F S   H E R E .  
C- SIJCH M A T R I C E S  !nlERE MOT RETI IRh lED  BY  ASP,   NOR  BY IdY. R O I I T I N E .  
C 

13  D ( I )  = C ( I )  
nn 1 3  I = 1 ,  ONT " i - 

N V ( 1  ) = O S  



C-  FP H A S  ALL ONES  MOVED T O   E X T R E M E  l l P P E R   L E F T   n F   D I A G n l \ l A L .  
C.:'fi\lOW S E T  U P  T O   M A K E  P P E R M I I T A T I O N  M A T R I X  P = D ( K l 3  +1) 

C.- Z E R O  OIJT P ,  WILL R E  ZEROS  AND  ONES 
DO 3 9  I = 1 ,  ONT 

C-ZERO  HOIJSEKEEPING  ARRAY  ONLY  NEED  F IRST  COLI IMN.  
J L ( I  1 = I Z  
K = K D + I  

3 9  D ( K )  = O F Z O  
L =1 
M = 1  
n L  =1 

7 8 0 3  J = J L ( 0 L )  
CHECK  FOR ROW OF D I A G .  THAT  NEEDS A 1 MOVED I N T O   I T  

I F (  J .EO. IZ) G O   T O   7 R 6  
I = ( K - l ) * O S  + J + Y D  

D ( I )  = 1.D0 
nL = O L  +1 

C / F / A R K   T H I S  1 AS ZRO T O  B E   F I L L E D - -  I T   I S  MOVEn IJP AND OIJTQF HERE 
7 9 0 1  J L ( M )  = K 

M = Y +1 
G r l  T O  780 

7H6 J = K D  + L 
T,.MAKE PART OF I D E N T I T Y   A T  7 8 6  DCN-T  NEED  TO  MOVE 1 T n  A H n L E .  

O (J )  = 1.00 
7 8 0  L = O R 1  + L 
C. R E T U R N .   M A T R I C E S   C O M P L E T E D  E W I T H   I R  li3S D E L I R E S A T F L Y   L E F T  OUT. 

RETIJRN 
c- 
n 6 9 1  CALL L N C N T (  1) 
io I d R I T E  (6 ,1691 1 OSIONT 



1691 FORMAT ( '  D I M E N S I O N   E R R O R  I N  OECOM NC=' , I4 t5X, 'NR: : : I? IC= ' , I4 )  
R E T U R N  

692 C A L L   L N C N T I 1 )  
W R I T E  (6 ,1692)  

1692 FORMAT ( 1  ERROR I N  DECOM PIVOT=ZERO') 
K P  ( 4 )= -OS 
G O  T O  38 
E N D  



APPENDIX C 

USE OF VASP ON AMES’ TSS 

NONCONVERSATIONAL (BATCH OR RJE) 

In  using VASP on  TSS,  the  system  must  be  told  about  the  job  library in which the VASP 
subroutines  are  located,  the  source of input  data,  and  the  location  to  send  output  data;  and  the 
block  data  program  must  be  loaded. 

A  procedure  has  been  written  for  doing  this  automatically.  The call to  the  procedure is 

VASP$$  [input  data  set]  [,output  data  set] 

The  procedure will then  perform  the  steps  indicated  above. If the  first  parameter is omitted,  the 
data will be  taken  from  SYSIN,  which is from  cards in your  data  deck. If an  input  data  set is 
named,  then  the  data will be  taken  from  the  named  data  set,  which  must have  been stored 
previously. 

Likewise, if the second  parameter is omitted,  the  output will be  placed  in  SYSOUT, for 
printing on  the high-speed printer. If an  output  data  set is named,  the  output will be  placed in 
that  data  set. 

If the  name  of  the  input  or  output  data  set  must be changed, use the  procedure call 

CHNGIN [new  input  data  set  name] 

CHNGOUT [new  output  data  set  name] 

These  two  procedures will then  change  the  DDEF to  the new data  set  name. If  the 
parameter is omitted,  the new data set  name will  be SYSIN or SYSOUT.  A  listing  of  these 
procedures is included  in  this  appendix. 

CONVERSATIONAL 

Provisions  have also been  made  to  allow  conversational use of the VASP program, so that  the 
user  can easily perform  matrix  operations.  The  operations can be  strung  together in a  sequence  as 
desired with  as  much  output as desired.  The user indicates  the  operations  by use of Fortran 
statements,  and  may  not  only call the VASP subroutines,  but also may  execute  any  other  Fortran 
statements  that  he wishes. 

Data  are  requested for  the  program  by  means  of  subroutine  INPUT,  allowing  free-form  data 
from  the  typewriter. If Fortran  type  input is used, the  data  should also be  obtained  from  the 

151 



typewriter. If you  try  to  use  an  input  data  set,  INPUT will also  read the same data set. 
Variables  may  also  be set  by  Fortran  arithmetic  statements. 

Output may be  from  the VASP subroutine  PRNT,  or  any  Fortran WRITE or  PRINT 
statement.  Two  standard  formats  are available if desired for  unlabeled  output. 

The program automatically  dimensions 14 arrays to  the desired  size,  and the user may 
‘, supply  his  own  names to  7 of them. 

Usage 

The use of conversational VASP is demonstrated  by  the  accompanying figure  (fig. 9). 
Lower case letters  are  input  and  upper case are the  computer responses.  Detailed comments  on 
the various statements  follow.  To  start,  the user calls VASP$$  (line 1) as for  nonconversational 
usage. If  desired,  an output  data set may be  named.  Line 2 lists the DDNAME being  used. 

The  next  two lines  (lines 3 and  4)  indicate  where  input  and  output are to  reside. The 
computer  then gives an  underscore,  after  which  the  procedure “CONVASP”  is  called. The param- 
eters of this  procedure  are  first  the  total  number  of  elements  in  a  matrix, followed by up  to 
seven matrix  names. If the  parameters  are  defaulted,  the  system will select  matrices  with 9 ele- 
ments,  and  name  the  matrices  A, B, C, W, X, Y, Z. In  addition,  7  dummy  matrices D l  through 
D7 are available for use. In the figure, all matrices are t o  be  dimensioned  16  (line 5 ) ,  the second 
matrix is to be renamed F, and  the Z matrix is to  be  renamed  FSTAR.  That is, if you wish 
to  rename  a specific matrix,  put  a  dollar sign in front of  the original name  and  then  equate  it  to 
the desired  name  as  in the  example.  Fourteen  arrays, NA through  ND7, used for  dimension 
information, are  also  defined and  renamed to agree with  the  working  matrices. 

Lines 6, 7, and 8 then  define the  matrices available. Note  that  no  1-element variables  are 
defined. The user may define  them in his  program but  they will not  be available from  one 
computation  to  the  next. 

The  computer will then ask for  FORTRAN  STATEMENTS?. At this  point,  a  data  set 
SOURCE.MNPG$$  has  been  set up  for  editing  and  the necessary DIMENSION and other initial- 
izing statements have been stored.  These  statements  are  listed in figure 12, lines 4600 through 
6000.  The  computer  prompts  the user with 100 and  the user  may enter any  Fortran  statements 
he wishes. The full power of the  text  editor is  available at  this  point. 

In the  example, we have entered  four  statements,  lines 10 through  13.  Note  that we have 
defined  a single variable t  for use in the  etphi  statement.  The value of  this  variable will not 
be remembered by the  system. 

After  completing  the desired Fortran  statements,  the  user  requests  compilation by entering 
- CMPL (line 14). The  computer  then  indicates  that  compilation is proceeding  (line 15) and will 
give the usual error messages if the  compile is unsuccessful. After  compilation  the program is 
automatically  executed,  and  the  first  item in the  execution is a  request  for  data  from  the  INPUT 
subroutine  (line  16).  Data  are  entered  free  style as in line  17,  with  the  elements  of  the  matrices 
152 



1 VasPSS 
DDNAME-JB LBO001 _ _ _  - 

- $ " T J T T R O M  TERM1 NAL 
4 OUTPUT TO TERMINAL 

6 *****MATRICES  AVAILABLE,  ALL DIMENSIONED 16, ARE; 
5 convasp  16, , f ,$z=fs tar  

7 A,F,C,W,X,Y,FSTAR;  FOR INPUT OR COMPUTATIONS 
8 .. FOR COMPUTATIONS__W _- .. " 

9 * * * Y * ? W A N  STATEMENTS? 
10 0000100 t=1.0 
11 0000200 c a l l   e t p h i  (f,nf,t,a,na,dl,3,2) 
Y c a l l  p r n t  ( f ,n f , ' f  TLl) 

13 0000400 c a l l  p r n t  (a,na,'a ',l) 
14 0 0 0 0 5 0 0 ~ c r n p l  

16 DATA? 
17 f = 1 . 1 , 1 . 2 , 1 . 3 , 1 . 4 , 2 . 1 , 2 . 2 , 2 . 3 , 2 . 4 , 3 . 1 , 3 . 2 ~ ~ ~ ~ 3 . 3 . 4 ~ 4 . 1 ~ 4 . 7 ~ ~ . 3 ~ 4 - ~ ~ n f = ~ ~ ~ *  

18 F MATR I X 4 ROWS 4 COLUMNS 
19 1.1000000D 00 2.1000000D 0 0  3.1000000D.a- ~ 

~ " - ~ . ~ ~ - ~ O ~ ~  2.2000000D 0 0  3.2000000D 00 4.2000000D 00 

22 1.4000000D 00 2.4000000D 00 1,40000001) C O  4- lrnonnonn nn 

23 A MATR I X 4 ROWS 4 COLUMNS 

7 5 * * * * W T F G $ $  NOW COMPI  L I NC;***** 
"_ -.-___ - 

21 1.3000000D 00 2.3000000D 00 3.3000000D 00 4.3000000D 00 
." 

29 Lecrnpt  
30 DATA? 

32 f(4)=2.11,2.22,2.33, 
33 f(7)=3.11,3.22,3.33 

-3 T=T. '1 1,-1.72; 1 . 3  3 
- - - - -. - . . "" ...  - - " .  . .""  " - -- -.. . 

3 4 n t  = 3 , 3  
~ - .. " 

35 * 
c 
vl 
w Figure 9.- Example of conversational VASP. 



L 3 6  F MATR 1 X 3 ROWS 3 COLUMNS 
37 1.1100000D 0 0  2.11000000 00 3.1100000D 00 
38 1.22011000D 0 0  2.2200000D 00 -J-&W"QLQQ--" 
3"" - 1 . 3 3 0 0 0 6 0 0 0 0 " "  F. 3300000O 00 3.3300000D 00  

-I-- 

40 A -4 . I."5U31J6m'02 -. . 
MATRI X 3.-ROWS.- , . . - . . . -  "-3 C.OCUMbLs.~- -_  _-.-"____-.-------. 

2.6866611b  02  3.8799809D  02 
42 1.57051531) 02 2 . 8 3 4 6 1 1 7 D  0 2  4.07870809  02 
43 1.6476893D  02  2.96256230-02 4 J . 5 2 D - 0 2  

" T * - G m * * *  
" 

45 L e w r t  

47 0000100 call  mu1 t (a,na,x,nx,y,ny) 
48 0 0 0 0 2 0 0   c a l l  p r n t  ( Y , ' Y  - L .  I 1) 

- 4 4 - Q o 0 - r e v i   s e  Ti3F""" 
50 0000200 c a l l  p r n t  (y,ny, ' y  ',I) 
51 0 0 0 0 3 0 0 - i n s e r t  150 
S f O 1 l C i " ' j F T n i n X i f  
53 - cmpl 
54 *****MNPG$$ NOW COMPl L I N G * * * * *  ~ , ' D A  , *:' "_"" "" .- --.-------~-~- 

56 nx=3,1, x = l .  0, O., 0. * 
57 1.110000D 00 1.220000D 00 1.3300000 00 2.110000D 00 2,2200000.._2,YaaOQa--W-" 

' 3 8 " -  ~ 3 ~ ~ 1 1 ~ 0 ~ ~ ~ K - ~ ~ " 3 ~ . ' 2 2 ~ 0 0 ~ ~ 0 ~ ~  3 . 3 3 0 0 ~ 0 0 D ~ 0 0 ~ " 3 ~ ~ 0 0 0 0 0 D  0 0  3.3OOOOOD 0 0  3.400000D 00  
59 4.100000D 00 4.200000D 0 0  4.300000D 0 0  4.400000D 00 

" - -- - - 
46 * * * F o R T R A N " s f A T E M - E N T ~ ~  " 

, .- " . ". - .  . "- 

"- ""- 

". ". ". .- 

"- 

-"mI 3 Rows - 
X 

- " " - - ""I" 

1 COLUMNS 
61 1.50334130 0 2  

64 *****COMPUTING DONE*****  
65 r e w r t   1 5 0  
Dd-UTUU-7%TL MULT  (A,NA,X,NX,Y,NY) 

"I__.----- "- 

71 *****MNPG$$ NOW COMPl L I N G * * * * *  .__. - . " " 

Figure 9.- Example of conversational VASP - Continued. 



r L ( 1 ( 1 m b O  t ***  ( NOT FOUND WHERE REQUIRED 
7 3   0 0 0 0 3 5 0  CALL  PRNT  X,NX,'X ',l) 
74  W350, c a l l  ~rnt-(x,n-x~.-.x- I --.411...-....-- I .""I__" 
/5" 
76 MOD 1 F I CAT1  ONS? 
77 n "- 
t8 DATA? 
79 * 

W W  MATR I X 3 ROWS 1 COLUMNS 
81 1 . 5 1 3 3 4 1 3 D  02  

- ." _ _ _  ~. " 

82 1 , 5 7 0 5 1 5 3 D  0 2  
1 . 6 4 7 6 8 9 3 D  0 2  

"." 

R3984  

Figure 9.- Example of conversational VASP - Concluded. 



being  entered  columnwise.  Do  not  forget to input  the  matrix  dimensions  such as NF in the 
example.  Data entry is ended  with  an *. Execution  of  the  program  continues; lines 18  through 
27 display the  requested  output,  and  line  28  indicates  completion. 

At  this  point  (line 29) the  computer gives an  underscore  and  the user may do anything  he 
wishes. In  the  example, we are going to recompute  with  the  same  program, using new  data. 
Accordingly, the user  asks for RECMPT  (line  29). The program is again executed,  and  new  data 
are asked for  (line 30). They  are  entered in lines 31  through  35, using  a different  style  than in 
line  17 to  show  the  flexibility available. On  completion  of  the  data  entry,  the  results  are 
printed in lines 36 through  44. 

At  this  point,  it is  desired to rewrite  the  entire  program, so the user issues the  command 
REWRT  (line 45).  The  system,  as  at line 9, prompts  the user with  “FORTRAN  STATEMENTS,” 
and  a line number  (lines 46 and  47),  after  which  the  user  enters  Fortran  statements as  desired. 
Inlthe  example,  line 48 is entered  incorrectly  and  then  corrected  (lines 49 and 50). Following 
this,  a  line 150 was inserted  (lines  5 1 and  52).  Then  a CMPL was issued (line 53)  to compile 
and  execute  the  program. New data were entered  at  line  56,  and lines 57  through  59  are  the 
output  requested  by  the  statement  “print  6,f.”  Note  that all 16 elements  of  f  are  printed 

i using one  of  the  two  FORMAT  statements  compiled  into  the  program  for  convenience (see 
lines 5900  and  6000  of VASPPROC, fig. 12): 

6  FORMAT ( 1 X, 1 P6D  13.6) 

13  FORMAT ( 1 X, 1P4D20.13) 

These  statements  request  the  output  of  a  6  decimal  number  or  a  13  decimal  number.  In  the 
example, we are  printing  a  6  decimal  number.  The  remainder  of  the  output is then  printed 
(lines 60  through  63). 

Now, it is  desired to  rewrite  only  a  portion  of the program  from  line 150  on. Accordingly, 
the  REWLl’  command is issued with  a  parameter  (line  65).  The  system  then erases 
SOURCE.MNPG$$ from line 150 inclusive to  the  end.  It  then lists that  portion  of  the program 
being  used, in this case,  line 100 only  (line  66)  and  prompts  the user for  additional lines  with  a 
line  number  (line  67).  The user then  adds lines as desired  (lines 67  through  69)  and  requests  a 
compile  (line  70).  It  can be seen that line 69 is missing a  left  parenthesis so the compiler  prints 
a  diagnostic  and  requests the line  be  corrected  (lines 72 and  73).  The  correction is entered 
(line 74),  after  which  the  compilation is completed  (lines  75  through  77). No data  are  needed, 
so the  data  request  (line  78) is answered  with * only  (line  79). The results  are  printed on lines 
80 through 88. Since no  more  computations were  desired. a Logoff command was issued 
(lines 89 and  90). 

Housecleaning 

A  procedure called  “CLRVASP” is available. This procedure erases all data  sets  that have 
been  set up by the various other  procedures,  and  allows  the user to  keep his  storage  low. Use of 
the  routine is not required  since the  other  procedures have appropriate erase statements as 
needed. 

156 



LISTINGS  AND  FLOWCHARTS 

Figure 10 shows  all the  procedures associated with VASP, and  indicates  what  each  one does. 
A complete listing  of the  procedures is given in  figure 11. Figure 12 is  a  listing of data  set 
VASPPROC. If the user  executes  this  data  set,  it will generate all the  procedures  and place them 
in the user’s USERLIB. 

TSS ACCESS 

For access to  the VASP  program,  an  Ames  TSS  user  should  issue the following statements: 

SHARE VASP, FSTJSW, VASP 

which  allows access to  the VASP subroutines 

SHARE VASPPROC,  FSTJSW, VASPPROC 
EXECUTE VASPPROC 

which  first  allows access to a data  set  containing  the  various  procedures,  and  then  enters  these 
procedures  in  the user’s USERLIB. Note  that  the EXECUTE command  sets  up a batch  job, and 
that  the  procedures will not  be available until  that  batch  job is completed,  and  the user  has 
issued either a LOGOFF  or ABEND command.  After  once issuing these  commands  the user 
need  only  call the  procedure,  as discussed earlier. 

Further,  for  conversational use, issue the  command 

SHARE  VASPl , FSTJSW,  VASPl 

which  allows access to  the  proper version of subroutine INPUT. 

157 



VASP$$ 
JBLB VASP 
LOAD  BLKDTA$$ 
Input & Output DDEF 
Default  Options 

CONVASP 
JBLB VASPl 
DISPLAY Matrix Names 
Edit SOURCE. VASPMN$$ 
Compile  VASPMN$$ 
Load  VASPMN$$ 
Edit SOURCE.  MNPG$$ 
EXCERPT  beginning  of  Fortran 

Display FORTRAN STATEMENTS? 
Programs 

CMPL 
Add end of Fortran Program 
Display  MNPG$$  Now  Compiling 
Compile  MNPG$$ 
Call MNPG$$ 
Display  COMPUTING  DONE 

RECMPT 
Call MNPG$$ 

REWRT 
EDIT SOURCE.  MNPG$$ 
EXCISE  Program 
Display FORTRAN STATEMENTS 

or 

CHNGIN 
Change Input DDEF 

CHNGOUT 
Change Output  DDEF 

CLRVASP 
Erase al l  Programs & 
Data  used by Conversational 
VASP 

REWRT N 
Edit SOURCE.  MNPG$$ 
EXCISE from Statement N 

List  program 
to last 

Figure 10.- Flowchart VASP procedures. 

158 



CHNGOUT 0 0 0 0 0 0 0  PROCDEF  CHNGOUT 
CHNGOUT 0000100 PARAM $OUTPUT *"668*2,fj+ REHASF F.imjool " . . ". 

CHNGOUT 0000300 I F  '$OUTPUT' '=";DDEF FT06FOOl,,$OUTPUT;DISPLAY 'OUTPUT PLACED IN DATA  SET $OUTPUT' 
CHNGOUT 0000400 I F  '$OUTPUT' =" ;DISPLAY  'OUTPUT TO TERMINAL' 

. - " . . . . . .  " . - ....... -- . . . . .  - . .. " ". . .... ... 

0000900 
etRttftSP-"m6u6mmm~E+"R 
CLRVASP 0000050 END 
CLRVASP 0 0 0 0 1 0 0  UNLOAD MNPG$$ . . . . .  ...... 

CLRVASP 0000300  ERASE SOURCE.VASPMN$$,SOURCE.MNPG$$,USERLIB(VASPMN$$)  
CLRVASP 0000400 ERASE USERLIR(MNPG$$) e t R v A ~  .68u6~60 ~ t ~ : A S € ~ V A S P I . . .  - . -  "_ -. " 

CLRVASP 0000600 DISPLAY  ' * * * * *ALL CONVERSATIONAL VASP PROGRAMS CLEARED***** '  
CLRVASP 0000700  DISPLAY  ' * * * * *YOU YAY RESTART  WITH  COMVASP********' . . . . .  . 

- - 

.. ... - - -. ..... 
" . . " - . " . " - - - . -. " 

CLRVASP-3000'200 UNLOAD- VASPMN$$ 

.. .. ... 

. . . . .  - .  . ." - - 

CMPL 0~00000 PROCDEF  CMPL 

CMPL 0 0 0 0 0 5 0  ED1 T SOURCE.MNPG$$ 

, .......... "" - -  . f3tPt"--"0030 - ~ D E F A t J L f S Y S l N X = E "  '-  

- -. .- . - 

CMPL 
CMPL 
CMPL 
CM PL 
CMFJt 
CMPL 
CMPL 
CM BL 
CMPL 
CMPL 
CM P t  

0000100-EXCERPT SOURCE.VASPMN$$, ,1600,1700 
0000150 END 
0000200  
0 0 0 0 2 2 0  
"000 64% 
0 0 0 0 2 7 0  
0 0 0 0 3 0 0  
-0000400 
0 0 0 0 6 0 0  
0000700 
0000800 

DISPLAY ' * * * * * M N P G $ ~  NOW COMPI L I N G * * * * * '  
DEFAIJLT  LIMEN=N 

I J N L O A D  MNPG$$- 
ERASE USERL I B (MNPG$$) 
FTN MNPC;$$, Y 
LOAD MNPG$$ 
CALL  MNPG$$ 
DEFAULT L I MEN=W 
l71SPLAY  -***** .*COMWTI NG DONE***'**' 

.- " - . . - " " 

Figure 11.- List of VASP procedures. 



d 

-. tcfNVASP 6 D O O O O O  - PROCDEF CONVAS P 
" . - . - .  . - . _" . - . "" - - . " . 

0 CONVASP 0 0 0 0 0 2 0  PARAM $N,$A,$B,$C,$W,$X,$Y,$z 
CONVASf' 0 0 0 0 0 4 0  DDEF V A S P l , V P , V A S P l , O P T I O N = - ' C ) R L I B  

CONVASP 0000110  DISPLAY  '*****MATRICES  AVAILABLE,  ALL  DIMENSIONED $N, ARE;' 
CONVASP 0 0 0 0 1 4 0   D I S P L A Y  $A,$B,$C,$W,$X,$Y,$Z; FOR INPUT OR COMPUTATIONS' , " . ". " " 

- - - ~ ~ - 6 6 6 M - 7 0  " D i S P t A Y  " -. ~ -or,~2;rrr;Ds,-m,D6S~- FOT COM'FOl-KTTOrO-N~Y- 
CONVASP 0000200  DEFAULT  SYSINX=E 
CONVASP 0000250  DEFAULT  LIMEN=N 

CONVASP 0000340-EXCI S E  1, LAST 
CONVASP 0000380   INSERT  100  

"mm. -*L Bs SYSITL1 . . - - - " .._ - - -" 

.. "600".EDtf.sbmE;.ttft5mptm$S 

.""..eOWVAS-Bf2800f00- ~tMPttCt~~REAL*8CA-H,O-ZZ""~ "- 

-" "~fJy.&y-. CoNVASP CONVASP 0 0 0 0 4 3 0  0 0 0 0 4 6 0  COMMON /ASP/l -tmA(*) ~ ~ ~ ~ ~ ~ : ~ ~ ~ ~ ~ ~ : ~ ~ ~ ~ ~ ~ : ~ ~ ~ ~ ~ ~ : ~ ~ ~ ~ ~ ~ : ~ 4 ( $ N ) , D 5 ( $ N ) , D 6 ( $ N ) , D 7 ( $ N ) , ~  lq.$.s~"$~.2~~-N$F- m$m"'; 

. . ,_ . . " , " -. ." . . . . - - -- 

CONVASP 0 0 0 0 5 2 0  3 N$Y(2):N$Z(2):NDl(2):ND2(2):ND3(2):ND4(2),ND5(2),ND6(2),ND7(2) 
CONVASP 0 0 0 0 5 5 0  COMMON /MAX/ M A X R C  

CONVASP 0 0 0 0 7 0 0   1 0   P R I N T   1 5  
CONVASP 0 0 0 0 8 0 0   1 5  FORMAT ( '  DATA? ' )  

CONVASP 0 0 0 0 8 8 0  1 t $ ~ t , $ ~ , t $ ~ l , $ ~ , t $ ~ u , $ ~ , t ~ $ ~ ' , ~ $ ~ , -  
CONVASP 0 0 0 0 9 2 0  2 'N$B',  N$B, 'N$C', N$C, 'N$W', N$W, 'N$X',  N$X,-_ 

CONVASP 0 0 0 1 0 0 0   1 3  FORMAT ( l X , l P 4 D 2 0 . 1 3 )  
CONVASP 0 0 0 1 1 0 0  6 FORMAT ( l X , l P 6 D 1 3 . 6 )  tOtQtlftSP Mz-D KtTtTRN- , .. . "" ._ .. "" - ~ .." 

CONVASP 0 0 0 1 3 0 0  END I 

CONVASP 0001400-END 

CONVASP 0 0 0 1 5 0 0   F T N  VASPMN$$,Y 
CONVASP 0 0 0 1 6 0 0   X L I S T  VASPMN$$ 

CONVASP 0001770  DEFAULT  LIMEN=N 
CONVASP 0 0 0 1 8 0 0   E D I T  SOURCE.MNPG$$ 

CONVASP 0 0 0 1 9 5 0  INSERT 1,l 

. .. - .  . .  " ~--eotQtt~w~ooasm - RAXRC=SIP 
-. " "" - . - .. . . "" - . - -. . 

- ~ A - ~ P ~ - c ~ - - ~ N P u T - . ( ~ ~ A ~ , $ A - , ~ ~ ,  t$p-gc -  .~sqr;m:---- , .  # 

3 'N$Y', N$Y;'N$7', N$Z)"- 
-. . - . . . . . . - . _. . . . m t Q V A S  p . -3. - .- - -  . " . - .- 

- - . -  - 

- 

- COWASP  'OOUI45U ERASE USERLI-B(VASPMN$$) ". 

. .  . ." . -. . . .  

"cnmvASP-bb**M~-  DAD-^ .. "" -- -. --- . " - _. - . " - . . ". - 

. -. . . - . "" .. 
"-03NVASP ~ ~ O l ~ O - € X C t S F  1, LAST . 

_ _ _  - t O N t l A . ~ ~ - . D 7 S ~ * r * ~ r ~ ~ A m . . S T ~ m T S . 7 r . . . . - - -  CONVASP 0 0 0 2 0 0 0  EXCERPT SOURCE.VASPMN$$, ,100,1500 

" .- . . - "" -. - .  . - 

CONVASP 0 0 0 2 1 5 0  DEFAULT  LIMEN =W 
CONVASP 0 0 0 2 2 0 0  INSERT 1 0 0  

... . ". . - - .. - . .  .. - " 
.. -. - - -. " ~ . . - -. .. . . . 

Figure 11.- List of VASP procedures - Continued. 



RECMPT 0000000 PROCDEF  RECMPT 
RECMPT 0 0 0 0 1 0 0  DEFAULT  LIMEN =N 
RECMPT 0000200  CALL MNPG$$ 
RECMPT 0000300 DEFAULT  LIMEN-W 
RECMPT 0000400 DISPLAY  '***COMPUTING  DONE***' 

REWRT 
REWRT 
REWRT 
R EW RT 
REWRT 
REWRT 
REWRT 
REWRT 
REWRT 
R EWRT 

0000000 PROCDEF  REWRT 
0000100  PARAM $ L I N E  
0000200 DEFAULT  LIMEN =W 
0 0 0 0 4 0 0  DEFAULT  SYSINX-E 
0000500  EDIT SOURCE.MNPG$$ 

0000700 IF  '$LINE'= ' lOO' ;DISPLAY  ' * **FORTRAN STATEMENTS?' 
0000800 I F  '$.LINE''='lOO';LlST  100,LAST 
0000900 DEFAULT  SYSlNXpG 
0001000  INSERT $ L I  NE 

0080600_EX€.I SE $ L I Nf, LAST 

YAS  P$$ 
VAS P $  $ 
VAS P$ $ 
VAS P$ $. 

- V A S p s S  
VAS P j $  
VASP$$ 
VAS P$$ 
VAS P$ $ 

" 

0000000 PROCDEF VASP$$ 
0 0 0 0 1 0 0  PARAM $INPUT,$OUTPUT 
0 0 0 0 1 5 0  DEFAULT $ N = 9 , $ A = A , $ U = B , $ C = C , $ W = W , $ X = X , S Y = Y , $ Z = Z , ~ L l N E ~ l O O  
0000200  JRLB VASP 

0 0 0 0 4 0 0   I F   ' S I N P U T '  -=" ;DDEF FT05FOOl , ,$ INPUT;DISPLAY ' INPUT FROM DATA SET $INPUT'  
0000500 I F   ' $ I N P U T '  =";DISPLAY  'INPUT FROM TERMINAL' 
0000600  IF   '$OUTPUT'  '-I ';DDEF FT06FOOl,,$OUTPUT;DISPLAY 'OUTPUT  PLACED I N  DATA SET  $OUTPUT' 
0 0 0 0 7 0 0  I F  '$OUTPUT'  =";DISPLAY 'OUTPUT TO TERMINAL' 

o w a m o C o m  R L K D T A $ $ .  . . .. . 

Figure 11.- List of VASP procedures - Concluded. 



o\ 0 0 0 3 0  LOGON USERID,,9 

00090-EXC I SE 1, LAST 
0 0 1 0 0  PROCDEF CHNGIN 
fj+~+""-$.f wu=f .. . . ". . .. . . ." .... " "" "- 
00300RELEASE  FT05F001 
0 0 4 0 0  I F   ' $ I N P U T '  '=";DDEF F T 0 5 F O O l , , $ l N P U T ; D I S P L A Y  ' INPUT FROM DATA  SET  $INPUT' 
~ 0 0 5 0 0  tF- '$ttdPUTL  =";DtS-PLA'f  L-tNPUT FROM TFRPFINAL'.. " 

00540- PROCDEF  CHNGOUT 
00580-EXCISE 1, LAST 
,00~"PRO~~E-F-CFt~dC;eUi". " ..- . . . "_ -- 

0 0 7 0 0  PARAM $OUTPUT 
0 0 8 0 0  RELEASE F T 0 6 F 0 0 1  - o w -  - 1 F 1 s m ~ p u ~  I .-.=I I ;DDEF FT06FOOl;  ,$OUTPtjT;DtSPt-A? 'OWWT"AC€D. t N  -DATA  -SET.-$OUTFUT+ 
0 1 0 0 0  I F  '$OUTPUT'  =";DISPLAY  'OUTPUT TO TERMINAL' 
01040- PROCDEF CLRVASP 

*>Q"EH+*+* ". --- " 

0 1 2 0 0  END 

0 1 4 0 0  UNLOAD VASPMN$$ 
0 1 5 0 0  ERASE SOURCE. VASPMN$$,SOURCE.MNPG$$,USERLI B(VASPMN$$) 

0 1 7 0 0  RELEASE  VASPl 
01800 DISPLAY  '*****ALL  CONVERSATIONAL VASP PROGRAMS CLEARED*****' 
01900 -DISPLAY- '*****YOU MAY RESTART N I T #  CONVASP********'. ' 

01940- PROCDEF  CMPL 
01980-EXC 1 S E  1, LAST. 

02100  DEFAULT  SYSINX=E 
0 2 2 0 0   E D I T  SOURCE.MNPG$$ 
023-("€:Xe€ftPT SOURCE. VASPMN$$,  ,-16OO, 1-7m 
0 2 4 0 0  END 
02500  DISPLAY  ' * ****MNPG$$ NOW COMPILING**** * '  

0 2 7 0 0  UNLOAD  MNPG$$ 
0 2 8 0 0  ERASE USERLIB(MNPG$$) 

0 3 0 0 0  LOAD MNPG$$ 

Q ,oooee MCMF- CHHGI N .. - " 
. . . . . - - . - . - - -. - . .- " 

.- . "_ - -. . . " - .. "" - - " 

O ~ ~ O O - P R O C D E F  C L R V A S P  
01308  UNLOAD MNW;$$ - - - - -  - - .-. 

. . . "" . . .. . - .. . . . . - - - . . . 

, ~ ~ o  ERAS E f j s m . ~ . m P $ f - -  - . . . .- ---.__---___-- - -" . - - 
" 

. -. . - - " . " - - - - . . . . 

~ ~ 6 e r n - m ~ ~  - . _  . -. _ _  - -- -~ 

- . . . , -. . . . - . . . . - -. . - . . 

.e.26Q 0 _ _ _ _  BEfftfj.jfr- L .- _ _  _ _  . . __  -. .. 

w q e o  FTN MNPG$$,Y . . - . . - . .. . . . . .  - . -. - .. . . .. . - . . . . . . . . . . .. 

Figure 12.- List of data  set VASPPROC. 



03100  CALL MNPG$$ 
fl"m-ii i m i  
03300  DISPLAY  '*****COMPUTING  DONE*****' 
03340- PROCDEF  CONVASP 

03400-PROCDEF  6ONVASP 
03500  PARAM  $N,$A,$B S C  $W,$X,$Y,SZ 

03700  JOBLIBS  SYSULIB 

03900  D I SPLAY SA,SB,$C,$W,QX,$Y,$Z; FOR INPUT OR'COMP~TATIONS' 
04000  DISPLAY ' Dl,D2,D3,D4,D5,D6,D7; FOR COMPUTATIONS ONLY I 

"- " - 
04200  DEFAULT  LIMEN=N 
04300  ED 1 T SOURCE. VASPMN$$ 

04500  INSERT  100 
0 4 6 0 0   I M P L I C I T  REAL*8(A-H,O-Z) 

04800  l ~ $ N ) , D l ( $ N I ~ N ! : D 4 ( S N ) , D S ( $ N ) , D 6 ( $ N ) , D 7 ( $ N ) , -  
04900  2 N$A(2),N$B(2),N$C(2),N$W(2),N$X(2),- 

05100  . COMMON /MAX/  MAXRC 
05200  MAXRC=$N 

0 5 4 0 0   1 5  FORMAT ( ' DATA?' 1 
05500  CALL  INPUT ('$A',$A,'$B',$B,'$C',$C,'$W',$W,- 
--.- i ' $ xLT;bX;w;-LW ,$t;*-, - " . " 

05700  
0 5 8 0 0  3 'N$Y',N$Y,  'N$z',N$z) 

- - 

0 3 w f t ~ ~ * ~  - - ~ - " - 
- . - r  - 

- " -Wcr V%-i4+& 4%Sh8narlt. 

838w - - B t f P t f t S C - - ~ ~ ~ R f ~ - ~ t f A ~ t A B t r , - A ~ M S t - 6 f Q E R - ~ ~ " " - ~ - ~ - - - - - " " - - -  

e4-4-*-Ee-t5€3* " " 

*"* w,Aif+w+, 

8" ~ ~ - - P t ; ~ i 2 i , ~ ~ , ~ ~ ~ j , ~ ~ i j , ~ "  

\ 

.r q r  
I A >  

.- 

- 
2 'N$B',N$B,  'N$C',N$C, 'N$W',N$W, 'N$X',N$X,- 

- 7  #- -.\ 

06100  RETURN 
(3&2f)-o"-HB 
06300-END 
06400 ERASE USERLIB(VASPMN$$) 
4Hx-w-"ff 
06600  XL-N;; 

"" " - - - 

U - 

+. 06700  LOAD VASPMN$$ 
o\ 
W Figure 12.- List of data  set VASPPROC -Continued. 



+ fime-~~-~~tft'f.~.~~-~.. ~ _ _ _  - ~ "" m 
0 6 9 0 0   E D I T  SOURCE.MNPG$$ 
07000-EXCl SE 1, LAST 
i3+i+e""l 
07200-E%~bTL~6URCE. VASPMN$$, ,100,1500 

H k f j &  ".bEFAUiT.*MW _" .. . . ". . - "" 

07500  INSERT  100 
07540- PROCDEF RECMPT 

- 

"r .1 .1 __- "_ " 

07300  D I S P L A Y  ' * * * * *FORTRAN STATEMENTS?' 

" - . . - I -~ 
m c ;  EF 1k i T  
07700  DEFAlJLT  LIMEN =N 

07900  DEFAULT  LIMEN=W 
08000  DISPLAY  '***COMPUTING  DONE***'  

08080-EXC I SE 1, LAST 
0 8 1 0 0  PROCDEF  REWRT 
0 8 2 0 0  PARAM $ L I N E  
"B~j""""  "_ " 

08400  DEFAULT  SYSINX=E 
0 8 5 0 0   E D I T  SOURCE.MNPG$$ 

078"mt;t- ptwm$$J 

4l-ww3" " P* R € F f w "  " - "- 

. . _ _ _  -. - - - - . . - .  . "" __.___-__ 

"_ " 

~ x " - $ t + ~ . - L - A S T "  ". - - _ _ _ - ~ - - - -  "" . - " 

08700-IF l $ ~ ~ ~ ~ l = ' l ~ ~ ' ; ~ ~ ~ ~ ~ ~ ~  ' ***FORTRAN STATEMENTS?' 
0 

0 8 8 0 0   I F   ' $ L I N E " = '  1 0 0 '  ; L I ST  100,  LAST 

09000 INSERT  $L INE 
09040- PROCDEF VASP$$ 

I , .  .r n - 
U L I  o m  - IJ " "____I ~ 

" .1 . . "" -_ ____ "" -~ - " 

! " E E E F 1 b Z $ $  
0 9 2 0 0  PARAM $ I NPUT, $OUTPUT 

09500LOAD  BLKDTA$$ 

09700   IF   ' $ INPUT '   = " ;D ISPLAY  ' INPUT FROM TERMINAL' 
0 9 8 0 0   I F   ' $ O U T P U T '  '=";DDEF FTO6FOOl,,$OUTPUT;DISPLAY 'OUTPUT PLACED I N  DATA  SET  $OUTPUT' 

i F  '$WFWUT' - !';ui- "m" - 

66666"- w-~";m€F--~FTofFuoT;, $ 1  mpuT 
; ~, PLAY. ", 'TNPLIT"FROMD"~~A- s-E.T" Sr .~Pm'-"--~-- - 

Figure 12.- List of data  set VASPPROC - Continued. 



10000-L I ST 
10100 END 

10300 VASP  PROCEDURES NOW READY.  DO ' A S E N D '  TO M A K E  THEM A V A l   L A B L E  
10400  LOGOFF 

..... .. 
U lHLh 1 

Figure 12.- List of data set VASPPROC - Concluded. 



REFERENCE 

1. Kalman, R. E.;  and Engler, T. S.: A User’s Manual for the  Automatic  Synthesis Program 
(Program  C). NASA CR-475, 1966. 

166 NASA-Langley, 1971 - 8 A-3882 



N A T I O N A L   A E R O N A U T I C S   A N D   S P A C E   A D M I S T R A T I O N  
W A S H I N G T O N ,   D . C .  20546 

P O S T A G E   A N D   F E E S   P A I D  

N A T I O N A L   A E R O N A U T I C S   A N D  

S P A C E   A D M I N I S T R A T I O N  

~ 

O F F I C I A L   B U S I N E S S  
P E N A L T Y  FOR P R I V A T E   U S E  5300 

FIRST CLASS MAIL USMAIL 

0 1 7 B  01 C2 UL 0 8  711008 S00903DS 
DEPT DP THE AIR FORCE 
AF BEAPONS LAB  (AFSC) 
TECH LIBRARY/WLOLJ 
ATTN: E L O U  BOWMAN, CHIEF 
RIRTLAND AFB NM 87117 

POSTMASTER: If Undeliverable (Section 15: 
Postal Manual) Do Not Reru 

~~ ~ "_ -_ - -" I " 

" T h e  aeronantical  and  space  activities of the  United  Stntes  shall  be 
conducted so as to  contribnte . . . to   the  expansion of h z m a n  knowl- 
edge of phenontena in the  ntnlosphere  altd  space. The   Admin i s tmt ion  
shnll provide  for the widest  prncticable  altd  appropriate  dissenzi?tatio~z 
of inforntntion  coltcerning  its  actizdies  and  the  resdts  thereof." 

 NATIONAL -.. AERONAUTICS A N D  SPACE  ACT OF 1958 

:_. .s ' 

SCIENTIFIC AND TE~'H\SICAL . . .  PUBLICATIONS 
.. :... 
"b . .  . 
9 : , I ., .i 

TECHNICAL  REPORTS: Scientific  and- 
technical information considered impo&nt, ', . ' pubiished in a foreign  language considered 
Gmplete,  and  a  lastingcontribution  to2xisting. ., ;;' :.?o:,merit NASA  distribution  in  English. 
knowledge. 

: L ,  _ -  
. .TX~HNICAL  TRANSLATIONS:  Information 

I .  

, I  4 

. '  3 ' ;  ,',, : . '  ' 

' TECHNICAL  NOTES:  Informati@ less br&i,:-f: ' . .derived  from or of value to  NASA activities. 
in scope but nevertheless of importance as 3 ,.' ::: :. Publications  include  conference  proceedings, 

.. . . e. ,:- SPECIAL PUBLICATIONS: Information 

contribution to existing knowledge. , .. ., . ~ ,' monographs,  data  compilations,  handbooks, 
. , . . ..' ;,< sourcebooks, and special  bibliographies. 

TECHNICAL MEMORANDUMS: . , _  
i t .  . , 

Information  receiving  limited distrib&;ion ' .' TECHNOLOGY  UTILIZATION 
because of preliminary  data, security  clissifica- ' ' PUBLICATIONS:  Information on technology 
tion, or other reasons. 

CONTRACTOR'REPORTS: Scientific and 
interest  in  commercial  and  other  non-aerospace 
applications.  Publications  include  Tech  Briefs, 

technical inforsation  generated  under  a  NASA  Technology utilization R~~~~~~ and 
contract or grant  and considered an importaxit 
contribution  to  existing knowledge. 

Technology Surveys. 

. .  
:<" used by NASA  that may be of particular 

' .. 

. .. 
.. . 
p . . .  . .  , 

Details on the availability of 'Ihese  publications may be obtained  from: 

.- SCIENTIFIC  AND  TECHNICAL  INFORMATION  OFFICE 

. .  

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION 
Washington, D.C. PO546 


