NASA TECHNICAL

| NASA TM X-2417
MEMORANDUM

— — e L

a.l

OAN COPY: RETUI
LOAT AFwL (Dou L)
KIRTLAND AFB, I

i

NASA TM X-2417

USERS MANUAL FOR
THE VARIABLE DIMENSION
AUTOMATIC SYNTHESIS PROGRAM (VASP)

‘ .jj‘_ by Jobn S. White and Homer Q. Lee

Wty Ames Research Center
" Moffest Field, Calif. 94035

j"5A---:-f:,_NI\TIONAI. AERONAUTICS AND SPACE ADMINISTRATION < WASHINGTON, D. C. - OCTOBER 1971.

TECH LIBRARY KAFB, NM

T

7rﬁeport No. C T H:".i Gove?nnTer;t Accession No. 3. Recipient’s Catalog No.
NASA TM X-2417
"4 Title and Subtite 5. Report Date
USERS MANUAL FOR THE VARIABLE DIMENSION AUTOMATIC October 1971
SYNTHESIS PROGRAM (VASP) 6. Performing Organization Code
" 7. Author(s) 8. Performing Organization Report No.
John S. White and Homer Q. Lee A-3882
i 10. Work Unit No.
9. Performing Organization Name and Address 125—-19-20-02
NASA Ames Research Center 11, Contract or Grant No
Moffett Field, Calif. 94035 : ’
13. Type of Report and Period Covered
12, Sponsoring Agency Name and Address Technical Memorandum
National Aeronautics and Space Administration -
Washington, D. C. 20546 14. Sponsoring Agency Code
15. Supplementary Notes
16. Abstract

VASP is a Variable dimension Fortran version of the Automatic Synthesis Program, a computer implementation of the
Kalman filtering and control theory. It consists of 31 subprograms for analysis, synthesis, and optimization of complicated
high-order time-variant problems associated with modern control theory. These subprograms include operations of matrix
algebra, computation of the exponential of a matrix and its convolution integral, solution of the matrix Ricatti equation,
and computation of dynamical response of a high-order system.

Since VASP is programmed in Fortran, the user has at his disposal not only the VASP subprograms, but all Fortran
built-in functions and any other programs written in the Fortran language. All the storage allocation is controlled by the
user so the largest system that the program can handle is limited only by the size of the computer, the complexity of the
problem, and the ingenuity of the user. No accuracy was lost in converting the original machine language program to
Fortran.

The principal part of this report contains a VASP dictionary and some example problems. The dictionary contains a
description of each subroutine and instructions on its use. The example problems give the user a better perspective on the
use of VASP for solving problems in modern control theory. These example problems include dynamical response, optimal
control gain, solution of the sampled data matrix Ricatti equation, matrix decomposition, and pseudo inverse of a matrix.
Listings of all subroutines are also included.

The VASP program has been further adapted to run in the conversational mode on the Ames 360/67 computer. The
necessary procedures are given in appendix C.

17. Key Words (Suggested by Author(s) } 18. Distribution Statement
Matrix computation
Optimal control Unclassified — Unlimited
Kalman filtering
1_9 . Securit): Classif. (of this report} 20. Security Classif. (of this page) 21. No. of Pages 22, Price®

Unclassified Unclassified 167 $3.00

.For sale by the National Technical Information Service, Springfield, Virginia 22151

TABLE OF CONTENTS

FEATURES OF THE PROGRAM
Universal Features . _,

EXAMPLE USES OF VASP PROGRAM
Example 1 — Transient Response,
Example 2 — Transient Response Using TRNSI,
Example 3 — An Optimum Control Problem .,
Example 4 — Sampled Data Ricatti Solution . . ., ,
Example 5 — Matrix Decomposition
Example 6 — Use of the Pseudoinverse Routine . . . | |

APPENDIX A — DESCRIPTION OF INTERNAL SUBROUTINES
APPENDIX B — LISTINGS OF ALL VASP SUBROUTINES | |

APPENDIX C — USE OF VASP ON AMES TSS

28
28
34
4
49
53
64

69

90

iii

USERS MANUAL FOR THE VARIABLE DIMENSION AUTOMATIC SYNTHESIS
PROGRAM (VASP)
John S. White and Homer Q. Lee

Ames Research Center
SUMMARY

VASP is a Variable dimension Fortran version of the Automatic Synthesis Program, a computer
implementation of the Kalman filtering and control theory. It consists of 31 subprograms for analy-
sis, synthesis, and optimization of complicated high-order time-variant problems associated with
modern control theory. These subprograms include operations of matrix algebra, computation of
the exponential of a matrix and its convolution integral, solution of the matrix Ricatti equation, and
computation of dynamical response of a high-order system. '

Since VASP is programmed in Fortran, the user has at his disposal not only the VASP
subprograms, but all Fortran built-in functions and any other programs written in the Fortran
language. All the storage allocation is controlled by the user so the largest system that the program
can handle is limited only by the size of the computer, the complexity of the problem, and the
ingenuity of the user. No accuracy was lost in converting the original machine language program to
Fortran.

The principal part of this report contains a VASP dictionary and some example problems. The
dictionary contains a description of each subroutine and instructions on its use. The example prob-
lems give the user a better perspective on the use of VASP for solving problems in modern control
theory. These example problems include dynamical response, optimal control gain, solution of the
sampled data matrix Ricatti equation, matrix decomposition, and pseudo inverse of a matrix.
Listings of all subroutines are also included.

The VASP program has been further adapted to run in the conversational mode on the Ames
360/67 computer. The necessary procedures are given in appendix C.

INTRODUCTION

The VASP, the Variable dimension Fortran version of the Automatic Synthesis Program, is the
new Fortran IV version of the ASP, the Automatic Synthesis Program. It is intended to implement
the Kalman filtering and control theory. Basically, it consists of 31 subprograms for solving most
modern control problems in linear, time-variant (or time-invariant) control systems. These subpro-
grams include operations of matrix algebra, computation of the exponential of a matrix and its con-
volution integral, and the solution of the matrix Riccati equation. The user calls these subprograms
by means of a FORTRAN main program, and so can easily obtain solutions to most general prob-
lems of extremization of a quadratic functional of the state of the linear dynamical system.

Particularly, these problems include the synthesis of the Kalman filter gains and of the optimal
feedback gains for minimization of a quadratic performance index.

The VASP is an outgrowth of ASP, which was developed for NASA under contract with the
Research Institute for Advanced Studies, a division of the Martin Company. There are two urgent
reasons for reprogramming ASP into the present Fortran version. First, ASP was programmed in
FAP (Fortran Assembly Program) and could be used only on the IBM 7090-7094. Second, many
complicated time-variant analysis, synthesis, and optimization problems tax the capability of the
ASP and other programs written in the Fortran language. Fortran IV language makes the program
adaptable to a much wider class of computers and expands its versatility.

The VASP is based extenéively on a Fortran version of ASP, called FASP (Fortran ASP) by its
programmer Mr. Don Kesler of Northrop, Norair. "

Two basic questions the user will inevitably ask are:

(1) How accurate is VASP compared with ASP?
(2) What is the highest order of system that VASP can handle?

The answer to these questions depends on the number of significant digits carried by the user’s
computer and the amount of available storage in the computer. To answer the first question in a
more concrete way, the check cases given in the ASP manual were duplicated and the results were
compared with those in the manual. The accuracy of VASP was found to be the same as that of
ASP. The second question can best be answered by first noting some of the basic differences
between FASP and VASP. The pertinent difference between the two is that VASP has variable
dimensioning and more efficient storage. To allow a computer to handle the highest order system
possible, all matrix storage is assigned by the user’s main program. Consequently, as an illustrative
example, a 125,000-byte version of the IBM 360/50 can easily determine the solution of the matrix
Riccati equation for a 30-order system (perhaps 40, depending on the size of other related matrices).
Another basic difference between these two Fortran versions is that VASP diagnostics are more

self-explanatory.

To recapitulate, the objectives of VASP are flexibility and versatility so that it can serve the
maximum number of users. To achieve these goals FASP was revised extensively so as to have, for
example, variable dimensioning, more efficient storage, and more self-explanatory diagnostics.

In this report, no attempt will be made to discuss any details of the theoretical background and
the algorithms associated with the appropriate subprograms since they are well documented in the
ASP manual, an NASA contractor report (NASA CR—-475, 1966). This report does not repeat
information from the contractor report, and the user is urged to consult that manual so that he may

utilize VASP proficiently.

This program can be obtained from the centralized facility known as COSMIC, located at the
Computer Software Management and Information Center, Barrow Hall, University of Georgia,
Athens, Georgia, 30601.

FEATURES OF THE PROGRAM

The advantages of VASP over ASP are (1) a more versatile programming language, (2) a more
convenient input/output format, (3) some new programs, and (4) variable dimensioning.

Since VASP is programmed in Fortran, it can be used in a very large class of machines.
Moreover, as VASP is part of a larger main program, all the Fortran built-in functions are available
to the main program. Furthermore, any subroutine available in the Fortran language may be used.
In other words, the user has at his disposal the combined capabilities of VASP, Fortran built-in
functions, and all other subroutines written in Fortran.

The input/output subroutines have been changed and now consist of READ, RDTITL, and
PRNT. In addition, LNCNT has been added to control paging. The VASP allows the user the
option of using the existing standard VASP format, or of supplying the output format of his own
choice. For a more detailed explanation of how to exercise this latter option, see the dictionary
entry under PRNT (p. 10), or Example 2.

Our experience with ASP is that certain groups of statements are often repeated. For the
user’s convenience, these groups of statements are incorporated as new subroutines in the VASP.
They are AUG, UNITY, and SCALE. Detailed explanations of them are available in the VASP
dictionary in this report.

To utilize the storage space as efficiently as possible, the subroutines are written with variable
dimensioning, with the storage allocation controlled by the user’s calling program. Consequently,
it is necessary to provide some dummy storage space as a part of the argument of the subroutine.
From the user’s point of view, the price for efficient storage is inconvenience. All the subroutines
are written in double precision for adequate accuracy; that is, all matrix and scalar variables, except
integers, are assumed to be in double precision.

Universal Features
The arguments in the subroutines are arranged in the following order:
Input arguments
Output arguments
Dummy arguments
These are also arranged so that matrices occur before scalars.
An array of length two must be allocated by the user to store the dimensions of the matrix,

and this array must be included in the subroutine call statements. For example, the add subroutine

is called by
I

CALL ADD(A,NA,B,NB,C,NC)

and performs the matrix operation

C=A+B

Here NA, NB, and NC are arrays of length two which contain the dimensions of matrices A, B, C,
respectively. In other words, the numbers of rows and columns of matrices A, B, and C are stored in
NA, NB, and NC, respectively. Specifically, the number of rows of A is stored in NA(1) and the
number of columns of A, in NA(2).

In general, the dimension array associated with an input matrix contains input information to
the subroutine, while that associated with an output matrix contains output information. The dic-
tionary shows the few cases where this rule is violated. In the example above, dimension arrays NA
and NB! are inputs (since matrices A, B are inputs) and must be loaded before entering this sub-
routine. On the other hand, NC is an output, since C is an output. That is, the values of NC(1)
and NC(2) are computed in the subroutine and are available to the calling program upon return.

When a dummy array is required, it must be appropriately dimensioned in the calling program.
The required size is given in the appropriate dictionary entry.

Most of the routines check the array dimensions for compatibility and reasonableness, and
check for adequate storage available in the DUMMY array. The ‘“‘reasonableness’ test is to see
that all matrix dimensions are greater than zero, and that the product of the matrix dimensions is
less than the constant MAXRC. In the program MAXRC has been set at 6400. It is recommended,
however, that the user reset MAXRC to equal the size of his matrices, and thus prevent accidental
overflowing of the matrix dimensions. If the matrices are incompatible or unreasonable, or if a
mathematical error is found, a self-explanatory error message is printed, and no further computations
are made in that subroutine. However, computation does go on to the subsequent steps, which are
likely to be wrong also. After 10 such errors, the program is terminated.

The VASP program uses double-precision arrays, so that the user’s main program must define
each matrix to be double precision, and to contain a sufficient number of cells to accommodate the
matrix. The dimension statement may classify the array as one- or two-dimensional, or even more.

For example, to use the matrix A, which isa 5 X 5 matrix, any of the following dimension
statements will be adequate:

DOUBLE PRECISION A(25)

DOUBLE PRECISION A(S,5)
DOUBLE PRECISION A(3,10)
DOUBLE PRECISION A(100)

The important factor is the total number of cells reserved, and the user may reserve more cells than
the matrix requires, or, conversely, he may put a smaller matrix than originally planned in a specific
array. The VASP program stores data in an array as a string of columns, just as Fortran does.

! The convention used here, and throughout this report, is that the name of a dimension array is obtained by
prefixing the letter N to the matrix name.

4

- ‘;::—::"_@

However, it stores the matrix A according to the dimension given in NA, whereas Fortran stores
A according to the dimensions in the Fortran dimension statement.?

Consider the following example. The Fortran statements are:

DOUBLE PRECISION A(S,5), B(5,5), C(5,5)
DIMENSION NA(2), NB(2), NC(2)
CALL READ(3,A,NA,B,NB,C,NC,...)

The first card in the data deck specifies NA = 5,5, followed by cards with 25 data words for A; then
NB = 4,4, followed by 16 data words of B; finally, NC = 6,6, followed by 36 data words of C. Since
the storage of data in VASP is controlled by the VASP dimensioning, the 25 words for A will

exactly fill the reserved storage and the 16 words for B will fill the first 16 cells of the storage
reserved for B. The 36 words for C will completely fill the reserved storage for C and overflow

into something else. The user can prevent this overflow by setting the test constant MAXRC to 25.
The error test in the READ subroutine will note that the product of NC(1) and NC(2) is greater than
MAXRC, and will return an error message. This selection of MAXRC will limit all other VASP arrays
to 25, so it is frequently desirable to dimension all arrays the same.

Occasionally the user may wish to refer to a single element of a matrix. Since FORTRAN
statements use the FORTRAN dimension statement, a reference to B(4,4) in the previous example
will select the 19 element in the B storage. However, VASP, using the VASP dimension, has stored
B(4,4) in the 16 element of B, which is not the same. To actually select a specific element, say
B(i,j), one must refer to B((j—1)*NB(2)+i,1). In the above example, references to A(i,j) will be
correct, since the FORTRAN and VASP dimensions are the same.

System-Dependent Features

Two subroutines in the VASP package are system dependent. The first is BLKDTA. Data
statements in this subroutine control the printing. They require a printer with at least 115 charac-
ters per line, and place 45 lines on each page. These requirements may be changed as needed. The
second is ASPERR, which calls a system subroutine for error tracing. The description of ASPERR
indicates any necessary changes to match the system.

The VASP programs frequently generate very small numbers. The computer operating system

may detect these small numbers as underflows, and print error messages. If so, the user should
arrange to turn off the underflow error messages.

THE VASP DICTIONARY

A detailed description of all the subroutines is given in this dictionary. Each entry is
organized into subheadings that describe the subrourine and explain how to use it. Other

2The storage in VASP is also compatible with the storage of ‘““general”” matrices in the IBM scientific subroutine
package.

subheadings, such as motivation and remarks, are sometimes added to offer the user a better
understanding of the theoretical background of the subroutine.?

The dictionary proper lists only those routines that the user is expected to call directly. Several
additional subroutines, used internally, are also a part of VASP. The user may, however, wish to call
these routines himself, since they are quite flexible. These additional routines are described in
appendix A, and a complete listing of all programs is given in appendix B.

Several procedures have been written to facilitate the use of VASP on Ames time-share system.
Their usage and listings are given in appendix C.

Table 1 lists all subroutines with their calling sequence, and the TSS procedures, for easy
reference, while table 2 lists the approximate storage used by each of the VASP subroutines when
compiled on the NASA Ames 360/67, OS system. Table 2 also lists the external references for each
subroutine.

3Some of the subroutines are almost direct copies from the Northrop FASP. The detailed description of the
theory is either obvious, or is given in the ASP manual (NASA CR—475). Other routines were written by one of the
authors. These were quite simple, and needed little description. Subroutines ANDRA, BDNRM, DECOM, and PSEU
were written by John Andrews, Information Systems Company. Since no description of these subroutines is available
elsewhere, a detailed description of their theory and usage is included. Because there were various programmers, the
nomenclature internal to the various subroutines is not completely consistent.

6

TABLE 1.— SUBROUTINE CALL STATEMENTS IN VASP

| 1. CALL REAIXI,A,NA,B,NB,C.NC,D,ND.E,NE)

2. CALL RDTITL

3. CALL PRNT(A,NA,NAM,IP)

4. CALL LNCNT(N)

5. CALL ADD{A,NA,B)NB,C,NC)

6. CALL SUBT(A,NA,B,NB,C,NC) ‘

7. CALL MULT(A,NA,B,NB,C,NC) :

8. CALL SCALE(A,NA,BNB,S)

9. CALL TRANP(A,NA,BNB)

10. CALL INV(A,NA,DET,DUM)

11. CALL NORM(A,NA,ANORM)

12. CALL UNITY(A,NA)

13. CALL TRCE(A,NA,TR)

14. CALL EQUATE(A,NA,B,NB)

15. CALL JUXTC(A,NA,B,NB,C,NC)

16. CALL JUXTR(A,NA,B,NB,C,NC)

17. CALL EAT(A,NA,TT,B,NB,C,NC,DUMMY,KDUM)

18. CALL ETPHI(A,NA,TT,B,NB,DUMMY KDUM)

19. CALL AUG(F,NF,G,NG,RI,NRI,H,NH,Q,NQ,C,NC,Z,NZ i)

20. CALL RICAT(PHI,NPHI,C,NC,NCONT,K,NK,PT,NPT,DUM,KDUM)

21. CALL SAMPL(PHI,NPHI,H,NH,Q,NQ,R,NR,P,NP,K,NK,NCONT,DUM,KDUM)
22. CALL TRNSI(F,NF,G,NG,J,NJ,R NR,K,NK,H,NH,X,NX,T,DUMMY,KDUM)
23. CALL PSEUDO(A,NA,B,NB,DUM,KDUM)

24. CALL DECGEN(R,NR,G,NG,H,NH,DUM,KDUM)

24a. CALL DECSYM(R,NR,G,NG,H,NH,DUM,KDUM)

Programs 25 through 31 are called internally and need not be used by the programmer. They
are described in appendix A.

25. CALL READI(ANANZNAM)

26. CALL ASPERR

27. BLKDATA (nonexecutable)

28. CALL PSEU(A,B,C.EE,DEP,IP.D)

28a. CALL PSEUP(A,B,C,EE,DEP,IP,D)

29. FUNCTIQN BDNRM(NR,CT.EE,D,KRV)
29a. CALL TTRM(NR,CT,EE)

30. CALL ANDRA(B,T,DPR,IP)

31. CALL DECOM(A,B,C.E,JL.DCM KP,D)

The remainder of the items are procedures to facilitate the use of VASP on the Ames TSS.

32. VASP$$ [inputdsname] [,outputdsname]

33. CHNGIN [inputdsname]

34. CHNGOUT [outputdsname]

35. CMPL

36. CLRVASP

37. CONVASP [matrixsize] [,$A=name] [,$B=name] [,$C=name] [,$W=name] [,$X=name] [.$Y=name] [,$Z=name]
38. RECMPT
39. REWRT [n]

TABLE 2.— APPROXIMATE STORAGE REQUIREMENTS AND EXTERNAL REFERENCES

Storage
Subroutines decimal bytes External references
1. READ 1000 READI, PRNT*
2. RDTITL 400 LNCNT
3. PRNT 1400 *
4. LNCNT 500 None
5. ADD 800 *
6. SUBT 800 *
7. MULT 1100 *
8. SCALE 700 *
9. TRANP 800 *
10. INV 2500 *
11. NORM 1000 *
12. UNITY 700 SCALE*
13. TRACE 700 *
14. EQUATE 700 *
15. JUXTC 1000 *
16. JUXTR 1100 *
17. EAT 3200 ADD, MULT, SCALE, NORM, UNITY, EQUATE*
18. ETPHI 2300 ADD, MULT, SCALE, NORM, UNITY, EQUATE*
19. AUG 3300 MULT, TRANP, EQUATE*
20. RICAT 5100 ADD, MULT, INV, EQUATE, PRNT*
21. SAMPL 3700 ADD, SUBT, MULT, TRANP, PSEUDO, PSEU, BDNRM,
ANDRA, PRNT*
22. TRNSI 5000 ADD, EAT, SUBT, MULT, PRNT, EQUATE*
23. PSEUDO 900 PSEU, BDNRM, ANDRA¥*
24. DECGEN 2600 MULT, TRANP, INV, NORM, EQUATE, DECOM, PSEU,
BDNRM, ANDRA*

25. READI1 800 PRNT*
26. ASPERR 400 None
27. BLKDATA None None
28. PSEU 5900 MULT, NORM, BDNRM, ANDRA*
29. BDNRM 1500 MULT, NORM
30. ANDRA 2000 LNCNT
31. DECOM 1500 MULT, NORM, PSEU, BDNRM, ANDRA*

COMMON/MAX/

COMMON/LINES/ 200

COMMON/FORM/

TOTAL 53,600

*LNCNT and ASPERR are additional external references.

1. READ
DESCRIPTION

This subroutine reads 1 to 5 matrices from cards, along with the names and dimensions, and
prints the same information. For each matrix the routine first reads a header card containing a four-
character title, followed by two integers giving the row and column size of the matrix, using format
(A 4, 4x, 214). Then the matrix data are read using READ1, each row of the matrix starting on a
new card, using format (8F10.2). If the card data is in exponential form, it must use a D exponent.
The matrix title and the matrix are then printed using subroutine PRNT.

If the header card contains no row and column size (i.e., n = 0), then the matrix in storage is
unchanged, no data cards are read for that matrix, and the previously stored matrix is printed.

USAGE

CALL READ(I,A,NA,B,NB,C,NC,D,ND,E,NE)
Input Arguments

Control constant: I
where 1 is an integer from 1 to 5 and indicates the number of matrices to be read. If I is less than
5, the extra matrices in the call list may be dummy variables, or repeated references to the same
matrix; for example,

CALL READ(1,A,NA,A,NA,A,NA,ANA A, NA)

Output Arguments

Matrices: The first I of the matrices A,B,C,D,E
Dimension arrays: The first I of the arrays NA,NB,NC,ND NE
2. RDTITL
DESCRIPTION

This subroutine reads a single card in hollerith format, and loads it into the array TITLES. It
then calls LNCNT(100). This latter program in turn skips the printer to the next page, prints the
hollerith information in the array TITLES, and positions the output to print next on line 3.
USAGE

CALL RDTITL

It has no arguments.

3. PRNT

DESCRIPTION

This subroutine prints a single matrix, with or without a title line, and either on the same page
or a new page. The matrix is printed using format (1P7D16.7) for the first line, and (3x,1P7D16.7)
for all subsequent lines. The “3x’” indents continuation lines for easier reading.

REMARKS

The standard format is stored in arrays FMT1 (for the first line) and FMT?2 (for subsequent
lines) both of which are stored in labeled COMMON as follows:

COMMON/FORM/NEPR, FMT1(6), FMT2(6)

where NEPR is the number of columns of data to be printed (7, in the standard case). The standard
format is loaded into COMMON in the BLKDATA program. If other formats are desired, they can
be obtained either by changing the BLKDATA program, or by having the users main program change
the contents of COMMON.

CAUTION
In writing a data statement for the formats, put FMT1 and FMT2 in separate statements, as in

the BLKDATA program. If they are loaded in one statement, they will probably load incorrectly,
because of the dimensionality of FMT1 and FMT2. Also NEPR must be consistent with the numbers

in FMT1 and FMT?2.
USAGE
CALL PRNT(A,NA,NAM,IP)

Input Arguments

Matrix: A
Dimension array: NA
Matrix name: NAM

If NAM = 0, a blank name will be printed. NAM should contain four
hollerith characters. It can be written in the calling sequence as
4HAbDbbbD. If written 1HA, the last three characters of the printed
name will be garbage.
Control constant: IP= 1 heading, same page

2 heading, new page

3 no heading, same page

4 no heading, new page

Output Arguments

None

4. LNCNT
DESCRIPTION

This subroutine keeps track of the number of lines printed, and automatically pages the output
as required. It is completely internal, and the user need not refer to it unless he has WRITE state-

ments of his own. In that case, the user may (should) put the statement CALL LNCNT(N) before
each WRITE statement, where N is the number of lines to be printed.

Page length is controlled by the variable NLP set in the BLOCK DATA program to 45. This is
an installation-dependent variable, and may be changed as necessary.

The subroutine provides one line of print at the top of each page. This line contains 92
characters, of which the first 72 are available for the programmers use and may be loaded by use of
RDTITL. The remainder contain “VASP PROGRAM.” The 92 characters are contained in the
array TITLES, which is, in turn, contained in the COMMON area LINES. If N> NLP, the printer
will automatically skip to the top of the next page, and print the title line.

USAGE

CALL LNCNT(N)

Input Arguments

Constant N = number of lines to be printed

Output Arguments

None
5. ADD
DESCRIPTION

This subroutine computes the matrix sum
C=A+B
USAGE
CALL ADD(A,NA,B,NB,C,NC)
Input Arguments

Matrices: AB
Dimension arrays: NA,NB

11

Output Arguments

Matrices: C
Dimension array: - NC
REMARK

Matrices A and C may share the same storage space or matrices B and C may share the same
storage space.
6. SUBT
DESCRIPTION
This subroutine computes the matrix difference
C=A-B
'USAGE
CALL SUBT(A,NA,B,NB,C,NC)
Input Arguments

Matrices: A.B
Dimension arrays: NA,NB

Output Arguments

Matrices: C
Dimension array: NC
REMARK

Matrices A and C may share the same storage space or matrices B and C may share the same
storage space.

7. MULT
DESCRIPTION

This subroutine computes the matrix product
C=A B
12

USAGE
CALL MULT(A,NA,B,NB,C,NC)
Input Arguments

Matrices: AB
Dimension arrays: NA,NB

Output Arguments

Matrix: C
Dimension array: NC
8. SCALE
DESCRIPTION

This subroutine multiplies every element of matrix A by S and stores the resulting value in B,
that is,

where S is a scalar.
USAGE
CALL SCALE(A,NA,B,NB,S)

Input Arguments

Matrix: A
Dimension array: NA
Scalar: S

Note: If S is a constant, it must be written as a double precision constant (i.e., 2.D0, 0.DO,
etc.).

Output Arguments

Matrix: B
Dimension array: NB

Note: A and B can be the same matrix.

13

9. TRANP
DESCRIPTION
This subroutine rearranges the elements of matrix A so that
B=A'

or
ij—hi
USAGE
CALL TRANP(A,NA,B,NB)

Input Arguments

Matrix: A
Dimension array: NA

Output Arguments

Matrix: B
Dimension array: NB
10. INV
DESCRIPTION

This subroutine computes the matrix inverse of A and stores this inverse in A, that is,
A=A

Note that after the inversion is performed, the values stored in the original matrix A are destroyed
and replaced by the corresponding elements of its inverse.

USAGE
CALL INV(A,NA,DET,DUM)
Input Arguments

Matrix: A
Dimension array: NA

14

Output Arguments

Matrix: A, the inverse of the original A
Scalar: DET, the determinant of A

Dummy Argument
Matrix: DUM, work vector of length 2*NA(1)
This subroutine is a slightly modified copy of the inverse routine given in the IBM scientific
subroutine package.
11. NORM
DESCRIPTION

This subroutine computes the norm of the matrix A as follows:

[IAl} = min (mjgix ? Ajjs m?x JE Aij)
USAGE
CALL NORM(A,NA,ANORM)

Input Arguments

Matrix: A
Dimension array: NA

Output Arguments

Scalar: ANORM
12. UNITY
DESCRIPTION

This subroutine computes the unit matrix

USAGE

CALL UNITY(A,NA)

15

Input Argument
Dimension array: NA
Output Argument

Matrix: A

13. TRCE
DESCRIPTION
This subroutine computes the trace of the matrix A
n
TR= 2 aj;
=1
USAGE
CALL TRCE(A,NA,TR)
Input Arguments

Matrix: A
Dimension array: NA

Output Argument

Scalar: TR

14. EQUATE
DESCRIPTION
This subroutine copies the values stored in matrix A into matrix B as follows:
B=A
USAGE
CALL EQUATE(A,NA,B,NB)
Input Arguments

Matrix: A
Dimension array: NA

16

Output Arguments

Matrix: B
Dimension array: NB
15. JUXTC
DESCRIPTION

This subroutine takes the m X n matrix A, the m X p matrix B, and forms the m X (nt+p)
matrix

C=[A B]
USAGE
CALL JUXTC(A,NA,B,NB,C,NC)
Input Arguments

Matrices: AB
Dimension arrays: NA,NB

Output Arguments

Matrix: C
Dimension array: NC
16. JUXTR
DESCRIPTION

This subroutine takes the m X n matrix A, the p X n matrix B, and forms the (m+p) X n
matrix

USAGE

CALL JUXTR(A,NA,B,NB,C,NC)

17

Input Arguments

Matrices: AB
Dimension arrays: NA,NB
Output Arguments
Matrix: C
Dimension array: NC
17. EAT
DESCRIPTION

This subroutine computes

B = At
and
t
C= f eAT dr
o
For a linear time-invariant system, the system equation is
x = Ax + Gu
Then,
t
x(t) = eAtx0 + f eAT dr) Gu
0
or

x(t) = Bxy + CGu
See ASP manual, page 92, for reference.

USAGE

CALL EAT(A,NA,TT,B,NB,C,NC,DUMMY ,KDUM)

Input Arguments

Matrix: A
Dimension array: NA
Scalar: TT

where TT is the value of t used in equations *

18

(*)

Output Arguments

Matrices: B,C
Dimension arrays: NB,NC

Dummy Arguments

Matrix: DUMMY
Constant: KDUM

Note: KDUM contains the size of the DUMMY matrix, which must be at least 2*NA(1)*NA(2).

18. ETPHI
DESCRIPTION
This subroutine computes the matrix exponential
B = At
See ASP manual, page 92, and also EAT, page 18 of this manual for reference.
USAGE
CALL ETPHI(A,NA,TT,B,NB,DUMMY KDUM)

Input Arguments

Matrix: A
Dimension array: NA
Scalar: TT

where TT is the final value of time.
Output Arguments

Matrix: B
Dimension array: NB

Dummy Arguments

Matrix: DUMMY
Constant: KDUM

Note: KDUM contains the size of the DUMMY matrix, which must be at least 2*NA(1)*NA(2).

19

19. AUG
DESCRIPTION

This subroutine computes

C=R1G
and
—F +GR!'G'
Z=
+H'QH +F

The matrices C and eZt are then used in RICAT to calculate the covariance and weighting matrices.

These matrices arise from a linear system of the form

x=Fx+Gu

with output equation

and cost function
J= f(x'H'QHx + u'Ru)dt
See ASP manual, page 212, for reference.

In the special case where

then,

and the cost function is
J= f (x'Qx + u'Ru)dt

A control index 1I is used to distinguish the two cases.

20

REMARKS
The inputs to this program are the matrices F, G, RI, H, Q.
(a) F must be square.
(b) Q, R must be symmetric.
(¢) R must be invertible.
The Fortran symbol for R! is RL.
USAGE

CALL AUG(F,NF,GNG,RI,NRI,H,NH,Q,NQ,C,NC,Z,NZ,II)

Input Arguments
Matrices: F,G,RILH,Q
Dimension arrays: NF,NG,NRI,NH,NQ
Control constant: 11

II+#1 General case
I1=1 Special case, H is not used in AUG

Output Arguments

Matrices: CZ
Dimension arrays: NC,NZ
20. RICAT
DESCRIPTION

This subroutine computes P(t) and K(t) by the following equations:
P(t+7)=[05; +0,,P(1)] [0, +8,,P(D]
K(t) = CP(t)
See ASP manual, page 9, for reference.

MOTIVATION

A standard control problem will be used to illustrate how this matrix Riccati equation arises.

Given the system equation,
x=Fx+Gu

the output equation,

21

y = Hx
and the performance index,
J= f ! (x"H'QHx + u'Ru)dt + x"(T)H'S(T)Hx(T)
where Q,R,S are symmetric m:trices and R is invertible. We wish to find a control law which

minimizes the performance index J. Introducing the auxiliary variable A(t) into the system of
equation, we have the following Euler-Lagrange equations,*

[« F —-GR™1G'

A ~H'QH —F'

B 1 X
A A

I
|
N

which have for a solution
x(1) Xq X0

A() A A,
The optimal control law is
u(t) = R G'\(b)

Letting P(t) be a linear transformation from the state variable x(t) to the auxiliary variable A(t),
that is,

A(t) = P(t)x(t)
we obtain from the Euler-Lagrange equation the following Riccati equation,
~P=F'P+PF — PGR'G'P+ H'QH
where the initial condition for this differential equation is
P(t) = H'S(T)H

The optimal control, in terms of the state variable x(t), is

u(t) = —K(t) x(t) = =R G'P(t)x(t)

4 AUG computes Z rather than —Z, so that the exponentiation for 6 uses positive time increments.

22

and the optimal feedback gain K(t) is

K(t) = —R1G'P(1)

Letting
C=R1G
then,
K(t) = CP(t)
REMARKS

1. This subroutine will be terminated when

n n
l:Z |Pii(t +7)— Pii(t)[l/[z| Pii(t + 'r)l] < € where e= 107
i=1 1

i=
or NCONT(2) steps have been taken.

2. Matrices P(t) and K(t) will be printed out every NCONT(1) steps, as controlled by
NCONT(3).

3. Matrices8,,,8,5,0,,,0,, aresubmatrices of 8. Their dimensions are n X n where n is

the order of the system (i.e., the dimension of the F matrix). They are partitioned from the 0
matrix as follows:

The Fortran symbol for 8 is PHI.
USAGE

CALL RICAT(PHI,NPHI,C,NC,NCONT,K,NK,PT,NPT,DUM,KDUM)

Input Arguments

Matrices: PHI, C, PT
Dimension arrays: NPHI,NC,NPT
Control array: NCONT(1) Number of steps per print

NCONT(2) The maximum number of steps
NCONT(3) Printout control
1->noP,nokK
2 > P only
3> Konly
4->Pand K

23

Output Arguments

Matrices: K.,PT
Dimension array: NK

Dummy Arguments

Matrix: DUM
Constant: KDUM

Note: KDUM contains the size of the DUMMY matrix which must be at least NPHI(1)**2.
Note: PT is used for both input and output arguments. The initial value of P must be placed in

PT before calling the subroutine. The value of P is updated every iteration in the subroutine until
the final P isreached. This final P is one of the outputs of the subroutine.

21. SAMPL

DESCRIPTION

Subroutine SAMPL calculates the covariance and weighting matrices associated with the
discrete case of either the control problem or the filter problem.

Consider the following filter problem.
Given the system Xx;;, =¢x;+ u where u = gaussian random sequence
with variance = Q, and observations yi= Hxi + v where v = gaussian
random variable with variance = R.

The optimum estimate of the state is (see p. 234 in the ASP manual)

Xits = 9%; + Ki(y; — Hy)

where
.= oP.HL(gp.HT #
K; = ¢P;H (HP;H" +R) # = pseudo inverse
P;* =P, — PHI(HP,HT + R)PHP,
Piry =¢Pi+¢T+ Q
Here P: is the solution of the matrix Ricatti equation, which is obtained by SAMPL. The subrou-

i
tine has for inputs ¢, H, Q, R, P;, and for output, P;;,, and K, ;, where Pi+n 1s written over P;.

REMARKS

1. The routine will take n steps at a single call where n is an input parameter. Further, if P
becomes constant, then the routine will stop and exit before completing the n steps. The actual
test is as follows:

24

Ifa= [EIPkk(l +1)— Pkk(l)[l/ [lekk(l + 1)I|< 105 then exit.
k k

2. The routine will print the value of Pi and/or K, , every j steps, and also when either exit
occurs. NCONT(3) controls which arrays are printed.

USAGE
CALL SAMPL(PHI,NPHI,H,NH,Q,NQ,R,NR,P,NP,K,NK,NCONT,DUM,KDUM)

Input Arguments

Matrices: PHI,H,Q,R,P
Dimension arrays: NPHI,NH,NQ,NR,NP
Control arrays: NCONT

NCONT(1) = j = number of steps per print
NCONT(2) = n =maximum number of steps
NCONT(3) = print control

1 no print

2 print P only

3 print K only

4 print both Pand K

Output Arguments

Matrices: P.K
Dimension arrays: NP,NK

Dummy Arguments

Matrix: DUM
Constant: KDUM

Note: KDUM contains the size of the DUM matrix, which must be at least 6*NPHI(1)*NPHI(2).

22, TRNSI

This subroutine computes

t
x(t) = eFix(ty) + f eF'7 dr | Gu
tO
where

u(t) = JR — Kx(t, +it;)

25

and u is held constant for any interval specified by
it, <t -t <@+ Dt, i=0,1,2,...
The system output y(t) is given by
y(t) = Hx(t)

The state vector x and system outputs y are printed every t; intervals. Also t, mustbe a
positive integral multiple of t,. The program terminates at t > t;.

See ASP manual, pages 120-121, for reference.
USAGE

CALL TRNSI(F,NF,G,NG,J,NJ,R,NR,K,NK,H,NH,X,NX, T,DUMMY ,KDUM)
Input Arguments

Matrices: F,G,J,LR,K.HX,T
Dimension arrays: NF,NG,NJ,NR,NK,NH,NX

Note: Dimension of T is 4 where

Tl ty
T2 t,
T3 te
T4 t,

Dummy Argument

Matrix: DUMMY
Constant: KDUM

Note: KDUM contains the size of the dummy matrix, which must be at least
4*NF(1)*NF(2).
23. PSEUDO
DESCRIPTION

This subroutine computes the Moore-Penrose generalized inverse of the input matrix. It sets

up a standard set of options for use by PSEU, which does the actual inversion. For details of the
method, see PSEU, p.70.

26

USAGE
CALL PSEUDO(A,NA,B,NB,DUM,KDUM)
Input Arguments

Matrix: A
Dimension array: NA

Output Arguments

Matrix: B= A#
Dimension array: NB

Dummy Arguments

Matrix: DUM
Constant: KDUM

Note: KDUM contains the size of the dummy matrix, which must be at least 3*NA(1)*NA(2).
24, DECGEN
24a. DECSYM
DESCRIPTION

This subroutine decomposes a real matrix R with dimensions m X n and rank r << min(m,n)
into two matrices H and G such that R = HG. Further, both H and G are of maximal rank, with
dimensions m X r and r X n, respectively. It uses subroutine DECOM to provide matrices from
which H and G can be computed. The writeup of DECOM, p. 85, describes the method in detail.
Subroutine DECOM requires for input a matrix A which is positive semidefinite symmetric. Sub-
routine DECGEN computes this matrix by letting A = RRT or RTR, whichever is smaller, and uses
the former if R is square. If the user knows that R is already positive semidefinite symmetric,
this step may be omitted by a call to DECSYM, in which case A =R.
USAGE

CALL DECGEN(R,NR,G,NG,H,NH,DUM,KDUM)
if R is general, or

CALL DECSYM(R,NR,G,NG,H,NH,DUM,KDUM)

if R is positive semidefinite symmetric.

27

Input Arguments

Matrix: R
Dimension array: NR

Output Arguments

Matrices: H,G
Dimension arrays: NH,NG

Dummy Arguments

Matrix: DUM
Constant: KDUM

Note: KDUM contains the size of the DUM array, which must be at least
7*min(NR(1)%,NR(2)?).

EXAMPLE USES OF VASP PROGRAM

The examples given demonstrate directly the use of the principal subroutines EAT, ETPHI,
AUG, RICAT, SAMPL, DECGEN, and PSEUDO. In addition, they exercise all of the subroutines
except TRCE. They can be used to indicate whether the programs are working properly. They do
not, however, provide an exhaustive test of the VASP program.

The first example discusses the user’s main program in great detail to explain some of the
system features. The remainder of the examples simply state the problem, and present the main
program listing, the data listings, and the results.

Example 1 — Transient Response

A set of equations for a linear plant can be written as:

x(t) = Fx (t) + Gu(t), x(0) = x
y(t) = Hx(t)

where X, u, and y are, respectively, the state, control, and observation vectors. The system, distribu-
tion and observation matrices are F, G, and H, respectively. It is known that

t
x(t) = ethO + f eF(t'T)G(T)u(T)dT
0

is the solution for x(t). If G and u are constant, then

28

t
x(t) = etho + J. F(t1) 47 Gu
o

By letting s =t — 7 the integral becomes

o) t
f eFsd(—s) = f eF's ds
t 0

Thus, the solution to the system equation can be written
x(t) = Bx, + CGu
y(t) = Hx(t)

where

and
t
C= f eF's ds
o

It is desired to generate the transient response of such a system in response to a given initial
condition x. and fix control u. In particular, given

o
1 0 0] I 0 o]
F= o 2 of G={0 1 o0
|0 0 3] 0 0 1]
— —— 1 -
111
H= u=|0]| x,=12
0O 1 0 0 [3

find x(t) for 0<t<2.0. Also print x(t) and y(t) every 0.01 second.

The user’s main program to solve this problem is shown in figure 1(a), the corresponding data
deck is shown in figure 1(b), where each line represents one card, and the beginning of the results is
presented in figure 1(c).

29

0¢

0001 DIMENSTION F(393)4NF(2)yG(3,3),NG(2)yH(243),NH(2)4B(343),
XNB(2)9CU(393)yNC(2)9XO0(3)yNXO(2)yXT(3)4NXT(2)yV1(3)4NV1(2),

—_— XN2U3),NV2(2) A3 3 NA TR) U 3 N T3 TR W

0002 DOUBLE PRECISION FeGyHyByCyXOyUyXT YT, TTyDELTAT,TFINAL,V1,V2,A1,W
0003 COMMON /MAX/ MAXRC

0004 COMMON /L INES/NLP LIN,FITLE(23y
0005 MAXRC=9

0006 CALL RDTITL

Q007

0008 READ (5,100) TT,DELTAT,TFINAL

0009 100 FORMAT (8F10.2)

0010

o CALL READ (5,FE,NE,GyNG H NH U, NU,XONXO)

0011 101 FORMAT(1HO 59Xy 'TIME RESPONSE'y /' TIME',22X,'STATE',54X,
1 YOUTPUT '/ " TT'y1a4Xe'XTOL) 'y 11Xyt XT(2)911Xe " XT(3)",21Xs'YT(1)?,

1 11X |leo\l,11v1|v111\|L
Tty) T-ire 5"

0012 102 FORMAT(1HO F10.246Xs3E16,7,10X,3E16.7)
0013 CALL LNCNT (4)
0014 . WRITE(6,101)
0015 10 CALL EAT (FyNF,TT,ByNByCyNC,W,18)
0016 CALL MULT(B,NByXO,NX0yV1,NV1)
B0 T A MUL TGy NEY Gy NGy A A
0018 CALL MULT(AL,NAL,UyNU,V2,NV2)
0019 CALL ADD(V1,yNV14V2,NV2,XT4NXT)
— 0020 CALL MULT R N KT AT YT N
0021 CALL LNCNT (2)
0022 WRITE(64102) TTy(XTUI)yI=143)y(YT(I),1=1,2)
0023 FFatF+DELTAT
0024 IF(TT.GT.TFINAL) STOP
0025 GO0 TO 10
D026 END

(a) User’s main program.

Figure 1.— Example 1.

GENERATES TRANSIENT USING EAT
2.00

TEST PROGRAM 1
«01
3

«01
F

(oN e X

[oN N

[N oY]
] [
o NO

CoOO
® o o
-~ OO

© o
(el =]

o o
N e e
O -

0.0

(b) Data deck.
Figure 1.— Continued.

W
[\

TEST PROGRAM 1 VASP PRNGRAM

GENERATES TRANSIENT USING EAT

F MATRIX 3 ROWS 3 COLUMNS
SO V- V-V-Y- VY- - PV SO G- S - S S USSRy IUUUOI USSR VUL USSP

0.0 2.00000000 00 0.0

0.0 0.0 3,0000000D 00

6 MATRIX 3 ROWS 3 COLUMNS

1.0000000D 00 0.0 0.0

840 — — 1400006066560 -—~0+0 — S — e T
0.0 0.0 1.0000000D 00

.M _MATRIX ... 2 ROWS _ 3 COLUMNS

1,0000000D 00 1.00000000 00 1.0000000D 00

0.0 1.0000000D 00 0.0
U MATRIX 3 ROWS 1 coLumns T T
1.0000000D0 00
0.0 .. L o)
0.0
X0 MATRIX 3 ROWS] COLUMNS oo oo oo e o)
1.0000000D0 00
2.0000000D0 00
_ .3.0000000D 00 -
TIME RESPONSE
B . " S =3 ey W e of TR s SN
7 XT(1) XT(2) XT(3) YT(1) YT(2)
. 0.01 . .. 0.1020100D Ol .0.20404030. 01. 0.30913640 01 0.61518670 .01

YT(3)

0.2040403D0.01

0.2081622D 01

0.2123673D 01
0e2166574D. 01 .

0.2210342D0 01

0.02 0.1040403D 01 0.2081622D 01 0.3185510D 01 0.6307534D 01
0.03 0.1060909D 01 0.2123673D 01 0.3282523D 01 0.6467105D 01

. 0.04 __ _ 0.1081622D 01 0.2166574D 01 0.3382491D 01 0.66306860 01 ..
0.05 0.11025420D 01 0.2210342D 01 0.3485503D 01 0.6798387D 01
0.06 0.1123673D 01 0.2254994D 01 0.3591652D 01 0.69703190 01
0,07 0.11450160 01 0,2300548D 01 0.3701034D 01 0.7146598D Q1

(c) Output

Figure 1.— Concluded.

0.2254994D 01

0.2300548D 01.. ...

The user’s main program— This program will be discussed. statement by statement, using the
line numbers on figure 1(a) as a reference.

Lines 1 and 2. These two statements allocate the necessary storage for the variables to be used and
define them as double precision. Also, the dimension arrays NF, NG, etc.,are allocated storage.
The dimensionality of F, G, etc., could have been included in the double precision statement
instead of the dimension statement, and they could have been dimensioned as F(9) instead of
F(3,3). The W array has been set up for dummy storage, and is dimensioned 18, as required
by the EAT subroutine:

Lines 3 and 4. Common variables to be needed later are made available to the program. Although
the variables listed in line 4 are not needed in this program, they are shown for reference.

Line 5. Since the basic matrices are (3,3), MAXRC is set to 9, to prevent overfilling the matrices.
Note this will not protect from overfilling the arrays XO, XT, etc., since they are expected to
be 3 X 1 vectors, and are dimensioned 3.

Line 6. This statement reads the first card of the data deck (see fig. 1(b)), places its contents in the
TITLE array, and prints the first line of the output (see fig. 1(c)).

Lines 8 and 9. The initial time, the time increment, and final time are read from the second data
card.

Line 10. The arrays F, G, H, U, and XO are read from the remainder of the data deck, and are
printed (fig. 1(c)). Note that the dimensions used by the program are those given on the header
card for each matrix. If these were specified as (2,2) this same main program would solve a
second-order problem, rather than the third-order problem.

If the initial conditions were already stored in the XO array and you did not wish to disturb
them, then the header card for the XO array would contain only the matrix title, no dimen-
sions, and the associated data cards would be omitted. The matrix XO would still be printed.

Line 11. Line i1 contains the information to head the main output.

Line 12. Line 12 is the data format. For this program the transient output was printed using the
programmers write statement rather than PRNT. The use of PRNT for this purpose is shown
in the third example, p. 40.

Line 13. Line 13 tells the line counter that the program will print 4 lines.
Line 14. Line 14 does the actual printing.

Lines 15 through 25. Lines 15 through 25 form a loop which increments TT (line 23) and stops
when TT is large enough (line 24).

Line 15. Line 15 computes the B and C matrices for time TT. When C is computed, the limits of
the integral are O and the present TT. Note that W is specified for dummy storage and the
“18” tells EAT the size of W.

33

Line 16. Line 16 computes BXO and stores the result in V1. Array V1 is set up for the
programmers working storage. Since W is also available at this point in the program, it could

have been used instead of V1 if desired.

Line 17. Line 17 computes CG and stores the result in Al, another working storage array.

Line 18. Line 18 computes (CG)U and stores the result in V2, still another working storage array.
Note that MULT obtains the product CG from Al. .

Line 19. Line 19 adds V1 and V2 to obtain XT. Since the ADD subroutine allows the matrices to
be repeated in the call, the array V1 could have been eliminated, then line 16 would have
stored its results in XT. Line 19, then, would have added XT and V2 to obtain the complete

XT.
Line 20. Line 20 multiplies H times X to obtain Y.

Line 21. Line 21 tells the counter we are going to print 2 lines. If this will not fit on the present
page, LNCNT will advance to the next page, print the title as on the first line of the first page of
output, and increment the line counter to allow for the paging and the two lines about to be

printed.

Line 22. Line 22 prints the variables XT and YT, skipping a line between each print line, as
required by the 1HO in FORMAT 102. Note that YT(3) is not printed.

Example 2 — Transient Response Using TRNSI

This example uses the same equations as Example 1, except that u is piecewise constant,
that is,

u(t) = JR — Kx(tg +ity) it,<t —t <@+ Dty

where i is a non-negative integer and J, R, K are constant matrices. The first term, JR, represents
a forcing function and the second, Kx, is a feedback term. (See ASP manual, p. 121, for detailed

explanation.)

It is desired to generate the transient response of such a system in response to a given initial

condition X, and a time varying control u. In particular, given

o

IOOOOQ
— o — -1

34

T

1 0o 0o 0 0] -
0 1 0 0 O 1
0 o 1 0 O 1

H=]0 0 0 1 O =11
0 0o o o0 1 0
1 0 0 0 O _I_J
0 1 0 1 0
t, = 0.5 sec
l t,=2set
te = 3.5 kec
t,=0sec

The system is monitored at intervals t,, while the control u(t) is changed only at sampling
intervals t, (t, must be a positive integral multiple of t,). Specifically, the control u(t) is updated
by the equation:

u(t) = JR — Kx(t, +it;) it, <t —t, <(i+ Dty

The x,y vectors are computed at time intervals t,, and these vectors together with the time t, and
the control u (for the subsequent time interval) are printed out each time. The problem terminates
when the final time tg is reached. The matrix T has elements t,, t;, tg, t, in that order.

The user’s main program to solve this problem is shown in figure 2(a), the corresponding data
deck is shown in figure 2(b), and the results are presented in figure 2(c).

100
200
300
400
500
600
700
80N
Q0N
1000

" CALL RDTITL

DIMENSTION F(545)4NF(2),6(5,2) NG(2),yJ(2,1)yNJL2)sROT,1),NR(2) K7y
15)3NK(2) s H{T55) sNHI2),X(5) sNX(2) 5 T(4) yNT(2) 4DUMMY (100)

DOUBLE PRECISION FyGypJsRpKeHeXyTyDUMMY
COMMON/FURM/NEPR FMTL(6) FMT2(6)

CALL READ(S,F,NF,G,NG,J,NJyR,NR,KvNK)

CALL READ(34HsNH,X sNX,TsNT) S,
CALL TRNSI(FoNF 4G :NGeJeNJIsRyNRyKINK HaNHpX g NXy Ty DUKMMY ,100)

STOP
END

(a) User’s main program.
Figure 2.— Example 2.

35

TEST PROGRAM GENERATES TRANSIENT USING TRNSI
F 5 5

0. 0. 0. O. O.
O. .5 o. O. 0.
0. 0. l. 1. 0.
0. O‘ O. 1. 0.
0. 0. O' O. 2.
G 5 2

1. 0.

1. 1.

0. 04

1. 0.

0. 1.

J 2 1

0.

0.

R 11

0.

K 2 5

1. 0. .5 0. 2.
0. 3. O. 1. 0.
H 7 5

1. 0. 0. 0. 0.
0. 1. 0. 0. 0.
0. 0. 1. 0. 0.
0. 0. 0. 1. 0.
0. 0. O. O. 1.
1% 0. 0. 0. 0.
0. 1. O. 1. O.
X 5 1

1.

1.

1.

0.

ll

T 4 1

.5

2.

3.5

0.

(b) Data deck.

Figure 2.— Continued.

LE

i
|

TEST PROGRAM GENERATES TRANSIENT USING TRNSI VASP PROGRAM
F MATRIX 5 ROWS 5 COLUMNS
0.0 0.0 0.0 0.0 0.0
0.0 5.0000000D-01 0.0 0.0 0.0
0.0 0.0 1.0000000D 00 1.0000000D 00 0.0
0.0 0.0 0.0 1.0000000D0 00 0.0
0.0 0.0 0.0 0.0 2.,0000000D 00
G — MATRTX 5 ROWS 2 COCOMNS
1.0000000D 00 0.0
1.,0000000D 00 1.0000000D 00
0.0 0.0
1.0000000D 00 0.0
0.0 1.0000000D 0O
J MATRIX 2 ROWS 1 COLUMNS
0.0
0.0
R MATRIX 1 ROWS 1 COLUMNS
0.0
K MATRIX 2 ROWS 5 COLUMNS
1.0000000D0 0O 0.0 5,0000000D~-01 0.0 2 .0000000D 0O
0.0 3.0000000D 00 0.0 1.0000000D 00 0.0
H MATRIX 7 ROWS 5 COLUMNS
1.0000000D 00 0.0 0.0 0.0 0.0
0.0 1.0000000D 00 0.0 0.0 0.0
0.0 0.0 1.0000000D 0O 0.0 0.0
0.0 0.0 0.0 1,0000000D 00 0.0
0.0 0.0 0.0 0.0 1.0000000D 00
1.0000000D0 00 0.0 0.0 0.0 0.0
0.0 1.0000000D 00 0.0 1.0000000D 00 0.0

(c) Output

Figure 2.— Continued.

8¢

TEST PROGRAM

1,00000000 00
1.0000000D 00

GENERATES TRANSIENT USING TRNSI
X MATRIX S5 ROWS— I COCUMNS

VASP PROGRAM

1.0000000D 00
0.0
1,0000000D 00

T MATRIX 4 ROWS 1 COLUMNS

5.,0000000D-01

2.0000000D 00

3.5000000D 0O

0.0

F MATRTX 5 ROWS 5 COLUMNS

0.0 0.0 0.0 0.0 0.0

0.0 5.,0000000D0-01 0.0 0.0 0.0

0.0 0.0 1.00000000D 00 1.00000000 00 0.0

0.0 0.0 0.0 1.00000000D 00 0.0

0.0 0.0 0.0 0.0 2.0000000D 00
EAT MATRIX 5 ROWS 5 COLUMNS

1.00000000 00 0.0 0.0 0.0 0.0

0.0 1.2840254D 00 0.0 0.0 0.0

0.0 0.0 1.6487213D 00 8.2436069D-01 0.0

0.0 0.0 0.0 1.64872130 00 0.0

0.0 0.0 0.0 0.0 2.7182819D 00
INT MATRIX 5 ROMS 5 COLUMNS

5.0000002D-01 0.0 0.0 0.0 0.0

0.0 5.68050860-01 0.0 0.0 0.0

0.0 0.0 6.,4872131D-01 1.7563938D0-01 0.0

0.0 0.0 0.0 6.4872131D-01 0.0

0.0 0.0 0.0 0.0 8.59140970-01

(c) Output — Continued.

Figure 2.— Continued.

A

]

6€

TEST

PROGRAM

GENERATES TRANSIENT USING TRNSI

TRANSIENT RESPONSE, * INDICATES CONTROL CHANGES

VASP PROGRAM

TIME FIRST 5 ELEMENTS CONTAIN X, NEXT 7 ELEMENTS CONTAIN Y = HX, LAST 2 ELEMENTS CONTAIN U =JR =KX
* 0.0 1.00000000 00 1.0000000D 00 1.0000000D0 00 0.0 1.00000000 00 1.0000000D0 00 1.00000000 00
1.00000000 00 0.0 1.0000000D0 00 1.0000000D 00 1.0000000D 00 -3.50000000 00 -3,.00000000 00
0,50 -7.,5000008D-01 -2.4083052D 00 00 -7.5000008D-01 ~2.4083052D 00

1.4085903D~01

1.0339835D 00 <6188 = 00000000

1.00 -2.5000002D 00 ~6.7846557D 00 -7.8171846D-01 -6,0139868D 00 -2.1945284D 00 -2,5000002D 00 -6.7846557D 00
-7.8171846D-01 -6.0139868D 00 -2.1945284D 00 -2.5000002D 00 -1.2798642D 01 -3,.50000000 00 -3,.0000000D0 0O

1.50 ~-4,2500002D 00 =-1,2404001D0 01 -6.8612680D0 00 -1.2185913D0 01 -8.5427698D 00 -4,2500002D 00 -1.,2404001D0 Ol

-6.8612680D ~1.2185913D -44,2500002 o .
* 2.00 -6,0000003D 00 -1.9619383D 01 -2.1972644D 01 -2.2361699D 01 -2.5799080D 01 -6.0000003D 00 -1.9619383D0 01
~241972644D 01 -2.2361699D 01 -2.5799080D 01 -6.0000003D 00 ~4.1981082D 01 6.8584482D 01 8.1219849D 01}
250 2482922420 01 5.9904692D 01 -4.,2614736D 01 7.6240057D 00 -3,.,4987285D-01 2.8292242D 01 5.9904692D 01
-4,2614736D 01 7.6240057D 00 -3.4987285D-01 2.8292242D 01 6.7528697D 01 6.8584482D 01 8.1219849D 01
3,00 6,2584484D 01 1.6201563D 02 -5.1928756D 01 5.7062075D 01 6.8828247D 01 6.2584484D 01 1.6201563D 02
-5.,1928756D 01 5.7062075D 01 6.8828247D 01 6.2584484D 01 2.1907770D0 02 6.8584482D 01 8.1219849D 01
3,50 9.6876727D 01 2.9312866D 02 -2.6530179D 01 1.,3857167D 02 2.5687388D 02 9.6876T27D 01 2.9312866D 02
-2.65301790 01 1.3857167D 02 2.5687388D 02 9.6876727D0 01 4.3170034D 02 6.8584482D 01 B.1219849D Ol

(c) Output — Concluded.

Figure 2.— Concluded.

-

The user’s main program— A brief explanation of the statements using line numbers on
figure 2(a) as reference follows:

Lines 1,2,and 3. Lines 1, 2, and 3 allocate storage, same as lines 1 and 2 of example I.
Line 4. Common variables to be needed later are made available to the program.

Line 5. This statement reads the first card of the data deck (see fig. 2(b)), places its contents in
TITLE array and prints the first line of the output (see fig. 2(c)).

Lines 6 and 7. The matrices F, G, J, R, K, H, X, and T are read in from data deck (see fig. 2(b))
and are printed.

Line 8. Line 8 calls the TRNSI subprogram, performs the computation, and prints outputs as
explained in the example.

Example 3 — An Optimum Control Problem

Given a system
x = Fx + Gu y = Hx x(0) = X

where X, u, and y are, respectively, the state, control, and observation vectors. The system,
distribution, and observation matrices are F, G, and H, respectively.

We wish to define an optimal control u(t), where u(t) = —Kx(t), so as to minimize the
performance index

I= f(x'H'QHx + U'RU)dt
The solution to this problem is
K=R1'G'P
where P is the solution of the matrix Ricatti equation.
The VASP program finds P by means of the subroutines AUG, ETPHI, and RICAT, as follows.

First, subroutine AUG is used to generate the matrices

| -F GR'G’

HQH F
(Note: This is the negative of the Z given on page 212 of the ASP manual.) Subroutine ETPHI is
then used to compute the special transition matrix

] and C=R'G

40

Finally, the P matrix is computed by subroutine RICAT for a time increment of 7, by repeated
application of the formula

P(t+7)=[0,, +0,,P(1)]1[0,, +8,,P(D)]™

The computation is repeated for several steps, until P(t + 1) = P(t), which is the desired
solution. Subroutine RICAT will also stop after a specified number of steps, if P has not con-
verged to a solution. Finally, having P and K, we can compute the transient response of the system
with optimum feedback from any desired initial condition. The differential equation becomes

x =Fx — GKx = (F — GK)x = F*x
and the solution is
x(t) = eF*tx
The time history of the control is
u(t) = —Kx(t)
An alternate solution, used in this example, is to first calculate the transition matrix
F*r,
A2=e
where 7, is the time increment at which the solution is desired, then compute
x(t+7,)=A2 x(t), x(0)=x,
The listing of a main program to solve this problem is given in figure 3(a), the data for a particular
case is given in figure 3(b), and the first part of the results is given in figure 3(c). In this problem,

H =1 so the special case of AUG is used. As a result, H is not used in AUG, and need not have
been used as an input.

41

[47

0001 T DIMENSTON NE(2),NG(2) ¢ NFSTAR(2) 4NC(2) oNCK(2)4NO(2) yNR(2) yNRI(2),

1 NZ(2)4NPHTI(2)4NPO(2) ¢NPT(2) yNXO(Z2)4MXT(2)yMAL(2)4NA2(2)4NH(2),
2 NDELTC(2) 4NXX(2) 4NCONT(3, LAR(2), L(GE)

S T BN 2 V8 ——— m—— m ey e

0002 DOUBLE PRECISION 0(353),R(1,1),RI(1y1)9F(3,3),6(3,1),FSTAR(3,3),
1 Cl193)9CKU193)4Z(646)4sPHT(646),P0(393)4PT(3,3),X0(3),XT(3),XX(3),
2 DELTCA1) 4 H(3,3),A143,3),A2(3,3),DUMMY(72) ,TT,DELTL,DELT2,TEINAL, -

2 DET
0003 COMMON /MAX /MAXRC
0004
0005 CALL RDTITL
0006 MAXRC=36
0007 KDUM=T2
0008 READ(5,100) TT,DELT1,DELT2, TFINAL
0009 CALL READ (54FyNFyGyNGyX0,NXOyHyNH,0,NO)
Q010 CALL DM@%%MW_ e e . vt s o 4 et 5. < ae e 11 amr mman i oo
0011 100 FORMAT(8F10.2)
0012 101 FORMAT(1H 59X, 'TIME RESPONSE'/S5X,!' TIME',22X,'STATE 43X,
— 1 1OUTPUTL/BXL TT 0 1aXp XTI} Ly i Xy UXTA 2109 31 Xy LXTAB) 15 20 Xy LRELTC L)
0013 102 FORMAT(IH F104296Xy3E1647y10X32E1647410X,F1647)
0014 NCONT(1)=1
0015 NCONT42) =TRINT(TEINAL/DELT1)4l e —— R—
0016 NCONT(3) =4
0017 CALL EQUATE(XO,NXOyXTyNXT)
0018 CALL EQUATE(PO,NPO,RPT,NPT)..
0019 CALL EQUATE(R,NR,RI,NRI)
0020 CALL INV(RI,NRI ,DET,L)
0021 CALL AUG(EGNE s GoNGHRIGNRT pH NH Q4N oG o NC o ZpaNZ gl oo o o s
0022 CALL ETPHI(Z,NZ,DELTL,PHI,NPHI,DUMMY,KDUM)
0023 CALL RICAT(PHIyNPHI yCyNCyNCONT,CKyNCKyPT NPT ,DUMMY ,KDIIM)
0024 CALL MULTUG,NG,CKsNCKyALI,NALY.
0025 CALL SCALE(A1,NA1,A2,NA2,=1,D0)
0026 CALL ADD(FyNFyA2,NA2,FSTAR,NFSTAR)
0027 GALL PRNT (ESTARYNESTAR YIRS TR Ly J b cmr i s o e e i et o
0028 CALL ETPHI(FSTAR,NFSTAR,DELTZ2,A2,NA2,DUMMY ,KDUM)

(a) User’s main prograim.

Figure 3.— Example 3.

i

0029 CALL LNCNT(2)
0030 . — WRITE . 464106) o S
0031 106 FORMAT (10 TRANSITION MATRIX')

0032 CALL PRNT (A2,NA2,' A2',1)

0033 CALL INCNT(100) - ——e
0034 CALL LNCNT(3)

0035 WRITE(64101)
0036 CALL MULT{GKyNCKy XT g NXT yPELTC yNDELTG Y-
0037 DELTC(1)==-1,0%DELTC(1)
0038 CALL LNCNT(1)

0039 WRITE(6,102) TT,XT,DELTC

0040 200 CALL EQUATE(XT,NXT,XX NXX)

0041 CALL MULT(A2,NA2,XXyNXXyXT oNXT)

0042 CALL MULT(CKyNCKyXTyNXTyDELTC,NDELTC)
0043 . _ . _ CDELTCA1)==] #DELTCAL) o o oo :
0044 TT=TT+DFLT2

0045 WRITE(64102) TT,XT,DELTC

YV — AT T 6 B TR S FOP— - e e
0047 GO0 TO 200

0048 END

(a) User’s main program — Concluded.

Figure 3.— Continued.

v

1474

TEST PROGRAM 2A GENERATES TRANSTENT USING X(I+1)=EXP(FXT)*X(1)

0.0 1.0 0.01 3.5
F 3 3

-002767 1.0 -000372
-17.0872 -0,1785 -12.1983
0.0 0.0 —-6.67

G 3 1

0.0

0.0

6.67

X0 3 1

1.0

0.0

0'0

H 3 3

1.0 0.0 0.0

0.0 1.0 0.0

0.0 0.0 1.0

0 3 3

0.2 0.0 0.0
0.0 0e2 0.0

0.0 0.0 0.0

R 1 1

1.0 B

P 3 3

0.0 0.0 0.0
0.0 0.0 0.0

0.0 0.0 0.0

(b) Data deck.

Figure 3.— Continued.

R

94

TEST PROGRAM 2A. GENERATES TRANSIENT USING X(I+1)=FEXP(F=xT)*xX(1I)

F MATRIX
-=2+3670000D=01
=1.7087200D0 01 =1.7850000D-01

3 ROMWS

0.0 0.0

G MATRI X 3 ROWS
0.0

T e
6.6700000D 00
X0 MATRIX 3 ROWS
1.0000000D 00
0.0
W

H MATRIX 3 ROWS
1.0000000D 00 0.0
0.0 1.00000000 00
0.0 0.0

0 MATRIX 3 ROWS
2.0000000D0-01 0.0
0.0 2.0000000D-01
0.0 0.0
. R . .. MATRIX 1 ROWS
1.0000000D 00

PO MATRIX 3 ROWS
0.0 0.0
0.0 0.0
0.0 . 0.0

1 TTERATIONS

1.00000008 Q0. -

3 COLUMNS

=3.7200000DB-02
-1.2198300D 01
=6.6700000D 00

1 COLUMNS
1 COLUMNS

3 COLUMNS

0.0
0.0
1.0

000000D 00

3 COLUMNS

oNeNe
o d o
[el>Nal

1 COLUMNS

3 COLUMNS

foliw N o)
« * o
© oo

(c) Output.

Figure 3.— Continued.

VASP PRNGRAM

TEST PRAGRAM 2A GENFRATFES TRANSTENT USING X(I+1)=REXP(FXT)*X(T)

K(T)Y MATRIX 1 ROWS
7.36037320D-01 -3.,6359943D-01

- PATY. MATRIX - 3-ROWS .

6.6799427D-01 =-2.1615347D=02

-2.1615347D-02 5.5929130D-02

1,10350420=01 =5.,4512659D=02
2 ITERATIONS

K(T) MATRIX 1 ROWS

--1+5463314D-01 . .=3.69179880=01

P{(T) MATRIX 3 ROWS
6.7636913D~-01 -2,1772154D-02
-2.1772154D-02 5.6466312D-02
1.1313840D-01 -5.,5349307D-02
e e 30 STTERATIONS

K(T) MATRIX 1 ROWS
- 7+5462283D~N1 =3,6920394H~01

P(T) MATRIX 3 ROWS

- brFH40398D=01 =21 F64101D=02 -

-2.1764191D-02 5.6470368D-02
1.1313686D-01 =5.5352914D-02
: 4 ITERATIONS

K(T) MATRIX 1 ROWS

- T+5462275P=01 =3,6920418B=01

3 COLUMNS
5.1645438D-01

3 COLUMNS

1.10350420D-01
-5.45126590-02
TeT429442D-02

3 COLUMNS
5.30329180~01

3 COLUMNS

1.1313840D-01
-5.5349307D-02
749509622002

3 COLUMNS
5+3036120D-01

3 COLUMNS

151313686001

-5.5352914D-02
749514423D0-02

3 COLUMNS
5.3036153H-01

(c) Output — Continued.

Figure 3.— Continued.

VASP PROGRAM

B

P(T) MATRIX 3 ROWS

e b 1640404D-01 =2,1764171H=02
=2.1764171D-02 5.6470397D-02
1.1313684D-01 -=5.5352950D0-02

\
\
|

FSTR MATRIX 3 ROWS
-2.7670000D-01 1.0000000D 00

3 COLUMNS
1+1313684B=01
~5.53529500-02
7.9514472D-02

3 COLUMNS
-3.7200000D-02

— —=147087200D 01.-..=1,7850000D-01. =1.2198300D 01

-5.,0333338D 00 2.4625919D 00

TRANSITION MATRIX

-1.0207511D 01

A2 MATRIX 3 ROWS
---9.9640412D-01 . 9.9651891p~03
-1.6739033D-01 9.9592474D~-01
-4 ,9775055D-02 2.3128283D~02

Ly

3 COLUMNS
. =9.4141918D=04 -
~1.1573683D-01
9.0157826D-01

(¢) Output — Continued.

Figure 3.— Continued.

1517

TEST PROGRAM 2A

TINF
T7

0,0

0,01
0.02
0,03
0604
0.05
04,06
0,07
0,08
N.09
N.10
0.11
0,12
0,13
O.l4
0,15
Nel6
0.17
0.1A
0,19
0620
0421
0.22
Ne?23
0e24
0e25
0426
0427
0.28
Ue29
0.+30
0.31
0432
0.33
0‘31’
0e35
0«36
0437
43R
0.39

GENERATES TRANSTENT USING

XT(1)
0,1000000D
0.99640410
0.9911999D
0,98446230
097626680
0,9666891D
0,9558051N
0.9436909D
0.9304217h
0.91607260D
0.9007178D
0.8844306D
0.RB672834D
N.8493472N0
0.83069190
0.8113857D
0.7914954N
0.77108610N
0.7502212D
0.7289623D
0.7073689D
0.,68549R8TN
066340740
0.6411488D
0.61877430
0.5963334D
0.5738734D
0.5514396D
052907510
0450682060
0448471510
0e4627952ND
0,4410954N
04419648210
0,39848410
N.37763140
0.,3571164N
033696360
0.3171955D
0.,2978327H

STATE

XT(2)

01 0.0

00 -0.,1673903D
00 =~0.3277358D
00 -0.,4809355D
00 =0,6269159D
00 -0.7656292D
00 ~0,R970518D
00 -0,1021183D
00 ~0.11380420
00 =0.,1247671D
00 -0.1350126D
00 -0.1445485D
00 ~0.15338380D
00 =0.16152920
00 ~0.1689966D
00 =0,1757991D
00 =-0,1819511D
00 -0.1874678D
00 =0.,19236540
00 <0,1966610D
00 -0.20037200
00 -0.2035170D
00 =0.2061147D
00 -0,2081844D.
00 ~0.20974580
00 =0.,21081871)
00 =0.21142341)
00 =0.,21158030D
00 =0.21130960
00 -0.2106319D
N0 -0,2095676D
00 +<0.20813710
00 =0.20636060
00 =0.2042582D
00 =0.2018497D
00 ~0.19915470
00 -0.1961926D
00 =0.1929822D
00 -0,1895424D
N0 =-0,1858913D

X{I+1)=EXPIFET) X (1)

TIME RESPONSE

XT(3)
0.0

~0.49775060-
~-0.98343630D-

~0.14558150
=-0,1913780D
~0.2356354D
~0.2782685D
~0.3192033D
-0.35837720
-0,3957379D
-0.4312427D
-0.4648584D
~0449656040
=-0e5263322D0
~0.5541649D
-0.5800568D
-0.60401260
-0,6260435D
~0,64616620
~-0.6644025D
=0.6807793D
-0.6953277D
~-0.7080831N
-0,7190843D
=-0,7283734D
-0,.73599580
-0.7419991D
=N 74643340
-0,7493510D
~0.75080560
~-0.75085250
-0.74954840
-0,7469508N0
-0.7431178D
~0.7381083D
-0,7319813D
=0,7247961D
=-0,7166119N
=-0.7074R75D
=0.6974417D

(¢) Output — Concluded.

Figure 3.— Concluded.

01
01
00
00
00
00
0o
00
00
00
(¢]0]
0n
00
o0
00

VASP PROGRAM

OuTPUT
NDELTC
-0.7546278D
=0.7873117D
-0.8168258D
~0.8432503D
~0.8666736D
~0.88718710
~-0,9048R4TD
~0.9198623D
=0.79322178D
~0.9420502D
=~0,94945981
-0.95454750
=0.9574147D
-0,9581629D
-0.95689360D
~0,9537079D
~0.9487064D
~0.94198870
-0.93365360
~0.92379R4D
~0.9125195D
-0,89991120
=0 8RAUHL5D
-0.8710764D
~0.8550301D
~0.,R3801440
~0.82011440D
-0,8014125D
~0.7819890N
~-0.,76192180D
~0e7412862D
=0.7201551D
-0.6985987D
=0.6766848D
~0e 65447840
~0.6320420D
-0.6094353)
~0.58A7156D
-Ne%639372D
=0.5411%22D

00

et

The user’s main program— Some of the details of the main program are discussed briefly. The
various matrices are first dimensioned and stated to be double precision. The problem will be solved
using basically 3 X 3 matrices, but Z and PHI are 6 X 6 matrices so MAXRC is set to 36 (line 6). A
double size dummy array is required in ETPHI, so DUMMY is dimensioned at 72, and KDUM is set
to 72 (line 7).

In line 8 the timing information is read in. TT is the initial time, DELT1 is the time increment
used in the computation of P, DELT?2 is the time increment, 7, , desired in the printout of the
transient and TFINAL is the final time for the transient.

Lines 9 and 10 read data cards to fill a total of 7 matrices.

Lines 14, 15, and 16 set up the appropriate constants for RICAT, specifying a print every step
(line 14), the maximum number of steps to be taken by RICAT (line 15), and that both P and K
should be printed (line 16). Lines 17 and 18 store the initial values of xg and P in the running
matrices, and lines 19 through 23 do the necessary computations to obtain P and K (called CK in
program). Then F* and the transition matrix A2 (lines 28 through 32) are computed and printed.
The transition matrix is labeled on the output (lines 29 through 31). Lines 33 through 39 page the
output, print a heading for the transient response, and print the first point. Lines 40 through 47
then increment the solution and the time, and print x(f) and u(t) (called XT and DELTC in the
program).

Example 4 — Sampled Data Ricatti Solution

This example is provided to show the general use of the subroutine SAMPL. The theory of the
example is given in the ASP manual, page 222, and very briefly in the dictionary description of
SAMPL, page 24, in this manual. A listing of the main program is shown in figure 4(a). The data
deck is shown in figure 4(b), and the output in figure 4(c).

The main program is reasonably self-explanatory. The statement NCONT(2) = 4(line 13)
indicates that SAMPL is to compute P for four successive time intervals and then stop. Both P and
K (line 14) are to be printed at every step (line 12).

As mentioned in the dictionary, K is the weighting matrix corresponding to the beginning of
the interval, and P is the covariance matrix corresponding to the end of the interval. This is appar-
ent in the output. For example, the first entry to SAMPL prints step number 0 and the K matrix,
followed by step number | and the P matrix. On exit from SAMPL, P and K contain the data
corresponding to P;j and Kj_,, which is the last interval. If printing is requested, the exit value of P
and K will always be printed, and will be the last set of data.

49

0s

C CHECK PROCEDURE FOR SAMPLE SEE PAGES 234 AND 244 QF ASP MANUAL
0001 DIMENSION NPHI(2),NQ(2)4NR(2)4NP(2)4NK(2),NCONT(3),NH{2)
0002 DOUBLE—RRECISION—RHI{ 343} yhH-3y 2}y @4 3y 3 v RARy 2y P By 3y ke By 2y ——
1 DUM(54)
0003 COMMON /MAX/MAXRC
0004 MAXRG=9 _—
0005 NDUM=54
0006
—6007 EAEE—ROFEFE
0008 10 CALL READ (&4,PHI 4NPHI 4HyNH,0,NO,RyNRyRyNR)
0009 NP{1)=NPHI(1)
0010 NP2 =NPHE 2 — -
0011 CALL UNITY (P,NP)
0012 NCONT(1)=1
8633 — NGONTAA) mls
0014 NCONT (3)=4
0015 CALL SAMPL (PHIyNPHIsHyNHyQyNQyRyNRyP 4yNP 4K yNK sNCONT y DUM yNDUM)
0016 CALL-EXIT - —
0017 GD TD 10
0018 END

(a) Main program.
TEST PROGRAM FOR SAMPL CASE 1 FROM ASP MANUAL P234 AND P244

PHI 3 3

0 1.0

0 0 0

0 0 2.0
H 2 3

0.0 2.0 0.0
0.0 0.0 1.0
Q 3 3

3.0 1.0 0.0
1.0 1.0 0.0
0 0 1.0
R 2 2

1.0 1.0

1.0 2.0

(b) Data.
Figure 4.— Example 4.

TEST PROGRAM FOR SAMPL CASE 1 FROM ASP MANUAL P234 AND P244

VASP PROGRAM

PH1 MATRIX 3 ROWS 3 COLUMNS
0~0 1+0008068D0—08—06-+6
0.0 0.0 0.0
0.0 0.0 2.0000000D 00
H MATRIX 2 ROWS 3 COLUMNS
0.0 2.0000000D0 00 0.0
Oe-0- O~+0- 1+-56066006—06
Q MATRIX 3 ROWS 3 COLUMNS

—3+0000600D—00—1+0000000B--06——0+0

1.0000000D 00 1.0000000D 00 0.0
0.0 0.0 1.0000000D 0O

R MATRIX 2 ROWS 2 COLUMNS
1,00000000 00 1.0000000D 00
—1.,66600000-86— 2+6600006D-00 -

STEP NUMBER= 0 IN SAMPL

K(T) MATRIX 3 ROWS 2 COLUMNS
4.2857143D-01 -1.4285714D-01

0.0
Yo A= -

~1.4285714D-01 7.1428571D~01

STIFEP NIIMBFR= 1 IN SAMP|
P(T) MATRIX 3 ROWS 3 COLUMNS
3,1428571D 00 1.0000000D_00 2.85714290=01
1.0000000D 00 1.0000000D 00 0.0
2.8571429D~-01 0.0 3.5714286D 00

(c) Output.

IS

Figure 4.— Continued.

[43

STEP NUMBER= 1 IN SAMPL

KLT) MATRIX 3 _ROMS __ 2 COLUMNS __
4.1489362D-01 =7.4468085D-02
0.0 0.0
=2, 65957450=01 1.32978725 00
STEP NUMBER= 2 IN SAMPL
PIT) MATRIX 3 ROWS 3 COLUMNS

3.1702128D 00 1.0000000D 0O 5.319148%D-01
1.0000000D 00 1.0000000D0 0O 0.0

5.3191489D=-01 0.0 5.78723400 00
STEP NUMBER= 2 IN SAMPL
K(T) MATRIX 3 ROWS 2 COLUMNS
4.1054403D=01 ~5.2720135D-02
0.n

A= =g

-3,0510376D-01 1.5255188D 00

STEP NUUMBER= 3 IN _SAMPL

P{T) MATRIX 3 ROWS 3 COLUMNS
2891 58—66—1+0668066D-06—>671026F52D0—0%
1.0000000D 00 1.0000000D 00 0.0
6.1020752D-01 0.0 6.4918676D 00

STEP NUMBER= 3 IN SAMPL

K{T) MATRIX 3 ROWS 2 GOl UMNS
4.0964801D-01 -4.8240037D~02
0.0 0.0

=3,1316793D=01 1.5658397D 00 - —— —
STEP NUMBER= 4 IN SAMPL

P{T) MATRIX 3 ROWS 3 COLUMNS

3.1807040D0 00 1.,0000000D 00 6.2633587D-01

——Oe0-—— -

6.2633587D-01 0.0 6.6370228D 00

(¢) Output — Concluded.
Figure 4.— Concluded.

R —

=

Example 5 — Matrix Decomposition

This example is a test program to check the operation of DECGEN. It first generates a matrix
R to be decomposed, then proceeds with the decomposition, and checks the result, printing all of the
associated matrices. The general procedure is to input a diagonal matrix ZL and transform it into the
matrix R to be decomposed. Figure 5(a) is a listing of the main program; figure 5(b) is a listing of
the subroutine ORTH,; figure 5(c) is the data deck; and figures 5(d) through 5(f) are the output.

In the main program, all matrices are dimensioned 100, although the actual matrix size used is
2 X 2and 4 X 4. Accordingly, MAXRC is set to 100. The dummy matrix is dimensioned 700,
since. DECGEN requires that much. The input matrices gre read at line 8. :

Subroutine ORTH, called at line 9, produces a n X n orthogonal matrix, u;sing the original T
matrix, and places the results back in T. The procedure is as follows.

First, generate an elementary rotation matrix Ejj. This is a unity matrix, with elements ejj and
ejj replaced by cos tjj and elements ejj = —ejj = sin tjj.

Then,
T =1I Ej

Lines 10 through 17 set up indices for referring to the seven dummy matrices. The input
matrix, ZL, is then transformed by the matrix T, so that

ZL, = T*ZL*T

Note that ORTH leaves T' in DUM3. Also, if the T at input was the null matrix, the rotation will
be the identity matrix, so that R = ZL. Lines 19 through 27 then juxtapose either the matrix EXR
or the matrix EXC, using JUXTR or JUXTC, depending on the compatibility of the dimensions. 1f
both sets of dimensions are incompatible, no juxtaposition is done. In any case, the result of this
operation is placed in R. The decomposition routine is called next. If the original ZL wmatrix had
zero in element (2,1) and no juxtaposition was done, then R is assumed symmetric, and the
DECSYM entry is used. If ZL was not symmetric, the program will produce errors. Otherwise,
the DECGEN entry is used (lines 29 to 31). Finally, the resulting matrices H and G are tested
using

R, = HG
RE=R — R,

and all resulting matrices are printed.

In figure 5(c), blank lines represent blank cards. In the data cards for case 4 the header card
for EXR has no dimension information and no associated data cards. This indicates that the
matrix EXR is to be left unchanged, and that no data cards are to be read for EXR. In case 7,
EXR is again left unchanged. A blank data card follows the EXC header card.

The output (figs. 5(d) through 5(f)) contains the results of decomposing three different matrices.
Figure 5(d), case 1, isa 2 X 2 rank 1 matrix; figure 5(e), case 4, is a 2 X 3 rank 2 matrix; and

53

125

C MAIN PROGRAM TO CHECK DECOM ET AL
0001 DIMENSION ~ NZL(2),NT(2),NEXR(2),NR(2),NG(2)4NH(2),ND(2)4NR1(2),

L YT“f‘ﬁI,l‘IEI\\/\CT
0002 POUBLE PRECISION ZL(100),T(100),EXR(100),R(100)4G(100),H(100),

1 DUM(700),R1(100),RE(100),EXC(100)
BOOF———————COMMON — AMAX/MAXRE —————————— - i
0004 MAXRC=100
0005
0007 20 CALL RDTITL
0008 CALL READ (4yZLyNZLyT,NT,EXRyNEXRyEXCoNEXCyTyNT)

0009 —CALE—BRFH— Ty N Ty BUMeKBUMI—— - : -
0010 M=NT (1)

0011 M2=M%M+1

0012 MS=pach

0013 M3=M2+MS

0014 M4=M3+MS

0015 M5=M4+MS -
0016 M6=M5+MS

0017 MT7=M6+MS

0018 DM —= T2

0019 CALL MULT (TyNT,ZLyNZLyDUM(M3),ND)

0020 CALL MULT (DUM(M3),NDyDUM(M2) 4ND,ZLsNZL)

02— ——— -
0022 CALL JUXTC (ZLyNZL4EXCyNEXCyRyNR)

0023 GO TO 50

236~ HF— NI 2 NETNEXR 2T 60— TO—=0

0025 CALL JUXTR (ZLyNZL4EXRyNEXRsRyNR)

0026 GO TO 50

BO2F———— 40 CALL EOUATECZETNZLTRINRY - e
0028 IF (DUM(M7).NE.0.DO) GO TO 50

0029 CALL DECSYM (RyMRsGyNG sH 9 NHyDUMy KDUM)

FaVaWaVat ol = W & =~ W 7. %
\UAS o iy ou TuU LAY

(a) Main program.

Figure 5.— Example 5.

R

99

50 CALL
70 CALL

DECGEN(RyNR yG ¢NGyHy NHy DUM, KDUM)
MULT (HyNH,G4NG,R1,NR1)

0034 CALL PRNT (R,NR,'R 1,1)

0035 CALL PRNT (R14NR1,'R1l 1,1)

0036 CALL—PRMT {RE,NRE,LRERRLy 1)

0037 CALL PRNT (H 4NH ,'H t,1)

0038 CALL PRNT (G 4NG ,'6 1,1)

0039 NBel—— e —

0040 ND(2)=1 _
0041 CALL PRNT (DUM(M6),NDy ' RANK? y1)

0042 GO TO 20

0043 END

(a) Main program — Concluded.
Figure 2.— Continued.

9¢

0001 SUBROUTINE ORTH (TyNT,DUM,KDUM)

0002 DOUBLE PRECISION T(1),DUM(1),CTH,ySTH

0003 DIMENSION NT{2)

0004 LDM2=2%NT (1) %%2+1

0005 10 LDM1=NT (1)*%2+1

0006 N=NT (1) —

0007 CALL UNITY (DUM(LDM1)4NT)

0008 NM=NT(1)=-1

0009 0020 —J=1 N

0010 JP=J+1

0011 DO 20 I=JP,N

0012 e CALL UNITY (DUMyNT——

0013 II=N*(I=-1)+1

0014 JJI=N(J=1)+J
—0015— SELPS S WS

0016 JI=N%({J=1)+1

0017 CTH=DCOS(T(1J)) ~

6618 ~—STH=DS N ——— — —

0019 DUM(IT)=CTH

0020 DUM(JJ)=CTH

=5+

0022 DUM(JI)==STH

0023 CALL MULT (DUM(LDM1)4NToyDUM,NTyDUM(LDM2)4NT)
8024 ———— —— - CALL EOUATE A DUME DM N T DM EBM SN —

0025 20 CONTINUE

0026 CALL TRANP (DUM(LDM1) ,NT,T,NT)
—B0RF— — A M TNy DPUMH B M T B UMM

0028 CALL PRNT (TyNT,4HT ' 1)

0029 CALL PRNT (DUM(LDM2) yNT,y4HT®T1,1)
—0B30— —— — REFURN— — —

0031 END

(b) Subroutine ORTH.
Figure 5.— Continued.

=

LS

TEST PROGRAM FOR DECGEN AND DECOM CASE 1 2X2 RANKI1
ZL 2 2
1.0 1.0
2.0 2.0
T 2 2
EXR 1 1
EXC 1 1
TEST PROGRAM FOR DECGEN AND DECOM CASE 4 2X3 RANK?2
1 2 2
1.
2.0
T 2 2 -
ol
EXR
EXC 2 1
Z2e
3e
TEST PROGRAM FOR DECGEN AND DECOM CASE 7 TLL-COND 4X4 RANK3
ZL 4 4
l.
2
]..D—é
T 4 4
2 °3 iy
5 b
ol
EXR
EXC { !
(c) Data.

Figure 5.— Continued.

8¢

TEST PROGRAM FOR DECGEN AND DECOM

CASE 1

ZL MATRIX 2 ROWS

1 00000000 00— 1 O-L-00.000-0--.0.0
L UUUUUUUL T JU L e UUUUUUUU UV

2X2 RANK1

VASP PROGRAM

2 COLUMNS

2.00000000 00 2.0000000D 00

¥ MATRIX——— 2 ROWS 2 COLUMNS—

040 0.0
0.0 0.0
EXR MATRIX 1 ROWS 1 COLUMNS
0.0
EXC MATRIX 1 ROWS 1 COLUMNS
0.0
T MATRIX 2 ROWS 2 COLUMNS
1.0000000D 00 0.0
0.0 —1.0000000D 00 —
T#T1! MATRIX 2 ROWS 2 COLUMNS
1.00000000 00— 00—
0.0 1.0000000D 00
____ R MATRIX 2_ROWS 2 COLUMNS . -
1.00000000 00 1.0000000D 00
2.0000000D0 00 2.0000000D 00
R1 MATRIX 2 ROMWS 2 COLUMNS
1.0000000D 00 1.0000000D 00
26000000000 -2+0000000D- 00— e e
RERR MATRIX 2 ROWS 2 COLUMNS

4163336304+ 1633363D—H—— - —

4,4408921D-16 4.4408921D-16

(d) Case 1.

Figure 5.— Continued.

65

e H L MATRIX 2 ROWS .. . — 1 GOLUMNS
1.4142136D 00
2.8284271D 00
G MATRIX 1 ROWS 2 COLUMNS
7.0710678D~01 7.0710678D-01
RANK MATRIX 1 ROWS 1 COLUMNS

1.0000000D 00

(d) Case 1 — Concluded.

Figure 5. — Continued.

09

TEST PROGRAM FDR DECGEN AND DECOM CASE &4 2X ranK?2 VASP PROGRAM
ZL MATRIX 2 ROWS 2 COLUMNS

1. 00086666H—-060 O~+6

0.0 2.,0000000D 0O

_— ¥ MATRIX 2 ROWS 2 COLUMNS

7.9956985D-01
-6.00573110-01

6.,0057311D~01
749956985D~01

EXR MATRIX 1 ROMWS 1 COLUMNS

0.0
EXC MATRIX 2 ROWS 1 COLUMNS

2.,0000000D 00

30060000506
T MATRIX 2 ROWS 2 COLUMNS

-8.2501188D=01 =5,6511539D-01 —

5.6511539D-01 8.2501188b-01
TxT? MATRIX 2 ROWS 2 COLUMNS.

1.0000000D 00 0.0

0.0 1.0000000D 00
R MATRIX 2 ROWS 3 COLUMNS -

1.,3193554D 00

=4,6622691D0-01

2.,0000000D 00

=4 6622691 D=0] 1.6806446D 00— 3.,00000000 00— — —

R1 MATRIX

—1+3193554D0 00—=4-+6622691D-01 —2-00000006D—00— ———

=4,6622691D-01

2 ROWS

1.6806446D 00

3 COLUMNS

3.0000000D O

(e) Case 4.

Figure 5.— Continued.

19

RERR MATRIX 2 ROWS . 3 COLUMNS

2.,2204460D~-16 -2.,4980018D-16 4.,4408921D-16
=9.7144515D-17 2.2204460D-16

H MATRIX 2 ROWS 2 COLUMNS
2.0493573D 00 1.3259717D 00
6+6 3+470+4505—60

6 MATRIX 2 ROWS 3 COLUMNS

—7+3071906D-81—~5+40885965p-01 4165579100 1
~1.3435357D-01 4.8431483D-01 8.6451620D-01

RANK MATRIX 1 ROWS 1 COLUMNS

2 0000000000

v ovo-ooooo—o

(e) Case 4 — Concluded.

Figure 5.— Continued.

o))
[\

TEST PROGRAM FOR DECGEN AND DECOM CASE 7 ILL-COND 4X4 RANK3

VASP PROGRAM

L MATRIX 4 ROWS 4 COLUMNS
—1.00000000 00 Q-0 O-+0 B+
0.0 2.0000000D0 0O 0.0 0.0
0.0 0.0 0.0 0.0
0.0 0.0 00 1--60600000b-066
T MATRIX 4 ROWS 4 COLUMNS

=3.9329146D-01 7.6892918D-01 2.,0667223D-01 4,5973507D-01
~2+6426304D-01 -5.4846577D-01 6.9767211D-01 3,7762941D-01

=7+4155739Pp=02——=2+8968030D-01—6+3928166B-01—F:0845275D0—01—

EXR MATRIX 1 ROWS 1 COLUMNS
8-+0-

EXC MATRIX 1 ROWS 1 COLUMNS
0'9

T MATRIX 4 ROWS 4 COLUMNS

B3

U UL

-6.6804271D-02 8.9817561D-01 =-1.3776143D-01 =-4,1211595D~01
1.1688667D-01 1.2733255D-02 9.4444935D-01 -3,0690520D-01

—4+3680316D-01—4+1690464D~01 10174226001 —Fs 737108200+ —————

—~8+8-94254-8p=01—1+38956F2B—01——2+2663098D-01+—3570595T6

T*T* MATRIX 4 ROWS 4 COLUMNS
—1+00000008-00—2+H55576D—1F——1+ 38+ F88 D1+ F+—5 S5 5t —mmmm — ———
2.7755576D-17 1.0000000D 0O 4.1633363D-17 -4,1633363D-17

-1.3877788D-17 441633363D~17 1.0000000D 0O 0.0

25,56111510=17 =441633363D~17 00— — ——1,0000000B-06— ———

(f) Case 7.

Figure 5.— Continued.

£9

R MATRIX 4 ROWS 4 COLUMNS

— 85296057 FH 0350903234001+ 0042 I 6B—BT—— 25T CHOTBE=0"

-3.0903234D-01 1.6179018D 00 1.5064996D-02 7.1972651D-01
1.00423367-01 1.5064996D-02 1.3986860D-02 6.1673338D-02

— 24 7264018D=01 — T+ 1972651D=01-— 651673338002 ——55384H655D~0F ——— e e

R1 MATRIX 4 ROWS 4 COLUMNS
85296950135 09032 3400150042 336D~ 25 F 2 640 8= t—m
-3.0903234D-01 1.6179018D 0O 1.5064996D-02 7.1972651D-01
1.0042336D-01 1.5064996D-02 1.3986801D~02 6.16736280~02

- 2T TREHOTED=0T T+ 19T 265TD=0T—631673628D=02— 5, 3841512001 ————————————~
RERR MATRIX 4 ROWS 4 COLUMNS
12701 F—— by 16333630171 3BFFFOBDH—1F —
-5,5511151D-17 2.2204460D-16 ~-1,7347235D-18 Be3266727TD-17
4.,1633363D-17 0.0 5.8972036D-08 -2.9047379D-07
 1.3877788D=17 1,52655670-16—=2,90473790-07 —1+4367633D-06 S
H MATRIX 4 ROWS 2 COLUMNS
BvHH84164b~-61 2425561201
0.0 1.2719677D 00
1.1767126D-01 1.1843851D-02
—46716539D-01—56583110D-01 — -
G MATRIX 2 ROWS 4 COLUMNS
—— I FFL B — O O} P TR 6 P04 5T 6539001

-2.42956120-01 1,2719677D 00 1.1843851D-02 5.65837100-01

o RANK—MATRIX 1ROWS 1--COLUMNS .
2.0000000D 00

(f) Case 7 — Concluded.
Figure 5. — Concluded.

finally, figure 5(f), case 7, is a 4 X 4 matrix of rank 3, with one very small eigenvalue equal to 107¢.
The error matrices of the first two decompositions are extremely small, but that from the third one
has errors of the order of 10®. These are caused by the built-in pivot rejection device, which
rejects all pivots smaller than 2X 107 times the largest of the diagonal elements (see DECOM, p. 85
and PSEU, p. 70). This last matrix, case 7, was also tried with an eigenvalue of 1073, and the errors
were then on the order of 10716,

Example 6 — Use of the Pseudoinverse Routine

This program is designed to check the operation of PSEUDQO. The procedure is as follows:

First the input matrix A isread; then B = AF s computed. The accuracy of the pseudoinverse
is then checked by the first two Moore-Penrose axioms

BAB - B=A,
ABA — A=B_
All the various matrices are printed.

Figure 6(a) is the program listing and figure 6(b), the output. Three cases are presented; the
first two are the examples presented in the ASP manual; and the third one contains several zeros.
The first matrix printed for each case is the input matrix and each has a different label. The other
titles are abbreviations chosen to fit the allotted four character space as follows:

APSE - A¥#
AASA - AA¥A
AERR > A, orB,
ASAA - AHAA#

It can be noted that the size of the numbers in the AERR matrices is 107 ¢, which is very good.

Ames Research Center
National Aeronautics and Space Administration
Moffett Field, Calif., 94035, July 12, 1971

64

S9

=]

0001 DIMENSTION A(50),B(50)4W(350),4NA{2)4,NB(2)4A1(50),A2(50),NAL(2),
1 NA2(2),LAB(2)
0002 . DOLURL uQ_E,C_L_SI_QN_A,_M,A_]__,_A_;___._- — R mmrm e s e 2o ot
0003 COMMON /MAX/MAXRC
0004
0005 .. _ o MAXRCSEBO ol e
0006 5 CALL RDTITL
0007 CALL READ (19 AyNAZASJNAyJAZNAJAZNALA,NA)
0008 NW=350 ... N S
0009 CALL PSEUDO(A,NAyByNByW,NW)
0010 CALL PRNT (B,NB,*APSE',1)
0011 o CALL MULT(A,NA,ByNB,AL,NAL)
0012 CALL MULT(AL1,NAl,A,NA,A2,NA2)
0013 CALL SCALE(A,NA,A1,NAl,-1.D0)
0015 CALL PRNT (A2,NA2,'AASAY,1)
0016 CALL PRNT (A1,NA1l,'AERR',1)
-0017 - ~CALL MULT(ByNByAyNALAL,NAL) - - S - e
0018 CALL MULT(A1,NAl1,B,NByAZ,NA2)
0019 CALL SCALE(ByNByAl1,NAl,~-1.D0)
—0020— e AL ADBHAINA LAY NAZ Y ARy A P o e e e e e
0021 CALL PRNT (A24NA2,'ASAA',1)
0022 CALL PRNT (Al1,NA1,'AERR',1)
0023 . - L BH-FO- 5 o o e~ . [
0024 END

(a) Main program to check PSEUDO.

Figure 6.— Example 6.

99

PSEUDO TEST PROGRAM CASE 1

FROM ASP MANUAL PAGE 146

B MATRIX 3 ROWS 4 COLUMNS

—4~00086000P—00—~1+00000065—66--—3+00000008—-00—20560006D—HG— -

-2.,0000000D 0O 5.00000000 00 -1.0000000D OO0 -3,0000000D 0O
2.0000000D 0O 1.3000000D0 01 -9,00000000 OO0 -5,0000000D OO

APSE MATRIX 4 ROWS 3 COLUMNS
9.5029697D-02 -5.6580181D-02 2.0318850D-02

=3,07908720m02 . 343135355002 — . -3y 7824320Dm0 2~ o — e e

~6473648020D~-02 3.1884964D-02 =3,9074711D-02
5.06408250D-02 =-3.6730228D-02 -8.9090341D0-03

AASA MATRIX 3 ROWS 4 COLUMNS
4,0000000D 00 -1,0000000D DO -3,0000000D OO 2.0000000D 00
~2-00000000.00... 5.0000000D 00...=1.,00000000 00 -.=3.,0000000D 00
2.,0000000D 00 1.3000000D 01 =-9.0000000D 00 -5.0000000D 00

AERR MATRIX 3 ROWS 4 COLUMNS
-6.6613381D-16 6.6613381D~16 2.2204460D-16 -6.6613381D-16
1.3322676D-15 0.0 -8,8817842D0-16 6.6613381N-16

- 2e2204460D=15. .. 3.,9968029D=15.-=4,2188475D=15- =6.,6613381D=16

ASAA MATRIX 4 ROWS 3 COLUMNS
9.5029697D=02 =5.6580181p-02 2+0318850b-02
=-3.0790872D-02 3.3135355D-02 3.78243200D-02
-6.73648020-02 3.1884964D-02 -3,9074711D-02
--540640825D=02 .. =3.6730228D=02 .. =8.,9090341D~03.

AERR MATRIX 4 ROWS 3 COLUMNS

~1,38777880-17 1.2143064D-17 3,4694470D~18
2.3418767D-17 =-1.0408341D-17 1.6479873D~17

0.0 ~8.6736174D-19 =1.,4745150D-17
~148214596D=17 = 1.8062556D=18 =4,336R087D=18
(b) Output.

Figure 6.— Continued.

VASP PROGRAM

&

L9

PSEUDN TEST PRNGRAM

A MATRIX
~-2+0000060B- 86 —1+0006000D--00-- -

1.,0000000D 00
-2.0000000D 0O

-2.,00000000 00

APSE

MATRIX

CASE 2
4 ROWS

2.5000000D 01
-8,0000000D 00
6+.0000000Db 06

4 ROWS

FROM ASP MANUAL PAGE 137

4 COLUMNS

-8.0000000D 00
4,0000000D 00
0.0 - -

4 COLUMNS

-2.,0000000D 00— . =2, 080000000 60

6.,0000000D 00
0.0
4+000006006H- 60

—5+5087063D=02 — =141 0260950=03 - =456511023D=BR - --=6+32 83163507

-1,1026095D-03
-4 46911023D-02

2.9737044D-02
-7.5512045D-03

-=6.3283103D=02 - ..9.7564235D-03

AASA
1.0000000D 00
-2.,0000000D 00
=2.0000000D0 00

AERR

-4,4408921D-16
6.6613381D-16

- 2422044 60D=16 -

ASAA

-1.1026095D-03
-4,6911023D-02

=6+3283103D~-02-

AERR

0.0
8.6736174D-18
.1.3871188D0=11

MATRIX
-2+00000000 0010000000000 - =2.00000000-00 -

MATRIX
by f4t408921D=16 Bl -

MATRI X
— 545097063502 —1+1026095D—03 —4+6511623D—02

MATRIX
=] 4745150Dm17 — 2,76471550=18 — - 84 6736174D=18 -

4 ROWS
2.5000000D 01
-8,0000000D 00
- 600000000 00 .

4 ROWS

=3.5527137D-15
6.6613381D-16

=2,2204460D=16

4 ROWS

2.9737044D-02
-7.5512045D-03

- -947564235p=03.

4 ROWS

0.0
1.7347235D~18
.~2.60208520~-18

-7.5512045D-03
4,2366935D-02
5.1455110D=02

4 COLUMNS
-8.0000000D OO0
4.,0000000D 00
0.0 .

4 COLUMNS

ol e 438921 Db

2.2204460D-16
-6.6613381D-16
Dy - -

4 COLUMNS

-7.5512045D-03
4,2366935D-02
5.1455110Db-62

4 COLUMNS

2.6020852D~-18
~5.2041704D-18
~846136174D-18

9.7564235D-03
5.,1455110D0-02
7+.5111096D-02

=2.0000088D. 00
6,00000000 00
-2.2204460D-16
4,0000000D 00

- 6+6613281D-16

4.4408921D-16
-2.2204460D-16

-l 4408921 0=16

633283163602

9,7564235h-03
5.14551100D-02
7.5111696b-02

1+3877788Pp~17 — - -

8.6736174D~19
-1.,1275703D-17
-1,3877788D=17

(b) Output — Continued.

Figure 6.— Continued.

89

PSEUDD TEST PRNGRAM CASE 3

VASP PROGRAM

C MATRIX 4 ROWS 2 COLUMNS
00— 0.0 — e e e e e
0.0 -3.91000000 00
3.5000000D-02 0.0
-2.53000000 00 - 3,1000000D=01 U _
APSE MATRIX 2 ROWS 4 COLUMNS
0.0 m3.13314710=02— 5+501293085=03 - =340518081D=01 — -mmmm e e e e
0.0 =2.55754170-01 2.8046074D-04 3.8798916D-06
—— AASA MATRIX 4 ROWS_ =~ ... 2 COLUMNS _ . _. - -
0.0 0.0
-1.0889456D~17 -3.9100000D 00O
3.50000000-02 0.0 e~ o r e ot s ot 4 o i e
-2.53000000 0O 3.1000000D0-01
AERR. MATRIX _ _ 4 ROMS 2 COLUMNS . _ N
0.0 0.0
-1,0889456D-17 4,4408921D-16
2.2204460D-16 0.0
— ——ASAA MATRIX 2 ROWS . & COLUMNS
0.0 =3.1331471D-02 5.50129300-03 -3.9518081D0-01
0.0 =2¢5575417D-01 2.8046074D-04 3.8798916D-06
AERR MATRIX 2 ROWS 4 COLUMNS
0.0 0.0 0.0
-0 S 2.7755576D=17— =5442101090-20 — ~1¢1013546D-18 - — —

(b) Output — Concluded.

Figure 6.— Concluded.

R

APPENDIX A

DESCRIPTION OF INTERNAL SUBROUTINES

25. READI1
DESCRIPTION

This subroutine reads a single matrix from cards, without a header card. It is called by READ,
after the latter has read the header card. The dimensions of the matrix to be read are in array NZ.
If this is zero, no array will be read. In any event, the routine then prints either the array just read,

using NZ for dimensions, or, if NZ = 0, the array already stored, using NA for dimensions.

The subroutine reads the data from cards, each row of the matrix starting on a néw card, using
format (8F10.2). If the card data is in exponential form, it must use a D exponent.

USAGE

CALL READI1(A,NA,NZ NAM)

Input Arguments

Matrix: A (GfNZ=0)
Dimension array: NA,NZ
Constant: NAM, containing a four-character (or less) name for the matrix,

which will be used by PRNT

Output Arguments
Matrix: A (if NZ#0)
Dimension array: NA
26. ASPERR
DESCRIPTION
This is an installation dependent subroutine. It is called by the various subroutines when they
detect an error. It is intended to provide an error walkback, so that the programmer can determine

which call of a given subroutine is in error. It also counts the number of errors and calls EXIT
after ten entries into ASPERR.

69

USAGE
CALL ASPERR

It has no arguments. The user may, if he wishes, call this program to help him track down errors.

Subroutine ASPERR calls in turn a system program which provides the actual walkback. In
Ames OS this system routine is called ERRTRA, while in Ames TSS, it is called TRACE. The
calling statement should be changed to match the user’s operating system, or else deleted altogether.

27. BLKDATA

DESCRIPTION

This is an installation dependent subroutine. It loads certain common areas used by VASP
with appropriate constants as follows:

1. COMMON/FQORM/NEPR, FMT1(6), FMT2(6)

These three variables control the printing procedure, and are set to 7, (1P7D16.7), and
(3x,1P7D16.7), respectively. They assume a line length of at least 115 characters.

2. COMMON/LINES/NLP, LIN, TITLE(23)

NLP controls the number of lines per page, and is set at 45 to agree with the NASA—Ames
system. It should be changed to match each installation.

LIN is a counter which keeps track of the number of lines printed on each page. Itis
incremented and used only in LNCNT.

TITLE contains' 72 blank characters, which can be loaded as desired by use of RDTITL, plus
20 more characters containing “VASP PROGRAM.” Subroutines LNCNT prints TITLE at

the head of every page.

3. COMMON/MAX/MAXRC

MAXRC is used by most subroutines to check the reasonableness of the matrix dimensions.
The user should set MAXRC to match the storage available for each matrix. It is preset to

6400.
28. PSEU
SUMMARY

PSEU is a FORTRAN routine to find the Moore-Penrose generalized inverse of a non-negative
definite double-precision matrix. It has a separate entry PSEUP for input of a matrix that is
already symmetric. A symmetric matrix is always used for the actual diagonalization process. This

70

process is done in a self-contained subroutine, ANDRA. The routine “‘never” fails, since it includes
the singular case. However, it may fail to give the correct rank. To control this, an option to do side
calculations is available. After the first pivots have been found, if the rank is not maximum, the
result of each pivot step is used in two axiomatic expressions (subroutine BDNRM). This side cal-
culation yields a measure of the worth of the pseudoinverse obtained so far. This result is multi-
plied by a parameter factor raised to the power of the current rank (nonlinear penalty function).
The routine can backtrack from the first bad step and stop with the previous rank. It has an option
to do the minimum calculations for getting a rank only. The generalized inverse is useful for least-
squares solutions of Ax = b; it works when A is singular. This method is best suited to symmetric
matrices. The routine has suitable error exits.

USAGE
CALL PSEU(A,B,C,EE,DEP,IP,D)
or

CALL PSEUP(A,B,C.EE,DEP,ID,D)

Note: PSEUDO uses PSEU entry.

Input Arguments
Description
Matrix: A The array. to be inverted, left intact, must be
symmetric if PSEUP call is used. Non-negative
definite, or nearly so.
Control arrays: DEP Values DEP1, DEP2, DEP3

DEPI1 Default: If zero, user gets 2.D—6 used instead.
This number is multiplied times the largest mag-
nitude on the diagonal of B at start. If any
trial pivots are found less than this, they are
avoided as zero.

DEP2 Default: If zero, user gets 1.DO used instead.
Needed only if iteration. The routine computes
two numbers, p, q, which would be zero if the
first two Moore axioms were satisfied. This num-
ber is raised to the power of the number of
pivots found as a factor to use to make the
product with the sum of p and q larger. Mak-
ing this product larger tends to make the routine
reject the current pivot. Values between 1 and
2 work for ordinary purposes.

Note: PSEUDO uses default values of DEP1
and DEP2.

71

DEP3

IP

IP1

P2

IP3

IP4

Output Arguments

Matrix: B

Matrix: C

Matrix: EE

72

This is for output only. It holds the last pivot
actually accepted. This gives the user or calling
routine an estimate of the size of pivots found,
in case effective rank is not that desired, operat-
ing with given value of DEP1. If iterating, this
may be the last pivot rejected.

Parameter array of integers IP1, IP2, IP3, IP4.

If zero, do not iterate with side calculations.
If 1, iterate.

Note: Other values should not be used, since
DECOM employs peculiar values.

If zero, do all calculations, otherwise do rank
only.

Note: Setting this to zero for each call is very
useful in avoiding confusion between ranks
determined from different calls. Used also to
output the effective rank. PSEUDO sets IP1
and IP2 to zero.

The row size of the matrix input.

The column size of the matrix input.
Note: IP4 need not be specified for PSEUP
entry.

Holds the pseudoinverse output. (In rank only
case, holds a diagonal matrix with 0’s and 1’s
corresponding to pivots accepted or rejected.)

In nonsingular case, holds the matrix T of the
diagonalization case. In singular case, holds that
certain matrix U described in ASP manual.

Holds the pseudoinverse of the original B.
Note: A and B are the same size. The other
matrices are square, of the size of C, which is
determined by the smaller dimension of A. D is
either five times the size of C, if iterating, or the
same size as C.

FeTTd

Matrix: D In the nonsingular case, D holds a copy of the
B formed from A. (It equals A for a PSEUP
entry.) In the singular case, it holds a pseudo-
inverse for a “‘B” permuted so that independent
variables are all moved to the left-most positions.
Note: D has possibly four other matrices. Let
these be D1, D2, D3, and D4, in order. They are
used only if iterating (D1 also used by DECOM).
D1, D2 hold old results. D3, D4 holds intermedi-
ate values when doing the side calculations.
PSEUDO does not provide for D1 through D4.

Notes on Usage
Symmetry

This method is well suited to symmetric, non-negative definite matrices. The PSEUP entry
assumes this. Matrices formed by computer arithmetic will not always be symmetric. Hence, the
routine always forces the symmetric matrix B to actually be symmetric, by taking the average of
the element and its transpose. The nonsymmetric entry, unfortunately, approximately squares the
ratio between largest and smallest eigenvalue. There is a nonsymmetric feature. The routine choses
AAT, instead of the other way around, if A is a square matrix. This arbitrary choice agrees with the
DECOM routine and the ASP routines. As a result, in the singular case, multiplying A by its pseudo-
inverse from the left is more likely to give a diagonal matrix of 1’s and 0’s, than multiplying from
the right side of A.

Pivot Size

DEPI is used to compute a “smallest allowable pivot.” In no case is it reasonable or desirable
to worry about exact equality in the use of such tolerances. Fortunately, work with ill-conditioned
systems shows a series of pivots that decrease steadily in magnitude. Furthermore, the first “bad,”
erroneous pivot is, at most, 10 to 1000 times smaller than its predecessors. Since ANDRA is choos-
ing largest pivots first, the user has considerable latitude in actual choice. All positive elements can
be accepted, if the matrix is known to be nonsingular, by choosing DEP1 very small.

By choosing DEP1 very large — say, nearly 1.0 — the routine can be forced to reject pivots after
the first. At present, there is no way of making it start iterating without having found at least one
pivot. In other words, ANDRA always finds all the pivots it can before any side calculations are done.
If this first rank is maximal, it never iterates. The first pivots are not in doubt, so these rules are more
efficient. The routine always uses a tolerance for pivot acceptance; however, it uses a new tolerance
50,000 times smaller than the last pivot found, for each call to find one pivot in iterative mode. The
expensive test of matrix norms is avoided when no new pivot occurs. The PSEU routine has only a
finite number of tries to find a new pivot before it quits. The exact number is the same as the maxi-
mum rank. Since ANDRA has usually found several pivots initially, this is ample.

73

Iteration

If DEP?2 is larger than 1, it is raised to a power, used as a factor, and tends to make the
routine stop with a smaller rank. DEP2 of 1 actually works for most iterations.

Subroutine ANDRA

The basic algorithm can be used as a separate routine by itself (see ANDRA documentation).
The routine requires considerable setting and testing of parameters. It has an escape exit for too
many iterations (calls to find only one pivot) without finding any. It returns a matrix, T, such
that, if X if pseudoinverse of positive definite matrix A, then

TIT=X
Accuracy

In double precision, the accuracy has been very good. Maximum accuracy can be obtained by
using symmetric matrices and the PSEUP entry. The test program included in this manual as

example 6 shows errors (determined by calculating AA#A—A# and A#AA#~A) on the order of
10713 orless.

The routine was also tested on the ill-conditioned 7 X 7 matrix in the ASP manual (NASA
CR 475, p. 150). The exact inverse is given on page 151, and the error obtained from the ASP
program using the equivalent of the PSEUP entry (p. 152) is on the order of 10. The error
obtained using the VASP program and the PSEU entry was on the order of 107 or less.

Singular Case

The routine forms a new inverse from the original symmetric matrix. Since there are several
steps more between the inverse and the original input A, it is only natural that accuracy should fall
off. In many cases, this inverse will give a diagonal matrix of 0’s and 1’s when used as a left inverse
of A (or possibly as a right inverse). The work of reinverting B requires no extra matrices; it does
destroy the usual values of C and D. No iteration can be done in the stage after B is found to be
singular. It can be asked for in the starting stage. Error exits are made if the rank changes during

reinversion. The smallest allowable pivot is redetermined.

Error Exits (Messages)

The error exits are reasonably self-explanatory. Unless otherwise noted, the errors cause a
return from PSEU without completion of the calculations. Subsequent calculations in other portions

of the program are suspect.

Message Explanation
Dimension error The total number of matrix elements was too

large or too small.

Diagonal elements of matrix = 0 Symmetric matrix B has no positive diagonal
elements. Check input A.

74

Rank has decreased

Rank has increased

Rank greater than matrix size

Timing

Singular case. Reinverting, and the new rank is

less than that of the earlier phase.

Singular case. Reinverting, and the new rank is
greater than in the earlier phase. Computation

continues.

RANK returned from ANDRA is greater than

maximal rank.

The ANDRA routine by itself is very fast. The iteration mode is slower by a large factor than

the regular mode of subroutine PSEU.

The time estimates below (in hundredths of a second) are as used on the NASA Ames 360/50.

High and low estimates are given, because real-time figures reflect an unknown percentage of time

devoted to another CPU user.

Case
PSEU, 2 X 2 matrix

PSEUP, 4 X 4 matrix, reinvert
PSEU, 7 X 7, no pivot rejection
PSEU, 7 X 7, rank 6, reinversion
PSEU, 7 X 7, iteration, no.tests
PSEU, 7 X 7, iteration, one test
PSEU, 7 X 7, iteration, some tests of pivots
PSEU, 7 X 7, iteration, many pivot tests
PSEU, 7 X 7, iteration, nearly all tests
PSEU, 4 X 2, reinversion
PSEU, 4 X 2, reinversion
METHOD

Summary of Method

PSEU has two entry points. The nonsymmetric entry forms AtA or AAL, whichever is

High

2

14

42

103

53

182

253

501

607

Low

1

10

30

62

30

118

170

286

324

smaller. At the end, Al is used again to form the pseudoinverse. Square A uses A'A. The result

75

is always forced symmetric afterward, even for symmetric entry. ANDRA is called to diagonalize
this result in B. Most of the pivots are found and the steps made on the first call. If not iterating,
this part is not repeated. If singular (rank of symmetric input not maximal), a transforming matrix

is computed. A copy of the original symmetric B is transformed and reinverted by ANDRA. The
result is retransformed by premultiplication and postmultiplication. If iterating, the pivot tolerance
is decreased and ANDRA is called to find one pivot at a time. A side calculation is done to measure
the quality of pseudoinverse formed at each step. The routine backs up one step and stops with

rank one less if it makes a bad step. The result, if singular, is sent through the reinversion above. The
use of PSEUP by DECOM avoids reinverting in the singular case, also it never uses a nonsquare input.
There is a “find rank only” option.

If PSEU is used without iteration, four I/O matrices are needed plus a dummy matrix.
Iteration uses four additional dummy matrices. Iteration cannot be done during the reinversion.
Besides those mentioned, entries BDNRM, MULT, and NORM are used for iteration. TTRM is also
used except in rank only case.

ANDRA (diagonalization algorithm). For a detailed description of the method, see the
documentation of ANDRA itself. A mathematical description and examples are given in NASA
CR-475. Subroutine PSEU calls ANDRA to do each pivoting step, after first forming a symmetric
matrix B, which is indeed forced to be perfectly symmetric.

The first call of ANDRA is an initialization call. An identity matrix T is formed. The rank
counter is set to zero. On an initialization call, the routine proceeds to search the diagonal for
pivots, as always. But after finding a pivot, it always goes back and looks for another pivot,
regardless of the iteration option. The process of searching for pivots continues until the number of
tries is one greater than the row size (no such test is made in the iteration case). If the routine fails
to find a single pivot in the initialization call, it exits with an error message. Pivots are accepted if
and only if they are not less than a threshold input at every call. Supposing that a pivot has been
found in the diagonal, the next step is always the same. First the pivot is reduced to unity. That is,
both the pivot row and column are divided by the square root of the pivot in B. Only the row of T
is so reduced. The next step is to eliminate the pivot coefficient from all other rows not yet used as
pivots. This part is the same as in other inversion methods. Both B and T are treated exactly alike
here. Note that the actual algorithm checks the diagonal of a row to see if it is already marked as a
pivot. If so, that entire row, and the row in T, are skipped. The pivot is then marked by an artifi-
cial code. The routine always tests for this code and does not use this row again. The code is put in
the actual pivot position. Thus the rows and columns are left in their starting places in the working
matrix B. PSEU converts the result to a matrix of 1’s and O’s that shows the independent and
dependent variables.

The code is tested for an integer. This is a considerable economy. The resulting T is never
singular. If B were nonsingular and X the desired inverse of B,

TiT =X

76

This part is done by subroutine entry TTRM, using coding shared with the iteration method. The
final answer is put back in matrix B. (PSEU always uses the original A again rather than the origi-
nal B, after this to give an answer for A. Thus, ANDRA is always supplied with a symmetric
matrix B.)

If B were singular at the start, a further reinversion would have to be done. See the next
section,

The Singular Case

Suppose that the rank of B in the diagonalization by ANDRA does not turn out to be maximal,
then PSEU must perform a number of matrix multiplications and call ANDRA and TTRM to reinvert.
The accuracy is bound to suffer, even though the reinversion is done on an exact copy of the original
B. A very short justification is given belov , followed by a close description of how the work is
actually done.

There exists a permutation matrix P, such that
E = PTBT'P!

is a matrix of 0’s and 1’s (were it not for round-off error), with all the 1’s contiguous, starting in the
first diagonal. If B had been so permuted before diagonalizing, then this different T resulting
would be the one that gives an inverse that corresponds correctly to the old. But, since one is using
a premultiplication and a postmultiplication, simple substitution of a permuted matrix does not
work. (It would if matrix multiplication were commutative.) Thus, if it is necessary to transform
the original starting B, reinvert, then transform back again.

The permuted form of T (which does not actually occur) has a nonsingular corner submatrix,
followed by the rest of diagonal set to I’s. These latter 1’s correspond to the dependent equations
of the original.

The rule for constructing the transforming matrix U is given below. This matrix is made from
T and put into the same storage T. The explicit construction of U is more efficient (in FORTRAN).
From here on, the explanation concerns what is actually done, rather than the mathematical reasons.

Let dj denote the ith diagonal element of B. (In case the reader has forgotten, this has been
changed to a diagonal matrix of O’s and 1°’s.) Given T, there are two cases:

Case One: For U;; not on the diagonal
Use -tiis if di =0;
Use 0, if d; = 1

Case Two: For Uj; on the diagonal

Use the corresponding value of dj
Next, using a copy of the original B, form
Cc=U'BU

77

The result is actually put in the same storage that held B originally. The smallest allowable pivot
for ANDRA is recalculated. This result, C, is sent to ANDRA to do the diagonalization again. The
fact that C has rows and columns of 0’s that ANDRA has to skip makes the diagonalization ineffi-
cient, but this cannot be helped. No iteration is done here. Let T, denote the result of this second
ANDRA call. Then the new pseudoinverse is:

X, =T,'T,
Transform this back to get a correct answer:
X = UX, Ut

The rest of the computation is as usual. Note that if the rank changes in the second ANDRA call,
error exits are taken.

Iteration

The main method itself is purely algebraic. The iteration option is a way of estimating the
amount of error in the generalized inverse and using this to stop with a smaller effective rank. Let
B denote a matrix and X its pseudoinverse (after taking so many pivot steps in ANDRA). Then the
two Moore-Penrose axioms read:

BXB=B
XBX=X

If the iteration mode is selected, ANDRA first finds all the pivots it can. Then subroutine BDNRM
is called twice. Each call returns the value

norm(Q*P*Q—Q)/norm(Q)

The values of P and Q are B and X in one call, X and B in the other. The resulting two small
scalars (which would be zero if the axioms were perfectly satisfied) are added together. The result
is taken as a factor times DEP2 raised to the current number of pivots. From successive iterations,
one obtains a sequence of positive numbers, decreasing as one approaches the largest possible rank.
As long as the new result is not larger, then a new pivot is searched for. If not, PSEU reverts to the
previous values, before the current pivot was used.

In practice a number of modifications are made. First, the pivot used last is returned as DEP3,
even if rejected, so that the user can reconsider acceptance of it. Second, if maximum rank is
achieved prior to iteration, no side calculations are done. Third, the smallest possible pivot allow-
able is set to 0.00002 times the most recent pivot in order to reject many spurious pivots without
doing the lengthy side calculations. This modification is based on actual observation of pivot
behavior. The successive pivots of an ill-conditioned matrix usually decrease fairly rapidly. But
there is usually a hugh jump in order of magnitude between the last good pivot and the first bad one.
Parts of the side calculations are actually done in single-precision, to save time. Please note that a
single iteration, besides the ANDRA call, makes ten subroutine calls, and one library routine call.
Naturally, this is slow.

78

Matrix Storage Flow

This section uses the same names as the Fortran IV routines. It tells what is put into each
matrix of PSEU at various times. The call is CALL PSEU(A,B,C,EE,DEP,IP, D). The matrices A
and B are the same size (possibly nonsquare). Matrix C is square with dimension equal to the
smaller dimension of A. The other matrices are the same size as C. Matrix D is divided into five
matrices. Let these be denoted as D, D1, D2, D3, and D4. The last four are used only in iteration.

Maximal Rank Case

A symmetric matrix from A is placed in B (either directly, as in PSEUP, or indirectly, from
matrix multiplication). A copy of B is put in D, unless the rank only, no iteration is used. ANDRA
is called to diagonalize B and place the result in C.

If the result is accepted, TTRM puts the generalized inverse of B into EE. Then the inverse
of A isputinto B. The A transpose may have to be used to get an answer for A.

Singular Case
The matrix U of the method is computed from C and put into C. (D holds original B.)

EE=CIXD
B=EEXC

ANDRA is called to diagonalize B. Answer goes to EE. TTRM puts pseudoinverse of Binto D.

B=CXD
EE=B X Ct

The pseudoinverse is now in EE, where the maximal rank case puts it. Routine now forms
pseudoinverse of A in B.

Iteration

Before each call of ANDRA the current values of B and C are stored in D1 and D2,
respectively. B and C are changed when a new pivot is used in ANDRA. BDNRM computes a
number to decide if the pivot is to be rejected. EE, D3, and D4 are used as working storage in
BDNRM. EE actually has a matrix put in it that would be zero if the Moore-Penrose axiom were
perfectly satisfied. If the pivot is rejected, the old values from D1 and D2 are put back into B and
C. The work of the singular case is done next if the call was not made from DECOM.

Rank Only

If iteration is used, a full complement of matrices must be used. In the ordinary case,
matrix D may be omitted, and also matric E is not used. Naturally, no pseudoinverse is returned.

79

08

Accept flank
s There No Given
heratron Or
13 Rank Mox
On 15t ANORA
Cait

?

13
Max Rank
*

Uso Symmatne Matnix
Alreddy tnput

BB

Soid ~ DEP 2
First Trme ltecanon
Fiag

1000 Cotumn Sizg
- FAow Sue

Sima Pvot
At Bofore

Take Averago To

Save Index

Make B Syimetnie
Ser Vlues of — Omit Side Of Tnig.
Floahing Pt Paramuters Date
or1, OP2 -
Set
Seors " i BoRAH BonI< 2n T Ex
Compute "
On‘! {u&u lngut Stors fesult In Current Pivot
Array L)

if fank Only, Skop
Save a Copy
018 in O For
Seagular Or {ter

Farm 8
s Witn Columa
YE. Sure
o 2 s
Or Too Large?
Error

e

No

V"
Save Old B Ang
C Arrays In 01,02

Calt ANDRAIB € DPR JP)

Set Flags For Heration
Sot Count Of frerations
Qr ¢

Do B Matrix
Compytanon

Repect Current
Pival

[S0t Up For Andea
Call Fiad Largest
Dragon) Element

Rastore Vilues
Before Current QT - QIV + 1
Step Reducs
Rank By One

SetJPL1
To Vatwo O!
Veranion Flag

St Smallest Non Zero
ot
DPHE - OEME) & Msx Diag

1R -~ Rank Aelurned

Got JP Purgimreters
All Possibite Pivots
tntiahization Andra

Form B
With Row
Size

Figure 7.— Information Systems Co. flow chart ~ subroutine PSEU (A,B,C,EE,DEP.IP,D).

I8

)

Set IR = Rank

M=0

!

Replace B Diagonal
With Ones And Zeros

!

If Zero In Diagonal
SetM=1

Is
M<10r
Is This A
DECOM Call
{QDCM)

Skip
Rediagonalization

Re-invert B
Here

Compute
Matrix U From C;
Store into C

!

D Holds
Original B

EE=CxD

B=EEx(Ct

Re-scan
Diagonal

Sat JP3
No Iteration

Call ANDRa
(B,EE,DRP,JP)

<QR2
694

Error

Error Message

691

>QR2
?
693
IR # QR2
Error
No
568
CALL TTRM
D=EE'x EE
B=CtxD
EE=BxC

Call TTRM (NR,C EE)
EE=CtxC

?

PSEUP
Symmetric

Use Atas
Needad to Form
Non-symmetric

Pseudo-inv in B

692 693 606

Error Exists

No

Figure 7.— Concluded.

Set Rank
Return Parameter

29. BDNRM
DESCRIPTION
This subroutine computes the quantity
norm(QPQT — Q)/norm(Q)

where the values of P and Q are in the square arrays CT and EE or EE and CT, depending on the
sign of NR. If P = Q#, the return value is zero. This routine can thus be used to test the quality of

a pseudoinverse.
USAGE
CALL BDNRM(NR,CT,EE,D,KRV)
Input Arguments
Matrices: CT, EE with dimensions NR X NR
Constants: NR, size of matrices and the sign controls multiplication procedure

Output Arguments

None: This is a function subroutine

Dummy Arguments

Matrix: D dummy array of size 5¥NR?2
Constant Array: KRYV designates location of submatrices of D
KRV1 = NR?
KRV2 = 2*NR?
KRV3 = 3*NR?
KRV4 = 4*NR?
30. ANDRA
SUMMARY

ANDRA is a Fortran routine to diagonalize a positive definite symmetric matrix. The routine
was originally designed to be used by subroutine PSEU. The routine has a parameter to command
it to initialize on the first call. Two different modes can be used for pivoting steps. In the first
mode, the routine does only one pivot to eliminate only one row at a time. In the second mode, as
many pivots as possible are done in one call. Pivots are chosen in order of decreasing magnitude.
They are rejected if smaller than a parameter threshold. The original matrix input is destroyed and

82

replaced with artificial values. However, symmetry is kept after each pivot. The answer matrix, T,

is such that if X is the inverse of the input,

X =TT

The routine has error exits for matrices of the wrong size, and for those that allow no pivot on the

first try.
USAGE
CALL ANDRA(B,T.DPR,JP)

Name
B

T
DPR

DPR1

DPR?2

Jp

JP1

JpP2

JP3

P4

IP5

Description
Input symmetric matrix. Destroyed.

Answer. TUT = inverse of B.
Parameter array of size 2.

DPR1 is the tolerance for trial pivots. Any less
than this are rejected as zero.

DPR?2 is the last pivot actually used. Unchanged
if no new pivot found.

Integer parameter array of size 5.

Zero if all pivoting to be done on one call;
nonzero if only one pivot per call.

Zero if initialization call. Subroutine sets to one
when a pivot is found.

Holds the effective rank = number of pivots
found.

The integer giving the row and column size. May
range from one to a nominal figure.

The integer row where the last pivot was found.

The rows are left in the same positions as in the
input matrix.

83

8

Start
ANDRA

EF = Single-precision
Version of DPR1

?

Not An
Initialization
P24 0

Qs = JP4
Number of Rows
QGNT =QS x QS
Size of Matrix

INITIALIZE
FORM IDENTITY
MATRIX T

FMX =0
Zero Maximum Diagonal
Element; And Index Of Max

~ 3

Initialize
L, Diagonal Index

No

Yes

I=1+1

v

Update Index L
To Current Diag.

+

DDI =BIL)

Test Part
of DDI {IDD}
For Pivot
Code

IDD = iCC

Test

Diagonal

FDI < FMX
?

DMX = DDI

Choose New Max,

!

Save Index
M=L
(M#0)

Skip
Old Pivot

No NOTE: Do not use reciprocal
for single precision

DRs = 1./JomMx

v

Initialize Indices
To Start Of Pivot
Row, Pivot Column
K: Pivot Row

L: Pivot Column

!

Do Loop: 41
1 Is Index of Row

DDM = B(L} x DRS

T(L) = T(L) x DRS
Reduce T Row, Pivot Row
B(L) =DDM

Reduce Pivot Column
{Symmetry)

B{K) =DDM

v

Update
K | Next Element
Row, Column

L

Do
Satisfied

Figure 8.— Information Systems Co. flow chart — subroutine ANDRA (B,T,DPR,JP).

68

B(M) = 1.00

y

Do 460 1 ls index

Farce Pivot to Unity }

Set

K = Index Of Diagonal
Element In Current Row

'

DRS = B(K)

Test
Part Of DRS
For Integer
Pivot Code
=1CC
?

P

K = Index
Qt Element
In Pivot Column

To Eliminate

!

DMM = — BIK)
Take Negative
Of Coeff

!

Do 47 ﬂ

J 1s index

Add Pivat Row
Times DMM

To Row 1 Of B.
Add Pivot Row
Ot T Times DMM
ToRow 10f T

(=)

Do 460
Satisfied

Set L= QMR
Force Pivot Row
To Zero

!

Force Pivot

To “Code” For One
Bim) = DCC

No Longer
] First Call
| p2=1

Update Rank
QKR =QaKR +1

I
L

| I

\ DPR2 = DMX

JPS = QMR

?
Rank Maximal
No

{teration

One Pivot

Per Call?

P10
?

‘ JP3 = QKR

< Return >

Figure 8.— Concluded.

CT Of Tries
>Max Rank +1

Update
Count of Tries

691 692
| I
Errar Message

Err

First
Call, No Pivot
Or Too Many
Tries

METHOD

Mathematical
The method is described in the ASP manual, pages 137 to 139.
The square matrix T is initialized to be the identity.
Step 1

The diagonal of B is scanned to find the largest pivot. Pivots are only taken from the
diagonal. If no pivot is found, skip to step 3.

The square root of the pivot is taken. The pivot row and pivot column are divided by the
square root. Thus, the pivot, at the intersection of the row and the column, is reduced to unity.
The corresponding row of T is also divided by the square root.

Step 2

The new, reduced pivot row is used to eliminate the elements of the pivot column. Let K be
the pivot row and column. The pivot row is multiplied times the element in the j,k position. The
resulting row-vector is subtracted from the jth row. This process is repeated for each row j that
has not yet been a pivot row. Exactly the same operations are carried out on the corresponding
rows and columns of T, except that, of course, the multiplier for a pivot row comes from B. Then
the pivot row of B, except for the pivot, is set to zero. The pivot row and its corresponding row in
T are never used again.

Step 3

If the rank is maximal, exit. If no pivot has been found, a test is made to see if this should be
an error exit, or normal exit. Otherwise, repeat step 1.

Computational

In practice, a number of modifications are made. The actual calculations are rewritten to
optimize speed and storage. The reciprocal of the square root is used, instead of a division. For
single precision, straight division would probably be best. In step 3, an artificial code is put into the
pivot position. This code is chosen as one that cannot be the result of floating-point arithmetic.
Such a technique works in a great many different Fortrans. If a row is found to be marked by a

pivot code, it is skipped in steps 1, 2, and 3 above.

The pivot position is forced to be exactly 1 before step 2 is applied. The pivot-code is actually
tested for as an integer. The pivot size is tested for in single precision. These modifications are for
speed. A count is kept of the number of pivot searches. If this count is one greater than the num-
ber of rows, the routine always stops searching for pivots. The result, if B has maximum rank, is
a matrix T such that T!T = inverse of B. The input B consists of 0’s everywhere except the
diagonal, which holds pivot codes.

86

Error Messages From ANDRA

Message Explanation
Dimension error The total number of matrix elements was too

large or too small. The parameter JP(4) cannot
be less than one nor more than MAXRC.

Finds no pivots ’ ANDRA could find not a single pivot in its
very first search of diagonal.

31. DECOM
SUMMARY

Fortran IV subroutine DECOM generates four double-precision output matrices from the
symmetric, non-negative definite input matrix B. One output is a matrix S such thatif E isa
unity matrix of rank r, then

B = SEE!st

This matrix is obtained as the inverse of a matrix T, by calling subroutine INV; T comes from
subroutine PSEU. It is defined by TBT! = E, a diagonal matrix with elements 0 or 1. E is also
returned, along with a permutation matrix P such that

PEPt =1,

a diagonal matrix with all 1’s moved to the uppermost left corner. Given these matrices, and the
ability to find a pesudoinverse of A, a decomposition of any matrix is possible. PSEU and DECOM
are called and the matrices then multiplied as described in the method to give a Kronecker decom-
position. The routine calls PSEUP and INV to do most of the calculation. Besides returning the
matrices P and E, it does nothing that could not be done by successive calls of other matrix
routines. It has parameters and error exits similar to that of PSEUP.

USAGE

CALL DECOM(A,B,C,E,J,DCM,KP,D)

Arguments Description
A The symmetric non-negative definite input.
B The output matrix E, diagonal of 0 and 1, with

1’s in the independent columns. B,C,E, J, D,
and D1 are all of same size as A.

C The output T, such that TAT! = diagonal of
0’s and 1’s.

87

DCM

DCM1

DCM2

DCM3

KP

KP1

KP2

KP3

KP4

88

Holds the inverse of A (B does not hold the
inverse of A). (Not E of ASP.)

A square integer matrix for housekeeping in
INV and DECOM.

Parameters, just‘_ as in subroutine PSEUP.

Multiplied time.s the largest magnitude of diagonal
of A, to give a lower limit for an acceptable pivot
in PSEUP. Set at 2(10)° if zero is input.

Used only if the user elects to iterate in PSEUP.
Set at 1.DO (no effect) if zero is input.

Note: DECGEN uses the default options for
DCM1 and DCM2.

The last pivot accepted by subroutine PSEUP,
during diagonalization of input matrix A.

Integer control parameters, just as for subroutine
PSEUP.

Zero, do not iterate in PSEUP. One, iterate in
PSEUP.

Zero, do all calculations. Nonzero, do rank only.
Changed to reflect the rank on output. Should
be set to zero or minus one before each call.
Note: DECGEN uses KP1 and KP2 = 0.

The row size of the matrix input.

The column size.
Note: This parameter is forced negative as a
signal if T cannot be inverted by INV.

D has five parts, as does the “dummy” array in
PSEUP. Let these be denoted D, D1, D2, D3,
and D4. These five equal arrays must be included
in the size of parameter D if iteration by

PSEUP is selected. If no iteration is used, D2,D3,
and D4 may be omitted. D holds the inverse of
output C. DI holds the permutation matrix P.
Note: If rank only is computed, D1 is computed,
but D is not. A, B, C, and D1 are thus the only
matrices with useful values returned.

METHOD

The results from DECOM are an effective rank r; matrices B and D, which are used in
further calculations to get a Kronecker decomposition, or to see which variables are dependent; and
the permutation matrix P in D1. This section describes the sequence to obtain the Kronecker
decomposition in two different cases. The goal is two matrices G and H. DECOM does not produce
these matrices; they are produced either by DECGEN or by the user according to the following steps.

Let R be the matrix to decompose. Matrices G and H are desired such that
R =HG

H is to have only r nonzero columns; G is to have only r nonzero rows. Small r is the rank of
R.

Case 1

Matrix R is symmetric, non-negative definite. Input R as the square input A to DECOM.
Then H and G are produced afterward from the matrices in the call statement as follows:

Parameter B is a diagonal matrix with r 1’s; H and G are computed by:

H=D X B
G=(D X B)}
A = original = DBBD?

Case 2

R is nonsymmetric, possibly not even positive definite. Form RR! (subcase a) or else form
RIR (subcase b). The subcases are chosen to give the smaller dimensions. If R is square, use RR!
to agree with both PSEU and DECOM. Let this symmetric result be the input A to DECOM as
in case 1. Obtain D and B as before and save them. In subcase a, X = Rt X E, but in subcase b,
X =E X Rt, Then for subcase a, take

H=DB

G = (XDB)t
Similarly, in subcase b, take

H=X!'DB

G = (DB)!

Note: The H and G matrices produced have the same dimensions as the smaller dimension of R.
If the rank of R is not maximal, there will be zero rows or columns in H and G. If the matrix DI
is used instead of B in the above calculations, the zero rows or columns will be at the right or bot-
tom, and the dimensions may be easily reduced. This latter is the procedure used in subroutine
DECGEN.

89

Computation

In practice, the subroutine is very short; it calls on PSEUP and INV to do the computations.
No flowchart is needed, since there are no loops of any consequence.

Step 1

The matrix size is tested for reasonableness, with an error exit if it is not. KP(1) is set to
special negative values to suppress reinversion by PSEUP, and to change somewhat the matrix
outputs. This change is not discussed in PSEUP,

Step 2

Entry point PSEUP is used to diagonalize the input. C holds a matrix T such that
TATt = B, a matrix of 0’s and 1’s. If the rank only option is input, the routine skips to step 4.

Step 3

Subroutine INV puts an inverse of T into D. The flag PIV is tested. If zero, INV
failed; the routine prints an error message. INV uses matrix J.

Step 4

The matrix E, which is matrix of 0’s and 1’s, is scanned along its diagonal. A matrix P of
0’s and 1’s is constructed such that

t -
PEP! = |

I; has all I’s moved to extreme upper left corner. A record of successive diagonal positions that
are O is kept. As each 1 is found in the diagonal in position k, the record is checked to see if
there is an earlier O (or 1) that needs to have a 1 permuted into its place j by permutation p.
If so, a 1 is put into position j, k of P. Premultiplication by P will move position k, k to j. k.
Postmultiplication by Pt will move i, k to position j, j. Position k, k is also marked as a

hole that could be filled by a 1 lower on the diagonal, since it vacates its old position. The
record in the first column of J has the structure of a queue. Matrix P isin DI, the second
matrix of dummy array D.

Step 5

Return.
NOMENCLATURE

The nomenclature used in DECOM is compatible with that used in PSEU, but differs
from that used in the ASP manual description of the decomposition routine, p. 154. Also,

since DECGEN requires dummy storage, the nomenclature there is different again. The
following table lists the correlations:

90

DECOM

Dl

DECGEN
DUM1

DUM(N7)
DUM(N4)
DUM(NS5)
DUM(N2)
DUM(N3)

DUM(NG6)

91

92

APPENDIX B

LISTINGS OF ALL

VASP SUBROUTINES

3

€6

SUBRNUTINF READ (I, Ay NA, By NBy, Cy NCX, D, ND, E, MNE)

DIMENSION A(Y1), B(1}, C(1), N{1), EI(1)
DIMEMSION NA{2), NB(2),MCX(2), ND(2), NE(2),NZ(2)
NDOURLE PRECTISION A, By Cy D,y E

READ{5,100) LAR, NZ(1)y NZ(2)
CALL READYI(A, NA,NZ, LAB)

IF(T +EQ, 1) GO TO 999

REAN{5,100) LAB, NZ(1)y NZ{(2)
CALL READ1(By NB4NZ, LAR)

IF(I JEN. 2) GO TO 999

READ(5,100) LAR, NZ(1), NZ(2)
CALL READ1(C, NCX4NZ, LAR)
IF(I ED. 3} GO TO 999

REAN{5,10N) LAR, NZ{1), NZ(2)
CALL READ1(D, ND,NZ, LAB)
IF(] (E0, 4% GO TO 999

100

REAND(5,100) LAR, NZ(1)y NZ(2)
CALL RFAD1(F, NE,NZ, LAR)

FORMAT (A4,4X,2174)

999

RETURN
END

SURBRAOUTIME RDTITL

100

COMMONM /LINES/NLP,LIN,TITLE{23)
READ (5,100) (TITLE(T},1=1,418)
FORMAT (18A4)

CALL LNCNT(100)
RETURN
END

¥6

SUBROUTINE PRNT(ARSMNAR,NAM, IP)

C SUBR PRNT PRINTS DOUBLE PRECISION MATRIX
COMMON /FORM/NEPR,FMT1{(6),FMT2(6)
COMMON/L INES/NLP,1L IN, TITLE(23)

COMMON /MAX/MAXRC

C~ NOTE NLP NO. LINES/PAGE VARIES WITH THE INSTALLATIOM,
DATA KZ,KW,KB /1HO,1H1,1H /

REAL®*8 AR
DIMENSION AR{1)4NAR(2)

NAME = NAM 5

C-1F IP =1,HEADLINF SAME PAGF, IF IP =2, HEADLINE, NEW PAGE

C IP=3, NO HFADLINE, SAME PAGE, IP=4, NO HEADLINE, NEW PAGE
IT = 1P

NR=NAR(1)
NC=NAR(2)
NLST = NR * NC

IFINLST «GTe MAXRC «0ORe NLST LTe 1eOR.NR,LTSL1) GO TO 16
IF(NAME LEQ, O) NAME = KB
C- SKIP HEADLINE TF REQUESTED,

GO TO (11,10,132,12), 18!

10 CALL LNCNT(100)
11 CALL LNCNT(2)

3 WRITE(645177) KZyNAME4sNR4NC
177 FORMAT{ AL 45XyA448H MATRIX35X,13,5H ROWS5X,13,8H COLUMNS)
GO 10 13

12 CALL LNCNT(100)
GO 7O 13
132 CALL LNCNT(2)

WRITE (6,891)

891 FORMAT (1HO0)
C~ RBELOW COMPUTE NR OF LINES/ ROW

13 J=(NC-1)/NEPR+1

C— COMPUTE LAST RMW POSITION -1
NLST = NLST =NR

MN=NC
IF (NC.GT.NEPR) MN=NEPR
KLST=NR*{MN~-1)

|

§6

91

CONTINUE
DO 912 J = JST,
CALL LNCNT(NLPW)

NR

KLST = KLST +1
WRITE (6,FMT1)
IF (NCoLF NEFPR)

(AR (N}, N = J,
GO TH 912

KLST,

M)

NLST = NLST +1
KNR=KLST+NR
WRITE

(69 FMT2) (AR (V) gy N=KNR 4L ST, nNR)

612

16

CONTINUFE
RETHRN
CALL LNCNT(1)

916

WRITE (6,4916)

FORMAT {0
CALL ASPERR

FRROR IN

NAM, NAR

PRNT MATRTX

VAL

HAS

M/-\='97_Iﬁ)

RETHRN
FND

SUBRQOUTIMNE LNCNT

{N)

COMMON/LINFS/ NLP
LIN=LIN+N
IF (LINJLF NLP)

yLINGTTTLE(23)

GN TN 20

1010

WRITE (6,1010)
FORMAT
LIN=2+N

(TITLF(TI),1=1,23)

(1H1,2344/)

20

IF (N GT.NLP)
RETURRM
FND

LIn=2

96

SUBROUTINE ADD (A,NA,B,NB,C,NC)
DIMENSTON ATLY,B01),CU1)sNACZ),

COMMNON /MAX/MAXRC
DOURLE PRECISINN A,8B,C

NB(2Z) NC(7)

IFCINALTL) NEGNRIL)) o ORGINA(Z2) JNELNR{2))) GO TN 999

NC{1)=NA(1)
NC(2)=NA(2)

L=NA(L)=NA(2)

IF (NA(L) eLTeleOReLLTo1eORLGTSMAXRC)Y) GN TH 999

DO 300 I=1,L

300

999

CUIY=ATIY+R (D)
GD TN 1000

CALL LNCNT (1)

50

WRITE(6450) NA,NR

FORMAT (' NDIMENSTONM ERROR IN Abuw
CALL ASPERR

NA='2T645X, 'NR=1216)

1000

RETURN
END

7

L6

SUBROUTINE SUBT(A,NA,B,NB,C,NC)

DIMENSION A(1),R(1),C(1),NA(2),NB(2),NC(?7)

DOUBLE PRECISION A,B,C
COMMON /MAX/MAXRC

IF((NA(L1) NEJNB(L1))sOR.(NA(2)NEJNR(2}))) GO T 999

NC(1)=NA(1)
NC(2)=NA(2)
L=NA(1)*NA(2)

TF INATL) oLTe leOR LWL T e T ORGLGTLMAXRT) GO TT) 999

DO 300 I=1,L

300 C(I)=A(1)-B(1)
GO TO 1000

999 CALL LNCNT (1)
WRITE{(6,50) NA,NB

50 FORMAT (' DIMENSION ERRDR IN SUBT NA=Y2T16,5X, "NB=1216)

CALL ASPERR

1000 RETURN
END

86

SUBROUTINE MULT({A ¢NA4B4NBR4CyNC)

DIMENSTION A{1),B(1),Cl1)4NAL2)yNB(2),NC(?)

DOUBLE PRECISION A,B,C
COMMON /MA X/ MAXRC

NC(1) = NA(1)
NC(2) = NBR(2)

IF{NA(2) JNELNBI1)) GO TD 999

NAR = NA(1)
NAC = NA(2)
NBC = NB(?2)

NAA=NAR*NAC
NBB=NAR*®NRC
IF (NARGLTeloOReNAAGLTe1loOReNAALGT +MAXRC,UR.NBRsLTe1lelR

1 NBB.GT.MAXRC) GO TD 999
IR =0
IK==NAC

DO 300 K=1,NBC
IK = IK + NAC

DO 300 ,J=1,NAR

IR=IR+1

IB=1K
JI=J-NAR

C(IR)=0.
DO 300 I=1,NAC
JI = JT + NAR

IB=1B+1
CUIR)=C{IR}Y+A(JI)%B(IB)
300 CONTINUE

GO TO 1000
999 CALL LNCNT (1)
WRITE(6,4500) (NA(I)sI1=142),(NB(I),1=1,2)

500 FORMAT (' DIMENSTION ERROR IN MULT NA=T2T6 45X, TNB=12T6)
CALL ASPERR

1000 RETURN

END

66

SUBROQUTINE SCALE (A, NA, R, NB, S)

DIMENSTION A(1),B(1),NA(2),NB(2)
COMMON /MAX/MAXRC
DOUBLE PRECISION A, B, S

NB(1) = NA(1)
NB(2) =NA(2)
L = NA(1)xNA(2)

300

IF (NA(1)eLTeleOReLoLTeleDRaLoGToMAXRC)
DO 300 I=1,L
B(I)=A(T1)3*S

GN TH 999

1000
999

RETURN
CALL LNCNT(1)
WRITE (6,50) NA

50

FORMAT (' DIMENSION ERROR IN SCALE NA=1216)

CALL ASPERR
RETURN

END

001

SUBROUTINF TRANP(A,NA,R,NR)

DIMENSION A(L)4B{(1),NA(2)4NB(2)
DOUBLE PRECISION A,R
COMMON _ /MAX/MAXRC

NB{1)=NA(2)
NB(2)=NA(1)
NR=NA(1)

NC=NA(2)
L=NR®NC

IF___(NR el TeleORWL 6L ToelsORaloaGToMAXRC)

IR=0
DO 300 I=1,NR
1J=1=-NR

DO 300 J=14NC
IJ=1TJ+NR
IR=JR+1

300

999

B(IR)=A(T1J)
RETURN
CALL LNCNT(1)

50

WRITE (6450) NA
FORMAT (' DIMENSION ERROR IN TRANP
CALL ASPERR

NA=1216)

RETURN
END

GN 70 999

j

101

SUBROUTINE INV(A,NA,DET,L)
DIMENSTON Af1), L(1),NA(C2)

DOURLE PRECISION A, NET, RIGA ,
COMMON /MAX/MAXRC
IF (NA(1).NE.NA(2)) GO TO 600

HOLD

SEARCH FOR LARGEST ELEMENT

DET= 1.
N=NA{1)

NS Q=N N

IF (NeLTelafR4NSQLGT «MAXRC) GU

NK = - N

T0O 600

DD 80 K= 1, N

NK = NK + N
L(K) = K

NPK=N+K
L(NPK)=K
KK_= NK + K

BIGA = A{KK)

nn 20 J= Ky N
1Z = Mkx(J = 1)

10

po 20 I= Ky N
I =12 + 1
IF{NABS(RIGA) ~ DABS(A(TIJ))) 15,

20,

15

BIGA = A(IJ)
LK) =1
NPK=N+K

20

LINPK)=J
CONT INUE
INTERCHANGE ROWS

25

J = LK)
IF(J - K) 35, 35, 25
KI = K - N

NG 30 I = 1, N
KI = KI + N
HOLD = =-A{KT)

30

JI = KI = K + J

201

35

INTERCHANGE COLUMNS
NPK=N+K
I=L (NPK)

38

IF (1 - K) 45, 45, 38
JP = N&(I - 1)
DG _40 J= 1, N

JK = NK + J

JI = JPp + J
HOLD = =A(JK)

]

40

ACJKY = A(JT)
A(JT) = HOLD

DIVIDE COLUMN RY MINUS PIVOT(VALUE OF PIVOT ELFMENTS TS CAMTATMED

45
46

IN RIGA)
IF(BIGA) 48, 46, 48
DET = 0.

CALL LNCNT (1)

KKK=KK-1
WRITE (6,1046) KKK

1046

FORMAT (' INV ERROR
CALL ASPERR
RETURN

48

50

Do 55 I= 1,4 N
IF (I - K) 50, 55, 50
IK = NK + 1

55

A(IK) ==A(IK)/(BIGA)
CONT INUE

REDUCE MATRIX

DO 65 I= 1, N
IK = NK + 1
HOLD = A(IK)

I =1-N
N 65 J= 1,4 N
1J = 1J + N

60
62

IF{I - K)} 60,4 65, 60

IF(J=- K) K2, 65, 62
Kd = 1IJ =T + K

65

ACTJ) = HOLD® A(KJ) + A(IJ)

CONT INUE
DIVIDE ROW RY PIVQOT

NETERMINANT (JF A=0 NF A=',T4)

‘4 "\SI
o

€01

Kd = K = N
DO 75 J= 1, N
KJd = KJ + M

70
75

A(KJ) = A(KJ)I/B
CONTINUE

IGA

PRODUCT OF PIVOTS

DET=DET*BIGA

REPLACE PIVOT BY RECIPROCAL

80

A(KK) = 1./RIGA
CONT INUE

FINAL ROW AND COLUMN

INTERCHANGE

100

K = N
K =K -1
IF(K) 150, 150,

105

105

108

I = LK)
IF (1T - K) 120
JO = N*(K - 1)

y 120

y 108

JR = N¥&{I- 1)

DO 110 J= 1, N
JK = J0 + J

HOLD = A(JK)
JI = JR + J
A(JK) = -~ A(JT)

110
120

A(JT) = HOLD
NPK=N+K
J=L (NPK)

125

IF(J -~ K) 100,
KI = K = N
NN 130 I= 1, N

100,

125

KI = KI + N
HOLD = A(KI)
JI = KI = K + J

130

A(KI) = = A(JI)
AlJT) HOLD
GO TO 100

01

150 RETHRN
600 CALL LNCNT

(1)

WRITE (6,41600) NA

1600 FORMAT (!
CALL ASPERR
RETURN

INV REOQOUIRES SOQUARE

MATRIX

NA=? ,?14)

END

S0l

NE NORM({A4NA, ANDRM)

tZY,ACL)

MAXRC

A
i;IﬂN Ay ANORM, SUM 3 RNOWIMAX o CLIL 2 AX

L=NAR*NAC

IF (NAR oLTeleOReLoLTo1e0RGLGTLMAXRC)

COLMAX
ROWMAX

nwon
)
.

G TN 999

K=10
DO 300 T = 1,NAC
SUM = 0.

301

DO 301 J = 1,NAR
K=K+ 1
SUM = SUM + DABS(A(K))

300

IF {(COLMAX.LT.SUM) COLMAX = Sim
CONT INUE
DO 302 I = 1,NAR

SUM = 0.
K =T - NAR
DO 303 J = 1,NAC

303

K = K + NAR
SUM = SUM + DABS(A(K))
IF (ROWMAX.LT.SUM) ROWMAX=SUM

302

CONTINUE
ANORM = DMIN]1{COLMAX,ROWMAX)
RETURN

999

50

CALL LNCNT (1)
WRITE (6450) NA

FORMAT (' DIMENSTION ERROR IN NQORM NA='216)

CALL ASPERR
RETURN
END

901

SUBROUTINMNE UINTTY(A,NMA)

DIMENSION A(1),NA{2)
DOUBLE PRFCISION A
IF{(NA(L1)NE,NA(2)) GN TN 999

CALL SCALF(AyNALA,NA,O.DO)

J = - NA(L)
NAX = NA(1)
DO 300 I=1,NAX
J=ENAX +J+1

300 A(J)=1.
GO TO 1000

999 CALL LNCNT (1)

WRITE(6, 50)(NA(T),I=1,2)

50

1000

FORMAT (' DIMENSTION ERROR IN HINITY

CALL ASPERR
RETURN

NA=12T6)

END

LO1

SUBROUTINE TRCE ({Ay4NA,TR)

DOUBLE PRECISION A(1),TR
DIMENSION NA(2)
COMMON _ /MAX/MAXRC

IF (NA(1).NF.NA{2)) GO TO 600
TR=0,DO
N=NA(1)

NN= NN
IF (NeLTeleDR NNJGToMAXRC) GO
DO 10 I=1,N

TO 600

10

M=T+N*(I-1)
TR=TR+A(M)
RETURN

600

1600

CALL LNCNT(1)
WRITE (6,1600) NA
FORMAT (' TRACF REQUIRES SQUARE

MATRT X

NA=',216)

CALL ASPERR

RETURN
END

801

SUBROUTINE EQUATE(AsNA,R,NB)

DIMENSTION A(1),B(1),NA(2),NB(2)
DOUBLE PRECISION A, B
COMMON /MAX/MAXRC

NB{1) = NA(1)
NB(2) =NA(2)
L=NA(1)*NA(2)

300

IF (NA(1)eLTeleOReLoLTaleORebLoeGTaMAXRC)
DO 300 I=1,L
B(I)=A(])

GO TO 999

1000
999

RETURN

CALL LNCNT (1)
WRITE (6,50} NA

50

FORMAT (' DIMENSION ERROR IN EQUATE NA=1216)

CALL ASPERR
RETURN

END

Al

601

SUBROUTINE JUXTC(A,NA,B,NB,CyNC)

DIMENSTION A(1),B(1)4C(1),NA(2),NB(2),NC(2) -
DOUBLE PRECISION A,B,C
COMMON /MAX/MAXRC

IF (NA{1).NE.NB(1)) GO TO 600
NC(1)=NA(1)
NC(2)=NA(2)+NB(2)

L=NA(1) %NA{2)
NNC=NC(1)%NC(2)
IF (NA(1)olTaleORuLoLTeleORLLLGTL.MAXRC) GO TO 600

IF (NC(2)eLTeleOReNNC.GT«MAXRC) GO TO 600
MS=NA({ 1) *NA(2)
DO 10 I=1,MS

10

C(I)=A(T)

MBS=NA(1)*NB(2)

20

J=MS+]

C(J)=B(1I)
RETURN

600

CALL LNCNT(1)
WRITE (6,1600) NA,NB

1600 FORMAT (' DIMENSION ERROR IN JUXTCy NA=',216,5X,'NB=1,216)
CALL ASPERR
RETURN
END

o1l

SUBRNOUTINE JUXTR{ANA,R,NB,C,NC)

DIMENSION A(1),R{1),C(L),NA(2Z2)y,NB(2)4NC(2)
DOURLE PRECISION A,B,C
coMMON /MA X/ MAXRC

IF(NA(2) JNF.NRI(2))GO TO 600
NC({2)=NA(2)
NC{1)=NA{1)+NB(1)

L=NA(Y)*NA(2)
MNC=NC(1)*NC(2)
IF (NA{1) el TeleORaL ol ToeloaOReL,GT.MAXRC) GN TO 600

IF INCU2)aLT e 1eDR.NNCL.GT JMAXRC) Gh TO 600
MCA=NA(2)
MRA=NA{1)

MRB=NB (1)
MRC=NC(1)
po 10 I=1,MCA

DO 10 J=1,MRA
K=J+MRA%{T1~-1)
L=J+MRC*(T-1)

10

ClL)=A(K)
no 20 I=1,MCA
Do 20 J=1,MRR

TK=J+MRRE(TI-1)

20

L=MRA+J+MRC3 (T -1)
ClL)=R(K)

600

RETURN
CALL LNCNT(1)
WRITE(6451600) MALNB

1600

FORMAT(' NDIMENSINM ERRMAR IN JUXTR, NA=',216,5X,"'NB=",216)
CALL ASPERR
RETURN

END

k|

—
ot
ot

SUBROUTINE EAT(A, NA, TT, B’ NP), C, NC’ D”I"IMY, KV)

DIMENSION A(1)sB(1)yDUMMY (1), NA(Z2)4NB(2),0ND(2)},C(1),NC(2)

DOUBLE PRECISION A, Ty TT, ANAA, THMAX, R, DUFMY, C ,

COMMON /MAX/MAXRC

S

SC

MR=NA(1)
NCC=NA(2)
NC(1)=NR

NC(2)=NCC
NB(1)=NR
NB(2)=NCC

LD=NR*=NCC
IF (MR NEJNCC.OR NR,LT,1
NDD=2%NA(1) %NA (1)

e ORGLD (GT JMAXRC)

G0

T} 998

IF(KDUM LLT.NDD) GO TN 998

NDD= NA(1)%NA(1)+1
T=TT

CALL NORM(A,NA,ANAA)
TMAX= 10.01/ANAA

K=0
101 IF (TMAX-T7) 103,104,104
103 K=K+1

T=TT/23%K

IF (K=1000) 101,102,102
104 SC=T

CALL SCALFE(A,NA,A,NA, T)

DO 401 I= 1, 2
401 NB(1) = NA(I)

CALL UNITY(B,NB)

CALL SCALE(B,NB,DUMMY(1),NB,T)

S =T7/2.
CALL SCALFE(A,NA,DUMMY(NDD),NA,S)

N = 35
11=2
CALL ADD (DUMMY(1),NA,DUMMY{NDDN) ,NA, DUMMY (NDD) ,NA)

CALL ADD(A,NA,B,NB,DUMMY(1),NA)
CALL EOQUATF(AJNA,C4NC)

106. CALL MULT(A,NA,C,NC,ByNB)

(43!

$S=1.D0/T1
CALL SCALE(R,NB,C,4NC,S)
S = T/(11+1)

CALL SCALF(CyNC,B,NB,S)

CALL ADD({B4MB4DUMMY (NDN) 4 NB, DUMMY (NDD) 4NR)

CALL ADPD(C4NC,DUMMY (1) 4NC,,DUMMY,NC)

105

N=N=1

IF (N) 107,107,105
11=11+1

107

GO TO 106

CALL EOQUATE(DUMMY(1)}, NB, B, NR)
IF (K} 109,108,212

106

110

CALL LNCNT (1)
WRITE (64110)

FORMAT (' ERROR IN EAT K IS NEGATIVE!')

112
213
212

IF (K-1) 213,212,212
K=1
PO 111 J=1,K

T=2%T
CALL EQUATE(B, NB, DUMMY(1), NBR)

CALL MULT(NUMMY (1), NA, DUMMY(NDD), NA,C4NC)

111

CALL ADD(DUMMY (NDD), NT, C, NC, DUMMY(NONT,

CALL MULT(DUMMY (1), NB, DUMMY(1), NB,
TT=7

By NB)

NC

108

CONT INUE
CALL EQUATF(DUMMY (NDD)4NC4C4NC)
§=1.Nn0/SC

CALL SCALF(AsNA,A,NA,S)
RETURN
CALL LMCNT (1)

WRITE (64119)
FORMAT (' ERROR IN EAT K=1000")
CALL ASPERR

938

RETURN
CALL LNCNT (1)

WRITE(Ay S50Q) _ NASKDUM,NDD

50

FORMAT (' DIMENSION ERROR IN EAT

1 TKDUM{MIN)=115)
CALL ASPERR

NA='2I69

TRDUM=FT5,5X,

RETURN
END

N

€l

SUBROUTINE ETPHI(A,NA,TT,B,NB,DUMMY,,KDUM)

DIMENSTION A(1)yB(1)yDUMMY(1)4NA(2),NB(2),ND(2)
DOURLE PRECISION A, T, TT, ANAA, TMAX, R, NUMMY 957
COMMDN /MAX/MAXRC

SC

MR=NA(1)
MCC=NA(2)
NB(1)=NR

NB(2)=NCC
LD=NR%xNCC

IF (NR<NEJNCC.ORNRLLT,1 «OR LN GTJMAXRC)

GO TO 998

NDD=2%NA{1)%*NA (1)
IF(KDUM .LT.NDD) GO TOD 998
NDD= NA(1)*NA(1)+1

T=T1
CALL NORM(A,NA,ANAA)
TMAX= 10,0 1/ANAA

K=0
101 IF (TMAX-T) 103,104,104
A03 K=K+]
T=TT/2%%K
IF (K-1000) 101,102,102
104 SC=T
CALL SCALE(A,NA,A,NA, T)
CALL UNITY(ByNB)
11=2
N = 35
CALL ADD(A,NA,ByNB,DUMMY(1)},ND)
CALL EQUATE(A,NA,DUMMY (NDD),ND)
106 CALL MULT(A,ZNA,DUMMY(NDD),ND,B,NB)
$=1.D0/11
CALL SCALE(BR,NB,DUMMY(NDD),ND,S)
CALL ADD(DUMMY(NDD),ND, DUMMY (1) ,ND,B,NB)
CALL EQUATE(B,NBy,DUMMY (1),ND)
N=N-1
IF (N) 107,107,105
105 1I=I1+1

GO T0 106

148!

107
109

IF (K) 109,108,212
CALL LNCNT (1)
WRITE (6,110)

110

112
213

FORMAT (' ERROR IN ETPHI K IS NEGATIVE!)

IF (K=1) 213,212,212
K=1

212

DO 111 J=1,K
T=2:T
CALL EOUATE(B, NB, DUNMY(1), ND)

111

CALL EQUATF(DUMMY (1), NDy DUMMY(NDD), ND)
CALL MULTIDHMMY (NDD),ND, DUMMY (1) ,MD 4B, NB)
17=T

108

CONT INUE

S=1.D0/SC
CALL SCALFE{A,NA,A,NA,4S)

102

RETURN
CALL LNCNT (1)
WRITE (6,119)

119

FORMAT (' ERROR IN ETPHI K=1000")
CALL ASPERR
RETURN

99 8

50 FORMAT (' DIMENSTION ERROR IN ETPHT NA='216,

CALL LNCNT (1)
WRITE (6450) NAZKDUMyNDD

' KDUM=115,5X,

1 TKNDUM{MIN)=115)
CALL ASPERR
RETHRN

END

Gl

SUBRNOUTINE AUGIF ¢NF4GyNG4RIZNRT yHy NHy, O N0, C4NCyZyN7, II)

DIMENSION F{1),G(1),RI(1),4H(1),4Q(2}yZ(1),C(1)

DIMENSTION NNPL(2)yNNP2(2)y,NNP3(2) ¢y NMP4(2) ,NF(2)3NG(2)4NRT (21},
INH{2),NZ(2)NC(2}4,NNI2),NO(2)

DOUBLE PRECISION Fy Gy RISZHy0,Cy2
IFCINF(L) oNEFoNF(2)) o ORe (NRT (1) NEJNRT(2)).0R,{
INQ(1)NEJNOQ(2))) GO TO 995

NNZ=2%NF(1}
IF{ (ING(1)oNEGNF(1))eOR,(NG(2) , NE.NRT(1)))GO TO 995
IF(1T1.EQ.1) GO TO 206

206

TF((NH(1) NE.NO(1)).0R. (NH[2) ,NE.NF(2))) GO TN 995
TWO = 2
N = NF(1)

NSQ = NN
NZ(1)=NNZ
NZ(2)=NN7

2

©

N
n

NP1 + NSO
NP2+NSOQ

=
©
SV
ulu

NP3 + NSO
CALL TRANP(GyNG4Z(NP4)yNNP4)
CALL MULT(RI,NRI,Z(NP4) NNP4,C,4NC)

CALL MULT(G4sNG4CyNC,Z(NP4), NNP&)
IF(II LEQ, 1) GD TOU 204
CALL TRANP(H,NH,Z{ND3), NNP3)

CALL MULT(Q,NO,H,NH,Z(]J), NNP1)

CALL MULT(Z(NP3),NNP3,7(1)4NNP1,Z(NP2),NNP2)
GO T0 205

204
205

CALL EQUATETO, NO, Z{NPZT, NOJ
NPATIR=MOD(N,2)
IFI(NPAIR.F0O,0) NPAIR=TW(

NN(1) = N
NN(2) = 1
GO TD (201,202),NPAIR

201

NO 300 I=1,N,2
NP2 = Nl(N+f-1)+1
NTH3=TWOXNX (1~1) +N+1

911

300 CALL EQUATE(Z (NP2) 4NNy 7Z INTH3) 4NN)

DO 302 I=2,N,2
NP4 =N (3xN+ =1) +1

NTHZ2=TWOxN® (N+I1-1)+1

302 CALL EQUATF(Z (NP4) 4NNyZ (NTHZ2) 4NN
GO TD (202,203),NFATIR

202 DO 301 I=2 4N, 2
NP2 = Nt (MN+T-1)+1
NTH3I=TWORN{ IT=1)+N+1

301 CALL EOQUATF(Z(NP2)4NN4Z (NTH3),NN)
DO 304 J=1,Ny2

NP4 =Nzt (33N +T~1)+1

NTH2=TWkNM (N+T-1) +1
304 CALL EQUATF(Z(NP&)4NN,Z (NTH2)4NN)
GO 70 (203,201)4NPAJR

203 DO 303 I=1,N

iJ = I+N
NN 303 J=1,N
JJd = J+N

L1=NNZ=(J=-1)+1
L2=NNZx(1J-1)+JJ

L3=Nx(J=1)+1
7(L1)==F(L3)
303 7(L2)=F (L 3)

GO 70 1000

995 CALL LNCNT (2)
WRITFE (6450) NF4NGoNRI4NH,yNO

50 FORMAT (' DIMENSION FRROR IN AUG' T35, 1NF! 39X, "NG' 99X 3 'NRI 98X,
1 TRH ', 9X 3 *NQY/ 29X ,5(3X,216))
999 CALL ASPERR

1000 RETURN
END

7

LTI

SUBROUTIME RICAT(PHT 4JNPHT (o NCyiNUONTy Ky MKy PT o HPT g KNIIK)

DIMENSION NCDNT(3),NPHI(?),NC(?),NK(7),NN(2),MU(7),NPT(?)

DIMENSTON PHI{(1)3C(1)4K(1)4PT{1)yW(1)

DOUBLE PRECISION PHI,

Co

Ky

PT,

StM,

SUMM, AL, W,DET

TWO=2
N = NPHI(1)/TWO
NSO =N=N

NSQ4=4%NSO
NPLl=1
NP2= NSQ+NP1

NP3=NSQO+NP2
NP4= NSQ+NP3

IF (KDUMJLT.NSQ4) GN T0D 600

IF (NPHI(2)NEJNPHI(1) 0RNC(2) «NEJNS

1 NEG.N) 60 70 600
NPRINT=NCONT (1)

URHNPT(L) MENJORGNPT(2)

NBLOCK=NCONT(2)/NPRINT
NZ=NCONT (3)
REARRANGE PHI MATRIX

NN(1)=N
NN(2)=1
DO 300 I=1,N

NTHL =TWOX%Nx{(I-1)+1
NTH3=NTH1+N
NW1=N*{T1-1)+1

300

NW2=NWL+N=N

CALL EOUATE(PHI(NTHYL) ¢NNgW{NWL),NN)

CALL EQUATFE(PHI(NTH3) yNNy4WINWZ2) 4 NN)

NM(1)=TWO*xN%N
NM(2)=1

CALL EOUATE(W(1),NM,PHI(1),NM)

DO 301 1=1,N
NTH2=TWOxN% {(N+T-1)+1
NTH4=NTHZ2+N

NW3 = Nx{ TWORN+I-1)+1
NW4&= NW3+N=N

CALL EOUATE(PHT(NTH2) NN W (NW3),NN)

=

811

301

CALL EQUATE(PHIINTH&) yNNyW(NWL) 5 NN)
NWW=TWORNKN+ 1
CALL EQUATF (W (NWW) 4NMyPHT (NWW), MNM)

C

MAIN COMPUTATION
CALL UMITY(PT,NPT)
DO 306 I= 1,N

306

K{I} = 0.
NTOT=0
DO 403 1=1,NBLOCK

DO 104 J=1,NPRINT
CALL MULT(PHI(NP3), NPT, PT, NPT, W(1), NPT)
CALL ADD (PHI(1), NPT, W(1l), NPT, W(1), NPT)

CALL INV(""(].), NPT, DET, H(NPZ))

CALL MULT(PHI(NP&4), NPT, PT, NPT, W(NP2), NPT)
CALL ADD(PHI(NP2), NPT, W(NP2), WPT, W(NP2), NPT)

CALL MULT(W(NP2), NPTy W(1), NPT, PT, NPT)
SUMN=Q0,
SUM=0,

DD 202 IL=1,N
ILP=TL+NP3
NIL=(TL=1)%N+TL

202

SUM=SUM+DARS(PTI(NIL))

SUMN= SUMN+NABS(PT(NIL) ~W(ILP))
AL=SUMN/SUM

no 201 IL=1,N
NTL=(TIL-1)%N+1IL
ILP=TL+NP3

201
204

W(ILP) =PT(NIL)
DO 104 M=2,N

Nl=M~]

DO 104 L=1,N1
L1=Nk({ L—1)+M
L2=N*{M=1)+L

PT(LL)=(PT(L1) + PT(L2))/2.
PT(L2)=PT(L1)
IF{AL-,.00001) 203,203,104

104

CONT INUE
NTOT=TI%*NPRINT
GO TO 305

611

203
305
103

NTOT=NTOT+J
CALL MULT (CoNC,PTyNPT,K,NK)
GO TDO (403,400,401 ,402), NZ

400

50

CALL LNCNT (1)

WRITE (64 50) NTOT
FORMAT (10X,T14,14H ITERATIMNS

401

CALL PRNT (PT4NPT,'P(T)',1)
G0 TN 403
CALL LNCNT (1)

WRITE (6, 50) NTOT
CALL PRNT (KyNKy'K(T) ", 1)
GO TN 403

402

CALL LNCNT (1)

WRITE (6, 50) NTOT
CALL PRNT (KyNKy 'K(T)'y1)

CALL PRNT (PT4yNPT,'P(T)',1)

IF(AL-.,00001) 210,210,403
C ONT INUE

REARRANGE PHI MATRIX

CALL EQUATE(PHI(1)4yNMsW(1),NM)
N0 303 I=1,N

NTHYL =TWOXN*(I-1)+1
NTH3=NTH1+N
NWI=N*(I-1})+1

NWZ2=NW]1 +N*N

CALL EQUATE(W(NWL1)4NN,PHI(NTHL) 4y NN)
CALL EQUATE (W (NW2)yNNyPHT(NTH3),NN)

CALL EQUATE(PHI(NWW) g NMyW(NWW)y NM)
DO 304 I=1,4N
NTH2= TWO®N* (N+T1-1)+1

NTH4=NTH2+N
NW3 = NX{TWOkN+I-1)+1
NW4&= NW3+NXN

CALL EQUATE(W(NW3)4NN,PHI(NTH2) 5 NN)
CALL EQUATE(W{NW&) yNN,PHI (NTH4) 4NN
RETURN

otl

600

1600

CALL LNCNT (2)
WRITE (641600) NPHIZNCyNPToKDUM,NSO4
FORMAT (* DIMENSTON ERROR IN RICAT',T35,'NPHT ', 7X, 'NC' 99X, NPT

1

26Xg VKDUMY 43X, "KDUMIMIN)V /29X ,3(3X 4 214) 34X, 14y5X,14)

CALL ASPERR
RETURN

END

121

SUBROUTINE SAMPL (PHIyNPHI gHyNHy Oy N0 4Ry Ry Py MP 4 Ky MK 3 MCONT 5 DM o K D)

DIMENSTON NPHT (2 NHIZY,NO(Z},,NRTZT, NP T2V ,NR{77,NCTINT [3 T,NZT {1 2]

DOUBLE PRFCISION PHI(1),H(1),001)}4yR(1)4yP(1)4K({1)yNUM(L)
DOUBLE PRECISIDN SUM,SUMN,AL

DIMENSION OF DUM MUST RE AT LEAST 63%iN=N
CHECK FOR CONFORMABLE MATRICES
N=NPHI(1)

M=NH(1)

NK(1)=N
NK{2])=M

NSO=NxN
ND1=1
ND2=NSO+1

ND6=5 NSO+ 1
ND3=NDZ2+NSO
NSQ6=6%NSO

IF (NPHI(2) NEsNORNH(2) NE,NJOReNO(1) NENORNO(2)eNEJNJORSNR(L

1) e NEeMoORGNR(2) eNEMeORGNP (1) dNEJNGORGNP {2) e NEoNeORKDUMLLTJNSQ6)
260 T0 900

NFIN=NCONT(2)
MPRINT=NCONMT (1)
NZ=NC ONT (3)

START OF MAIN COMPUTATION, P{0O) IS INPUT DATA IN P MATRIX
KLN=0
JFN=0

100

1=0
AL=1.
CALL MULT{H,NH,P,NP,DUM,NZD)

PDUM=H3=P
CALL TRANP (HsNH,DUM(ND2),NZD{3))
DUMZ2=HPRIME

CALL MULT (DUMGNZD,DUM(ND2)NZD{(3),DUMIND3),NZD(5})
NUM3=H¥*P*HPRIMF
CALL_ADD (DUMIND3) 4NZD(5) yR4yNR, DUM,NZD)

DUM=H*P*HPRIME+R
CALL PSEUDD (DUMyNZDyDUM(ND2) 4NZD(3), DUMIND3), KDUM-3NS0)
NDUM2= TNVERSE

CALL TRANP (HyNH,NDUM,NZD)
NDUM=HPRIMF

CALL MULT (DUM,NZD,DUM(ND2),N7ZD(3),DUM(ND3},NZD(5))

(44!

110

CALL
NDUM=A
CALL MULT

MULT

(PyNP yDUNMIND3) 4 NZN(5) 4 DUMyNZD)

(PHI NPHT 4DIIM 4 NZ)y Ky NK)

O

CALL MULT
DUM2= A%H
CALL MULT

(DUMyNZDsH o NHoyDUM (ND2) yNZD (3))

(DUM(ND2) yN7D(3) 4P 4NP, DUM,NZD)

CALL
DUM=

SURT

(P yNP,DUM N7 Dy DUM,NZD)

P-A%H%P

CALL

caLL
CALL

TRANP

MULT
MULT

(PHI yNPHISDUMIND2) ,NZD(3))

(DUMyNZD, DUM{ND2) 4 NZD(3), DUMIND3) ,NZD (5})
(PHI,NPHI DUM(ND3) 4NZD{5),DUM,NZN)

DUM=PHI{P-A%H*P}PHIPKIME

CALL ADD

(DUMgNZD 3 Q4NQ4P4NP)

PN 120 M=2,N

Ni=M-1

DO 120 L=14N1
Ll=N#(L=1)+M

120

L2=Nsk(M=1)+L

P (LL)=(P
P _(L2)=P

(LL)+P
(Li)

(L2)Y)/2.

130

IF (1.EQ.0)

SUM=0.
SUMN=0.,

GO T0O 150

DO 140 IL=1,N
IJ=(TIL-1)=N+1TL
SUM=SUM+DARS(P(]J))

140

NDL=ND6+IL

SUMN= SUMN+DABS(P (T J)=DIM (NDL))

AL=SUMN/SUM

150

DO 151 TL=1,N
IJ=(IL=-1)*N+TL

NDL=ND6+ 1L

151

DUM (NDL)
TLST=1
T=1+1

=P(IJ)

IF (AL.LE..N0001)
IF (T.GELNFIN)

GO TO 300
G0 TN 310

INTERMEDIATE PRINT

€l

152

IF (I.LT.NPRINT)} GO TO 100
MPRINT=NPRINT+NCONT(1)
GO TO (170,156+155,155)eN7Z

155

1152

CALL LNCNT(2)
WRITE (64,1162} ILST
FORMAT ('QSTEP MUMBER=Y,14,' TN SAMPL')

156

CALL PRNT (KyNKy4HK (T)y1)

GO TN (170,170,170,156),4NZ
CALL LNCNTI(2)

160
170

WRITE (6,1152) 1
CALL PRNT (PyNP,4HP{T),1)
IF (JFNLENL,N)} GO 70 100

200

RETURN
CALL LNCNT(?2)
WRITE (641300)

1300
310

FORMAT {"0P NO TONGER CTHANGING, EXTIT FROOM SAMPLTT)
JEN=1
GO TO 152

G500

1000

CALL TNCNT TZ)
WRITE {(641000) NPHINHyNOSNRyNP s KDUM,NSOE
FORMAT (*DTIMENSTION ERROR IN SAMPL',T35 2 IX g 4HNPHT,, 8X 4 2HNH,

19X g2HNQy 9OX 4 2ZHNR 3 OX g 2ZHNP y 5X 3 4HKN UMy 3X GHKNUM (MIN) /29X ,5(3X 4214},
23Xy 1445X,14)
CALL ASPERR

RETURN
END

174!

SUBROUT INE TRNST(F4NFyGyNGyJyNIJyRyNRyKyNK yHyNHyX 3NX T, DUMMY, KDUM)

DOURLE PRECISION FuGyJeKyHeXyTyY,RyDUMMY

NDIMENSION F(1)yNFEL)yG (1) gNG(LI)yJd (1) yNIJ(L)yK({1)4NK(1)gH(1)yNH(1),
IX(L) NX{1)yT(1)yR(1)4yNR{1),DUMMY(1)

DIMENSTION NNF(2),NNG(2)4NU(2)4NNX(2),NY(2)
DATA STAR/'%x1'/

IF(NF(2)eNESNG(L) «0ORe NJ(2)eNE.NR(1) +ORe NK(2)NEJNX(1) OR,

ITNJTTT.NE.NK (1) «0ORe NRTUZTNELNXTZ) JUR.NHTUZJNELNX{L) UK.
2NF(2) JNE.NX(1)) GO TO 999

MAX = NF{1)*(NF(2) +NG(2)+ 1) +NH(1)+NK(1)

TF (KDUM LT, MAX) GO TOU 910
i1 =1
NSQ =NF(T1) %NF(I1)

NX4 = NSQ x4

IF(KDUM LLT. NX4) GO _TO 900

TRNST PROGRAM

N2 = T1 + NSO

N3 = N2 + NSO

N4 = N3 + NSO

L3 = N2 +NF(I1)*NG(2)
Le = L3 + NJIT1)®NR(2)
LS5 = L4 + NHI(1)

L6 = L5 + NJ(T1)I®NR(2)
T1 =7T(1)

N = (T(2) + .5%T1)/T1
NXR =NX(I1)
LAST = L6 -11

TT = T(4) o T)
CALL PRNT (F,NF,' F 1,1)
CALL EAT(FyNF,T1,DUMMY (N3),NNFysDUMMY(N4) yNNF 4DUMMY (I1),KDUM)

100

FORMAT(IHO 1IPBEI6.T)
CALL PRNT(DUMMY({N3), NF, 'EAT ', 1)
CALL EQUATE(DUMMY (N3) ,NF,DUMMY (T1),NNF)

CALL PRNT(DUMMY(N&4), NF, VINT ¥, 1) - o
CALL MULT(DUMMY(N&), NF,G4NG,DUMMY(N2) 4NNG)
CALL MULT(JyNJyRyNRyDUMMY (L 3)4NtI)

CALL LNCNT (100) i
CALL LNCNT (3)

SCl

50

WRTITETE, 50]
FORMAT(1HO *TRANSIENT RESPONSE, * INDICATES CONTROL CHANGES')
WRITE(6y 51) NXR, NH(I1)4NK(T1)

51 FORMAT(1HO 4X,'TIME FIRST',13,' ELEMENTS CONTAIN X, NEXT',13,1
1 ELEMENTS CONTAIN Y = HX, LAST',13,' ELEMENTS CONTAIN U =JR =KX!
2)
201 NO=1
Iu = 11
CALL MULT(KyNK, X,NX, DUMMY (L5), NU)
CALL SUBTIDUMMYI{L3), NU,DUMMY(L5]), NU, DUMMY{L5],NU]J
203 CALL MULT(HyNHyXsNXyDUMMY (L4),NY)
IF (TU «NE. I1) GO TO 205
WRITE(6, 101) STAR,TT, (X(IP), IP=1,NXR), (DUMMY{IP),IP=L4,LAST)
101 FORMAT(1HO Al1,F8.2,1P7D15,7/(10X,1P7D15.7))
GO TO 206
205 WRITE(6, 102) TTy{X(IP)y IP=1,NXR), (DUMMY(IP),IP=L4,LAST)
102 FORMAT(1HO 1X4F8.2,1P7D15,7/(10X,1P7D15.7))
206 1Yy = 11 +1U
IF (TT oGE. DABS(T(3))) RETURN
TT = T7 + 71
202 CALL MULT(DUMMY({I1), NNF, X, NX, DUMMY(L6) ,NNX)

CALL MULT(DUMMY(NZ2),NG, DUMMY(L5), NU, X, NNX)
CALL ADD(XyNX,DUMMY (L6)osNNX, XyNNX)
IF(NQO .GE. N) GO TO 201

NO = NO + 1
GO TO 203

999
990

DIMENSION ERRGOR DIAGNOSTIC
WRITE(6, 990)

FORMAT(1HO 'DIMENSION ERROR IN TRNSI'/25X,'COL SIZE OF 1ST MATRIX

1 ROW SIZE OF 2ND MATRIX')
WRITE(64991) NF(2),y NG(1)
WRITE{6,992) NJ(2),NR(1)

WRITE(64993) NK{2)4NX(1)
WRITE(64995) NH(2)4NX(1)
WRITE(6,996) NF(2), NX(])

WRITE(64994) NJ(1)yNK(1)yNR(2)y,NX(2)

971

991 FORMAT(1HO 'INTEGRAL (EXP(F.T)) G ' 113,20X, 18)

992 FORMAT(1HO 'J R!

17X,115,20X,18)

993 FORMAT(1HO 'K X°?

994 FORMAT(1HO 'JR -KX
1 SIZE OF R IS' 15,3X,

17X,115,20X,18)

ROW SIZE OF J IS*'I543X,'0F K IS',15,3X,'COL
OF X IS' I5)

995 FORMAT{(1HO 'H X!

996 FORMAT(1HO 'EXP(F.T)

GO 7O 1000

X

17X,115,20X,18)

10X4115420X,18)

900 WRITE(6,y 5Z2) NX&4,KDUM

52 FORMAT(1HO 'DUMMY MUST BE DIMENSIONED AT LEAST' I4, ' X 1' 'BUT IS

1 DIMENSIONED

ONLY!' 14

v]

X 11')

GO TO 1000
910 WRITE(6, 52)
1000 CALL ASPERR

MAX, KDUM

RETURN
END

LTI

SUBROUTINE PSEUDO(A,NA,ByNByDUM,KNUM)

DIMENSION A(1),B(1),DUM{1),NA(2),NB(2),IP(4),DEP(3)

DOURLE PRECISION AyR,DUM,DEP
NMW=3%NA(1) %NA (2)

10

NO 10 I=1,2
NDEP(1)=0.0

IP(1)=0

20

IP(3)=NA(1)

IP(4)=NA(2)
NB(1)=NA(2)

NB(2)=NA(1)
IF (KDUM.LT.NNW) GO TO 999
NEE=NA(1)%NA(2) + 1

IF

ND=2%NEE -1
A IS (1,1) MATRIX ROUTINE INVERTS A(1l) AND PUTS IT IN B(])

1F (NA({1) FQ.1 ANDNA(2) FQ, 1} GO _T0 A00

£0Q

CALL PSEU(A4ByDUM,DUM(MEE),DEP, IP,DUMIND))
GO 70 1000
Bti)=1,/A(1)

999
500

GO TO 1000
WRITE(6,500) KDUM,NNW

FORMAT (' DIMENSION ERROR IN PSEUNOD KNtM=1T5,3X, 'KDUM(MIN)="T15H)

1000

RETURN
END

8Tl

C SUBROUTIME DFCGEN

NEC MMPNSE A REAL GFENERAL MATRIX

SUBRNUTINF DECGEN

DIMENSTON
C OMM DN

(RyNR gy N(5 g Hy NHy DUM 9 KTV Y

NR{Z2) oy NH(Z2) ¢NGL2Y,ND(2)4NA(2) ,KP(4)
/MA X/ MAXRC

NDOURLE PRECISION

R{1),G(1),H(L1)y DUK(L1),DCM(3)

NJ=MR (1)%NR(2)+1

CALL TRANP

(RyNR,DUM{NJ),ND)

ITF{NR(1)GTLNR(2)IGO TA 10

CALL MULT
1CS=1

(RyNRyDUMINI) 4 ND 3 DUM yNA)

10

GO TO 30

CALL MULT
ICS=2

(DUMINJ) g NDyR 4 NRy DUM, NA)

C ENTRY DECSYM
ENTRY DECSYM

GO TO 30

DECOMPNSE A REAL SYMETRIC MATRIX
(ReNRGoNGoeHoNHo DUM KDUM)

1€CS=0

IF (NR{1).NEJLNR({2))
CALL EQUATE

N TO 601
(RyNR,DUM,NAY)

30

DUMMY STORAGE

M=NA(1)
MM 7= 7 %M M

MUST BE AT LEAST 7%NA(1L)%%2

TF (KDUMJLT.MMT)

KP(1)=0
KP(2)=0

GO TN 601

KP(3)=M
KP(4)=M

NDEM(1)=0.

DCM(2)=0.,
MS =M*xM
N2=MS+1]

N3=NZ2+MS
N4=N3+MS
N5=N4&+MS

N6=N5+MS
NT7=N6+MS

CALL DECOM

(DUMDUMINT) yDIMING) DUMINGS) 3 DUMING) 4 DCMy KPHDUM(NZ))

6Cl

CALL TRAN
IF (ICS.E
CALL MULT

P (DUMI(N3) 4y NA,DUM{NG6) 4, ND)
N.2) GO TO 100
{(DUM{N2) ¢ NAJDUMINGE) yNDyHyNH)

NH{2)=KP{

IF (ICS.FE
CALL TRAN

2)

Ne1) GO TO 60
P (HyNH,G,NG)

GO TO 150
60 CALL MULT
CALL TRAN

(DUM(NS) yNA,HyNH G 4NG)
P (G4yNG4DUM(NGE) 4 ND)

CALL MULT
GO TO 150

100 CALL MULT

(DUM{NG6) ¢ ND4yRyNRyG4NG)

(DUM(N2) ¢yNA,DUMING) yNDyHyNH)

NG(2)=KP(
CALL TRAN
CALL MULT

2)
P (HeNH,yG,NG)
{GyNG,DUMIN5) ,NA,H,NH)

CALL TRAN
CALL MULT
150 DUM (N6)=K

P (HyNH,DUM(N6),NG)
{RyNRyDUM{NGE) g NDyHyNH)
P(2)

RETURN

601 CALL LNCN
WRITE (6

T (1)
91601) NR,KDUM,MM7

1601 FORMAT(!
1 "KDUM
CALL ASPE

DIMENSION ERROR IN DECSYM (DECGFN)

=V1443X,'KDUM(MIN)=114)

RR

NR=12TA43X,

RETURN
END

ocl

SUBROUTINE READ]1 (ASNA,NZ,NAM)

COMMON /MAX/MAXRC
DIMENSION A(1),NAL2),NZ2(2)
DOUBLE PRECISICON A

IF (NZ(1).FQ.0) GO TN 410
NR=NZ(1)
NC=NZ(2)

NLS T=NR*NC

IF(NLST «GT. MAXRC +0ORe NLST oLTe 140ReNR.LT.1) GO TO 16
DD 400 I = 1, NR

400 READ (5,101) (A(J)y J = I,NLST,NR)
NA(1)=NR

NA{2)=NC

410 CALL PRNT (A,NA,NAM,1)

101 FORMAT (8F10.2)
RETURN

16 CALL LNCNT(1)
WRITE (64916) NAM,NR4NC
916 FORMAT (' FRROR IN READI MATRIX 'A4,' HAS NA='1,216)

- CALEL ASPERK

RETURN
END

I€1

SUBROUTINE ASPERR

DATA 1 /10/
CALL TRACE
C ERRTRA IS THE 360/67 TRACE ROUTINE TRACE IS FOR TSS
C CALL ERRTRA
C THIS IS AN INSTALLATION DEPENDENT SUBROUTINE
C SUBROUTINE FRRTRA IS A SUBROUTINE SUPPLIED BY THE AMES OPERATING
C SYSTEM TO PROVIDE AN ERROR WALKBACK
C THE STATEMENT CALL ERRTRA SHOULD BE ETTHER
C 1) CHANGED TO MATH THE USERS OPERATING SYSTEM,
C OR 2) DELETED ALTOGETHER.
I=1-1
IF (T.6T.0) RETURN
1=10

100

WRITE (6,100)
FORMAT (' T0O MANY ERRORS., EXIT CALLED?)

CALL EXIT
RETURN
END

(44!

BLOCK DATA

COMMON /FORM/NEPR,FMT1(6),FMT2(6)

COMMON/LINES/NLP,LIN, TITLE(23)
COMMON /MAX/MAXRC

DATA MAXRC/ 6400/

C— NOTE NLP NO. LINES/PAGE VARIES WITH THE INSTALLATION,

DATA LINGNLP/1,45/

DATA NEPR,FMTL T, (1P TD16. TV /
DATA FMT2/'(3X,1P7D16.7)'/
DATA TITLE /193! ', 1VASP PROUOGRAM 1/

END

1l

eel

l 2 ° . I D e) e

C- SUBR TO COMPUTE PSEUDO~INVERSE OF GENERAL MATRIX, RETURN FINAL PIVOT
Ceese NOTE IMPLIT STATEMENTS MUST BE -FIRST— CAN BE REPLACED RY TYPE

IMPLICIT REAL*8 (D), INTEGER*2 (Q)
COMMON /MAX/MAXRC
C DOUBLE PRECISION IS THE ONLY THING ESSENTIAL,

INTEGER*2 M
DOUBLE PRECISION A,B,C,EE, D
DIMENSION A(400),B(400),C(400),EE(400), D(2000),

1 KRV(4),
2 DEP(3), DPR(2)y IP(4), JP(5)

DATA ICC, DFZO /2400000004 0.DO /

EQUIVALENCE(DDI,FDI,IDD), (DMX,FMX)
EQUIVALENCE(DDI,DSUM),(DFZ0yFZR0O,IZ40Z)4(0OLLyOR1)y {(KRV(1)4KRC),

1 (KRV(2) KRC2), (KRV{3),KRC3), (KRV (4),KRC4)

OPsS =1
G0 70 1000
ENTRY PSEY P(A,B,C,EE,DEP,JP, D)

OPS = 12
IP(4) = IP(3)
1000 CONTINUE

DP1 = DEP(1)

EF2 = SNGL(DEP(2))
C- SET DEFAULT VALUES OF TOLERANCES

IF(DEP({1) .EQ, DFZG) DPl = 2.,D-6
IF(EF2 .EQ., FZRO) EF2 = 1.0

NCA = 1IP(4)
C NUMBER OF ROWS OF ORIGNAL INPUT MATRIX
QR = TIP(3)

C- SET SW FOR =0, DO ALL STEPS, NQOT=0, THEN WANT RANK ONLY,

ONT = QR*NCA
C- TEST DIMENSIONS INPUT FOR REASONABLENESS.
TF(ONT LT, 2 .0R, ONT .GT+. MAXRC.OR.OR.LT.1}) GO TO 691

C- IF DIMENSIONS ABSURD, PSEU ERR EXIT 1.
QDCM = IP(1)

QITR = ODCM

IF(ODCM .LT. 0Z) QITR = ODCM +1
NR = QR
QIT = 12

el

C- TEST TQ SEE IF SYMMETRIZATION IS NEEDED.
IF(OPS) 16, 150, 16
C— TEST 7O FIND SMALLER DIMENSION OF MATRIX.

16 IF(OR = NCA) 18,18,19

19 NR = NCA
OX =1
OR2 = QR
ALL = OR
QTP = 17
GO 70 170

18 CONTINUE
0X = NR
ORZ2 =1
OLL = NCA
QTP =1

170 CONTINUE

C— SET ROW-COLUMN LIMIT TO APPROPRIATE CASE, EITHER ROW OR COLM DIMENS.
DO 181 T =1, NR

DD 181 K =1, NR
DSUM = DFZ0
DO 183 J = 1, OLL

ON = OX*J - QR
L = ON + QR2%*I
M = ON + QR2%*K

183 DSUM = DSUM + A{(L)})*A(M)

C- SUM OF A{TI,LL) * A(K,LL)y, LL RUNS 1 TO ROW OR TO COLM LIMIT
Co B = A%A TRANS HAS COLM LIMIT, B = A TRANS * A HAS ROW LIMIT,

L = (K=1)%NR + I
181 B(L) = DSUM
GO TO 188

C- HERE MOVE A T0O B. A IS ALREADY POSITIVE DEFINITE.
150 PO 151 L = 1, ONT
151 B(L) = A({L)

C-. FORCE SYMMETRIZATION OF By, TO COMPENSATE FOR ROUND-QFF, MULTIPLIC.
188 PO 189 I =1, NR
DO 189 K =1, NR

Cy BIILK) = BIK,I) = 1/2 (B{I,K) + B(K,1))
L + (K=1)3*NR
+

1
M K (T-1)%NR

—

w
(¥,

DSUM = (B(L) + B(M)) #* 0.5D0
B(L) = DSUM
189 B(M} = DSUM
C HERE SET UP CALL ~-INITIAL- OF ANDRA., ONLY COMES HERE ONCE PER MATRIX.
ONT = NR*NR
KRC = ONT
KRC?2 ONT + KRC -

KRC3 = ONT + KRC2
KRC4 = QNT + KRC3

C~* OMIT SAVING OF B, IF RANK ONLY AND MO ITERATION
IF(IP{2) .NE. IZ .AND. QITR EQ. IZ) GO TO 200

DO 1891 1 =1, ONT

1891 DI(I) = B(I)

200 C ONT INUE
C— SEARCH DIAGONAL OF INPUT FOR LARGEST ELEMENT. USE T0O DEFINE FlL. PT.

QR1 = NR + 1

L =1
DMX = DFZ0
M =1z

DO 23 I = 1,4 NR
DDI = DABS(B(L))

IF(FMX .GE. FDI) GO TO 23
M =L
FMX = FDI

23 L = QR1 + L
IF(M EQ. IZ) GO TO 692
C- SET TOLERANCE FOR ANDRA LIMIT OF SIZE OF DIAGONAL &

C TOLERANCE OF ZERO IN ANDRA CALL.

DPR (1) = DABS(DPL* B(M}))
C - ASK FDOR ALL ROWS, DONE IN 1 CALL

JP(1) = 12
C- JP2 FIRST TIME INITIALIZATION FOR ANDRA
JP(2) = 17
IF(QIT .NE., QZ) GO TO 561
JP(4) = NR
M =12
SOLD = - EF2
C == HAVE FINISHED PRELIM. PART

C INITIALIZATION FOR ANDRA (DIAGONALIZATION) MOW COMPLETED.

9€1

CALL ANDRA -TO DIAGONALIZE SYMMETRIC MATRIX.

C CALL ANDRA REDUCES ROWS BY MODIFIED GAUSS METHOD, USING SORT(PIVOT).
30 CONT INUE

TFUUITR BV, WZ) LU TU 32

C-~ SAVE OLD VALUES 1IN CASE PIVOT IS REJECTED, UNDER ITERATION OPT.
DO 31 L =1, QNT

J = KRC + L
K = KRC2 + L
D{J) = B(L)

31 D(K) = C(L)

32 CALL ANDRA (B4C,DPR,JP)
JP(1) = QITR

IR = JP(3)

€~ CHECK COMPLETION- IS MATRIX ALL DMNE IS MATRIX INVERTIBLE..
IFIQOITR LEQs IZ 40Rs IR LEQ. NR LJAND. QIT JEOQ. IZ) GO TO 700

CHECK IF ITERATING WITH RHO TEST OR NOT
Cx* NYIT IF NO ITERATION OR NQO NEW PIVOT FOUND
C— OMIT TTERATION CALCS. TF NO NEW PIVOT, DECRFASE TOLERANCE

IF(JP(5) FO. M) GO TO 220
C COMPUTE RHO FOR ESTIMATING THRESHHOLD TO STOP SS IS RHOD

SS = (BDNRM(NR,C4EEsDsKRY) + BDNRM(-NR,4C,EE,D,KRV)) *EF2 =% IR

C WHY ONLY SNGLE PREC./THIS IS ONLY A ROUGH TEST TO STOP ITERATION.
C THAT-S WHY, SIMILARLY, OTHER USES OF SINGLE PREC.

IF(SOLD «LTes SS JAND., SOLPD .GT, FZRO) GO _TOQ 650

C- TF SUBSTANTIAL IMPROVEMENT TRY AGAIN,

Cy OTHERWISE OUIT, RETURN THE A PSEUDO INVERSE, EVEN IF OFF.
220 CONTINUE

DIT = 017 +1

SoLnd = SS
C/ SAVE PREVIOUS ROW IN WHICH A PIVOT WAS FOUND

M = JP(5)
IF(QIT .EN, NR) GO TO 700
C- PUT IN SMALLFR TOLERANCE IN CASE DIAGONAL TOO SMALL OTHERWISE,.

DPR (1) = DPR(2) * 2,D-5

C— TRY TO REDUCE 1 MORE ROW.
IF(IR ~ NR) 30, 700, 606

650 CONT INUFE

C* RESTORE B AND C TO THEIR PREVIOUS VALUES. THE LAST PIVOT HAS BEEN
CREJECTED (BACK-TRACK)}, WHILE ITERATING,

LET

JP({3) = JP(3) -1
DO 653 T =1, ONT

J = KRC + 1
K = KRC2 + 1
B{I) = D(J)

653 CtI) = D(K)

700 CONTINUE

IR = JP(3)
M = 17
C- HERE WISH TO REPLACE MARKERS IN DIAGONAL WITH LEGITIMATE 1.DO
L =1
DO 704 1 = 1, NR
DDI = B(L)

IF(IDD) 701, 702, 701
101 JIE(IDD NE, ICC) GO TO 73101

B(L) = 1.D0

GO TO 704
C AT 7101 FORCE SMALL TRASH TN ZEROQ.

7101 B(L) = DFZD
702 M =1
704 L = OR1 + L

C - IF ALREADY TRIED ANOTHER REDUCTION, TO GET MATRIX IN —UPPER- DIAG.
COR OMIT PART OF CALCULATIONS IF ONLY RANK IS DESIREN,
IF(IP(2) NE., IZ) GO TO 877

CY9 QDCM SUPPRESSES LAST PHASE IF DECOM WAS CALLER..
IF(M ,L7. 1 .OR. QDCM .LT. 0Z) GO TO 80

C_BELOW HAVE SING. MATRIX THAT NEEDS RURTHER WORK.

C~ HAVE MATRIX DIAGONALIZED WITH 1S, OS INTERSPERSED (A IS SINGULAR)
C~ RE~DO TO GET PS—-INV THAT MOVES ALL 1S OF DIAGONAL TO UPPER LEFT DIAG.
C.TD COMPUTE U MATRX AS IN ASP, FOR TRANSFORMING ORIG B IN SINGULAR CASE

L =1
DO 527 I =14NR
DO 525 J =1, NR

K = (J=1)*NR + 1
IF(B(L)) 521,522,521

522 C(K) = — C(K)

C(L) = DFZ0

GO TO 525
521 C(K) = DF10

8¢l

CtL) = 1.DO
525 CONT INUE
527 L = ORl + L

C~SAVE RANK SO FAR, SHOULD BE SAME SIZE AFTER RE-INVERSION
QR2 = IR
DO 54 1 = 1, NR

DO 54 K =14 NR
DSUM = DFZO

QN = (K-1)*NR

DO 53 J =1, NR
M = (I-1)%NR + J

L =ON + J
53 DSUM = C(M)*D(L) + DSUM
L = 0ON + 1

EE(L) = DSUM

54 CONTINUE
DO 56 I =1, NR
D3 56 K =1, NR

DSUM = DFZ0
ON = (K-1}*NR
PO 55 J =1, NR

L = (J=1)%NR + 1
M =0QON + J
56 DSUM = EE(L)*C(M) + DSUM

L = ON+ I
B(L) = DSuM
50 CONT INUE

Cy SET UP FOR SECONDARY ANDRA CALL NO ITERATION JP4 = NR
RIT =1
C GO FIND L ARGEST DIAG. ELEMENT AGAIN

GO TO 200
561 JP(3) = 12
CALL ANDRA (B,EE,DPR,y JP)

IR = JP(3)

C— TEST FOR A CHANGE IN RANK ... ERROR
TF(QRZ2 — IR) 693, 568, 694

568 CALL T TRM(NR,LEE,D)

C— TRANSFORM C SHARP IN D.. BS = ((U)* D (U TRP))
DO 58 T =1, NR

6e1

DO 58 K =14 NR
DSUM = DFZO
ON = (K=1)#*NR

DO 57 J =1y NR

M = (J-1)%NR + I
L. = 0N+ J
57 DSUM = C(M)*D(L) + DSUM
L = Q0N + 1
B(L) = DSUM

58 CONT INUE
DD 60 T =1,4NR

DO 60 K = 1, NR

DSUM = DFZ0
DO 59 J =1, NR
ON = (J=1)%NR

M = ON + K
L = ON + 1
59 DSUM = B(L)*C(M) + DSUM _

L = (K -1)%NR + 1
EE(L) = DSUM
60 CONTINUE

C— NOW RE-ENTER MAIN SEQUENCE WITH PS-INV. IN FE.

GD T0O 808
C GO FIX UP B PSUFDO-INVERSE. PRESUMABLY HAVE DIAGONALIZED

C HAVE DIAGONALIZED WITH ALL 1S IN UPPER LEFT ’
C- HERE WE HAVE FINISHED DIAGONALIZ. WANT TO GET PSUEDO INV. IN B,
870 IF(QDCM LI T, O7Z) GO TO 877

C NEED TO SAVE DIAGONALIZED B FOR USE BY DECOM CALL (ODCM NEG. FLAG)
DO 871 T = 1,0NT
C~ A WAS SYMMETRIC., JUST MOVE EE TO B RETURN FROM PSEUP ENTRY

871 B(I} = EE(T)
GO TO 877
80 CONTINUE

C NOW FORM (T TRP) % T = APPROX B SHRP PSUEDINV IN MATRX EE

CALL T TR M(NR,C,EE)
808 IF(QPS .EQ. QZ) GO TO 870

IF(OTP) 819, 819,818
C HERE B = (A TRANS)*E = (A TRP)*({Ax*A TRP)-SHRP NRA .LE. NCA
818 DO 8181 I = 1,NCA

4!

DO 8181 J = 1,4NR

DSUM = DFZ0
QN = (J =1)*NR

DO 8182 K = 14NR
L {1 -1)%QR + K
M ON + K

8182 DSUM = DSUM + A(L)*EE(M)
L = (J=1)*NCA + 1
8181 B(L) = DSUM

GO TO 877
819 DO 8191 I = 1,4NR
DO 8191 J =1, OR

DSUM = DFZO
DD 8192 K = 1,4NR

L = (K=1)%QR + J

M = (K ~1)%NCA + 1
8192 DSUM = DSUM + A(L)*EE(M)
C— NDTE NCA 1S USED, BECAUSE A-SHARP IS TRANSPNSED IN DIMENSTONS

L = (J -1)%NCA + 1

C HERE B = EE (A TRANS) = (A TRP*A)~-SHRP * (A TRANS) NRA .GT. NCA
8191 B(L) = DSUM

C—- HERE GET READY TO RETURN
877 CONT INUE)
C— MOVE RANK TO RETURN PARAMETER

Ip(2) = IR
DEP(3) = DPR(2)

Ca ABOVE RELURN FINAL PIVOT FROM ANDRA ALG., DIAGONALTZATION

RETU

691 CALL LNCNTI(1)
WRITE (641691) QR,NCA

1691 FORMAT (' DIMENSION ERROR IN PSEU NA='216)
GO T0 1700
692 CALL LNCNT(1)

WRITE (641692)

1692 FORMAT (' ERROR IN PSEU - DIAGONAL ELEMENTS NF MATRIX=0"')
GO T0 1700

693 CALL LNCNT(I)
WRITE (6,1693)
1693 FORMAT (' ERROR IN PSEU RANK HAS DECREASED COMPUTATION ENDED?')

and
N3N L3y

dY43dSY_T1IVI 00LT

(1371S XIYIVW NVHL 33LV3Y9 SI dMNvY N3ISd NI ¥O¥H3) LVWYOd 9091
(909149) 3ILidM

(T)ININT ATVD 909
89G¢ 01 09
dy3dsv 11vID

(L SANNILNOD NOLLVIIIdWUD=U3SYIUINT SVH MNVY—=NISd NI d0¥¥3 +) LVWIDd %691
(#691%9) 3LIYM

{(T)LNINT 1V 69

00LT 01 09

141

wl

FUNCTION BDNRM(NR,CT,EE,DN,KRV)

INTEGER*2 QF

DOUBLE PRECISION CT,EE,D, AN,BR, DFZO,DS!IM
DIMENSION CT(400),EE(400), D(2000), NV(2)}, KRV(4)

C- D HOLDS 5 MATRICES. THE FIRST AND THE LAST 2 ARE USED HERE
DIMENSION PPP(2)
EQUIVALENCE(AN,FN), (BR,FR)

DATA DFZ0O /0.D0/

Cy EQUIVALENCES BELOW JUST TO SAVE STORAGE
EQUIVALENCE(DFZO.172)y (ANsDSUM),y (BRyPPP(1),1)4(PPP(2),4K),

1 (NV(1),L) s (NV(2) M)y (TR4NL)

C TESTyy IF NR NEG.,THEN TRANSPOSE ROLES OF D AND (CT TRANS
QF = NR

KD3 = KRV{3)
KD4 = KRV{4&)

IF(NR) 10,10, 20

ENTRY TTRM(NR,CT,EE)
C TODO T TR * T ONLY ENTRY TTRM

QF = 117

GO TO 20
10 NR = =NR
20 IR = NR

PO 30 I =1, IR
Lt = (I-1)*IR
DO 30 K =1, JR

DSUM = DFZO0

KK = (K =1)*IR
DO 29 J = 1, IR

L=J+LL
M =J + KK
29 DSUM = DSUM + CTIL)*CT(M)
C ABOVE FORMAING T TRANSPOSE TIMES T. WHICH IS APPROX o OF R SHARP
L =1+ KK
IF(QF) 31, 39, 32
31 KK = KD3 + L

D(KK) = D(L)
EE(L) = DSUM

134!

GO TO 30

C-39 COMPUTE T TRANSPOSE * T ONLY.. PROVIDES TINVERSE R SHARP
39 EE(L) = DSUM

GO TO 30
32 EE(L) = DIL)
KK = KD3 + L

D(KK) = NDSUM

30 CONTINUE
IF(OF) 41,660,441
41 NV({1) = IR
NV(2) = IR

C— LET P = 1ST MATRIX = EE,, O = 2D = D(KD3+1)

CCC ROLES OF P AND O ARE GIVFN TO 2 MATRICES AT 31, SWITCHED AT 32.
COMPUTE D (K4) = 0O%P, EE=D(K4)%Q, EE = EE -D(K3) = Q%pPx0 - Q
C—FUNCTION IS NRM(O*Px0 —=0)/NRM(0O) RESULT = A SCALAR

CALL MULT(DI{KD3+1) ¢NV,FE,NV,D(KD4+1),NV)
NL = IR*IR
CALL MULTID(KDSG +1),NV,D{KD3+1), NV,EE,NV)

D08 I = 1, NL
Kk = KD3 + 1
8 EE(I) = EE(I) - DI(KK)

CALL NDORM{FE,NV,AN)
CALL NORM(D({KD3+1)4NV,RR)
COUOTIENT NEARS 0,0 AS BSHRP APPROACHES THAT FITTING 2 MOOR-~PENRSE AXIOM

BDNRM = FM / FR

9 RETURN
66 BDNRM=FN

C66 IS A DUMMY REALLY WANT MATRX MULT. ONLY.

GO TO0 9
C SIDE COMPUTATIONS J W ANDREWS INF. SYSTEMS Cls MAY 1969

END

124"

SUBROUTINE ANDRA(B 4T,DPR, JP)

C- SUBROUTINE ANDRA DIAGONALIZES POS.DEF.SYMM, J ANDREWS TI. S. CO.
C - SUBR ANDRA CALLED BY PSEU J W ANDPREWS, INF. SYSTEMS CO. APRIL 1969
IMPLICIT REAL*8 (D), INTEGER*2 (Q)

DOUBLE PRECISION B, T
DIMENSION B(400), T(400), DPR(2), JP(5)
EQUIVALENCE(DDI,FDI,IDN)4 (DCC,ICC),y (DMX,FMX)y (NDRS4I13)

EQUIVALENCE (DFZ0,FZR0O,17)
DATA ICC, DFZ0 /7240000000, 0.DO/
C-DPR1 IS MAGNITUDE THAT IS CONSIDERED ZRO PIvOT MUST BE NN SMALER.

C- DPR(2) IS TO RETURN FINAL PIVOT, SO THAT USER MAY TEST SMALLNMNESS.
CC- ANDRA CAN BE USED ALL BY ITSELF TO GET INV., RANK 0OF POS SYMM,
C NOTE THAT DSORT HAS TO BF TAKEN OF PIVOTS ALONG THE DIAGONAL.

C- NOTE I AM DELIBERATELY ALLOWING SOME PARAMETERS TO CHANGE ON SUBSE-

C-QUENT CALL DPR(1) CHANGES PIVOT SIZE A ROUGH TOLERANCE FOR ZRO.
EF = SNGL{DPR{1))

C—- TEST- IS THIS AN INTIALIZATION CALL/

IF(JP(2)) 2, 2
C INTIALIZE- FORM IDENTITY MATRIX

1 QS = JP(4)
ONT = QS*0S
IF(QS oLTe. 1 oOR, ONT .GT. 6400) GO TO 691

DO 18 T = 1, ONT

18 T(1) = DFIO
L =1
QR1 = 0S +1

DO 1810 I = 1, OS
T(L) = 1.D0

1810 L = QR1 + L
DPR{2) = DFZD
_C— SET RANK TO ZR0O. TRIAL PIVOT VALUE TO ZERO.

QKR = 17

C SET PIVOT CHOICE ITERATION AT O ALLOWANCE OF NN, ROWS+1 ITER.
QITR = IZ

2 CONTINUE

200 CONTINUE
C-_ZFERD OUT MAX DIAG. AND CT DIAG. TEMPORARY VARTARIES

Sl

FMX = FZRO
1 =11
M =12
C~ BELOW SEE IF ALL DIAG ELEMENTS TESTED YET
L =1 - OR1
30 IF(I .EQ., QS) GO TO 40
I =1 +1
L = OR1 + L
NDI = B(L)

C—- GET CURRENT DIAG. ELEMENT FNOR INTEGER, SINGLE PREC. TEST
C- UPDATE L TO GET -MEXT- DIAG., ELEMENT
C-BELOW TEST FOR NDIG., ELEMENT AALREADY® REDUCEP T 1.(CODEMARKEDN),ICC

IFCIDD LEQ. ICCY GO TO 30
IF(FDI - FMX) 30,30, 32 -
C— TEST FOR NEGLIGIBLE FL. PT. OTY.-TREAT THESE, AND MEG., AS ZEROS.

32 IF(FDI LTe EF) GO TO 30
C- SET NEW MAX, 2RLE PREC., SAVE BEST RNW FOR PIVOT AQMR2
OMR = 1
= DDI

DMX
M = L
GO _T0 30

40 CONTINUE

400 IF(M JEO. IZ) GO TO 505
DRS = 1. NO /NSORT(DMX)

C SET INDEX OF FIRST ROW, OMR (PIVOT) COLUMN
K (OMR -1)%QS +1
L OMR

PO 41 I = 1, 0OS
DDM = B (L)*DRS
T(L) T(L)=*DRS

B(L) DDM .
C-—SYMMETRICALLY, FORCE COLUMN TO SAME VALUE IN B ONLY
B(K) = DDM

K = K +1
41 L = 0SS + L
C FORCE PIVOT FLEMENT TO EXACT VALUE OF UNITY

B(M) = 1.D0

C— NOW REDUCE ALL OTHER ROWS OF B, T, ELIMINATING COLUMN OF PIVOT VARIAB
DO 460 1 = 1, OS5

Il

G~ TEST FOR PIVOTAL ROW. OTHER ROMS
IF(I .EO. OMR) GO TN 460
COEFF, TO BE ZERNED CAN NNT RE PREVIOUS PIVUT.
J =1 - 05
K = 0S%I + J
DRS = B(K)
C RELOW TEST FOR A ROW ALREADY REDUCED, 710 SKIP
IF(IIS .EQ. ICC) GO TO 460
C~ GET COEFF IN PIVOT COLUMN TO BE ELIMINATED
K = QMR*0S + J
DMM = — B(K)
L = QMR
K = 1
DO 47 J =1, 0S
C- L IS ROW USED TO REDUCE, WITH PIVOT.
C K 1S CURRENT ROW THAT PIVOT GETS ELIMINATED FROM,
B(K) = B(K) + B(L)*DMM
T(K) = T(K) + T(L)*DMM
L= 0S + L
47 K = 0S + K
460 CONTINUE
L = OMR
DO 461 T =1, 0S
C FORCE MOST OF PIVOT ROW TO ZERO. COMPLETES REDUCTION WITH 1 PIVOT/
B(L) = DFZO
461 L = 0S + L
C FORCE PIVOT TO ACODEA FOR ONE ..
BIM) = OCC
C- SIGNAL NO LONGFR FIRST TIME CALLED.
JPi2y = 1
C—— UPDATE EFFECTIVE RANK FOUND
OKR = QKR +1
DPR(2) = NMX
JP(5) = OMR
C— NOW TEST —IS THIS AN ITERATION TO DO ONLY 1 ROW AT A TIME/
IF(OKR .EO. 0S) GO T0O 480
IF(JP(1) .EQ. 1Z) GO TO 490
C(AT THIS POINT, EITHER STOP WITH ONE ROW OR TRY NEXT.

C HERE GET READY TO RETURN., RANK PARAMETER.

Ll

480 JP({3) = OKR

C

RETURN
IF ENOUGH TRIES TO D ALL ROWS PLUS 1 MORE, QUIT.

490 IF(QITR .EQ. OQOR1l) GO TO 480

OITR = QITR +1
GO _T0O 200

691 CALL LNCNT(1)
WRITE (6,1691) QS,QONT

1691 FORMAT (' DIMENSTON ERROR IN ANDRA NR=',14,5X,"NR*NC="'14)

RETURN

692 CALL LNCNT(1)
WRITE (6,1692)

1692 FORMAT (* EFRROR IN ANDRA, FINDS NO PIVUTS')

CHECK FOR DIAGONAL ALLOWING NO PIVOTS//

505 IF(JP(2) LFQe IZ +UR. OKR .GTs QR1) GG TO 692
GO TO 480
END

134!

SUBRNOUTINE DECOM (A E DCiMg KP o

(A RoC JL o D)
C- SUBR DECOM FINMDS 3 MATRIC &RD\ NHICH USER CAN GET DECOMPUOSTTTINN
PO BLY

[~
C INTO KRONMECKER PRODUCT, SS1T USING A SEPARATE PSEU CALL

§
S y
Ces SURR, DECOM INFDRMATION SYSTEMS CO. MAY 1969, J W ANDREWS

IMPLICIT REAL*8 (D), INTEGER*2 (Q)
DOURLE PRFCISION A,BsCyFEy Dy PIV
COMMON /MAX/MAXRC

DIMENSTON A(400),R(400),C(400),E(400), D(2000),
2 JL (400) 4yDCM(3) 3 KP(4) 4NV (2), ND(2)

FOUIVALENCE (NV, T)y, (PIV, ND(1))y, (DFZN,17,07), (ND(2)y J),

1 (ND(1), QRL)
NDATA DFZ0O /0.D0/ |
C— SET PARAMETERS TO CALL PSEU. TO EIND T TRANSFORMATION IN C.

C——= ASSUME INPUT A 1S POS. DFFINMITE SYMMETRIC
0S = KP(3)
ONT = 0QS=*0S

C-FERR EXIT IF ARSURD DIMENSIDONS.

IF(0S LLT. 2 «0Re ONT GT.MAXRC) GO TO 691
C- SET COLUMN STZE = RANK STZE

KP(4) = QS
OL = KP(1)
C— SET SPECIAL PARAMS FOR PSEU CALL THESE ARE TO SUPPRESS THE WNRK 0OF

C RF=INVERTING PSFUDO INVERSF IN THE CASE WHERE A SINGULAR...
KP(1) = = KP(1) -1
C—- CALL PSEU P TO GET MATRIX T. IN C

CNOTE THE LAST 3 MATRICES OF THE 5 IN D USED ONLY IF PSEUP AITERATES®

I = KP(2)
CALL PSEY P(A,ByCsE,DCM,KP, D)
KP{1l) = OL

IF{I «NE., IZ) GO TO 38
C/ PLEASE DO NOT TRY TO TAKE A.S.P. NMAMES FOR MATRICES HERE.

C- SUCH MATRICES WERE NOT RETURNED BY ASP, NOUR BY MY, ROUTINE.

PN 13 1 = 1, ONT

13 DII)Y = C(D)
NVI(1)=0S
NY(2)=0QS
ND(L) = 2
C- ND IS PART OF FLAG (PIV) RETURNED BY 1INV,

CALL INV(N,NV,PIV,JL)

C~ TEST 70 SEE IF PIV IS ZERN = ERR, MATRIX NOT INVERTIRLE. -ND1-
IF(ND(L1) EO. IZ) GO TN 692
38 CONTINUE

Kty = QNT

C— P IS TO HOLD PERMUTATION MATRIX SUCH THAT THAT P:BE=x PTR
(- ER HAS ALL ONES MOVED T0O EXTREME UPPER LEFT NF NDIAGONAL,

ER

C*NOW SET UP TO MAKE P PERMUTATION MATRIX P = D(KD +1)
OR1 = QS +1

C— ZERO OUT P, WILL BE ZEROS AND ONES

DO 39 1T = 1, ONT
C-ZERO HOUSEKEEPING ARRAY ONLY NEED FIRST COL!MN,

JL(T) = 17

K = KD + I
39 D(K) = DFZD

L =1

=1

oL =1

no 780 K = 1, @S

iF(B(L)) 7803, 7801, 7803
7R03 J = JL(OL)

CHECK FOR ROW OF DIAG., THAT NEEDS A 1 MOVED INTO IT

IF(J «EQ. TZ) GO TO 786
I = (K=1)*%0S + J + KD
C-PUT 1 IN P TO MQVE KoK TO J,K POSITION (2 PERMUTATIONS) P,y P TRANS

C*x THE EFFECT IS T0O MOVE KoK T0 J,K/ THENCE TO J,J.
0L = QL +1

C/MARK THIS 1 AS ZRO TO BE FILLED-- IT IS MOVED UP AND OQUTOF HERE
7801 JL(M) = K
M =M +1

GO TO 780

TRA J = KD + L
C LMAKE PART OF IDENTITY AT 786 DON-T NEED 70 MOVE 1 TN A HOLE.

N(JY = 1,00
7880 L = QR1 + L N
. RETURN., MATRICES COMPLETED E WITH IR 1aS DELIBERATELY LEFT 0OUT.

RETURN
691 CALL LNCNT(1)
WRITE (6,1691) OS.ONT

051

1691 FORMAT (' DIMENSTION ERROR IN DECOM NC=',14,5X, 'NRENC=1,14)
RETURN

692 CALL LNCNT(1)

WRITE (6,1692)
1692 FORMAT (' ERROR IN DECOM PIVOT=ZERO")
KP(4)=—03S

GO 7O 38
END

APPENDIX C

USE OF VASP ON AMES’ TSS

NONCONVERSATIONAL (BATCH OR RIJE)

In using VASP on TSS, the system must be told about the job library in which the VASP
subroutines are located, the source of input data, and the location to send output data; and the .
block data program must be loaded.)

A procedure has been written for doing this automatically. The call to the procedure is

VASPS$$ [input data set] [,output data set]

The procedure will then perform the steps indicated above. If the first parameter is omitted, the
data will be taken from SYSIN, which is from cards in your data deck. If an input data set is
named, then the data will be taken from the named data set, which must have been stored
previously.

Likewise, if the second parameter is omitted, the output will be placed in SYSOUT, for
printing on the high-speed printer. If an output data set is named, the output will be placed in
that data set.

If the name of the input or output data set must be changed, use the procedure call
CHNGIN [new input data set name]

CHNGOUT [new output data set name]

These two procedures will then change the DDEF to the new data set name. If the
parameter is omitted, the new data set name will be SYSIN or SYSOUT. A listing of these
procedures is included in this appendix.

CONVERSATIONAL

Provisions have also been made to allow conversational use of the VASP program, so that the
user can easily perform matrix operations. The operations can be strung together in a sequence as
desired with as much output as desired. The user indicates the operations by use of Fortran
statements, and may not only call the VASP subroutines, but also may execute any other Fortran
statements that he wishes.

Data are requested for the program by means of subroutine INPUT, allowing free-form data
from the typewriter. If Fortran type input is used, the data should also be obtained from the

151

typewriter. If you try to use an input data set, INPUT will also read the same data set.
Variables may also be set by Fortran arithmetic statements.

Output may be from the VASP subroutine PRNT, or any Fortran WRITE or PRINT
statement. Two standard formats are available if desired for unlabeled output.

The program automatically dimensions 14 arrays to the desired size, and the user may
supply his own names to 7 of them.

Usage

The use of conversational VASP is demonstrated by the accompanying figure (fig. 9).
Lower case letters are input and upper case are the computer responses. Detailed comments on
the various statements follow. To start, the user calls VASP$$ (line 1) as for nonconversational
usage. If desired, an output data set may be named. Line 2 lists the DDNAME being used.

The next two lines (lines 3 and 4) indicate where input and output are to reside. The
computer then gives an underscore, after which the procedure “CONVASP” is called. The param-
eters of this procedure are first the total number of elements in a matrix, followed by up to
seven matrix names. If the parameters are defaulted, the system will select matrices with 9 ele-
ments, and name the matrices A, B, C, W, X, Y, Z. In addition, 7 dummy matrices D1 through
D7 are available for use. In the figure, all matrices are to be dimensioned 16 (line 5), the second
matrix is to be renamed F, and the Z matrix is to be renamed FSTAR. That is, if you wish
to rename a specific matrix, put a dollar sign in front of the original name and then equate it to
the desired name as in the example. Fourteen arrays, NA through ND7, used for dimension
information, are also defined and renamed to agree with the working matrices.

Lines 6, 7, and 8 then define the matrices available. Note that no 1-element variables are
defined. The user may define them in his program but they will not be available from one
computation to the next.

The computer will then ask for FORTRAN STATEMENTS?. At this point, a data set
SOURCE.MNPGS$$ has been set up for editing and the necessary DIMENSION and other initial-
izing statements have been stored. These statements are listed in figure 12, lines 4600 through
6000. The computer prompts the user with 100 and the user may enter any Fortran statements
he wishes. The full power of the text editor is available at this point.

In the example, we have entered four statements, lines 10 through 13. Note that we have
defined a single variable t for use in the etphi statement. The value of this variable will not

be remembered by the system.

After completing the desired Fortran statements, the user requests compilation by entering
_CMPL (line 14). The computer then indicates that compilation is proceeding (line 15) and will
give the usual error messages if the compile is unsuccessful. After compilation the program is
automatically executed, and the first item in the execution is a request for data from the INPUT
subroutine (line 16). Data are entered free style as in line 17, with the elements of the matrices

152

€61

vasps
DDNAME=JBLB0001
~INPUT FROM TERMINAL
OUTPUT TO TERMINAL
convasp 16, ,f,$z=Ffstar
xMATRICES AVAILABLE, ALL DIMENSIONED 16, ARF;
A,F,C,W,X,Y,FSTAR; FOR INPUT OR COMPUTATIONS
ni,b2,03,04,D05,06,D7; FOR COMPUTATIONS ONLY
— *****FORTRAN STATEMENTS?
10 0000100 t=1.0
11 0000200 call etphi (f,nf,t,a,na,dl,32)
TZ 0000300 call prnt (f,nf,'f ', 1)
13 0000400 call prnt (a,na,'a ', 1)
14 0000500_cmpl
15w **MNPGSS NOW COMPILINGw##w»#

|
N -—
1
I

Ao s o 0

16 DATA?
17 f=1.1,1.2,1.3,1.4,2.,1,2.2,2,3,2,4,3.1,3.2,3,3,3.4,4,1,4,2,6,3,4. 4 nf=l Lx
18 F MATRIX 4 ROWS 4L COLUMNS

19 1.1000000D 00 2.1000000D 00 3.1000000D0 00._ &,1000000D 00—
20 " 1.2000000D 00 2,2000000D OO 3.2000000D 00 4.,2000000D 0O
21 1.3000000D 00 2.3000000D0 00 3.3000000D0 0O 4,3000000D 00
22 1.4000000D 00 2,4000000D0 00 3,4000000D CO &.54000000D 0O

23 A MATRI X L4 ROWS 4 COLUMNS
24 7.7251647D 03 1.36901660 O4 1,9656167D 04 _ 2,5622168D Qb . —
25 8.,0162773D 03 1.4208825D 04 2.0399372D 04 2.6590919D 04
26 8.3083898D 03 1.4725483D 04 2,1143577D 04 2,7559671D 04
27 8.6005023D 03 1.5243142D 04 2,1885782D_0Qk4 2.8529422D QL
8 #xx*xCOMPUTING DONE#*#*#% %%
29 recmpt
30 DATA? o
3T f=1.11,1.22,1.33
32 f(4)=2.11,2.22,2,33,
33 f(7)=3,11,3.22,3.33
34 nf=3,3
35 =*

Figure 9.— Example of conversational VASP.

123!

36 F MATRIX 3 ROWS 3 COLUMNS
37 1.1100000D0 00 2,11000000 00 3,1100000D 0O
38 1.2200000D 00 ~2,2200000D 00 3.2200000D0 00
397" 71.3300000D 00 2.3300000D 00 3.3300000D 00

40 A MATR1 X 3 ROWS 3 COLUMNS __ __ e
41 T.5033GTI30 02 2.6866611D 02 3.8799809D 02
42 1,5705153D 02 2.8346117D 02 4.0787080D 02

43 1.6476893D 02 2.9625623D 02 4,2874352D 02
4 —FFFCOMPUTING DONE#**

45 rewrt
46 ***xFORTRAN STATEMENTS?

47 0000100 call mult (a,na,x,nx,y,ny)

48 0000200 call prnt (y,'y ',1) —_—
49 0000300_revise 200

50 0000200 call prnt (y,ny,'y ',1)

51 0000300_insert 150 . e — —
52— Q000150 print 6,f

83 cmpl

54 xxx%xxMNPG$$ NOW COMPILING#**%x R
55 DATA? o

6 nx=3,1,x=1,0,0,,0.%

57

1, 11000OD 00 1 2200000 00 1.330000D 00 2.110000D_00 2.,220000D 00.2,330000D-.00 -
gg "3,1100000 00 3,2200000 00 3.330000D 00 3,200000D 00 3.300000D0 00 3.400000D 00

4,100000D OC 4.200000D OO0 4,300000D 00 4,400000D 00

66 \4 MATRTX 3 ROWS 1 COLUMNS
61 1.5033413D 02

62 1.5705153D 02 -
63 1.6476893D 02

64 *%x%+COMPUTING DONE#®*%%#

65 rewrt 150 _

66 0000T00 CALL MULT (A,NA,X,NX,Y,NY)

67 0000150 call add (x,nx,y,ny,w,nw)

68 0000250 call prnt (w, nw, YViy oo _ —
©®90000350 call prnt x,nx, x ', 1)

70 0000450_cmpl

71 %%+ +MNPGSS NOW COMPILINGh*%u® .
Figure 9.— Example of conversatlonal VASP Continued.

S¢Sl

70000350 E +=*x (NOT FOUND WHERE REQUIRED
73 0000350 CALL PRNT X,NX,'X ', 1)

;g_;EEQ! call prnt (x,nx,'x . ',1)._ ..

76 MODIFICATIONS?
77 n

T8 DATA?
79 «

By T WATRIX 3 ROWS 1 COLUMNS
81 1.5133413D 02
82 1.5705153D 02

B3 1.6476893D 02
84 X MATR1 X 3 ROWS 1 COLUMNS

85100000000 00
86 0,0

8 0.0
BE S TOMPUTTNG DONE=s %7~

89 Logoff
90 9,729 CPU SECONDS, 05/11/71 AT 11:35, FSTO4

R3984

Figure 9.— Example of conversational VASP — Concluded.

being entered columnwise. Do not forget to input the matrix dimensions such as NF in the
example. Data entry is ended with an *. Execution of the program continues; lines 18 through
27 display the requested output, and line 28 indicates completion.

At this point (line 29) the computer gives an underscore and the user may do anything he
wishes. In the example, we are going to recompute with the same program, using new data.
Accordingly, the user asks for RECMPT (line 29). The program is again executed, and new data
are asked for (line 30). They are entered in lines 31 through 35, using a different style than in
line 17 to show the flexibility available. On completion of the data entry, the results are
printed in lines 36 through 44.

At this point, it is desired to rewrite the entire program, so the user issues the command
REWRT (line 45). The system, as at line 9, prompts the user with “FORTRAN STATEMENTS,”
and a line number (lines 46 and 47), after which the user enters Fortran statements as desired.
Inithe example, line 48 is entered incorrectly and then corrected (lines 49 and 50). Following
this, a line 150 was inserted (lines 51 and 52). Then a CMPL was issued (line 53) to compile
and execute the program. New data were entered at line 56, and lines 57 through 59 are the
output requested by the statement “print 6,f.° Note that all 16 elements of { are printed

. using one of the two FORMAT statements compiled into the program for convenience (see
lines 5900 and 6000 of VASPPROC, fig. 12):

6 FORMAT (1X,1P6D13.6)
13 FORMAT (1X,1P4D20.13)

These statements request the output of a 6 decimal number or a 13 decimal number. In the
example, we are printing a 6 decimal number. The remainder of the output is then printed

(lines 60 through 63).

Now, it is desired to rewrite only a portion of the program from line 150 on. Accordingly,
the REWRT command is issued with a parameter (line 65). The system then erases
SOURCE.MNPG$$ from line 150 inclusive to the end. It then lists that portion of the program
being used, in this case, line 100 only (line 66) and prompts the user for additional lines with a
line number (line 67). The user then adds lines as desired (lines 67 through 69) and requests a
compile (line 70). It can be seen that line 69 is missing a left parenthesis so the compiler prints
a diagnostic and requests the line be corrected (lines 72 and 73). The correction is entered
(line 74), after which the compilation is completed (lines 75 through 77). No data are needed,
so the data request (line 78) is answered with * only (line 79). The results are printed on lines
80 through 88. Since no more computations were desired, a Logoff command was issued

(lines 89 and 90).

Housecleaning

A procedure called “CLRVASP” is available. This procedure erases all data sets that have
been set up by the various other procedures, and allows the user to keep his storage low. Use of
the routine is not required since the other procedures have appropriate erase statements as

needed.

156

LISTINGS AND FLOWCHARTS

Figure 10 shows all the procedures associated with VASP, and indicates what each one does.
A complete listing of the procedures is given in figure 11. Figure 12 is a listing of data set
VASPPROC. If the user executes this data set, it will generate all the procedures and place them
in the user’s USERLIB.

TSS ACCESS

For access to the VASP program, an Ames TSS user should issue the following statements:
SHARE VASP, FSTISW, VASP
which allows access to the VASP subroutines

SHARE VASPPROC, FSTISW, VASPPROC
EXECUTE VASPPROC

which first allows access to a data set containing the various procedures, and then enters these
procedures in the user’s USERLIB. Note that the EXECUTE command sets up a batch job, and
that the procedures will not be available until that batch job is completed, and the user has
issued either a LOGOFF or ABEND command. After once issuing these commands the user
need only call the procedure, as discussed earlier.

Further, for conversational use, issue the command

SHARE VASPI1, FSTISW, VASP1

which allows access to the proper version of subroutine INPUT.

157

VASPSS

JBLB VASP

LOAD BLKDTAS$$
Input & Output DDEF
Default Options

CONVASP

JBLB VASP1

DISPLAY Matrix Names

Edit SOURCE. VASPMN$$

Compile VASPMN$$

Load VASPMN$$

Edit SOURCE. MNPGS$$

EXCERPT beginning of Fortran
Programs

Display FORTRAN STATEMENTS?

CMPL

Add end of Fortran Program
Display MNPG$$ Now Compiling
Compile MNPG$$

Call MNPG$$

Display COMPUTING DONE

RECMPT
Call MNPG$$

REWRT

EDIT SOURCE. MNPG$$

EXCISE Program

Display FORTRAN STATEMENTS

or

CHNGIN
Change Input DDEF

CHNGOUT
Change Output DDEF

CLRVASP
Erase all Programs &

Data used by Conversational
VASP

REWRTN

Edit SOURCE. MNPG$$

EXCISE from Statement N
to last

List program

Figure 10.— Flowchart VASP procedures.

6S1

il

CHNGIN~— 0000000 PROCDEF CHNGIN® ~— -7 °~ °~ =~ -7/ =/ =7~

CHNGIN 0000100 PARAM $INPUT

CHNGIN O0000200RELEASE FTO5F001

CHNGT N 00003 00—t *$tNPUTH == SODEF FTUSFO0T,, $TNPUT;DTSPLAY '"TNPUT FROM DATA SET $TNPUTT
CHNGIN 0000400 IF '$INPUT' ="';DISPLAY '"INPUT FROM TERMINAL'

CHNGOUT 0000000 PROCDEF CHNGOUT

CHNGOUT 0000100 PARAM $QUTPUT

-CHNBOUT 0008200 - RELEASE FTO6F001 - - ——— - — —— ==~~~ —
CHNGOUT 0000300 IF '$OUTPUT’ ~='';DDEF FTO6F001,,$0UTPUT;DISPLAY 'OUTPUT PLACED IN DATA SET $OUTPUT'
CHNGOUT 0000400 1F '$OUTPUT' ='! ;DISPLAY 'OUTPUT TO TERMINAL'

0000900

CERVASP 0000000 PROCDEF CLRVASP "~ — —— = ="~ °
CLRVASP 0000050 END

CLRVASP 0000100 UNLOAD MNPG$$

CLRVASP 0000200 UNLOAD VASPMN$$ T
CLRVASP 0000300 ERASE SOURCE.VASPMN$$, SOURCE.MNPG$$, USERLIB(VASPMNS$)
CLRVASP 0000400 ERASE USERLIB(MNPG$$) _
€LRVASP 0000500 RELEASE VASPI™ "~~~ = "=~ —
CLRVASP 0000600 DISPLAY 'sx#*xALL CONVERSATIONAL VASP PROGRAMS CLEARED*###x!
CLRVASP 0000700 DISPLAY '#%x#*YOU MAY RESTART WITH COMVASP**sxwnsu'

CMPL 0000000 PROCDEF CMPL
CMPL—0000030 DEFAULT SYSIRX=E '~
CMPL 0000050 EDIT SOURCE.MNPG$$S
CMPL D000100_EXCERPT SOURCE,VASPMN$$,,1600,1700

CMPL 0000150 END

CMPL 0000200 DISPLAY '#*x%x*MNPG$$ NOW COMPILINGrx**x'
CMPL 0000220 DEFAULT LIMEN=N

CMPL 0000250 "UNLOAD MNPGS” ' -
CMPL 0000270 ERASE USERLIB(MNPGSS)

CMPL 0000300 FTN MNPGS,Y

CMPL- 0000400 LOAD MNPGS$$

CMPL 0000600 CALL MNPGS$$

CMPL 0000700 DEFAULT LIMEN=W

CMPL 0000800 "~ DISPLAY *##%%*COMPUTING DONE#*wx#"'

Figure 11.— List of VASP procedures.

© 7 LONVASP 0000000 PROCDEF CONVASP I

CONVASP 0000020 PARAM $N,$A,$B,$C,8W,8X,8Y, $Z

CONVASP 0000040 DDEF VASP1,VP, VASP1,0PTION=0BLIB .
—CORVASP— 0000080 "UOBLIBS" SYSULIB-_ T oot

CONVASP 0000110 DISPLAY ‘'#*#+xMATRICES AVAILABLE, ALL DIMENSIONED $N, ARE;'

CONVASP 0000140 DISPLAY ! $A,$B,$C,$W,$X,$Y $Z; FOR INPUT OR COMPUTATIONS'
——CONVASP—0000170 ~DI1SPLAY ~' ~ -~ ~—DI,D2,D3,D4,D5,D6,07; FOR COMPUTATIONS ONLY ™

CONVASP 0000200 DEFAULT SYSINX=E

CONVASP 0000250 DEFAULT LIMEN=N
- CONVASP- 0000300 EDTT SOURCEIVASPMNSS 777 77~ ' -

CONVASP 0000340_EXCISE 1,LAST

CONVASP 0000380 INSERT 100 i
—CONVASP- 0000400~ "tMPLICIT REAL#8(CA-H,0-2ZY ~~ "~ T

CONVASP 0000L30 COMMON /ASP/ S$A($N),$B(SN),$C($N), %W($N) $X($N) -

091

CONVASP 0000460 1 $Y($N),$Z($N),D1($N),D2($N),D3($N),DL($N),D5($N),DECSN),D7($N), -
—CONVASP—0006490—— - -~~~ 27 N$A(2),N$BTZ), N$CT2),NSW(ZY, N§ XUy, ~
CONVASP 0000520 3 N$Y(2),N$Z(2),ND1(2),ND2(2),ND3(2),NDL(2),ND5(2),ND6(2),ND7(2)

CONVASP 0000550 COMMON /MAX/ MAXRC L

~—CONVASP 0000580 - MAXRC=%$N - o T

CONVASP 0000700 10 PRINT 15

CONVASP 0000800 15 FORMAT (' DATA?") » L L
— CONVASP 0000840 CALL TNPUT (*$AY, $A, *SB',$B, *$C, 3T, "sW ", 3W, = ~

CONVASP 0000880 1 '$X", 6%, "8Y Y, 82,82, 'NSAT,NSA, -
CONVASP 0000920 2 'N$BY,NSB, 'NSC',NSC, TNSW', NW, NSX',NX,-
~ CONVASP 0000960 ~ 3 'NSY',N$Y, 'N$Z',N$Z) "

CONVASP 0001000 13 FORMAT (1X,1PLD20.13)

CONVASP 0001100 6 FORMAT (1X,1P6D13.6) o _ .
------ CONVASP O00T200 RETURN ST T T '

CONVASP 0001300 END ‘

CONVASP 0001400_FEND _ el
—— CONVASP ‘0001450 ERASE USERLIB(VASPMN$$) '

CONVASP 0001500 FTN VASPMNS$S,Y

CONVASP 0001600 XLIST VASPMN$$ e
———CONVASP- 0001700 LOAD “VASPMNSS ——— — - T TTrT T oo

CONVASP 0001770 DEFAULT LIMEN=N

CONVASP 0001800 EDIT SOURGE.MNPG$$ L
~——CONVASP "0001900_EXCISE 1,LAST ST

CONVASP 0001950 INSERT 1,1

CONVASP 0002000_EXCERPT SOURCE.VASPMN$$,,100,1500 _ o
= —CONVASP 0002100 DISPLAY ‘t#*#+*FORTRAN STATEMENTS?' ™~

CONVASP 0002150 DEFAULT LIMEN =W

_CONVASP 0002200 INSERT 100

Figure 11.— List of VASP procedures — Continued.

191

RECMPT 0000000 PROCDEF RECMPT

RECMPT 0000100 DEFAULT LIMEN =N

RECMPT 0000200 CALL MNPG$$

RECMPT 0000300 DEFAULT LIMEN=W

RECMPT 0000400 DISPLAY '##*COMPUTING DONE*#*'

REWRT 0000000 PROCDEF REWRT

REWRT 0000100 PARAM $LINE

REWRT 0000200 DEFAULT LIMEN =W

REWRT 0000400 DEFAULT SYSINX=E

REWRT 0000500 EDIT SOURCE.MNPG$$

REWRT 0000600_FXCISE $LINE,LAST

REWRT 0000700 IF '$LINE'= '100' DISPLAY '#+*FORTRAN STATEMENTS?'
REWRT 0000800 IF '$LINE'"= '100' sLIST 100, LAST

REWRT 0000900 DEFAULT SYSINX=G

REWRT 0001000 [INSERT $LINE

YASP$$ 0000000 PROCDEF VASP$$

VASP$$ 00001060 PARAM $INPUT,$OQUTPUT

VASP$$ 0000150 DEFAULT $N=9,$A=A,$B=B,$C=C, $W=W, $X=X,$Y=Y,$Z=Z,$LINE=100

VASP$$ 0000200 JBLB VASP

-VASP$$-- 0000300LOAD BLKDTA%S -

VASP$$ 0000400 [F '$INPUT' ~='';DDEF FT05F001,,$INPUT DISPLAY 'INPUT FROM DATA SET $INPUT'

VASP$$ 0000500 IF '$INPUT' "'DISPLAY VINPUT FROM TERMINAL'

VASP$$ 0000600 |IF 'soutput' " iy, ;DDEF FTO6F001,,$0UTPUT;DISPLAY "OUTPUT PLACED IN DATA SET $OUTPUT'
VASP$$ 0000700 1IF '$OUTPUT' "' DISPLAY 'OUTPUT TO TERMINAL'

Figure 11.— List of VASP procedures — Concluded.

91

00030 LOGON USERID,,9

00060 PROCDEF CHMNGIN - - : S ST T T
00090_FXCISE 1,LAST

00100 PROCDEF CHNGIN

00260— PARAM-$INPYUT -~ — - - oo o e eeom - -

00300RELEASE FTOS5F001

00400 IF "$INPUT' ~='',DDEF FTO5F001,,$INPUT;DISPLAY 'INPUT FROM DATA SET $INPUT'

00500 T$INPUTE ""DfSPLAY LENPUT FROM TERMINAL' - -- o e T
00540_ PROCDFF CHNGOUT

00580_EXCISE 1,LAST

-00600- PROECDEF -CHNGOUT - — - —— - e i s s -
00700 PARAM $0UTPUT

00800 RELEASE FTO06F001

00980--1F '$OUTPUT' ~=1';DDEF FTOG6F001,,$0UTPUT ;DtSPLAY 'OUTPUT PLACED 1N DATA SET $OUTPUT'
01000 IF '"$OUTPUT' ='';DISPLAY 'OUTPUT TO TERMINAL'

01040_ PROCDEF CLRVASP

BLOB0-—FEXCHSE - HAST— — e e e e ~

01100 PROCNEF CLRVASP

01200 END

01306 UNLOAD MNPES -~ - -0 - - = =0 sTThom oo s mss e o s S e s
01400 UNLOAD VASPMN$$

01500 ERASE SOURCE.VASPMN$$,SOURCE.MNPG$$,USERLIB(VASPMNSS)

041660 ERASE USERLIBIMNPE$S)Y—— ——- ~ o

01700 RELEASE VASP1 ’

01800 DISPLAY 'sxxxxALL CONVERSATIONAL VASP PROGRAMS CLEARED*****‘

019060 DISPLAY "##x#+x%xYOU MAY RESTART WITH CONVASP*w»wazaaw! —- - e T e
01940_ PROCDEF CMPL

01980_FXCISE 1,LAST :
82000 PROEHEF CMPL—— — =~ = s — o mmms e
02100 DEFAULT SYSINX=E

02200 EDIT SOURCE.MNPG$$

02300__EXCERPT SOURCE.VASPMN$$,,1600;1700 - ST T T
02400 END

02500 DISPLAY '*xxx*MNPGS Now COMPILING*****'

02600 DEFALLT- LiMEN=N — — - e e — -

02700 UNLOAD MNPGS$$S

02800 ERASE USERLIB(MNPG$$)

02900 FTN MNPGS$S,Y - St - e o T
03000 LOAD MNPG$S

Figure 12.— List of data set VASPPROC.

—

€9

03100 CALL MNPG$$

63260 —DEFAULTLHMEN=W —-

03300 DISPLAY '##%#xCOMPUTING DONE#*###+"

03340_ PROCDEF CONVASP

03380_EXCHSE 1, tAST— -~ --—-- — — —
03400 PROCDEF CONVASP

03500 PARAM $N,$A,$B, $C, $W,$X,$Y,$7

03600—DDEFVASPL, VR UAShl ARTION=JERLIE

03700 JOBLIBS SYSULIB

93800 - DISPEAY —LaarssMATRICES-AVAHLABLL ;—ALL—DHMENSTONED— $N;,—ARES -
03900 DISPLAY ' $A,$B,$C,¢W,$X,$Y,$Z; FOR INPUT OR COMPUTATIONS'

04000 DISPLAY ' D1,D2,D3,D4,D5,06,07; FOR COMPUTATIONS ONLY '

Q4100 DEFAUETF-SYSHNX=E

04200 DEFAULT LIMEN=N

04300 EDIT SOURCE.VASPMN$$

O 00— EXEHSE1,tAST

04500 [INSERT 100

04600 IMPLICIT REAL*8(A-H,0-2)

04700 —COMMON--FASPA——SACEN I BLENY, $ELANT;

043800 1 $Y($N),$Z($N),D1(SN),D2($N),D3($N),DL($N),D5($N),D6($N), DT ($N),

04900 2 N$A(2),N$B(2),N$C(2),NSW(2),N$X(2),~ .

85000 — -~ ——————3-NSH IV NSZCI NDTE 2, ND 22 KD SC2), NOwt 2 IS NDS 20, DB CZ), ND Tt 2

05100 . COMMON /MAX/ MAXRC
05200 MAXRC=$N
8530610 PRINT 15—
05400 15 FORMAT (' DATA?')
05500 CALL INPUT ('$A',5A,'$B',$B,"$C',$C, "$W', $W,-
85600 X T ST e g A —
05700 2 'N$B',NSB, 'NSC',NSC, 'NSW', NSW, 'NSX', N$X, -
05800 3 'N§Y',N$Y,'N$Z',N$Z)

8590613 FORMATL1¥, 1P5P28- 13

06000 6 FORMAT (1X,1P6D13.6)

06100 RETURN

86200 —ENB - ———————— - e -
06300__END

06400 ERASE USERLIB(VASPMNS$$)

DL ON CTAL VVACDIMAS
goouy N vr\ormn.).p,l

06600 XLIST VASPMNSS
06700 LOAD VASPMNS

Figure 12.— List of data set VASPPROC —Continued.

06 806—DEFAULT L MEN=N- LT e —
06900 EDIT SOURCE.MNPG$$

07000__EXCISE 1,LAST

G008 ——INSERT ;1

07200__EXCERPT SOURCE.VASPMN$$,,100,1500

07300 DISPLAY '#»x**FORTRAN STATEMENTS?'

07400 ~DEFAULTLHMEN =W i T T T
07500 INSERT 100

07540_ PROCDEF RECMPT

GT580_EXCTSE L, LtAST

07600 PROCDEF RECMPT

07700 DEFAULT LIMEN =N

6,7_8_,0,6,_ _e_A_Lt MW e e o e
07900 DEFAULT LIMEN=W

08000 DISPLAY '"*%*xCOMPUTING DONE#*#*'!

08640 -PROCHEFREWRT

08080_EXCISE 1,LAST

08100 PROCDEF REWRT

08200 PARAM $LINE

366—DEFAULT —LHMEN—=W

08400 DEFAULT SYSINX=E

08500 EDIT SOURCE.MNPG$$

08600 _EXCHSE $LINE;LAST- ~— - — - —— -
08700 IF 'SLINE'='100°;DISPLAY '++#FORTRAN STATEMENTS?'

08800 IF "$LINE'™='100";LIST 100,LAST

8900—DEFADLTSYSHX=6——
09000 INSERT $LINE

09040_ PROCDEF VASP$$ L
09080 _EXCHSE 1, tAST —— — - - - T
09100 PROCDEF VASP$$

09200 PARAM $INPUT,$OUTPUT

=3, =~A,$»bB=b, = ,$W-W,$X=X,$i=i,$Z=Z,$LINE=IUU
09400 JBLB VASP

09500L0AD BLKDTAS$$ - e
09600 tF$TNPUT —~=**;DDEF FTOSFO0T,, $TNPUT;DTSPLAY ' TNPUT FROM DATA™ SET $I1NPUT'
09700 IF '$INPUT' ='';DISPLAY 'INPUT FROM TERMINAL'

09800 IF '$OUTPUT' ~= "'DDEF FTO6F001,,$0UTPUT;DISPLAY 'OUTPUT PLACED IN DATA SET $OUTPUT!
ﬂﬁ?ﬂﬂ—“+F—4$0UTPUT*‘=**TDTSPtKY_+0UTPUT TU_TFRMINA['

Figure 12.— List of data set VASPPROC — Continued.

691

10000_LIST

10100

CW.¥. 7. 7.1

END

10266
10300
10400

TALK—*

VASP PROCEDURES NOW READY. DO 'ABEND' TO MAKE THEM AVAILABLE

LOGOFF

Figure 12.— List of data set VASPPROC — Concluded.

REFERENCE

1. Kalman, R. E.; and Engler, T. S.: A User’s Manual for the Automatic Synthesis Program
(Program C). NASA CR—475, 1966.

1 66 NASA-Langley, 1971 —— 8 A-3882

NATIONAL AERONAUTICS AND SPACE ADMISTRATION
WASHINGTON, D.C. 20546

OFFICIAL BUSINESS
PENALTY FOR PRIVATE USE $300

POSTAGE AND FEES PAID
NATIONAL AERONAUTICS AND
SPACE ADMINISTRATION

FIRST CLASS MAIL

0178 01 C2 UL 98 711008 S00903DS
DEPT OF THE AIR FORCE

AF WEAPONS LAB (APSC)

TECH LIBRARY/WLOLy

ATTN: E LOU BOWMAN, CHIEF
KIRTLAND AFB NM 87117

720401

If Undeliverable (Section 15!
Postal Manual) Do Not Retu

POSTMASTER:

“The aeronantical and space activities of the United States shall be
conducted so as to comtribute . . . 1o the expansion of human knowl-
edge of phenomena in the atmosphere and space. The Administration
shall provide for the widest practicable and appropriate dissemination
of information. corcerning its activities and the results thereof.”

o

A

NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS

[
_?‘.'L

o TECHNICAL TRANSLATIONS: Information
".. o publxshed in a foreign language considered

—"-.NATIONAL AERONAUTICS AND SPACE AcTt OF 1958

/,_

TECHNICAL REPORTS: Scientific and]

technical information considered impog;tant

complete and a lasting: contribution to‘exnstmg

.,

. Knowledge. -5 ik ' s
+ " SPECIAL PUBLICATIONS: Information

TECHNICAL NOTES: Informatxoﬁ less brqaa
in scope but nevertheless of importance as a -
contribution to existing knowledge

TECHNICAL MEMORANDUMS o

Information receiving limited dlS(‘I’lbUrthﬂ
because of preliminary data, security classrﬁca o
tion, or other reasons. S o

CONTRACTOR REPORTS: Scientific and
technical infornfation generated under a NASA
contract or grant and considered an important
contribution to existing knowledge. .

; “to:merit NASA distribution in English.

“derived from or of value to NASA activities.

- _:. Publications include conference proceedings,
.. monographs, data compilations, handbooks,

sourcebooks, and special bibliographies.

TECHNOLOGY UTILIZATION
PUBLICATIONS: Information on technology
used by NASA that may be of particular
interest in commercial and other non-aerospace
applications. Publications include Tech Briefs,
Technology Utilization Reports and

Technology Surveys.

. Details on the availability of Ihe’se publications may be obtained from:

" SCIENTIFIC AND TECHNICAL INFORMATION OFFICE

NATlONAL AERONAUTICS AND SPACE ADMINISTRATION
Washington, D.C. 20546

