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USERS  MANUAL FOR THE  VARIABLE DIMENSION AUTOMATIC  SYNTHESIS 

PROGRAM  (VASP) 

John S. White and  Homer Q. Lee 

Ames Research  Center 

SUMMARY 

VASP is a Variable dimension Fortran version  of the  Automatic  Synthesis  Program,  a  computer 
implementation of the Kalman  filtering  and  control  theory. I t  consists of 3 1  subprograms  for  analy- 
sis, synthesis,  and  optimization  of  complicated high-order  time-variant problems  associated  with 
modern  control  theory.  These  subprograms  include  operations  of  matrix  algebra,  computation of 
the  exponential of a  matrix  and  its  convolution  integral,  solution  of  the  matrix  Ricatti  equation,  and 
computation  of  dynamical  response of a  high-order  system. 

Since VASP is programmed  in  Fortran,  the user  has at his  disposal not  only  the VASP 
subprograms,  but all Fortran built-in functions  and  any  other  programs  written in the  Fortran 
language. All the  storage  allocation is controlled  by  the user so the largest system that  the program 
can handle is limited  only  by  the size of  the  computer,  the  complexity of the  problem,  and  the 
ingenuity of the user.  No  accuracy was lost in converting  the original  machine  language  program to 
Fortran. 

The principal part  of  this  report  contains  a VASP dictionary  and  some  example  problems.  The 
dictionary  contains  a  description  of  each  subroutine  and  instructions  on  its use. The  example  prob- 
lems give the user  a better perspective on  the use of VASP for solving problems in modern  control 
theory.  These  example  problems  include  dynamical  response,  optimal  control gain, solution of the 
sampled data  matrix  Ricatti  equation,  matrix  decomposition,  and  pseudo inverse of a  matrix. 
Listings of all subroutines  are  also  included. 

The VASP program  has  been  further  adapted  to  run  in  the  conversational  mode  on  the  Ames 
360/67 computer.  The necessary procedures  are given in appendix C. 

INTRODUCTION 

The VASP, the Variable dimension  Fortran version  of the  Automatic  Synthesis  Program, is the 
new Fortran  IV version  of the ASP, the  Automatic  Synthesis  Program.  It is intended to  implement 
the Kalman  filtering  and  control  theory. Basically, it consists of 3 1 subprograms  for solving most 
modern  control  problems  in  linear, time-variant (or time-invariant)  control  systems.  These  subpro- 
grams  include  operations  of  matrix  algebra,  computation of the  exponential of a  matrix  and  its  con- 
volution  integral,  and the  solution  of  the  matrix  Riccati  equation.  The user calls these  subprograms 
by means of a  FORTRAN  main  program,  and so can easily obtain  solutions  to  most general prob- 
lems of extremization  of  a  quadratic  functional of the  state  of  the  linear  dynamical  system. 



Particularly,  these  problems  include the synthesis  of  the  Kalman  filter gains and  of  the  optimal 
feedback  gains  for  minimization  of  a  quadratic  performance  index. 

The VASP is an  outgrowth  of ASP,  which  was  developed for NASA under  contract  with  the 
Research Institute  for  Advanced  Studies,  a division of  the Martin  Company.  There  are  two  urgent 
reasons  for  reprogramming  ASP into  the present  Fortran version. First, ASP  was  programmed  in 
FAP  (Fortran Assembly  Program) and  could  be used only  on  the IBM 7090-7094.  Second,  many 
complicated  time-variant  analysis,  synthesis,  and  optimization  problems  tax the capability  of  the 
ASP and  other  programs  written  in  the  Fortran language. Fortran  IV language  makes the program 
adaptable to a  much  wider class of  computers  and  expands  its  versatility. 

The VASP is based exten;ively on a  Fortran version  of ASP, called  FASP (Fortran ASP)  by its 
programmer Mr. Don Kesler of Northrop,  Norair. ’ 

Two basic questions  the user will inevitably ask are: 

(1) How accurate is VASP compared  with ASP? 
(2) What is the highest order  of  system  that VASP can handle? 

The  answer to these  questions  depends  on  the  number  of  significant  digits carried  by the user’s 
computer  and  the  amount  of available  storage in the  computer. To answer  the  first  question in a 
more  concrete  way,  the  check cases given in  the ASP manual  were  duplicated  and  the  results were 
compared  with  those  in  the  manual.  The  accuracy  of VASP was found  to be the same as that  of 
ASP. The  second  question  can  best  be  answered  by  first  noting  some  of  the basic  differences 
between  FASP  and  VASP.  The  pertinent  difference  between  the  two is that VASP  has  variable 
dimensioning  and  more  efficient  storage. To allow  a computer  to  handle  the highest  order  system 
possible, all matrix  storage is assigned by the user’s main  program.  Consequently,  as  an  illustrative 
example,  a  125,000-byte version  of the IBM 360/50 can  easily determine  the  solution  of  the  matrix 
Riccati  equation  for  a  30-order  system  (perhaps  40,  depending on the size of  other related  matrices). 
Another basic difference  between  these.two  Fortran versions  is that VASP  diagnostics  are  more 
self-explanatory. 

To  recapitulate,  the  objectives  of VASP are  flexibility  and  versatility so that  it can serve the 
maximum  number of users. To achieve  these goals FASP was revised  extensively so as to have, for 
example,  variable  dimensioning, more  efficient  storage,  and  more  self-explanatory  diagnostics. 

In this  report,  no  attempt will be made  to discuss any  details  of  the  theoretical  background  and 
the  algorithms associated with  the  appropriate  subprograms since they  are well documented in the 
ASP manual,  an NASA contractor  report (NASA CR-475,  1966).  This  report  does  not  repeat 
information  from  the  contractor  report,  and  the user is urged to  consult  that  manual so that  he may 
utilize VASP proficiently. 

This  program can be obtained  from  the  centralized  facility  known as COSMIC, located at  the 
Computer  Software Management and  Information  Center, Barrow  Hall,  University  of  Georgia, 
Athens, Georgia, 3060 1. 
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FEATURES OF  THE PROGRAM 

The advantages  of VASP over  ASP  are  (1)  a  more versatile  programming  language, (2) a  more 
convenient input/output  format, (3) some  new  programs,  and (4) variable  dimensioning. 

Since VASP is programmed in Fortran,  it  can  be used in  a very large class of  machines. 
Moreover,  as  VASP  is part  of  a larger  main  program, all the  Fortran built-in functions  are available 
to  the main  program. Furthermore,  any  subroutine available in the  Fortran language  may be  used. 
In  other words, the user has  at  his disposal the  combined  capabilities  of VASP, Fortran built-in 
iunctions,  and all other  subroutines  written in Fortran. 

The  input/output  subroutines have  been  changed and  now  consist of READ,  RDTITL,  and 
PRNT. In  addition, LNCNT  has  been added to  control paging. The VASP  allows the user the 
option of using the existing  standard  VASP  format,  or  of  supplying  the  output  format of his  own 
choice.  For  a  more  detailed  explanation  of  how to exercise this  latter  option, see the  dictionary 
entry  under  PRNT  (p. lo), or Example 2. 

Our  experience  with ASP is that  certain  groups  of  statements  are  often  repeated.  For  the 
user’s convenience,  these  groups  of  statements  are  incorporated as  new subroutines in the VASP. 
They  are AUG,  UNITY, and SCALE.  Detailed  explanations of them  are available in the VASP 
dictionary in this  report. 

To utilize the  storage  space as  efficiently  as  possible,  the  subroutines  are  written  with  variable 
dimensioning,  with  the  storage  allocation  controlled by the user’s calling  program.  Consequently, 
it is necessary to  provide  some dummy  storage  space as a  part  of  the  argument of the  subroutine. 
From  the user’s point of view, the  price  for  efficient  storage is inconvenience. All the  subroutines 
are  written in double precision for  adequate  accuracy;  that is, all matrix  and scalar variables, except 
integers, are assumed to be  in  double  precision. 

Universal Features 

The  arguments in the  subroutines  are arranged in the following order: 

Input  arguments 
Output  arguments 
Dummy  arguments 

These  are  also  arranged so that matrices  occur  before scalars. 

An array of length  two  must  be  allocated  by  the user to  store  the  dimensions of the  matrix, 
and  this  array  must be  included  in the  subroutine call statements.  For  example,  the  add  subroutine 
is called  by 

I 

CALL ADD(A,NA,B,NB,C,NC) ; 

and  performs  the  matrix  operation 
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C = A + B  

Here  NA, NB, and NC are  arrays  of  length  two  which  contain  the  dimensions  of  matrices A, B, C, 
respectively. In  other words, the  numbers  of  rows  and  columns  of  matrices  A, B, and  C  are  stored in 
NA, NB, and NC, respectively.  Specifically, the  number  of  rows  of  A is stored  in NA( 1) and  the 
number  of  columns  of  A, in NA(2). 

In general, the dimension  array  associated  with  an input  matrix  contains  input  information  to 
the  subroutine, while that associated  with  an output  matrix  contains  output  information.  The dic- 
tionary  shows  the few  cases  where  this  rule  is  violated. In  the  example  above,  dimension  arrays NA 
and NB’ are  inputs  (since  matrices A, B are  inputs)  and  must  be  loaded  before  entering  this sub- 
routine.  On  the  other  hand, NC is an output, since  C is an  output.  That is, the values  of NC( 1) 
and  NC(2)  are  computed in the  subroutine  and  are available to  the calling  program upon  return. 

When a dummy array is required,  it  must  be  appropriately  dimensioned in the calling program. 
The  required size is given in the  appropriate  dictionary  entry. 

Most  of the  routines check the  array  dimensions  for  compatibility  and  reasonableness,  and 
check for  adequate  storage available in the DUMMY array.  The  “reasonableness”  test is to see 
that all matrix  dimensions  are  greater  than  zero,  and  that  the  product  of  the  matrix  dimensions is 
less than  the  constant MAXRC. In  the  program MAXRC has  been  set at 6400. It is recommended, 
however, that  the user  reset MAXRC to equal the size of  his  matrices,  and  thus  prevent  accidental 
overflowing  of the  matrix  dimensions. If the matrices  are  incompatible or unreasonable, or if a 
mathematical  error is found, a  self-explanatory  error message is printed,  and  no  further  computations 
are made in that  subroutine. However, computation  does go on  to  the subsequent  steps, which are 
likely to  be  wrong  also.  After 10 such  errors, the program is terminated. 

The VASP program uses double-precision  arrays, so that  the user’s main  program  must  define 
each  matrix t o  be double  precision,  and to  contain  a  sufficient  number  of cells to  accommodate  the 
matrix.  The  dimension  statement  may classify the array  as  one- or two-dimensional, or even more. 

For  example,  to use the  matrix  A,  which is a 5 X 5 matrix,  any  of  the following  dimension 
statements will be  adequate: 

DOUBLE PRECISION  A(25) 
DOUBLE  PRECISION  A(5,5) 
DOUBLE  PRECISION  A(3,lO) 
DOUBLE  PRECISION A( 100) 

The  important  factor is the  total  number  of cells reserved, and  the user  may reserve more cells than 
the  matrix  requires,  or,  conversely, he  may put a  smaller matrix  than originally  planned  in  a  specific 
array.  The VASP program  stores  data in an array as  a  string of columns,  just as Fortran  does. 

The  convention  used  here,  and  throughout  this  report, is that  the  name of a  dimension  array is obtained  by 
prefixing the  letter N to  the  matrix  name. 
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However, it stores  the  matrix  A  according to  the dimension given in  NA,  whereas Fortran  stores 
A  according to the  dimensions  in  the  Fortran  dimension  statement.’ 

Consider the following  example. The  Fortran  statements are: 

DOUBLE  PRECISION  A(5,5),  B(5,5),  C(5,5) 
DIMENSION NA(2),  NB(2),  NC(2) 
CALL  READ(3,A,NA,B,NB,C,NC,. . . ) 

The  first  card in the  data  deck specifies NA = 5,5,  followed  by  cards  with 25  data  words  for  A;  then 
NB = 4,4,  followed  by  16  data  words of B; finally, NC = 6,6,  followed  by 36  data  words  of C. Since 
the  storage of data  in VASP is controlled  by  the VASP dimensioning, the  25  words  for  A will 
exactly fill the reserved  storage and  the  16  words  for  B will fill the first 16 cells of the storage 
reserved for B. The 36 words for C will completely fill the reserved storage for C and overflow 
into  something else. The user  can  prevent this overflow  by setting  the  test  constant MAXRC to 25. 
The  error  test in the  READ  subroutine will note  that  the  product of NC( 1)  and  NC(2) is greater  than 
MAXRC, and will return  an  error message. This  selection of MAXRC will limit all other VASP arrays 
to 25, so i t  is frequently  desirable  to  dimension all arrays  the  same. 

Occasionally the user may wish to  refer to a single element of a  matrix.  Since  FORTRAN 
statements use the  FORTRAN  dimension  statement,  a  reference  to  B(4,4)  in  the previous example 
will select the 19 element in the  B  storage. However, VASP, using the VASP dimension,  has  stored 
B(4,4) in the  16  element of B, which is not  the same. To actually  select  a  specific  element, say 
B(i,j), one  must  refer  to B((’j--l)*NB(2)+1,1). In the  above  example,  references  to  A(ij) will be 
correct, since the  FORTRAN  and VASP dimensions  are  the same. 

System-Dependent  Features 

Two  subroutines in the VASP  package  are  system dependent.  The  first is BLKDTA. Data 
statements i n  this  subroutine  control  the  printing.  They  require a printer  with  at least 1 1 5  charac- 
ters  per  line,  and  place 45 lines on each page. These  requirements  may  be changed  as  needed. The 
second is ASPERR,  which calls a  system  subroutine  for  error tracing. The  description of ASPERR 
indicates  any  necessary  changes to match  the  system. 

The VASP programs  frequently  generate very small numbers. The  computer  operating  system 
may detect  these small numbers as  underflows,  and  print  error messages. If so, the user  should 
arrange to  turn off the  underflow  error messages. 

THE VASP DICTIONARY 

A  detailed  description  of all the  subroutines is  g’ven in  this  dictionary.  Each  entry is 
organized into subheadings that describe the  subrouiine  and  explain  how to use  it. Other 

‘The storage  in VASP is also compatible with  the storage of “general” matrices in the IBM scientific subroutine 
package. 
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subheadings,  such  as  motivation  and  remarks,  are  sometimes  added to offer  the  user  a  better 
understanding of the  theoretical  background  of  the s ~ b r o u t i n e . ~  

The  dictionary  proper  lists  only  those  routines  that  the  user is expected  to call directly. Several 
additional  subroutines, used internally,  are  also  a  part of VASP. The user  may,  however, wish to  call 
these  routines  himself,  since  they  are  quite  flexible.  These  additional  routines  are  described in 
appendix A, and  a  complete  listing of  all  programs is given in  appendix B. 

Several procedures have  been written  to  facilitate  the use of VASP on Ames  time-share  system. 
Their usage  and  listings are given in appendix C. 

Table 1 lists  all subroutines  with  their calling sequence,  and  the TSS procedures,  for easy 
reference,  while  table 2 lists the  approximate  storage used  by  each  of the VASP subroutines when 
compiled  on  the NASA Ames 360/67, OS system.  Table 2 also  lists the  external  references  for  each 
subroutine. 

3Some of the  subroutines  are  almost  direct  copies  from  the  Northrop  FASP.  The  detailed  description  of  the 
theory is either  obvious, or is given in  the ASP manual (NASA CR-475).  Other  routines  were  written  by  one of the 
authors.  These were quite  simple,  and  needed  little  description.  Subroutines ANDRA, BDNRM, DECOM, and PSEU 
were written  by  John  Andrews,  Information  Systems  Company.  Since no description of these  subroutines is available 
elsewhere,  a  detailed  description  of  their  theory and usage is included. Because there  were  various  programmers,  the 
nomenclature  internal to   the various  subroutines is not  completely  consistent. 
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TABLE 1.- SUBROUTINE  CALL  STATEMENTS IN VASP - 1 - 

1 
1 
i 
1 
I 
1 
I 
1 
I 
1 
L 

L 

L 

L 

L 

L 

L 

L 

1 

L 

I 

I 

1 

L 

1. CALL READ(I,A,NA,B,NB,C,NC,D,ND,E,NE) 
2. 
3. 
4. 
5. 
6. 
7. 
8. 
9. 
0. 
1. 
2. 
3. 
4. 
5. 
6 .  
7. 
8. 
9. 

!O . 
!l. 
!2. 
!3. 
!4. 
!4a. 

!5. 
!6. 
!7. 
!8. 
!8a. 
!9. 
!9a. 
io. 
Il. 

52. 
53. 
54. 
$5. 
56. 
57. 
58. 
59. 

CALL  RDTITL 
CALL PRNT(A,NA,NAM,IP) 
CALL LNCNT(N) 
CALL ADD(A,NA,B,NB,C,NC) 
CALL SUBT(A,NA,B,NB,C,NC) 
CALL MULT(A,NA,B,NB,C,NC) 
CALL SCALE(A,NA,B,NB,S) 
CALL TRANP(A,NA,B,NB) 
CALL INV(A,NA,DET,DUM) 
CALL NORM(A,NA,ANQ)RM) 
CALL UNITY(A,NA) 
CALL  TRCE(A,NA,TR) 
CALL EQUATE(A,NA,B,NB) 
CALL JUXTC(A,NA,B,NB,C,NC) 
CALL JUXTR(A,NA,B,NB,C,NC) 
CALL EAT(A,NA,TT,B,NB,C,NC,DUMMY,KDUM) 
CALL ETPHI(A,NA,TT,B,NB,DUMMY,KDUM) 
CALL AUG(F,NF,G,NG,RI,NRI,H,NH,Q,NQ,C,NC,Z,NZ,II) 
CALL RICAT(PHI,NPHI,C,NC,NCONT,K,NK,PT,NPT,DUM,KDUM) 
CALL SAMPL(PHI,NPHI,H,NH,Q,NQ,R,NR,P,NP,K,NK,NCONT,DUM,KDUM) 
CALL TRNSI(F,NF,G,NG,J,NJ,R,NR,K,NK,H,NH,X,NX,T,DUM",KDUM) 
CALL PSEUDO(A,NA,B,NB,DUM,KDUM) 
CALL DECGEN(R,NR,G,NG,H,NH,DUM,KDUM) 
CALL DECSYM(R,NR,G,NG,H,NH,DUM,KDUM) 

Programs 25 through 3 1 are called internally  and  need  not  be used by  the  programmer.  They 
are  described  in  appendix A. 

CALL  READl(A,NA,NZ,NAM) 
CALL  ASPERR 
BLKDATA (nonexecutable) 
CALL PSEU(A,B,C,EE,DEP,IP,D) 
CALL PSEUP(A,B,C,EE,DEP,IP,D) 
FUNCTION BDNRM(NR,CT,EE,D,KRV) 
CALL  TTRM(NR,CT,EE) 
CALL ANDRA(B,T,DPR,JP) 
CALL DECOM(A,B,C,E,JL,DCM,KP,D) 

The  remainder of the  items  are  procedures to  facilitate  the use of VASP on  the  Ames TSS. 

VASP$$ [inputdsname]  [,outputdsname] 
CHNGIN  [inputdsname] 
CHNGOUT  [outputdsname] 
CMPL 
CLRVASP 
CONVASP [matrixsize]  [,$A=name]  [,$B=name] [,$C=name] [,$W=name]  [,$X=name]  [,$Y=name] [ ,$Z=name 
RECMPT 
REWRT [n] 
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TABLE 2.- APPROXIMATE  STORAGE  REQUIREMENTS  AND  EXTERNAL  REFERENCES 

Subroutines 

1 .  READ 
2. RDTITL 
3. PRNT 
4. LNCNT 
5. ADD 
6. SUBT 
7. MULT 
8. SCALE 
9. TRANP 

10. INV 
11. NORM 
12.  UNITY 
13.  TRACE 
14. EQUATE 
15.  JUXTC 
16. JUXTR 
17. EAT 
18. ETPHI 
19. AUG 
20. RICAT 
11. SAMPL 

?2. TRNSI 
?3.  PSEUDO 
!4. DECGEN 

!5. READ1 
!6. ASPERR 
!7. BLKDATA 
!8. PSEU 
!9. BDNRM 
10. ANDRA 
11. DECOM 

COMMON/MAX/ 
COMMON/LINES/ 
COMMON/FORM/ 

TOTAL 
I 

Storage 
decimal  bytes 

1000 
400 

1400 
500 
800 
800 

1100 
700 
800 

2500 
1000 
700 
700 
700 

1000 
1100 
3200 
2300 
3300 
5100 
3700 

5000 
900 

2600 

800 
400 

None 
5900 
1500 
2000 
1500 

200 

53,600 

External  references 

READ1 , PRNT* 
LNCNT 

None 
* 

* 
* 
* 
* 
* 
e 

* 
SCALE* 
* 
* 
* 
* 
ADD,  MULT,  SCALE,  NORM, UNITY, EQUATE* 
ADD,  MULT,  SCALE,  NORM,  UNITY,  EQUATE* 
MULT,  TRANP,  EQUATE* 
ADD,  MULT, I N V ,  EQUATE,  PRNT* 
ADD,  SUBT,  MULT,  TRANP,  PSEUDO, PSEU, BDNRM 

ADD,  EAT,  SUBT,  MULT,  PRNT,  EQUATE* 
PSEU, BDNRM, ANDRA* 
MULT,  TRANP, I N V ,  NORM,  EQUATE, DECOM, PSEU 

PRNT* 
None 
None 
MULT, NORM, BDNRM,  ANDRA* 
MULT, NORM 
LNCNT 
MULT,  NORM,  PSEU,  BDNRM,  ANDRA* 

ANDRA, PRNT* 

BDNRM, ANDRA* 

*LNCNT  and  ASPERR  are  additional  external  references. 
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1. READ 

DESCRIPTION 

This  subroutine  reads 1 to 5 matrices  from  cards,  along  with  the  names  and  dimensions,  and 
prints  the  same  information.  For  each  matrix  the  routine  first  reads  a  header card containing  a  four- 
character  title,  followed  by  two  integers giving the row  and  column size of the  matrix, using format 
(A  4,4x, 214). Then  the  matrix  data  are  read using READ1,  each  row of the  matrix  starting on a 
new  card,  using  format  (8F10.2). If the  card  data is in  exponential  form,  it  must use  a  D exponent. 
The  matrix  title  and  the  matrix  are  then  printed using subroutine  PRNT. 

If the  header  card  contains no row  and  column size (i.e.,  n = 0), then  the  matrix  in  storage is 
unchanged, no  data  cards  are  read  for  that  matrix,  and  the previously stored  matrix is printed. 

USAGE 

CALL READ(I,A,NA,B,NB,C,NC,D,ND,E,NE) 

Input  Arguments 

Control  constant:  I 

where I is an integer  from 1 to  5 and  indicates the  number of matrices to be  read. If I is less than 
5, the  extra  matrices  in  the call list may  be dummy variables, or repeated  references to  the same 
matrix;  for  example, 

CALL  READ( 1 ,A,NA,A,NA,A,NA,A,NA,A,NA) 

Output Arguments 

Matrices: 
Dimension  arrays: 

The  first I of  the  matrices  A,B,C,D,E 
The first I of the  arrays  NA,NB,NC,ND,NE 

2. RDTITL 

DESCRIPTION 

This  subroutine  reads  a single card in hollerith  format,  and  loads  it  into  the  array  TITLES.  It 
then calls LNCNT( 100). This  latter  program in turn skips  the  printer to  the  next page, prints  the 
hollerith  information  in  the  array  TITLES,  and  positions  the  output  to  print  next  on line 3. 

USAGE 

CALL  RDTITL 

It has no arguments. 
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3. PRNT 

DESCRIPTION 

This  subroutine  prints  a single matrix,  with  or  without  a  title  line,  and  either on the same page 
or  a  new page. The  matrix is printed using format  (1P7D  16.7)  for  the  first  line,  and  (3x, 1 P7D 16.7) 
for all subsequent lines. The "3x" indents  continuation lines for easier  reading. 

REMARKS 

The  standard  format is stored in arrays  FMTl  (for  the  first  line)  and  FMT2  (for  subsequent 
lines) both of  which  are  stored in labeled COMMON as  follows: 

COMMON/FORM/NEPR, FMT 1 (6),  FMT2( 6) 

where  NEPR is the  number of columns  of  data  to  be  printed (7, in the  standard case). The  standard 
format is loaded into COMMON in the BLKDATA  program. If other  formats are desired,  they  can 
be obtained  either by changing the BLKDATA  program, or by having the users  main  program  change 
the  contents of COMMON. 

CAUTION 

In  writing  a  data  statement  for  the  formats,  put  FMTl  and  FMT2 in separate  statements, as in 
the BLKDATA program. If they  are  loaded in one  statement,  they will probably load  incorrectly, 
because of the  dimensionality of FMTl  and FMT2. Also NEPR must be consistent  with  the  numbers 
in FMTl  and FMT2. 

USAGE 

CALL  PRNT(A,NA,NAM,IP) 

Input  Arguments 

Matrix:  A 
Dimension array: NA 
Matrix name: NAM 

If NAM = 0, a  blank  name will be  printed. NAM should  contain  four 
hollerith  characters. It can be written in the calling  sequence  as 
4HAbbb. If written  IHA,  the last three  characters of the printed 
name will be garbage. 
IP= 1 heading,  same page 

2  heading,  new page 
3 no heading,  same page 
4 no heading, new page 

Control  constant: 

Output Arguments 

None 
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4. LNCNT 

DESCRIPTION 

This  subroutine  keeps  track  of  the  number  of lines printed,  and  automatically pages the  output 
as required.  It is completely  internal,  and  the  user need not refer to  it  unless  he  has  WRITE  state- 
ments of his own.  In that case, the user  may  (should) put  the  statement  CALL LNCNT(N) before 
each  WRITE statement,  where  N  is  the  number  of lines to  be  printed. 

Page length is controlled  by  the variable  NLP set  in  the BLOCK DATA  program to 45. This  is 
an  installation-dependent variable, and  may  be changed  as  necessary. 

The  subroutine  provides  one  line  of  print  at  the  top of each page. This  line  contains 92 
characters, of which the first 72 are available for  the  programmers use and  may  be  loaded  by  use  of 
RDTITL.  The  remainder  contain “VASP PROGRAM.’’ The  92  characters  are  contained in the 
array  TITLES,  which is, in turn,  contained in the COMMON area  LINES. If N > NLP, the  printer 
will automatically  skip to  the  top of the  next page, and  print  the  title line. 

USAGE 

CALL  LNCNT(N) 

Input  Arguments 

Constant  N = number of lines t o  be printed 

Output Arguments 

None 

5 .  ADD 

DESCRIPTION 

This  subroutine  computes  the  matrix  sum 

C = A + B  

USAGE 

CALL ADD(A,NA,B,NB,C,NC) 

Input Arguments 

Matrices: A,B 
Dimension  arrays: NA,NB 
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Output  Arguments 

Matrices: C 
Dimension  array: NC 

REMARK 

Matrices  A  and  C  may  share  the  same  storage  space or  matrices  B  and  C  may  share  the same 
storage  space. 

6. SUBT 

DESCRIPTION 

This  subroutine  computes  the  matrix  difference 

C = A - B  

USAGE 

CALL  SUBT(A,NA,B,NB,C,NC) 

Input  Arguments 

Matrices: A,B 
Dimension  arrays:  NA,NB 

Output  Arguments 

Matrices: C 
Dimension  array: NC 

REMARK 

Matrices  A  and C may  share  the  same  storage space or  matrices B and  C  may  share  the Same 
storage  space. 

7. MULT 

DESCRIPTION 

This  subroutine  computes  the  matrix  product 

C = A  E3 

12 



USAGE 

CALL MULT(A,NA,B,NB,C,NC) 

Input  Arguments 

Matrices: A,B 
Dimension  arrays:  NA,NB 

Output  Arguments 

Matrix: C 
Dimension  array: NC 

8. SCALE 

DESCRIPTION 

This  subroutine  multiplies every element of matrix  A by S and  stores  the  resulting value in B, 
that is, 

Bij = S Aij 

where S is a  scalar. 

USAGE 

CALL SCALE(A,NA,B,NB,S) 

Input  Arguments 

Matrix: A 
Dimension  array: NA 
Scalar: S 

Note: If S is a  constant,  it  must  be  written  as  a  double  precision  constant  (i.e.,  2.D0, O.DO, 
etc.). 

Output  Arguments 

Matrix:  B 
Dimension  array: NB 

Note:  A  and B can  be  the  same  matrix. 
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9. TRANP 

DESCRIPTION 

This  subroutine  rearranges  the  elements of matrix  A so that 

B = A' 

or 

USAGE 

CALL  TRANP(A,NA,B,NB) 

Input Arguments 

Matrix:  A 
Dimension array: NA 

Output Arguments 

Matrix : B 
Dimension array: NB 

10. INV 

DESCRIPTION 

This subroutine  computes  the  matrix inverse of A and  stores  this inverse in A, that is, 

Note  that  after  the inversion  is performed,  the values stored in the  original  matrix A are destroyed 
and replaced  by the  corresponding  elements of its inverse. 

USAGE 

CALL  INV(A,NA,DET,DUM) 

Input  Arguments 

Matrix:  A 
Dimension array: NA 
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Output  Arguments 

Matrix: 
Scalar: 

A,  the inverse of the original A 
DET, the  determinant of A 

Dummy  Argument 

Matrix: DUM, work  vector of length  2*NA( 1) 

This subroutine is a  slightly  modified  copy  of  the inverse routine given in the IBM scientific 
subroutine package. 

11. NORM 

DESCRIPTION 

This  subroutine  computes  the  norm of the  matrix  A as follows: 

CALL  NORM(A,NA,ANORM) 

Input  Arguments 

Matrix: A 
Dimension array: NA 

Output Arguments 

Scalar: ANORM 

12. UNITY 

DESCRIPTION 

This  subroutine  computes  the  unit  matrix 

A = I  

USAGE 

CALL  UNITY(A,NA) 
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Input Argmnent 

Dimension  array : NA 

Output  Argument 

Matrix : A 

13. TRCE 

DESCRIPTION 

This  subroutine  computes  the  trace of the  matrix  A 

n 

i= 1 

TR = Z aii 

USAGE 

CALL  TRCE(A,NA,TR) 

Input Arguments 

Matrix:  A 
Dimension  array : NA 

Output Argument 

Scalar: TR 

14. EQUATE 

DESCRIPTION 

This  subroutine  copies  the values stored  in  matrix  A  into  matrix  B as  follows: 

B = A  

USAGE 

CALL  EQUATE(A,NA,B,NB) 

Input  Arguments 

Matrix:  A 
Dimension array: NA 
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Output  Arguments 

Matrix:  B 
Dimension  array: NB 

15. JUXTC 

DESCRIPTION 

This  subroutine  takes  the  m X n  matrix  A,  the  m X p  matrix  By  and  forms  the  m X (n+p) 
matrix 

C =  [A Bl  

USAGE 

CALL  JUXTC(A,NA,B,NB,C,NC) 

Input  Arguments 

Matrices: A,B 
Dimension  arrays: NA,NB 

Output  Arguments 

Matrix:  C 
Dimension  array : NC 

16. JUXTR 

DESCRIPTION 

This  subroutine  takes  the  m X n  matrix  A,  the  p X n  matrix B, and  forms  the  (m+p) X n 
matrix 

USAGE 

CALL  JUXTR(A,NA,B,NB,C,NC) 
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Input  Arguments 

Matrices: A,B 
Dimension  arrays: NA,NB 

Output  Arguments 

Matrix: C 
Dimension  array: NC 

17. EAT 

DESCRIPTION 

This  subroutine  computes 

B = e  At 

and 

t 
c = eAr dT 

0 

For a  linear  time-invariant  system,  the  system  equation  is 

X = A X + G U  

Then, 

or 

x(t) = Bxo + CGu 

See ASP manual, page 92, for  reference. 

USAGE 

CALL EAT(A,NA,TT,B,NB,C,NC,DUMMY,KDUM) 

Input Arguments 

Matrix: A 
Dimension  array: NA 
Scalar : TT 

where TT is the value of t  used  in equations * 
18 
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Output  Arguments 

Matrices: B,C 
Dimension  arrays: NB,NC 

Dummy  Arguments 

Matrix: DUMMY 
Constant: KDUM 

Note: KDUM contains  the size of  the DUMMY matrix,  which  must  be  at  least  2*NA(  1)*NA(2). 

18. ETPHI 

DESCRIPTION 

This  subroutine  computes  the  matrix  exponential 

B = ,At 

See  ASP manual, page 92, and  also  EAT,  page 18 of  this  manual  for  reference. 

USAGE 

CALL ETPHI(A,NA,TT,B,NB,DU"Y,KDUM) 

Input  Arguments 

Matrix:  A 
Dimension  array: NA 
Scalar: TT 

where TT is the  final value of time. 

Output  Arguments 

Matrix : B 
Dimension  array: NB 

Dummy  Arguments 

Matrix: DUMMY 
Constant: KDUM 

Note: KDUM contains  the size of  the DUMMY matrix,  which  must  be  at  least 2*NA(  1)*NA(2). 
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19. AUG 

DESCRIPTION 

This  subroutine  computes 

and 

Z =  r F  G,R" G ]  

+H'QH 

The  matrices  C  and  eZt  are  then used  in  RICAT to calculate the covariance  and  weighting  matrices. 

These  matrices  arise  from  a  linear  system of the  form 

X = F X + G U  

with output  equation 

y = H x  

and  cost  function 

J = (x'H'QHx + u'Ru)dt I 
See ASP manual, page 2 12, for  reference. 

In  the special case where 

y = x  

then, 

and  the  cost  function is 

J = I (x'Qx + u'Ru)dt 

A  control  index I1 is used to  distinguish the  two cases. 
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REMARKS 

The  inputs to this  program  are  the  matrices F, G,  RI, H, Q. 

(a) F must  be  square. 
(b)  Q,  R  must  be  symmetric. 
(c) R  must  be  invertible. 

The  Fortran  symbol  for R1 is  RI. 

USAGE 

CALL AUG(F,NF,G,NG,RI,NRI,H,NH,Q,NQ,C,NC,Z,NZ,II) 

Input  Arguments 

Matrices: 
Dimension  arrays: 
Control  constant: 

Output  Arguments 

Matrices: 
Dimension  arrays: 

F,G,RI,H,Q 
NF,NG,NRI,NH,NQ 
I1 
I1 # 1 General case 
I1 = 1 Special case, H is not used in AUG 

CYZ 
NC,NZ 

20. RICAT 

DESCRIPTION 

This  subroutine  computes  P(t)  and  K(t) by the  following  equations: 

P ( t + T ) =  [ e z 1  + e , , p ( t ) ~ [ e , ,   + e , , p ( t ) ~ - ~  

K( t) = CP( t) 

See  ASP manual, page 9, for  reference. 

MOTIVATION 

A  standard  control  problem will be used to illustrate  how  this  matrix  Riccati  equation arises. 
Given the  system  equation, 

i = F x + G u  

the  output  equation, 
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y = H x  

and the  performance  index, 
T 

J = I (x‘H’QHx + u’Ru)dt + x’(T)H’S(T)Hx(T) 
0 

where  Q,R,S  are  symmetric  matrices  and R is invertible. We wish to find  a  control law which 
minimizes the  performance  index J. Introducing  the  auxiliary variable A(t) into  the system  of 
equation, we have the  following Euler-Lagrange equationsY4 [I= -GR-’ G’ 

-H‘QH -F’ 1 
which  have  for a solution 

The  optimal  control  law is 

u(t) = R” G’A( t) 

Letting  P(t)  be a  linear  transformation  from  the  state variable x(t)  to  the auxiliary  variable  A(t), 
that is, 

A( t) = P( t)x(  t) 

we obtain  from  the Euler-Lagrange equation  the  following  Riccati  equation, 

-P = F‘P + PF - PGR-1 G‘P + H’QH 

where the initial  condition  for  this  differential  equation is 

P(t) = H’S(T)H 

The  optimal  control, in terms  of  the  state variable x(t), is 

u( t) = -K( t) x( t) = - R” G’P( t)x( t) 
~ 

AUG computes Z rather  than -Z, so that  the  exponentiation  for 0 uses  positive time  increments. 
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and  the  optimal  feedback gain K(t) is 

K( t) = - R-’  G’P( t )  

then, 

K( t) = CP(t) 

REMARKS 

1. This  subroutine will be  terminated  when 
-I I r n  1 

or  NCoNT(2)  steps have  been taken. 

2. Matrices P(t)  and  K(t) will be  printed  out every NCONT( 1) steps,  as  controlled  by 
NCONT( 3). 

3. Matrices 8, , 8 , O 2  , are  submatrices  of 8. Their  dimensions  are n X n where n is 
the  order of the system  (i.e., the dimension of the F matrix).  They  are  partitioned  from  the 8 
matrix  as  follows: 

e =  - - - - I - - - - -  [::: ! :::] 
The  Fortran  symbol  for 8 is PHI. 

USAGE 

CALL RICAT(PHI,NPHI,C,NC,NCONT,K,NK,PT,NPT,DUM,KDUM) 

Input Arguments 

Matrices: PHI, C, PT 
Dimension arrays: NPHI,NC,NPT 
Control  array: NCONT( 1) Number  of  steps  per  print 

NCONT(2) The  maximum  number  of  steps 
NCONT(3) Printout  control 

l - + n o P , n o K  
2 + P  only 
3 -+ K  only 
4 + P a n d K  
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Output  Arguments 

Matrices: K,PT 
Dimension  array: NK 

Dummy  Arguments 

Matrix: DUM 
Constant: KDUM 

Note: KDUM contains  the size of the DUMMY matrix  which  must  be  at  least NPHI( 1)**2. 

Note:  PT is used for  both  input  and  output  arguments.  The  initial  value of P  must  be  placed  in 
PT  before calling the  subroutine.  The  value  of  P is updated  every  iteration  in  the  subroutine  until 
the  final  P  is  reached.  This  final  P is one  of  the  outputs of the  subroutine, 

21. SAMPL 

DESCRIPTION 

Subroutine SAMPL calculates  the  covariance  and  weighting  matrices  associated  with  the 
discrete case of  either  the  control  problem  or  the  filter  problem. 

Consider  the  following  filter  problem. 

Given the  system  xi+l = $xi + u  where  u = gaussian random  sequence 
with  variance = Q, and  observations  yi = Hxi + v  where v = gaussian 
random  variable  with  variance = R. 

The  optimum  estimate  of  the  state is (see  p. 234 in  the ASP manual) 

where 

K~ = ~ P ~ H T ( H P ~ H T  + R)# 
pi+ = pi - P~HT(HP~HT + R)#HP~ 

# = pseudo inverse 

Here Pi is the  solution  of  the  matrix  Ricatti  equation,  which is obtained  by SAMPL. The  subrou- 
tine  has  for  inputs @, H, Q, R,  Pi,  and  for  output, Pi+n and  Ki+n-l  where  Pi+n is written  over Pi. 

REMARKS 

1. The  routine will take  n  steps  at  a single call where  n is an  input  parameter.  Further, if P 
becomes  constant,  then  the  routine will stop  and  exit  before  completing  the  n  steps.  The  actual 
test is as follows: 
24 
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2. The  routine will print  the value  of  Pi and/or Ki-l every j steps,  and also  when either  exit 
occurs.  NCONT(3) controls  which  arrays  are  printed. 

USAGE 

CALL SAMPL(PHI,NPHI,H,NH,Q,NQ,R,NR,P,NP,K,NKyNCONTyDUMyKDUM) 

Input Arguments 

Matrices: PHI,H,Q,R,P 
Dimension  arrays: NPHI,NH,NQ,NR,NP 
Control  arrays: NCONT 

NCONT( 1) = j = number of steps  per  print 
NCONT(2) = n = maximum  number of steps 
NCONT( 3) = print  control 

1 no print 
2 print P only 
3 print K only 
4 print  both P and K 

Output  Arguments 

Matrices: PYK 
Dimension  arrays: NP,NK 

Dummy  Arguments 

Matrix: DUM 
Constant: KDUM 

Note: KDUM contains  the size of the DUM matrix,  which  must  be  at  least  6*NPHI(  l)*NPHI(2). 

22. TRNSI 

This  subroutine  computes 

where 

u(t) = J R  - Kx(t, + i tz)  
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and  u is held  constant  for  any  interval  specified  by 

it2 < t  - t o < ( i +   l ) t 2  i = O ,  1, 2 , .  . . 

The  system  output  y(t)  is given by 

The  state  vector  x  and  system  outputs y are  printed every tl intervals.  Also t2 must  be  a 
positive  integral  multiple  of t l  . The  program  terminates  at t > t f  

See ASP manual, pages  1 20- 12 1 , for reference. 

USAGE 

CALL TRNSI(F,NF,G,NG,J,NJ,R,N~,K,NK,H~NH,X,NX,T,D~MY,KD~) 

Input  Arguments 

Matrices: F,G,J,R,K,H,XYT 
Dimension  arrays: NF,NG,NJ,NR,NK,NH,NX 

Note:  Dimension of T is 4 where 

T1 tl 
T2 f 2  

T3  tf 
T4 t0 

Dummy  Argument 

Matrix: DUMMY 
Constant: KDUM 

Note: KDUM contains  the size of  the  dummy  matrix,  which  must  be  at  least 
4*NF(I)*NF(2). 

23. PSEUDO 

DESCRIPTION 

This  subroutine  computes  the Moore-Penrose  generalized  inverse of the  input  matrix. It sets 
up  a  standard  set of options  for use by PSEU, which  does  the  actual  inversion.  For  details  of  the 
method,  see  PSEU,  p.70. 
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USAGE 

CALL PSEUDO(A,NA,B,NB,DUM,KDUM) 

Input  Arguments 

Matrix:  A 
Dimension  array: NA 

Output  Arguments 

Matrix : B = A  # 
Dimension  array: NB 

Dummy  Arguments 

Matrix: DUM 
Constant: KDUM 

Note: KDUM contains  the size of  the  dummy  matrix, which must  be  at  least  3*NA(  1)*NA(2). 

24. DECGEN 
24a. DECSYM 

DESCRIPTION 

This  subroutine  decomposes  a  real  matrix R with  dimensions  m X n  and  rank  r < min(m,n) 
into  two  matrices H and  G  such  that R = HG. Further,  both H and G are  of  maximal  rank,  with 
dimensions  m X r  and r X n,  respectively.  It  uses  subroutine DECOM to provide  matrices  from 
which H and  G  can be computed.  The  writeup of DECOM, p. 85, describes  the  method in detail. 
Subroutine DECOM requires  for  input  a  matrix  A  which is positive semidefinite  symmetric.  Sub- 
routine DECGEN computes  this  matrix  by  letting  A = RRT or  RTR,  whichever is smaller,  and uses 
the  former if R is square. I f  the  user  knows  that  R is already  positive  semidefinite  symmetric, 
this  step  may  be  omitted  by  a call to  DECSYM, in  which case A = R. 

USAGE 

CALL DECGEN(R,NR,G,NG,H,NH,DUM,KDUM) 

if R is general, or 

CALL DECSYM(R,NR,G,NG,H,NH,DUM,KDUM) 

if R is positive  semidefinite  symmetric. 
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Input  Arguments 

Matrix:  R 
Dimension  array:  NR 

Output  Arguments 

Matrices: H,G 
Dimension  arrays:  NH,NG 

Dummy  Arguments 

Matrix: DUM 
Constant: KDUM 

Note: KDUM contains  the  size of the DUM array,  which  must  be  at  least 
7*min(NR(1)2,NR(2)2). 

EXAMPLE  USES OF VASP  PROGRAM 

The  examples given demonstrate  directly  the use of  the  principal  subroutines  EAT,  ETPHI, 
AUG,  RICAT,  SAMPL,  DECGEN,  and  PSEUDO.  In  addition,  they  exercise all of  the  subroutines 
except  TRCE.  They  can  be  used  to  indicate  whether  the  programs  are  working  properly.  They  do 
not, however,  provide  an  exhaustive  test of the VASP  program. 

The  first  example discusses the user’s main  program  in  great  detail to explain  some of the 
system  features.  The  remainder of the  examples  simply  state  the  problem,  and  present  the main 
program  listing,  the  data  listings,  and  the  results. 

Example 1 - Transient  Response 

A  set of equations  for  a  linear  plant  can be written  as: 

x( t) = Fx (t) + Gu(  t), x( 0) = x. 

where x, u,  and  y  are,  respectively,  the  state,  control,  and  observation  vectors.  The  system,  distribu- 
tion  and  observation  matrices  are F, G, and H, respectively. I t  is known  that 

t 
x(t) = eFtxo + Jo eF(t-T)G(T)u(T)dT 

is the  solution  for  x(t). If G  and  u  are  constant,  then 
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x( t) = e Ft  x. It eF('-') d r  Gu 
0 

By letting s = t - r the integral  becomes 

t Io eFsd(-s) = I eFs ds 
-t 0 

Thus,  the  solution to  the system  equation  can  be  written 

x(t) = Bxo + CGu 

where 

B = e  Ft 

and 
t 

C =  $ eFsds 
0 

It is desired to generate the  transient  response of such a  system in response to a given initial 
condition x. and  fix  control u. In particular, given 

find x(t)  for 0 < t < 2.0. Also print  x(t)  and  y(t) every 0.01 second. 

The user's main  program to solve this  problem is shown in figure l(a),  the  corresponding  data 
deck is shown in figure l(b), where  each  line  represents  one  card,  and  the  beginning  of  the  results is 
presented in figure l(c). 
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(a) User's main  program. 

Figure 1 .- Example 1. - 



. 

TEST PROGRAM 1 GENERATES  TRANSIENT  USING  EAT 
001 00 1 2 . 0 0  
F 3 3  
1.0  0.0 0.0 
0 00 2 00 0 00 
0 00 0.0 3.0 
G 3 3  
1.0 0.0 0.0 
0 00 1.0 0.0 
0 00 0.0 1.0 
H 2 3  
1 00 1.0  1.0 
0 00 1.0 0.0 
U 3 1  
1.0 
0 00 
0 00 
x0 3 1  
1.0  
2 00 
3 .O 

”. 

(b) Data deck. 

Figure 1 .- Continued. 



w 
T E S T  PROGRAM 1 G E N E R A T E S  T R A N S I E N T  USIhlG E A T  
. .  ... .... 

\ / A S P  P R O G R A M  
. . .  - ............. ." . 

F M A T R I X  3 ROWS 3 COLIJMNS 
n n n  . ... . . . .  . . ...... ........ ... . . 

0.0 2.0000000D 00 0.0 
0.0 0.0 3.0000000D 0 0  

~. .- " " " - ." -. - - - - - - _" - - - - _ _  - 

. .  " -. - . - - - . .  - . . . . .  -. ... . . . .  . . .  .. .. . 

G M A T R I X  3 ROWS 3 COLIJMNS 
. -  . . .  - " - " - - - - - " - -. - 

1.00000000 00 0.0 0.0 

0.0 
" ....... . . . . . . . . . .  "_ ". . -.. " 

0.0 1.0000000 D 00 

H-.... B T R I X  ... 2 BO!& - 3 COLUMNS . . . .  -. . .  " . - .. - -, . .  

1.0000000D 00 1.OOOOOOOD 00 1.00000000 00 
0.0 1~0000000D 00 0.0 

.. ..... . ........ ..... .. " - " - "" - "_ ." -. -. "_ -" __ ...... .......... ...... 
U M A T R I X  3 ROWS 1 COLUMNS 

-._I__ 

1.000OOOOD 00 

0.0 
.--La . . . . . . . . . .  ." .. . - - . -. - . - - . - - - - - - - . -. -.  .- 

xn" ITRlX ~Rab!.s- .. -. .... .- -. ". - . -. ..... ._ . - ........... " .... " . 
1.00000000 00 
2.00000000 00 

" - "- - 

--7.nnnnngQR QO- - - ~ ... 

T I M E  RESPONSE 
"" .... . . . . . .  " . 

T T  X T ( 1 )  
" - 

X T ( 2 )  
- .  ._  . _. w* ~ 

XT(3)  Y T ( 1 )  Y T ( 2 )  YT(3) 

atll . . - . O ~ ~ Q Z Q L Q D D  01 .n,zo404030. QL. ~ + ~ C I Q ! X U I  01 0.61518A7D -Ql~- L,Z&QAQ.3g.gl--- 

0.02 0.1040403D 0 1  0.20816220 0 1  0.31R5510D 01 0.630753'40 0 1  0.20816220 0 1  
__ . "" ..... " .- ..... -. . - .. . . . . . . . . .  

0.03 0.1060909D 01 0.21236730 91 0.32825230 01 Oeh467105D 01  0.21236730 0 1  

L Q 4  - .  . .L lQ&L62ZD 0 1  021665740 0 1  0.33824910 01 0.6630bR6D Q L  . .  -6L2sQlZEi34a. .8L----  

0.05 0.1102542r) 01  0.22103420  01  0.34855030 01  0.67983R70 01 0.2210342D 0 1  

0.06 0.11236731) 0 1  0.22549940 0 1  Om3591652D 0 1  
..... . .  - " . . . . . .  . . . . . . . . . . . . . . . .  - -. ____""_ 

0.69703190 0 1  0.22549940 0 1  

0.07 0*1145016'7 01 0 .23095480  01 0.37010340 0 1  0.71465980 01 Q.3300548D 0.1.. 

(c) output  

Figure 1 .- Concluded. 



The user's main program- This  program will be  discussed. statement  by  statement, using the 
line numbers  on figure I(a)  as  a  reference. 

Lines 1 and 2, These two  statements allocate the necessary storage  for 'the  variables to  be used and 
define  them  as  double  precision. Also, the  dimension  arrays  NF, NG, etc.,are  allocated  storage. 
The  dimensionality  of F, G, etc.,  could  have  been  included in the  double precision statement 
instead  of  the  dimension  statement,  and  they  could have been  dimensioned  as F(9) instead of 
F(3,3).  The W array  has  been  set  up  for  dummy  storage,  and is dimensioned  18,  as  required 
by  the  EAT  subroutine: 

Lines 3 and 4. Common variables to be  needed  later  are  made available to the program.  Although 
the variables  listed in line 4 are not needed in this  program,  they are  shown  for  reference. 

Line 5. Since  the basic  matrices  are  (3,3), MAXRC is set to  9, to prevent  overfilling the matrices. 
Note  this will not  protect  from overfilling the arrays XO, XT,  etc., since they  are  expected  to 
be 3 X 1 vectors,  and  are  dimensioned 3. 

Line 6. This  statement  reads  the  first  card  of  the  data  deck (see fig. l(b)), places its  contents in the 
TITLE  array,  and  prints  the  first  line  of  the  output (see fig. l(c)). 

Lines 8 and 9. The initial time,  the  time  increment,  and final  time are read from  the  second  data 
card. 

Line 10.  The  arrays F, G, H, U,  and X0 are  read from  the  remainder of the  data  deck,  and are 
printed (fig. l(c)).  Note  that  the dimensions used by  the program  are those given on  the  header 
card for  each  matrix. If these  were  specified as (2,2) this  same  main  program  would solve a 
second-order  problem,  rather  than  the  third-order  problem. 

If the initial conditions were already  stored in the X0 array and you did not wish to  disturb 
them,  then  the  header card for  the X0 array  would contain  only  the  matrix  title,  no  dimen- 
sions,  and the associated data  cards  would be omitted.  The  matrix X 0  would  still  be printed. 

Line 11. Line 1 1 contains  the  information to head  the main output. 

Line 12. Line  12 is the  data  format.  For  this  program  the  transient  output was printed using the 
programmers  write  statement  rather  than  PRNT.  The use of PRNT  for  this  purpose is shown 
in the  third  example,  p.  40. 

Line 13. Line 13  tells  the  line  counter  that  the program will print  4 lines. 

Line 14. Line 14  does  the  actual  printing. 

Lines  15 through 25. Lines 15  through  25  form  a  loop  which  increments  TT  (line  23)  and  stops 
when TT is large enough  (line  24). 

Line 15. Line  15 computes  the B and  C  matrices  for  time  TT. When C is computed,  the  limits of 
the integral  are 0 and  the  present TT. Note  that W is specified for  dummy  storage  and  the 
" 18" tells  EAT the size of W. 
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Line 16. Line 16  computes BXO and  stores  the  result  in V1. Array  V1 is set  up  for  the 
programmers  working  storage.  Since W is  also  available a t  this  point  in  the  program, it could 
have been  used  instead of V1 if desired. 

Line 17. Line 17 computes CG and  stores  the  result  in Al,   another working  storage  array. 

Line 18. Line 18  computes (CG)U and  stores  the  result  in  V2,  still  another  working  storage  array. 
Note  that  MULT  obtains  the  product CG from A 1. 

Line 19. Line 19 adds V 1 and  V2  to  obtain XT. Since the ADD subroutine allows the  matrices to  
be  repeated in the call, the  array V1  could  have  been  eliminated,  then  line 16 would have 
stored  its  results in XT. Line 19,  then,  would have added  XT  and  V2  to  obtain  the  complete 
XT. 

Line 20.  Line 20 multiplies H times X to  obtain Y. 

Line 21.  Line  21  tells  the  counter we are going to  print 2 lines. If  this will not  fit  on  the present 
page, LNCNT will advance to  the  next page, print  the  title  as  on  the  first  line  of  the  first page of 
output,  and  increment  the  line  counter to allow for  the paging and  the  two lines about  to  be 
printed. 

Line 22.  Line  22  prints  the variables XT  and YT,  skipping  a  line  between  each  print  line,  as 
required  by  the 1HO in  FORMAT  102.  Note  that  YT(3) is not  printed. 

Example 2 - Transient  Response Using TRNSI 

This  example uses the same  equations as Example 1 , except  that u is piecewise constant, 
that is, 

u(t) = JR - Kx(to + i tz)  it,<  t - to < (i + l)t, 

where i is a  non-negative  integer  and J, R, K are  constant  matrices.  The  first  term, JR, represents 
a  forcing  function  and  the  second,  Kx, is a  feedback  term.  (See ASP manual, p. 12 1 ,  for  detailed 
explanation.) 

It is desired to  generate the  transient  response of such a system  in  response to  a given initial 
condition x. and a time varying control u. In  particular, given 

F = F  a i] 0 0 0 0 0  

0 0 0 0 2  
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H =  

- 
1 0 0 0 0  
0 1 0 0 0  
0 0 1 0 0  
0 0 0 1 0  
0 0 0 0 1  
1 0 0 0 0  
0 1 0 1 0 -  

[: 
1 
1 

x o =  1 
0 
1 

t l  = 0.5 sec 
tz-= 2 seh 
tf = 3.5 bec 
t o =  0 sec 

I 

The  system  is  monitored  at  intervals t l  , while the  control  u(t) is changed  only at  sampling 
intervals tz  (tz  must  be  a  positive  integral  multiple of t l ) .  Specifically,  the  control  u(t) is updated 
by the  equation: 

u(t) = JR - Kx(to + i tz)   i tz < t - to < (i + l ) tz  

The x,y vectors  are  computed  at  time  intervals  t, , and  these  vectors  together  with  the  time  t,  and 
the  control u (for  the  subsequent  time  interval)  are  printed  out  each  time.  The  problem  terminates 
when  the  final  time  tf is reached.  The  matrix  T  has  elements t l  , tz,   tf ,   to in that  order. 

The user's  main program  to solve this  problem  is  shown in  figure  2(a),  the  corresponding  data 
deck is shown in figure  2(b),  and  the  results  are  presented  in  figure  2(c). 

(a) User's main  program. 

Figure 2.- Example 2. 
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TEST PROGRAM GENERATES  TRANSIENT  USING  TRNSI 
F 5 5  
0. 0.  0. 0. 0. 
0. .5 0. 0. 0. 
0. c!. 1 .   1 .  0. 
0. 0. 0. 1. 0. 
0. 0. 0. 0. 2. 
G 5 2  
1. 0. 
1.  1. 
0. 0. 
1. 0. 
0. 1. 
J 2 1  
0. 
0. 
R 1 1  
0. 
K 2 5  
1. 0. .5 0. 2. 

_" - - 

0. 3. 0. 1. 0. - 
H 7 5- 
1. 0.  0.  0.  0. 
0. 1. 0. 0. 0. 
0. 0. 1. 0. 0. 
0. 0. 0. 1. 0. 
0. 0. 0. 0.  1. 
1. 0. 0. 0. 0. 
0. 1. 0. 1. 0. 
X 5 1  

___- 

1. 
1. 
1. 
0. 
1. 
T 4 1  
- 5  
2. 
3.5 
0. 

(b) Data deck. 

Figure 2.- Continued. 
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T E S T   P R O G R A M   G E N E R A T E S   T R A N S I E N T   U S I N G   T R N S I   V A S P   P R O G R A M  

F M A T R I X  5 ROWS 5 COLUMNS 
0.0 0.0 0.0 0 .o 0.0 
0.0 5 0000000D-0 1 0 0 0.0 0 00 
0.0 0.0 1.00000000 00 1 ~ O O O O O O O D  00 0.0 
0.0 0.0 0.0 1.00000000 00 0.0 
0.0 0.0 0.0 0.0 2 0 00000000 00 

" - 
b M A I K I A  3 K f i 3  L L m  

1.00000000 00 0.0 
1.00000000 00 1.00000000 00 
0.0 0.0 
1.00000000 00 0.0 
0.0 1 ~ O O O O O O O D  00 

J MATR I X 2 ROWS 1 COLUMNS 
0.0 
0.0 

R M A T R I X  1 ROWS 1 COLUMNS 
0.0 

K M A T R I X  2 ROWS 5 COLUMNS 
1.00000000 00 0.0 5.0000000D-01 0.0 2 00000000 00 
0.0 3~0000000D 00 0.0 1.00000000 00 0.0 

H M A T R I X  7 ROWS 5 COLUMNS 
1~00000000 00 0.0 0.0 0.0 0.0 
0.0 1 ~ 0 0 0 0 0 0 0 D  00 0.0 0.0 0.0 
0.0 0.0 1 ~ 0 0 0 0 0 0 0 0  00 0.0 0 00 
0.0 0.0 0.0 1 ~ 0 0 0 0 0 0 0 0  00 0.0 
0.0 0.0 0.0 0.0 1 .0000000D 00 
1 ~ 0 0 0 0 0 0 0 D  00 0.0 0.0 0.0 0.0 
0.0 1 ~ 0 0 0 0 0 0 0 0  00 0.0 1.00000000 00 0.0 

(c) output 

Figure 2.- Continued. 



w 
03 T E S T  PROGRAM G E N E R A T E S   T R A N S I E N T   U S I N G   T R N S I   V A S P   P R O G R A M  

- - 
A P l m x  3 K U W 3  

1. OOOOOOOD 00 
1.0000000D 00 
1 ~ O O O O O O O D  00 
0.0 
1 OOOOOOOD 00 

T M A T R I X  4 ROWS 1 COLUMNS 
5.0000000D-01 
2. OOOOOOOD 00 
3.5000000D 00 
0.0 

F M A T R I X  5 ROWS 5 CULUMNS 
0.0 0.0 0.0 0 00 0.0 
0.0 5 . 00000000-0 1 0.0 0.0 0 00 
0.0 0.0 1 . o o o o ~ u u  00 1 . o o o o ~ o o u  00 0.u 
0.0 0.0 0.0 1~00000000 00 0.0 
0.0 0.0 0.0 0 00 2 . 00000000 00 

E A T  M A T R I X  5 ROWS 5 COLUMNS 
1~00000000 00 0.0 0.0 0 00 0.0 
0.0 1.28402540 00 0.0 0.0 0 00 
0.0 0.0 1.64872130 00 8.24360690-01 0.0 
0.0 0.0 0.0 1.64872130 00 0.0 
0.0 0.0 0.0 0 00 2.71828190 00 

1 N T   M A T R  I X 5 ROWS 5 COLUMNS 
5.0000002D-01 0.0 0.0 0.0 0.0 
0.0 5.68050860-01 0.0 0.0 0 00 
0.0 0.0 6.46721310-01 1.75639380-01 0.0 
0.0 0.0 0.0 6.48721310-01 0.0 
0.0 0.0 0.0 0.0 8 .59140970-01 

(c) Output - Continued. 

Figure 2.- Continued. 
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T E S T   P R O G R A M   G E N E R A T E S   T R A N S I E N T   U S I N G   T R N S I   V A S P   P R O G R A M  

T R A N S I E N T   R E S P O N S E *  * I N D I C A T E S   C O N T R O L   C H A N G E S  
T I M E   F I R S T  5 E L E M E N T S   C O N T A I N  X *  N E X T  7 E L E M E N T S   C O N T A I N  Y = HX, L A S T  2 E L E M E N T S   C O N T A I N  U =JR  -KX 

* 0.0 1 ~ 0 0 0 0 0 0 0 0  00 1 ~ 0 0 0 0 0 0 0 0  00 1 .OOOOOOOD 00 0.0 1 ~ 0 0 0 0 0 0 0 0  00 L ~ O O O O O O O D  00 1 ~ 0 0 0 0 0 0 0 0  00 
1.00000000  00 0.0 1 ~ 0 0 0 0 0 0 0 D  00 1 ~ 0 0 0 0 0 0 0 0  00 l~OOOOCT000 00 3.5000000D 00 5.0-UFODOOD 00 

1.03398350 00 -2.21052460 00 1.40859030 " 01  /.5000008D - -  01 4 * 6 / 8 8 2 9 n )  00 -3.50- 00 

- - 
0.50  -7.50000080-01  -2.40830520 00 1.03398350 00 -2.27052460 0 0  1.40859030-01  -7.50000080-01  -2.40830520  00 

1.00  -2.50000020 00  -6.78465570 00 -7.8171846D-01 -6.01398680 00 -2.19452840  00  -2.50000020 00 -6.78465570 00 
-7.81718460-01 -6.01398680 00  -2.19452840 00 -2..5000002D 0 0  -1.27986420  01  -3~50000000 OO - 3 ~ 0 0 0 0 0 0 0 0  00 

1.50  -4.25000020 00  -1.24040010  01  -6.86126800 00 -1.21859130  01  -8.54276980 00 -4.25000020 0 0  -1.24040010  01 
-6.86126800 00 -1.21859130  01  -8.54276980 00 -4.25000020 0 0  -2.45899140  01  3.50000000 00 3.00000000 - - 

* 2.00 -6.00000030 00 -1.96193830  01  -2.19726440  01  -2.23616990  01  -2.57990800  01  -6.00000030 00 -1.96193830  01 
-2.19726440  01  -2.23616990 01 -2.57990800  01  -6.0000003D 00 -4.19810820  01  6.85844820  01  8.12198490  01 

2.50 2.82922420 01  5.99046920  01  -4.2614736D  01  7.62400570 00 -3.49872850-01  2.82922420 01 5.99046920  01 
-4.26147360  01  7.62400570 00 -3.49872850-01  2.82922420  01  6.75286970  01  6.8584482D  01  8.12198490  01 

3.00  6.25844840 01  1.62015630 02 -5.19287560  01  5.70620750  01  6.88282470  01  6.25844840  01  1.62015630 02 
-5.19287560  01  5.70620750 01 6.882R2470  01  6.25844840  01  2.19077700 02 6.85844820  01  8.12198490  01 

3.50 9.68767270  01  2.93128660 02 -2.65301790  01  1.38571670  02  2.56873881) 02 9.68767270  01  2.93128660  02 
-2.65301790  01  1.38571670  02  2.5687388D  02  9.68767270  01  4.3170034D 02 6.85844820  01  8.12198490  01 

(c)  Output - Concluded. 

Figure 2.- Concluded. 



The user's main program- A brief explanation  of  the  statements using  line numbers on 
figure  2(a) as  reference  follows: 

Lines 1, 2, and 3. Lines 1, 2, and 3 allocate  storage,  same  as  lines I and 2 of  example 1. 

Line 4. Common variables to  be  needed  later  are  made available to  the program. 

Line 5. This  statement  reads  the  first card  of the  data  deck (see fig. 2(b)), places its  contents in 
TITLE  array  and  prints  the  first  line of the  output (see fig. 2(c)). 

Lines 6 and 7. The matrices F, G, J, R, K, H, X, and T are  read  in from  data  deck (see fig. 2(b)) 
and are printed. 

Line 8. Line 8 calls the  TRNSI  subprogram,  performs  the  computation,  and  prints  outputs as 
explained in the  example. 

Example 3 - An Optimum  Control  Problem 

Given a  system 

X = F x + G u  y = Hx  x(0) = x. 

where  x, u, and  y  are,  respectively, the  state,  control,  and  observation  vectors.  The  system, 
distribution,  and  observation  matrices  are F, G,  and H, respectively. 

We wish to  define  an  optimal  control u(t), where u(t) = -Kx(t), so as to minimize the 
performance  index 

(x'H'QHx + U'RU)dt 

The  solution  to  this  problem is 

K = R" C'P 

where P is the  solution  of  the  matrix  Ricatti  equation. 

The VASP program  finds  P  by  means of the  subroutines  AUC,  ETPHI,  and RICAT, as follows. 

First,  subroutine AUG is used to generate the matrices 

(Note:  This is the negative of  the Z given on page 2  12 of the ASP manual.)  Subroutine ETPHI is 
then used to  compute  the special  transition  matrix 
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e =  1 = e  27 

Finally,  the P matrix  is  computed  by  subroutine  RICAT  for  a  time  increment  of r ,  by  repeated 
application of the  formula 

The  computation is repeated  for several steps,  until  P(t + 7 )  x P(t),  which  is  the desired 
solution.  Subroutine  RICAT will also stop  after  a  specified  number  of  steps, if P  has  not  con- 
verged to a  solution.  Finally, having P  and K, we can compute  the  transient  response  of  the  system 
with  optimum  feedback  from  any  desired  initial  condition.  The  differential  equation  becomes 

X = FX - GKx (F - GK)x = F*x 

and  the  solution is 

The  time  history of the  control is 

U( t)  = -Kx( t )  

An alternate  solution, used in this  example, is to first  calculate  the  transition  matrix 

A2 = e 
F*r 

where 7, is the  time  increment  at  which  the  solution is desired,  then  compute 

~ ( t  + 71 ) = A2  x(t), ~ ( 0 )  = x0 

The listing of a  main  program to solve this  problem is given in figure 3(a),  the  data  for  a  particular 
case is given in figure 3(b),  and  the  first  part  of  the  results is given in figure  3(c).  In  this  problem, 
H = I so the  special case of AUG is used. As a result, H is not used  in  AUG,  and  need not have 
been  used  as an  input. 
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(a) User's main  program. 

Figure 3.- Example 3. 
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(a) User's  main program - Concluded. 

Figure 3.- Continued. 



P 
P 

TEST PROGRAM 2A GENERATES TRANSIENT USING X (  I + l ) = E X P ( F * T ) * X ( I )  
0 00 1.0 0.01 3.5 
F 3 3  
-0.2767 1.0 -0.0372 
-17.0872  -0.1785  -12.1983 
0 00 0 00 -6.67 
G 3 1  
0.0 
0 00 
6.67 
x0 3 1  
1.0 
0 00 
0.0 

1.0 0 00 0.0 
0 00 1.0 0.0 
0 00 0 00 1.0 
Q 3 3  
0 02 0 00 0.0 

- - 0 . 00 . -. - 0.2 0.0 
0 .o 0 .o 0.0 
R 1 1  
1.0 
PO 3 3  
0 .o 0 00 0.0 
0 00 0.0 0.0 
0 00 0 00 0.0 

- H 3 3  

"- 

" 

"""_ 

(b) Data deck. 

Figure 3.- Continued. 



G M A T R I X  3 ROWS 1 COLl lMNS 
0.0 

ho6700000D 00 
I La."" " . " . . -. . . . -. . . . -. . . 

. -x0 M A T R I X  3 RO!.IS 1 COLUlVrlVS 
1.0000000D 00 
0.0 

....-&. Q . . ~. . _._ .. . - . - .. 

H M A T R I X  
I,Q€L€VJOOQD QQ 
0.0 
0.0 

- . ._ . _. . . .- . - . . 
0 MATR I X 

2 . 0 0 0 0 0 0 O D - 0 1  
0 .o 
0.0 

3 ROWS 
8-0 
1. 0000000D 00 
0.0 

.. . . . . . , 

3 ROWS 
0.0 
2~QOOOOOOO-01 
0.0 

3 CCILIJMNS 
0.0 
0.0 
1.00000000 0 0  

3 COLUMNS 
0.0 
0.0 
0.0 

... R . . ~ .MAJRIX 1 ROWS 1 COLUMNS 
1.00000000 00 

PO M A T R I X  3 ROWS 3 CflLlJMNS 
0.0 0.0  0.0 
0.0 0.0 0.0 

1 T T E R A T I O N S  
-n.a . 0,o 0.0 

(c) output. 

Figure 3.- Continued. 



3 COLUMNS 
5 16454380-01 

3 Gflt CCMNS 
1.1035042D-01 

-5.45126590-02 
7 7429442D-F)2 

3 COLUMNS 
5 s  303612OD-01. 

3 COLUMNS 

V A S P  P R Q G F A M  

-. . 

(c) Output - Continued. 

Figure 3.- Continued. 



P ( T )  M A T R I X  3 ROWS 3 COL IJMNS 
.. - 4 - a M - N  -2,€3&171R-Q2 € . l 3 1 * 8 W . 1  
-2.17641710-02 5.64703970-02 -5.53529500-02 

I 1.13136840-01 -5.53529500-02 7.95144720-02 

I FSTR M A T R I X  3 ROk!S 3 COLUMNS 
~ - 2 .76700000-01  1~00000000 00 -3.72000000-02 
c . - - - l ~ o a  or .  .. - uaU)om~-aL . = . ~ ~ ~ n ? n n n  81 

i-" "_ ~ ... - - - - . I"" 

-5.03333380 00 2.4625919D 00 -1.02075110 01 

A2 M A T R I X  3 ROWS 3 COLUMNS 
. ---sL9&4ula-QL - 9.-%5€#1-g-83 - -%414&91-80-c$4 

-1.67390330-01 9.9592474D-01  -1.15736830-01 
-4.97750550-02 2.31282830-02  9.01578260-01 
"" "" "" -_ 

(c) Output - Continued. 

Figure 3.- Continued. 



T E S T  PROGPAM 2 h  G E N E R A T E S   T R A N S I E N T  O S I N G  X (  I + l ) = E X P (   F * T ) * X (  I )  V A S P  P R I I G Y A M  

T I M E  RESPONSE 
T 1 f.1 t 

n . 0 
0.01 
0.07 
0 .03  
n .04 
0.05 0. Oh 
0.07 

0.09 

0.11 
0.12 
0.13 
0.14 
0.15 
0.16 
0.17 
0 . l R  
0 . l Q  
0 2 0  
0.21 
0.22 
0.23 
0.24 
0 .75  
0.26 
0.27 
0.28 
0.29 
0.30 
0.31 
0.32 
0.33 
0.34 
0.35 

0.37 
0.3R 
0.39 

T T  

n.08 

n . l n  

o .M 

(c) Output - Concluded. 

Figure 3.- Concluded. 



The user’s main program- Some of the details  of the main  program  are discussed briefly. The 
various  matrices  are  first  dimensioned  and  stated to  be  double precision. The problem will be solved 
using basically 3 X 3 matrices, but Z and  PHI  are  6 X 6 matrices so MAXRC is set to  36 (line 6). A 
double size dummy  array is required  in  ETPHI, so DUMMY is  dimensioned at  72,  and KDUM is set 
to 72 (line 7). 

In line 8 the timing  information is read  in. TT is the initial  time, DELTl is the  time  increment 
used in the  computation of P,  DELT2 is the  time  increment, T ~ ,  desired  in the  printout of the 
transient  and  TFINAL is the final  time for  the  transient. 

Lines 9 and  10  read  data  cards t o  fill a total of 7 matrices. 

Lines 14,  15,  and  16  set  up  the  appropriate  constants  for  RICAT, specifying  a print every step 
(line 14),  the  maximum  number  of  steps  to be taken by RICAT  (line  15),  and  that  both  P  and K 
should be printed  (line  16).  Lines  17  and 18 store  the initial  values  of x. and  Po in the  running 
matrices,  and  lines 19 through 23 do  the necessary computations  to  obtain P and K (called CK in 
program).  Then F* and  the  transition  matrix  A2  (lines  28  through  32) are computed  and  printed. 
The  transition  matrix is labeled on  the  output (lines 29 through  31). Lines 33 through 39 page the 
output,  print  a  heading  for  the  transient  response,  and  print  the  first  point. Lines 40  through  47 
then  increment  the  solution  and  the  time,  and  print  x(t)  and  u(t) (called  XT and DELTC in the 
program). 

Example 4 - Sampled  Data Ricatti  Solution 

This  example is provided to  show  the general use of the  subroutine SAMPL. The  theory of the 
example is given  in the ASP  manual, page 222, and very briefly in the  dictionary  description of 
SAMPL, page 24, in this  manual.  A  listing  of  the  main  program is shown in figure 4(a).  The  data 
deck is shown in figure 4(b),  and  the  output in figure  4(c). 

The main program is reasonably  self-explanatory.  The  statement NCONT(2) = 4(line 13) 
indicates that SAMPL is to  compute P for  four successive time  intervals  and  then  stop.  Both P and 
K (line 14) are to  be printed  at every step  (line 12). 

As mentioned in the  dictionary,  K is the weighting matrix  corresponding to  the beginning of 
the  interval,  and P is the covariance matrix  corresponding to  the  end of the interval.  This is appar- 
ent in the  output.  For  example,  the  first  entry  to SAMPL prints  step  number 0 and  the K matrix, 
followed  by  step  number 1 and  the  P  matrix.  On  exit  from SAMPL, P and K contain  the  data 
corresponding to Pi and  which is the last  interval. If printing is requested,  the  exit value of P 
and  K will always  be  printed,  and will be  the last set of data. 
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c CHECK PROCEDURE FOR S A M P L E  SEE P A G E S  2 3 4  AND 2 4 4  OF A S P  M A N U A L  
000 1 D I M E N S I O N  N P H I ( ~ ) T N Q ( ~ ) ~ ~ I R ( ~ ) , N P ( ~ ) T ~ ! ~ ( ~ ) T ~ I C O N T ( ~ ) ~ ~ ' H ( ~ )  

- 3 n w l  Y .  " C D D E r T C T W  7 .. " " I L  D1-1 ' 1 ' 3  7 )  2:  F-:; 2; 
1 DUM ( 5 4  1 

0003 COMMON / M A X / M A X R C  
nnnl- M A Y C ) ~  a 

000 5 hlDUM=54 
0006 

000 8 10 C A L L  READ ( 4 , P H I   , N P H I  ,HTNHTB,NO,RTNRTRTNR) 
0009 N P ( l ) = N P H I ( l )  
" -NW"Pd-F4 l : : ' l ) -  

0011 CALL UNI .TY   (PyNP)  
0 0 1 2   N C O N T (   1 ) = 1  

00 14 NCONT ( 3 )  = 4  
0 0 1 5  C A L L   S A M P L  ( P H I ~ N P H I T H , N H , O ~ N Q ~ R , N R , P I N P , K , N K , N C O N T T ~ U M T N D U M )  

0017 GO TO 10 
0 0 1 8  END 

- _ _ _ _ _ ~  - - - 

7 P 1 - 1  
I L# 1 1 L  

" 

"" __ 

T I ?  1 I. 
. L ,  I 

-Q4)iT_t""" ___" " 

(a) Main program. 
T E S T  P R O G R A M   F O R   S A M P L   C A S E  1 F R O M   A S P   M A N U A L   P 2 3 4   A N D   P 2 4 4  
P H I  3 3  
0 1 00 
0 0 0 
0 0 2 00 
H 2 3  
0 00 2 00 0.0 
0 00 0.0 1.0 

3 -0 1.0 0.0 
1.0 1.0 0.0 
0 0 1.0 

- Q 3 3  -~ 

R 2 2  
1 00 1.0 
1 .o 2 .o 

(b) Data. 
Figure 4.- Example 4. 



T E S T  PROGRAM FOR SAMPL C A S E  1 FROM A S P  MANIJAL P234 AND P244 

PHI M A T R I X  3 RObIS 3 COLUMNS 

VASP PROGRAM 

- "  
0.0 
0 .o 

""""" " - - v  

0.0 0 .o 
0.0 2 0000000 D 00 

H M A T R I X  2 ROWS 3 COLlJMNS 
0.0 2 ~ 0 0 0 0 0 0 0 0  00 0.0 
n n  n n  I m n  nn 
" 

0 M A T R  I X 3 ROWS 3 COLUMNS 
2 -n 1- "" - - "_ _. - " . " - "- - 

1 ~ 0 0 0 0 0 0 0 D  00 1 ~ 0 0 0 0 0 0 0 0  00 0.0 
0.0 0.0 1 OOOOOOOD 00 

R M A T R I X  2 ROWS 2 COLUMNS 
1 ~ 0 0 0 0 0 0 0 D  00 1 ~0000C)OOD 00 
1 nn 9 "05 " _ _ .  "" ~ 

L .  

S T E P  NUMBER= 0 I N  SAMPL 

K ( T )  M A T R I X  3 ROWS 2 COLUMNS 
- " 

4.28571430-01  -1.42857140-01 
"-- _" " 

-1.42857140-01  7.14285710-01 
"~ 

S T F  P NllMRFR - 1 TN CAMPI  - 

P ( T )  M A T R I X  3 ROWS 3 COLUMNS 
" U 5 ?  142 98-c!? 

2.85714290-01 0.0 3.5714286D 00 
1.00000000 00 1.00000000 00 0.0 

(c) output. 

Figure 4.- Continued. 



STEP  NUMBER= 1 I N  SAMPL 
- ~ - _ _  K ( T )   M A T R I X  3. ROWS "7- " - " 

h) 
. " "" - -. .. " - 

4.1489362D-01 -7044680850-02 
0.0 0.0 

1 1 A. 27-n 2- 

S T E P  NUMBER= 2 I N  SAMPL 
P ( T )   M A T R I X  3 R 0 \.I S 3 COLUMNS 

' . .  < I 

~ "_ . " . .. .. 

3.1702128D 00 1 ~ 0 0 0 0 0 0 0 0  0 0  5.319148'70-01 
1.OOOOOOOD 00 1 ~ 0 0 0 0 0 0 0 0  00 0 00 
s ; " y q l u Q n  - n l  n .n E; l Q 7 7 2 4 Q Q 4 n  

STEP  NUMBER= 2 I N  SAMPL 
"" 

K ( T )  M A T R I X  3 ROWS 2 COLUMNS 
"_ "___ ~ 

4.1054403D-01  -5.27201350-02 
A n  n n  . ., ." 

-3.05103760-01  1.52551880 00 

P ( T )   M A T R I X  3 ROWS 3 COLUMNS 
9 n r r  1 n 
2. A.A. v u  L .  U 38 nn 

1. O O O O O O O D  00 1 . OOOOOOOD 00 0 .O 
6.10207520-01 0.0 6049186760 00 

STEP  NUMBER= 3 I N  SAMPL 

K ! T !  M U I Y  a RQ,JC - 7 r w ~ c  
4.09648010-01 -4.8240037D-02 
0.0 0.0 - 1a7n "" - -  
" 

S T E P  NUMBER= 4 IN SAMPL 

P (   T )   M A T R I X  3 ROWS 3 COLUMNS 
3.1807040D OO  1.OOOOOOOD 0 0  6.2633587D-01 

6.26335870-01 0.0 
l = W  1" - "&a" " ____ 

6.63702280 00 
(c) Output - Concluded. 

Figure 4.- Concluded. 



Example 5 - Matrix  Decomposition 

This example is  a test  program to check  the  operation of DECGEN. It first  generates  a  matrix 
R to  be  decomposed,  then  proceeds  with  the  decomposition,  and  checks  the  result,  printing all of  the 
associated  matrices. The general procedure is to  input a  diagonal  matrix  ZL  and  transform it  into  the 
matrix  R to be  decomposed.  Figure  5(a) is a  listing  of the main  program;  figure  5(b) is a  listing  of 
the  subroutine  ORTH; figure 5(c) is the  data  deck;  and figures 5(d)  through 5(f) are the  output. 

In  the main  program, all matrices  are  dimensioned 100, although  the  actual  matrix size used is 
2 X 2 and 4 X 4. Accordingly, MAXRC is set to  100. The  dummy  matrix is  dimensioned 700, 
since  DECGEN  requires that  much.  The  input  matrices ?re  read at line 8. 

Subroutine  ORTH, called at line 9, produces  a  n X n  orthogonal  matrix, uking the original T 
matrix,  and places the results  back  in T. The  procedure is as follows. 

First,  generate  an  elementary  rotation  matrix Eij. This is a  unity  matrix,  with  elements eii and 
ejj replaced  by COS tij  and  elements eij = -eji = sin tij. 

Then, 

T = II Eij 

Lines 10 through 17 set  up  indices  for  referring to  the seven dummy matrices. The  input 
matrix,  ZL, is then  transformed  by  the  matrix T, so that 

ZL, = T*ZL*T' 

Note  that  ORTH leaves T' in DUM3. Also, if the  T  at  input was the  null  matrix, the  rotation will 
be  the  identity  matrix, so that R = ZL.  Lines 19 through 27 then  juxtapose  either  the  matrix EXR 
or  the matrix  EXC, using JUXTR  or  JUXTC,  depending  on  the  compatibility  of  the  dimensions. I f  
both sets of dimensions  are  incompatible, no  juxtaposition is done. In  any  case, the result of this 
operation is placed in R. The  decomposition  routine is called next. If the original ZL matrix had 
zero  in  element ( 2 , l )  and no juxtaposition was done,  then R is assumed  symmetric,  and  the 
DECSYM entry is used. If ZL was not  symmetric,  the  program will produce  errors.  Otherwise, 
the DECGEN entry is used (lines 29  to 31). Finally,  the  resulting  matrices H and G are  tested 
using 

R, = H G  

R E = R - R I  

and all resulting  matrices are  printed. 

In  figure  5(c),  blank  lines represent  blank cards. In  the  data  cards  for case 4 the  header  card 
for  EXR  has  no  dimension  information  and  no  associated  data cards.  This  indicates that  the 
matrix  EXR is t o  be  left  unchanged,  and  that  no  data  cards  are to be  read  for EXR.  In case 7, 
EXR is again left  unchanged. A blank  data card  follows the EXC header  card. 

The  output (figs. 5(d)  through 5(f)) contains  the  results  of  decomposing  three  different  matrices. 
Figure  5(d), case 1, is a  2 X 2  rank 1 matrix; figure  5(e), case 4, is a  2 X 3 rank 2 matrix;  and 
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000 2 DOUBLE P R E C I S I O N  Z L ( 1 0 0 ) , T ( 1 0 0 ) ~ E X R ( 1 0 0 ) , R ( l O O ~ ~ G ( l O O ~ ~ H ( l O O ) ~  

"- C" ""--" 

0004 MAXRC=100 
0005 

000 7 20 CALL RDTITL 
0008 CALL R E A D  (4,ZL,NZL,T,NTvEXR,NEXR,fXC,k!EXC,T,NT) 
44" "L&*T"--- 
00 10 
0011  M 2 = M * M + 1  

1 DUM(700),R1(100),RE(lOO~,EXC(lOO~ 
_ _ _ ~  

I I, n 
U I \  W ".". ". 

~ 

M=NT ( 1) 

0013 M3=M2+MS 
00 14 M4=M3+MS 
nnlr;" M 5 "  - 
0016 M6=M5+MS 
0017 M7=M6+MS 

"" . . -  r .  .. 

"" 

(a) Main program. 

Figure 5.- Example 5. 



(a) Main program - Concluded. 
Figure 2.- Continued. 



(b)  Subroutine ORTH. 
Figure 5.- Continued. 



T E S T  PROGRAM FOR DECGEN Ah!D DECOI.1 C A S E  1 2 X2 R A  I\!K 1 
Z L  2 2  
1.0 1.0 
2.0 2.0 
T 2 2  

- 

EXC 1 1  

TEST  PROGRAM  FOR  DECGEN  AND  DECOM  CASE 4 2 x 3  R A N K 2  
71 7 7 
I. 

2,o 
T 2 2  - 

07 

EXR 
EXC 2 1  
2. 
5 .  

TEST  PROGRAM  FOR  DECGEN  AND  DECOM  CASE 7 I L L - C O N 0  4x4 R A N K 3  
Z L  4 4  
1. 

2. 

1 0-6 
T 4 4  

e 2  e 3  04 

EXR 
E XC I I 

(c) Data. 

Figure 5 . -  Continued. 



I 

TEST  PROGRAM  FOR  DECGEN  AND  DECOM  CASE 1 2 x 2  R A N K 1  \ / A S P  PROGRAM 
-_ . - .______ - - .- " "_ 

Z L  MATR I X 2 ROWS 2 COLUMNS 
r\ 1 
u J.. 6 C  

2 ~ 0 0 0 O O O O D  00 2~00000000 00 

" - " T - ~ x " - - - - - - - " " - ~ ~ ~ ! s  - 

0.0 0.0 
0.0 0.0 

E  XR MATR I X 1 ROWS 1 COLUMNS 
0.0 

E X C   M A T R I X  1 ROWS 1 COLUMNS 
0.0 

T M A T R I X  2 ROWS 2 COLUMNS 
1~00000000  00 0.0 
lLIl"".- 1 ___ 

T * T l   M A T R I X  2 ROWS 2 COLUMNS 
n n n  " 

0.0 1 . 0 0 0 0 0 0 0 D  00 
- 

- R _- MATRJJ"-- 7_BQ& 2 w s  . " . - .- - - - 
1~00000000  00 1 ~ 0 0 0 0 0 0 0 D  00 
2.00000000 00 2 ~ 0 0 0 0 0 0 0 D  00 

R 1   M A T R I X  2 ROWS 

-2..&-*-. -.Fa" 06" - 
1~00000000 00 1 . 0 0 0 0 0 0 0 D  00 

2 COLUMNS 

. - - .. . -. . - . -. . " "" 

R E R R   M A T R I X  2 ROWS 2 COLUMNS - 
4 . 4 4 0 8 9 2 1 D - 1 6   4 . 4 4 0 8 9 2 1 D - 1 6  

I 1 ,  lr\ 7 ,  
2u L U  

" "", """- r .  L U  

(d) Case 1.  

Figure 5.-  Continued. 



- . ." " . . "UU" -2. &Qr"S - - .. - - &-&W " 
1 . 4 1 4 2 1 3 6 0  00 
2 . 8 2 8 4 2 7 1 0  00 

"- 
G M A T R I X  1 ROWS 2 CL)L\JMI\JS 

7 .07106780-01   7 .0710678D-01  
-~ ~ "" - ". . -" . " 

R A N K  M A T R  I X 1 RO Id S 1 COLURNS 
__ ~ 

-__- 

1.0000000D 00 

(d) Case 1 - Concluded. 

Figure 5. - Continued. 



T E S T   P R O G R A M  FOR D E C G E h l  A N D  D E C O M  C A S E  4 2X ~ a d K 2  V A S P  PROGRAM 
___ 

ZL M A T R I X  2 ROWS 2 C O L U M N S  
1 m n  nn n n  .." 
" v " V  "I" 

0.0 2 .00000000 00 

- " T A m X "  3- 2-G- 
7.99569850-01  6.00573110-01 

-6.00573110-01  7.99569850-01 

E X R   M A T R I X  1 ROWS 1 C O L l J M N S  
0.0 

~ ___"_ ~ "" ~ "" 

E XC M A T R  I X 2 ROWS 1 COLUMNS 
2 .00000000 00 

A _.- - " 

T M A T R I X  2 ROWS 2 C O L U M N S  - - K l l  E1q+@& - " - 
" / w v a  A & A _  

5.6511539D-01  8.25011880-01 

T t T  I M A f R  1 y 7 QQJdc - 3 r m  
1 ~ 0 0 0 0 0 0 0 0  00 0.0 
0.0 1 ~ 0 0 0 0 0 0 0 0  00 

R M A T R  I X 2 R01.I.S 3 C O L U M N S  - 

1.31935540 00 -4.66226910-01  2.00000000 00 
3 nn - 
2 1  

R 1  M A T R  I X 2 ROWS 3 C O L U M N S  
___ 

-4.66226910-01  1.6806446D 00 3.0000000D q O  

(e ) Case 4. 

Figure 5.- Continued. 



RFRR M W Y  - 3 R N C  .. ., 2 J r w c  V I  u 

2.2204460D-16  -2.49800180-16  4.4408921D-16 
-907144515D-17  2.2204460D-16  4.44089210-16 
" ". -~ ~ 

H M A T R  I X 2 ROWS 2 COLUFlNS 
__ "_ .. 

2004935730 00 1.3259717D 0 0  
n n  7 nn - - 
" 0 "  2. vu 

G M A T R I X  2 ROWS 3 COLIJMNS 
7 n1 E M  . I. 59f3-W-H "4.6-3 ~ 7 8 W - e  E - ___-___ 

-1.3435357D-01  4.84314830-01  8.6451620D-01. 

RANK M A T R I X  1 RO\.IS 1 COLUMNS 
3 nn " 
" V "  

(e) Case 4 - Concluded. 

Figure 5.- Continued. 



m 
N 

T E S T  PROGRAM FOR DECGEN AND DECOM C A S E  7 ILL-CON0 4x4 R A N K 3  VASP PROGRAM 
" -.__ _______" "- 

ZL MATR I X 4 ROWS 4 COLUMNS 
n n .n  n n  n n  

0.0 2.00000000 00 0.0 0.0 
0.0 0.0 0.0 0.0 

- " -  " V  "I" 

n Q-5 n n  1" 

T M A T R I X  4 ROWS 4 COLUMNS 
--8,77M#4J304: 
-3.93291460-01  7.68929180-01  2.06672230-01  4.59735070-01 
-2.64263040-01  -5,48465770-01  6.97672110-01  3.77629410-01 - 2 . 2  3: 

1 r  A .  ". 

A . 2  V I  J. r l. 

* 7 . 
E X R   M A T R I X  1 ROWS 1 COLUMNS 

E XC MATR I X 1 ROWS 1 COLUMNS 
- o w ! ?  

T * T c  M A T R I X  4 ROWS 4 COLUMNS 
9 7  17 1 777 n * - P  
L W  1 L r  A. I l l  u L I  

2.77555760-17  1~00000000 00 4.16333630-17  -4.16333630-17 
-1.38777880-17 4,16333630-17 1.OOOOOOOD 00 0.0 

G C I  1 IFI n-17 17  A n  1 
L *  

(f) Case 7. 

Figure 5.- Continued. 



R E R R   M A T R I X  4 ROWS 4 COLUMNS 
A -17 "17 1. 1- 1 7  - 

-5.55111510-17 2.22044600-16 -1.73472350-18 8.32667270-17 
4.16333630-17 0.0 5.89720360-08 -2.90473790-07 

-"""~-984"-~7f33i3" " . . " " -. 

H M A T R I X  4 RObIS 2 COLUMNS 
'I 9 n q  "- 
I L. V I  

0 00 1.27196770 00  
1.17671260-01 1.18438510-02 
I. I 7 n1 c I T  - 17% ~" __ .. - 
7 . V  I - l l L  

G M A T R  I X 2 ROWS 4 COLUMNS 
a 77  n'I n n  
V., I V I  V.V I. L I u I I L  U L  I'. 0 I 1 

, "7, - 1 -  n.8 v 

-2.42956120-01  1.27196770 00 1,18438510-02  5.65837100-01 

(0 Case 7 - Concluded. 

Figure 5. - Concluded. 



finally,  figure 5( f ) ,  case 7, is a 4 X 4 matrix of rank 3, with  one very  small  eigenvalue  equal to  I O - 6 .  
The  error  matrices  of  the  first  two  decompositions are extremely small, but  that from  the  third  one 
has errors  of  the  order  of 1O"j.  These  are  caused  by the built-in  pivot  rejection  device,  which 
rejects all pivots  smaller  than 2X times  the largest of  the diagonal  elements  (see DECOM, p. 85 
and PSEU,  p. 70). This  last  matrix, case 7, was also tried  with  an eigenvalue  of 1 0-3 ,  and  the  errors 
were then  on  the  order  of 10" '. 

Example  6 - Use of the  Pseudoinverse Routine 

This  program is designed to check  the  operation of PSEUDO. The  procedure is as  follows: 

First  the  input  matrix A is read;  then B = A# is computed.  The  accuracy of the pseudoinverse 
is then  checked  by  the  first  two Moore-Penrose axioms 

B A B - B = A ,  

ABA - A= B, 

All the various  matrices  are  printed. 

Figure 6(a) is the  program listing and figure 6(b),  the  output.  Three cases are presented;  the 
first  two are the  examples  presented in the ASP manual;  and  the  third  one  contains several zeros. 
The  first  matrix  printed  for  each case is the  input  matrix  and  each  has  a  different label. The  other 
titles  are  abbreviations  chosen to fit  the  allotted  four  character  space as follows: 

APSE -+ A# 
AASA +. AA#A 
AERR +. A or B, 
ASAA +. A$AA# 

It can be noted  that  the size of the  numbers in the AERR matrices is 10" 6 ,  which is very good 
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(a) Main program to check PSEUDO. 

Figure 6.- Example 6. 



% P S E U D O   T F S T   P R n G R A M  C A S E  1 F R O M   A S P   M A N U A L   P A G E  146 V A S P   P R O G R A M  
..... ..... - - - .. " 

"" ...... . . . . . . . . . . . . . . . . .  ..... . . . . . .  

B M A T R I X  3 ROWS 
7- 
- 2 ~ 0 0 0 0 0 0 0 0  00 5.00000000 00 

2.00000000 00 1 ~ 3 0 0 0 0 0 0 D   0 1  

1 
& 

.. ..... . . .  . . . . . . . .  .- 

A P S E   M A T R I X  4 ROWS 
9.50296970-02  -5.65801810-02 

".--n,n.. 3w34.35-  
-6.73648020-02  3.18849640-02 

5.06408250-02  -3.67302280-02 

4 C O L U M N S  "- 2" __". __"_I I"""" ..--.- 
-1.00000000 00  -3.00000000 00 
- 9 ~ 0 0 0 0 0 0 0 0  00 -5.00000000 00 

. . . .  . . . . .  . .  - ............. " .. - - . " - . . . . . .  -. _ .  

3 C O L U M N S  
2.03188500-02 

-3.90747110-02 
_. .. ._._."" . . . . . . . .  .- ..... -...-...- .-.. ...... " .- ... - ..-." . 

-8 .90903410-03 

A A S A   M A T R I X  3 ROWS 4 C O L U M N S  
4.00000000 00 -1.0000000D 00  -3.0000000D 00 2.0000000D 00 

- u w n n - m . . -  ~ n a ~ a . . - . = ~ ~ ~  Q(I.-.--WWXXWIO 80 
2.00000000 00 1 . 3 0 0 0 0 0 0 0   0 1   - 9 ~ 0 0 0 0 0 0 0 0  00 -5.0000000D 00 

A E R R   M A T R I X  3 ROMS 4 cI1LUMrci 
-6.66133810-16  6.66133810-16  202204460D-16  -6.66133810-16 

1.33226760-15 0.0 -8.88178420-16  6.66133810-16 
"2+22o4LctroL;lr1.5" ' 3 - a m  90=15 ---L2"?.%4S - -&."l33a1*l4j . . . . . . . . . . .  . . _  . . . . . . .  

A S A A   M A T R I X  4 ROWS 3 C O L U M N S  
9.5029697D-02 -5=65801810-82 2.03-188508-0? 

-300790872D-02  3.31353550-02  3.78243200-02 
-6073648020-02  3.18849640-02  -3.90747110-02 
.-5.-Q.~!-~ ... T - U ~ ~ C ) ~ . ~ R B - = .  . . ~ - ~ Q ~ & & t Q . $ .  . .  -- . . . .  . . . . . .  -. . . . . . . . . . . . . . . . .  

. .  

(b) Output. 

Figure 6.- Continued. 



PSEIJDn  T F S T   P R n G R A M  C A S E  7 FROM ASP MAhlllAL P A G E  1.37 

"a" A"..&.-. -4-@ 4 " .  . "&&wwwFT -08. 
1.00000000 00  2.5000000D  01 -8.0000OOOD 00 he0000000D 00 

- 2 ~ O O O O O O O D  00 -R.OOOOOOOD 00 4 ~ 0 0 0 0 0 0 0 0  0 0  0.0 
4-&"0"88 .- &€LWWOOB 00 8-8- - . 4-W" 00 

A M A T R I X  4 R OW S 4 COLUMNS 

A P S E   M A T R I X  4 ROMS 4 COLUMNS 
-5F-07nr.3"-""--"-C)r3283~ 
-1.1026095D-03  2.9737044D-02  -7055120450-03  9.75642350-03 
-4.6911023D-02  -7.5512045D-03  4.2366935D-02  5.14551100-02 
--&32FI?-n2" "9,7564258-83 5d4551188"02 7 . 5 ~ 1 l 0 9 6 0 - 0 2  

A A S A   M A T R I X  4 ROWS 4 COLUMNS 
"D"" -=ma- 80 - d _ n n n n n n n D .  00 

1~OOOOOOOD 00 2.5000000D  01 - 8 ~ 0 0 0 0 0 0 0 0  00 6.00000000 00 
-2.0000000D 00 -8.0000000D 00 4.0000000D 00  -2.22044600-16 
-2annnnnnn no - uummm~ 00. LO 4,OC)OOOOOD 00 

A E R R   M A T R I X  4 ROlJS 4 COLUMNS 
" ... - - -"3381&-€6 
-404408921D-16  -305527137D-15  2.22044600-16  4.44989210-16 

6.6613381D-16  6.66133810-16  -h.66133810-16  -2.22044600-16 
.&za44#&%J& - ."~"lQ - "- - -4,4408921c)-16 

A S A A   M A T R I A  4 ROWS 4 C O L  UM ius 
+ ! e - + e & " - . - l 7 ~ ~ -  "%oi3"0il"- --6s-328310%3+)-2 
-1.10260950-03  2.9737044D-02  -7,55120450-03  9.7564235D-03 
-406911023D-02  -705512045D-03  4.23669350-02  5.1455110D-02 
= e , G a - s m w - - .  - - .MSW+~W"O~-  ~.~wsK)o-Q;, 7.51  IIQ%D-W 

A E R R   M A T R I X  4 ROWS 4 COLUMNS 
, r Z - . n n , " .  ""1U .' 4r%7774B"? - 

0.0 0.0 2.60208520-18  8067361740-19 
R.6736174D-18  1.7347235D-18  -5.20417040-18  -1.12757030-17 
.1,38777880.~11. ..-3,hn3a8528-18 -8d13361-34D-€8 -1+387778aO-1.7 

(b) Output - Continued. 

Figure 6.- Continued. 

V A S P  PROGRAM 

. . ^ .. . -  . 

._ , ... ..- - . .. . .. 

. . . . .  - 



m 
00 

PSEUDO T E S T  P R O G R A M  C A S E  3 V A S P   P R n G R A M  
- ............. - " . - ... -. . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . .  . . .  ........................... 

C MATR I X 4 ROWS 2 COLIJMNS 
4." - "" "._""""""-I. "" - -" ."""" 

0 . 0  -3 .91000000 0 0  
3.50000000-02 0 . 0  

,3s;annnnnn" ...... 3,lnnnnnng*Q& . . . .  - .... . . . "  . ." . . . . . . . . . . . . . . . . . . . . . . . . .  

A P S E  M A T R I X  2 ROWS 4 COLUMNS 
"-.. "&- &"-.L$"$".. ... ......................... ."_.._.._. 

0 .0  -2.55754170-01  2.80460740-04  3.8798916D-06 

"-AASB"MAI RLX A. u- ... .2r.nlllMblT-. . .  " ............ . . . . . . . . . . .  - . . . .  ......... 

-1.08894560-17  -3.91000000 00 
0.0 0.0 

2" - n3 LC! "I."""."..-.."""- ..... . "._ .._" - - 
-2 .53000000 00 3.10000000-01 

"AERQ- AlA1BLx" ..... -A,." "" " 3"-. ............ " ._ ......... ....... "_ ......... ." - 

-1.08894560-17  4.44089210-16 
0.0 0.0 

VIV V I V  

2.22044600-16 0.0 

" "l" RnWC &.- __ _ _  _ _  
0.0 -3.13314710-02 5 .50129300-03 -3.95180810-01 
0.0 -2.55754170-01 2.80460740-04 3.87989160-06 

A E R R   M A T R I X  2 ROWS 4 COLUMNS 
0 .0  0 . 0  0 .0  0.0 

".@& "" ". . 3+&"-'"3C'.L"-'B - "" 

(b) Output - Concluded. 

Figure 6.- Concluded. 



APPENDIX  A 

DESCRIPTION OF INTERNAL  SUBROUTINES 

25. READ1 

DESCRIPTION 

This  subroutine  reads  a single matrix  from  cards,  without  a  header  card. I t  is called by  READ, 
after  the  latter  has  read  the  header  card.  The  dimensions  of  the  matrix to be  read  are  in  array NZ. 
If this is zero,  no  array will be  read.  In  any  event,  the  routine  then  prints  either  the  array  just  read, 
using NZ for dimensions, or, if NZ = 0, the  array  already  stored, using NA for dimensions. 

The  subroutine  reads  the  data  from  cards,  each row of  the  matrix  starting on a  new  card, using 
format (8F10.2). If the  card  data is in  exponential  form,  it  must use  a  D exponent. 

USAGE 

CALL  READl(A,NA,NZ,NAM) 

Input  Arguments 

Matrix: A (if NZ = 0) 
Dimension  array : NAY NZ 
Constant: NAM, containing  a  four-character (or less) name  for  the  matrix, 

which will be used by PRNT 

Output  Arguments 

Matrix: A (if NZ f 0) 
Dimension  array: NA 

26. ASPERR 

DESCRIPTION 

This is an  installation  dependent  subroutine. I t  is called by  the  various  subroutines  when  they 
detect  an  error. I t  is intended  to  provide  an  error  walkback, so that  the  programmer can determine 
which call of  a given subroutine is in  error. I t  also  counts  the  number  of  errors  and calls EXIT 
after  ten  entries  into  ASPERR. 
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USAGE 

CALL  ASPERR 

It  has no arguments.  The  user  may, if he wishes,  call this  program to help  him  track  down  errors. 

Subroutine  ASPERR calls in  turn  a  system  program  which  provides  the  actual  walkback.  In 
Ames OS this  system  routine is  called ERRTRA, while in Ames  TSS, it  is  called TRACE. The 
calling statement  should  be  changed to  match  the user’s operating  system, or else deleted  altogether. 

27. BLKDATA 

DESCRIPTION 

This is an  installation  dependent  subroutine.  It  loads  certain  common  areas used by VASP 
with  appropriate  constants as  follows: 

1. COMMON/F$ORM/NEPR, FMT1(6),  FMT2(6) 

These  three variables control  the  printing  procedure,  and  are  set to 7,  (1P7D16.7), and 
(3x,lP7D16.7), respectively.  They assume  a  line length of at least  11 5 characters. 

2.  COMMON/LINES/NLP,  LIN, TITLE(23) 

NLP controls  the  number  of  lines  per page,  and is set  at  45 to agree with  the NASA-Ames 
system. It  should  be  changed to match  each  installation. 
LIN is a  counter  which  keeps  track of the  number  of  lines  printed  on  each page. I t  is 
incremented  and  used  only in LNCNT. 

TITLE  contains  72  blank  characters,  which can  be loaded  as  desired  by use of RDTITL,  plus 
20 more  characters  containing “VASP  PROGRAM.” Subroutines  LNCNT  prints  TITLE  at 
the  head  of every  page. 

3. COMMON/MAX/MAXRC 

MAXRC is used by  most  subroutines  to  check  the  reasonableness of the  matrix  dimensions. 
The user should  set  MAXRC to match  the  storage available for  each  matrix.  It is preset to 
6400. 

28. PSEU 

SUMMARY 

PSEU  is  a FORTRAN  routine  to  find the Moore-Penrose  generalized  inverse  of  a  non-negative 
definite  double-precision  matrix. I t  has  a  separate  entry PSEUP for input of a  matrix  that is 
already  symmetric.  A  symmetric  matrix is always  used for  the  actual diagonalization  process.  This 
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process  is done in  a  self-contained  subroutine,  ANDRA.  The  routine  “never”  fails,  since it  includes 
the  singular case. However, it may fail to  give the  correct  rank. To control  this,  an  option  to  do  side 
calculations  is  available.  After the  first  pivots have  been found, if the  rank is not  maximum,  the 
result  of  each  pivot  step is used  in  two  axiomatic  expressions  (subroutine BDNRM). This  side cal- 
culation  yields  a  measure  of  the  worth  of  the  pseudoinverse  obtained so far. This result  is  multi- 
plied by  a  parameter  factor raised to the power of the  current  rank  (nonlinear  penalty  function). 
The  routine  can  backtrack  from  the  first  bad  step  and  stop  with  the  previous  rank.  It  has  an  option 
to  do  the  minimum  calculations  for  getting  a  rank  only.  The  generalized  inverse  is  useful  for  least- 
squares  solutions  of  Ax = b;  it works  when  A  is  singular.  This  method  is  best  suited to  syhmetric 
matrices. The  routine  has  suitable  error  exits. 

USAGE 
I 

CALL  PSEU(A,B,C,EE,DEP,IP,D) 

CALL PSEUP(A,B,C,EE,DEP,ID,D) 
or 

Note:  PSEUDO uses PSEU  entry. 

Input  Arguments 

Matrix:  A 

Control  arrays:  DEP 

DEP 1 

DEP2 

Description 
The  array. to  be  inverted,  left  intact,  must  be 
symmetric if PSEUP call is  used.  Non-negative 
definite,  or  nearly so. 

Values  DEPl , DEP2,  DEP3 

Default: If zero,  user  gets 2.D-6  used  instead. 
This  number is multiplied  times  the  largest mag- 
nitude  on  the  diagonal of B  at  start. If any 
trial  pivots  are  found less than  this,  they  are 
avoided as zero. 

Default: If zero,  user  gets 1 .DO used instead. 
Needed  only if iteration.  The  routine  computes 
two  numbers,  p, q, which  would  be  zero if the 
first  two  Moore  axioms  were  satisfied. This num- 
ber  is  raised to  the power  of the  number of 
pivots  found  as  a  factor  to use to  make  the 
product  with  the  sum of p  and q larger. Mak- 
ing  this  product  larger  tends  to  make  the  routine 
reject  the  current  pivot.  Values  between 1 and 
2  work  for  ordinary  purposes. 
Note:  PSEUDO  uses  default  values of DEPl 
and  DEP2. 
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Output  Arguments 

Matrix: 

Matrix: 

Matrix: 

DEP3 

IP 

IP  1 

IP2 

IP3 

IP4 

B 

C 

EE 

This is for  output  only.  It  holds  the last  pivot 
actually  accepted.  This gives the user or calling 
routine  an  estimate  of  the size of  pivots  found, 
in case  effective  rank  is not  that desired,  operat- 
ing  with given value of  DEP 1 .  If  iterating,  this 
may  be  the  last  pivot rejected. 

Parameter  array of integers IP1 , IP2,  IP3,  IP4. 

If  zero, do  not iterate  with side  calculations. 
If 1,  iterate. 
Note:  Other values should  not  be  used, since 
DECOM employs  peculiar values. 

If zero, do  all calculations,  otherwise do rank 
only. 
Note:  Setting  this to zero  for  each call is very 
useful  in  avoiding  confusion  between  ranks 
determined  from  different calls. Used also to 
output the effective  rank.  PSEUDO  sets  IPI 
and  IP2 to  zero. 

The  row size  of the  matrix  input. 

The  column size  of the  matrix  input. 
Note:  IP4  need  not  be specified for PSEUP 
entry. 

Holds  the  pseudoinverse output.  (In  rank  only 
case, holds  a  diagonal  matrix  with 0’s and 1’s 
corresponding to  pivots  accepted  or  rejected.) 

In  nonsingular  case,  holds  the  matrix  T  of  the 
diagonalization  case.  In  singular  case,  holds  that 
certain  matrix  U  described  in ASP manual. 

Holds  the  pseudoinverse  of  the  original B. 
Note: A and B are  the same  size.  The other 
matrices  are  square,  of  the  size  of C, which is 
determined by thesnzaller  dimension of A. D is 
either five times  the size of C, if iterating, or the 
same  size  as C. 
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Matrix: D In  the nonsingular  case,  D  holds  a  copy  of the 
B  formed  from A. (It  equals A for  a PSEUP 
entry.)  In  the singular  case, it  holds  a  pseudo- 
inverse for  a “B” permuted so that  independent 
variables  are  all  moved to the  left-most  positions. 
Note:  D  has possibly four  other matrices.  Let 
these  be Dl ,  D2,  D3, and  D4,  in  order.  They  are 
used only if iterating (Dl also  used by DECOM). 
D  1, D2 hold  old results.  D3, D4  holds  intermedi- 
ate values  when  doing the side  calculations. 
PSEUDO does  not  provide  for D l  through D4. 

Notes  on Usage 

Symmetry 

This  method is well suited to  symmetric, non-negative definite  matrices.  The  PSEUP entry 
assumes  this.  Matrices formed by computer  arithmetic will not always  be symmetric.  Hence,  the 
routine always  forces the  symmetric  matrix  B  to  actually be symmetric,  by  taking  the average  of 
the  element  and  its  transpose.  The  nonsymmetric  entry,  unfortunately,  approximately  squares  the 
ratio  between  largest  and  smallest  eigenvalue.  There is a  nonsymmetric  feature.  The  routine choses 
AAT,  instead  of  the  other way around, if A is a  square  matrix.  This  arbitrary  choice  agrees  with  the 
DECOM routine  and  the ASP routines. As  a result,  in  the singular  case, multiplying  A  by  its  pseudo- 
inverse from  the left is more  likely to give a  diagonal matrix of 1’s and O’s, than  multiplying  from 
the right side  of A. 

Pivot  Size 

DEPl is used to  compute a  “smallest  allowable  pivot.”  In no case is it  reasonable  or  desirable 
to worry  about  exact  equality in the use of such  tolerances.  Fortunately, work  with  ill-conditioned 
systems  shows  a  series of pivots  that decrease  steadily in magnitude.  Furthermore,  the  first  “bad,” 
erroneous  pivot is, at  most, 10 to  1000 times  smaller than  its predecessors.  Since ANDRA is choos- 
ing  largest  pivots first,  the user  has  considerable  latitude in actual  choice. All positive elements can 
be accepted, if the  matrix is known to  be  nonsingular,  by  choosing  DEPl  very  small. 

By choosing  DEPl very  large - say,  nearly  1.0 - the  routine can  be  forced to  reject  pivots  after 
the  first.  At  present,  there is no way of making it  start  iterating  without having found  at  least  one 
pivot.  In  other words, ANDRA  always  finds  all  the  pivots  it  can  before  any  side  calculations  are  done. 
If this  first  rank is maximal, it never  iterates.  The  first pivots  are not in doubt, so these  rules  are  more 
efficient.  The  routine  always uses  a  tolerance  for  pivot  acceptance;  however,  it  uses  a  new  tolerance 
50,000 times  smaller than  the  last  pivot  found,  for  each call to  find  one  pivot in iterative  mode.  The 
expensive test of matrix  norms is avoided  when no new  pivot  occurs.  The  PSEU  routine  has  only  a 
finite  number of  tries to find  a new  pivot  before it  quits.  The  exact  number is the  same as the maxi- 
mum  rank. Since ANDRA  has usually found several  pivots  initially, this is  ample. 
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Iteration 

If  DEP2 is  larger than 1, it is raised to a  power,  used  as  a  factor,  and  tends to make  the 
routine  stop  with a smaller  rank.  DEP2  of 1 actually  works  for most iterations. 

Subroutine ANDRA 

The basic  algorithm  can  be  used  as  a  separate  routine  by  itself  (see  ANDRA  documentation). 
The  routine  requires  considerable  setting  and  testing  of  parameters.  It  has  an escape exit  for  too 
many  iterations (calls to find  only  one  pivot)  without  finding  any.  It  returns  a  matrix,  T,  such 
that, if X if pseudoinverse  of  positive  definite  matrix  A, then 

T ~ T  = x 
Accuracy 

In  double  precision,  the  accuracy  has  been  very  good.  Maximum  accuracy  can  be  obtained  by 
using symmetric  matrices  and  the PSEUP entry.  The  test  program  included  in  this  manual as 
example 6 shows  errors  (determined by  calculating AA # #  A-A and  A # #  AA  -A) on  the  order of 
10" or less. 

The  routine was also tested  on  the  ill-conditioned  7 X 7  matrix  in  the ASP  manual (NASA 
CR  475,  p.  150).  The  exact inverse is given on page 15 1 , and  the  error  obtained  from  the ASP 
program  using the equivalent  of  the PSEW  entry  (p.  152) is on  the  order  of 10" . The  error 
obtained using the VASP program  and  the PSEU entry was on  the  order  of  lo-' or less. 

Singular Case 

The  routine  forms  a new  inverse from  the original symmetric  matrix. Since there  are several 
steps  more  between  the  inverse  and  the  original input  A,  it is only  natural  that  accuracy  should fall 
off.  In  many cases, this inverse will give a  diagonal matrix of 0's and 1's when  used  as  a left inverse 
of A  (or possibly  as  a  right  inverse). The work  of  reinverting B requires  no  extra  matrices;  it  does 
destroy  the usual  values  of  C and D. No iteration can  be done in the  stage after B is found  to be 
singular. It can  be  asked for  in  the  starting stage. Error  exits  are  made if the  rank changes  during 
reinversion. The smallest  allowable  pivot is redetermined. 

Error Exits  (Messages) 

The  error  exits  are  reasonably  self-explanatory. Unless otherwise  noted,  the  errors cause  a 
return  from PSEU without  completion  of  the  calculations.  Subsequent  calculations in other  portions 
of the program are  suspect. 

Message 
Dimension error 

Diagonal elements  of  matrix = 0 

Explanation 
The  total  number  of  matrix  elements was too 
large or  too small. 

Symmetric  matrix B has  no positive  diagonal 
elements.  Check input A. 

74 



Rank  has  decreased 

Rank  has  increased 

Rank  greater  than  matrix  size 

Singular case. Reinverting,  and  the new rank is 
less than  that  of  the  earlier  phase. 

Singular case. Reinverting,  and  the  new  rank is 
greater than  in  the  earlier  phase.  Computation 
continues. 

RANK returned  from  ANDRA  is  greater  than 
maximal  rank. 

Timing 

The  ANDRA  routine  by  itself is  very fast.  The  iteration  mode is  slower  by  a large factor  than 
the  regular  mode of subroutine PSEU. 

The  time  estimates  below  (in  hundredths  of  a  second)  are as used on  the NASA  Ames 360/50. 
High and  low  estimates  are given, because  real-time  figures  reflect  an  unknown  percentage  of  time 
devoted to  another CPU user. 

Case 
PSEU, 2 X 2  matrix 

High Low - 
2  1 

PSEW, 4 X 4 matrix,  reinvert  14  10 

PSEU, 7 X 7,  no  pivot  rejection  42 30 

PSEU, 7 X 7, rank  6,  reinversion  103  62 

PSEU, 7 X 7,  iteration,  no  tests  53 30 

PSEU, 7 X 7, iteration,  one  test 182 118 

PSEU, 7 X 7, iteration,  some  tests of pivots  253  170 

PSEU, 7 X 7,  iteration,  many  pivot  tests  501  286 

PSEU, 7 X 7,  iteration,  nearly all tests  607  324 

PSEU, 4 X 2,  reinversion 3 1 

PSEU, 4 X 2, reinversion  2  2 

METHOD 

Summary  of  Method 

PSEU has  two  entry  points.  The  nonsymmetric  entry  forms  AtA  or  AAt,  whichever is 
smaller.  At the  end,  At is  used again to  form  the  pseudoinverse.  Square A uses AtA.  The  result 
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is always  forced  symmetric  afterward, even for  symmetric  entry.  ANDRA is  called to diagonalize 
this  result  in B. Most of  the pivots  are  found  and  the  steps  made  on  the  first call. If not  iterating, 
this  part is not  repeated. If singular (rank  of  symmetric  input  not maximal),  a transforming  matrix 
is computed.  A  copy  of  the original symmetric B is transformed  and  reinverted  by ANDRA. The 
result  is  retransformed  by  premultiplication  and  postmultiplication. If iterating,  the  pivot  tolerance 
is decreased and  ANDRA is  called to  find  one  pivot  at  a  time.  A  side  calculation is done to measure 
the  quality  of  pseudoinverse  formed  at  each  step.  The  routine  backs  up  one  step  and  stops  with 
rank  one less if it  makes  a  bad  step.  The  result, if singular,  is  sent  through  the reinversion  above. The 
use of  PSEUP  by DECOM avoids  reinverting  in the singular  case,  also it never uses a  nonsquare  input. 
There is a  “find  rank  only”  option. 

If PSEU  is  used without  iteration,  four  1/0 matrices  are  needed  plus  a dummy  matrix. 
Iteration uses four  additional  dummy  matrices.  Iteration  cannot  be  done  during  the reinversion. 
Besides those  mentioned,  entries BDNRM, MULT, and NORM are used for  iteration.  TTRM is  also 
used except  in  rank  only case. 

ANDRA  (diagonalization  algorithm). For a  detailed  description  of  the  method, see the 
documentation  of  ANDRA  itself.  A  mathematical  description  and  examples  are given in NASA 
CR-475.  Subroutine PSEU calls ANDRA to  do each  pivoting  step,  after  first  forming  a symmetric 
matrix B, which is indeed  forced to  be  perfectly  symmetric. 

The  first call of  ANDRA is an  initialization call. An identity  matrix T is formed.  The  rank 
counter is set  to  zero.  On an initialization  call,  the  routine  proceeds to  search the diagonal  for 
pivots,  as  always.  But after  finding  a  pivot,  it always  goes  back and  looks  for  another  pivot, 
regardless  of the  iteration  option.  The process of  searching  for  pivots  continues  until  the  number  of 
tries  is  one  greater  than  the  row size (no such  test  is  made  in the  iteration case). If the  routine fails 
to  find  a single pivot  in the initialization  call, it  exits  with  an  error message. Pivots are  accepted if 
and  only if they are not less than  a  threshold  input  at every call. Supposing  that  a  pivot  has  been 
found in the diagonal,  the  next  step is  always the same.  First the pivot is reduced to  unity.  That is, 
both  the pivot  row  and  column  are divided by  the  square  root  of  the  pivot in B. Only  the row of  T 
is so reduced.  The  next  step is to eliminate the pivot  coefficient  from all other rows not  yet used as 
pivots.  This part is the same as  in other inversion methods.  Both  B  and  T  are  treated  exactly alike 
here.  Note that  the  actual  algorithm  checks  the diagonal of a  row to see if it is already  marked  as  a 
pivot. If so, that  entire  row,  and  the  row in T, are  skipped.  The  pivot is then  marked  by  an  artifi- 
cial code.  The  routine  always  tests  for  this  code  and  does  not use this  row again. The  code is put in 
the  actual  pivot  position.  Thus  the  rows  and  columns  are  left  in  their  starting places in the working 
matrix B. PSEU converts the result to a  matrix of 1’s and 0’s that  shows  the  independent  and 
dependent variables. 

The  code is tested for an  integer.  This is a  considerable  economy.  The  resulting  T is never 
singular. If  B  were  nonsingular  and X the desired  inverse of B, 

T ~ T  = x 
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This part is done by  subroutine  entry TTRM, using coding  shared  with  the  iteration  method.  The 
final answer is put back in matrix B. (PSEU  always uses the original  A again rather  than  the origi- 
nal B, after this to give an  answer  for A. Thus, ANDRA is always  supplied  with  a symmetric 
matrix B.) 

I f  B were  singular at  the  start, a  further reinversion  would  have to  be  done.  See  the  next 
section. 

The Singular Case 

Suppose  that  the  rank  of B in the diagonalization  by  ANDRA  does not  turn  out  to  be maximal, 
then PSEU must  perform  a  number of matrix  multiplications  and call ANDRA  and  TTRM to reinvert. 
The  accuracy is bound  to  suffer, even though  the reinversion is done  on  an  exact  copy  of  the original 
B. A  very short  justification is  given belo\- , followed by a  close  description of how  the  work is 
actually  done. 

There  exists  a  permutation  matrix  P,  such  that 
- 
E = P T B T ~ P ~  

is a matrix of 0’s and 1’s (were it not  for  round-off  error),  with all the 1’s contiguous,  starting in the 
first  diagonal. If  B had  been so permuted  before diagonalizing, then  this  different T resulting 
would  be the  one  that gives an inverse that  corresponds  correctly  to  the  old.  But, since one is using 
a premultiplication  and  a  postmultiplication,  simple  substitution  of  a  permuted  matrix  does not 
work. ( I t  would if matrix  multiplication  were  commutative.)  Thus, if it is necessary to  transform 
the original starting B, reinvert,  then  transform  back again. 

The permuted form of T (which  does  not  actually  occur)  has  a  nonsingular  corner  submatrix, 
followed by the  rest  of diagonal set  to 1’s. These  latter 1’s correspond to  the  dependent  equations 
of the original. 

The rule  for  constructing  the  transforming  matrix  U is given below. This  matrix is made  from 
T and  put  into  the same  storage T. The explicit  construction of U is more  efficient  (in  FORTRAN). 
From  here on,  the  explanation  concerns  what is actually  done,  rather  than  the  mathematical  reasons. 

Let di  denote  the  ith diagonal element of B. (In case the  reader  has  forgotten,  this has  been 
changed to a  diagonal matrix  of 0’s and 1,s.) Given T, there  are  two cases: 

Case One:  For Uij not  on  the diagonal 
Use -tij, if di = 0; 
Use 0, if di = 1 

Case Two: For Uij on  the diagonal 
Use the  corresponding value of di 

Next, using a  copy of the original B, form 

C = UtBU 
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The result is actually  put in the  same  storage  that held B originally. The smallest  allowable  pivot 
for ANDRA  is  recalculated.  This  result, C, is sent to ANDRA to  do  the diagonalization  again. The 
fact  that C has  rows  and  columns  of 0’s that ANDRA  has to skip  makes  the  diagonalization ineffi- 
cient,  but  this  cannot  be  helped. No iteration is done here.  Let T, denote  the  result of  this  second 
ANDRA call. Then  the  new  pseudoinverse is: 

X, = T, tT2 

Transform  this back to get  a correct  answer: 

x = UX2Ut 

The  rest  of  the  computation is as usual. Note  that i f  the  rank  changes in the  second ANDRA call, 
error  exits  are  taken. 

Iteration 

The  main  method itself is purely  algebraic. The  iteration  option is a way of estimating  the 
amount  of  error in the generalized  inverse and using this to  stop  with  a  smaller  effective  rank.  Let 
B  denote  a  matrix  and  X  its  pseudoinverse  (after  taking so many  pivot  steps in ANDRA).  Then  the 
two  Moore-Penrose  axioms  read: 

BXB = B 
XBX= X 

If the  iteration  mode is selected, ANDRA  first  finds all the pivots  it can.  Then  subroutine BDNRM 
is called  twice. Each call returns  the value 

norm(Q*P*Q - Q)/norm(Q) 

The values  of  P and Q are B and X in one call, X and B in the  other.  The  resulting  two small 
scalars (which  would  be  zero if the  axioms were  perfectly  satisfied)  are  added  together.  The  result 
is taken  as  a  factor  times  DEP2 raised to  the  current  number of pivots. From successive iterations, 
one  obtains  a  sequence of positive  numbers,  decreasing  as  one  approaches the largest  possible rank. 
As long  as  the new  result is not larger, then a new  pivot is searched  for. I f  not, PSEU reverts to  the 
previous  values,  before  the  current  pivot was used. 

In practice  a  number  of  modifications  are  made.  First,  the pivot used last is returned  as  DEP3, 
even if rejected, so that  the user  can  reconsider  acceptance  of  it.  Second, if maximum  rank is 
achieved prior to  iteration,  no  side  calculations  are  done.  Third,  the  smallest possible  pivot  allow- 
able is set  to 0.00002 times  the  most  recent pivot in order  to  reject  many  spurious pivots without 
doing  the  lengthy  side  calculations.  This  modification is based on actual  observation of pivot 
behavior. The successive  pivots of an  ill-conditioned  matrix  usually  decrease  fairly  rapidly.  But 
there is usually  a  hugh jump in order of magnitude  between  the  last  good  pivot  and  the  first bad  one. 
Parts of the side  calculations  are  actually  done in single-precision, to save time. Please note  that  a 
single iteration, besides the ANDRA  call, makes  ten  subroutine calls, and  one library routine call. 
Naturally,  this is slow. 
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Matrix  Storage  Flow 

This  section uses the same  names  as the  Fortran  IV  routines. I t  tells what is put  into each 
matrix  of PSEU at various  times. The call is CALL PSEU(A,B,C,EE,DEP,IP,D). The  matrices  A 
and B are  the same  size  (possibly  nonsquare).  Matrix  C  is  square  with  dimension  equal to  the 
smaller  dimension  of  A. The  other matrices  are the same size as  C.  Matrix  D  is divided into five 
matrices.  Let  these  be denoted as D, D l ,  D2,  D3,  and D4. The last four  are used only in iteration. 

Maximal Rank Case 

A  symmetric  matrix  from A is placed in B  (either  directly, as in PSEUP, or indirectly,  from 
matrix  multiplication).  A  copy of B is put in D, unless the  rank  only, no iteration is used.  ANDRA 
is called to diagonalize B and place the result in C. 

If the result is accepted, lTRM puts  the generalized inverse of B into EE. Then  the inverse 
of A is put  into B. The A  transpose  may  have to be used to  get  an answer for A. 

Singular Case 

The matrix U of the  method is computed  from  C  and  put  into C. (D  holds original B.) 

E E = C ~  X D 
B = E E X C  

ANDRA is called to  diagonalize B. Answer  goes to  EE.  TTRM  puts pseudoinverse of B into D. 

B = C X D  
E E = B X C ~  

The pseudoinverse is now in EE,  where the  maximal  rank case puts  it.  Routine now forms 
pseudoinverse of A in B. 

Iteration 

Before  each call of ANDRA the  current values of B and  C  are  stored in Dl  and D2, 
respectively. B and  C  are changed  when  a new pivot is used in ANDRA. BDNRM computes  a 
number to  decide if the pivot is to  be  rejected.  EE,  D3,  and  D4  are used as  working  storage in 
BDNRM. EE  actually has a  matrix  put in it  that would be zero if the Moore-Penrose axiom were 
perfectly  satisfied. If the  pivot is rejected,  the old values from Dl and D2 are put back into B and 
C. The work  of the singular case is done  next if the call was not made  from DECOM. 

Rank Only 

If iteration is used,  a  full  complement  of  matrices  must  be  used.  In the  ordinary case, 
matrix  D may be omitted,  and also matric  E is not used.  Naturally, no pseudoinverse is returned. 
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29. BDNRM 

DESCRIPTION 

This subroutine  computes  the  quantity 

norm(QPQ'" - Q)/norm(Q) 

where the values of P and  Q  are in the  square  arrays  CT  and  EE  or  EE  and  CT,  depending  on  the 
sign of  NR. If  P = Q#, the  return value is zero.  This  routine can thus be used to  test  the  quality  of 
a pseudoinverse. 

USAGE 

CALL  BDNRM(NR,CT,EE,D,KRV) 

Input  Arguments 

Matrices:  CT, EE  with  dimensions NR X NR 

Constants:  NR, size of matrices  and  the sign controls  multiplication  procedure 

Output Arguments 

None:  This is a  function  subroutine 

Dummy  Arguments 

Matrix:  D  dummy  array  of size 5*NR2 

Constant  Array:  KRV designates location  of  submatrices of D 
KRVl = NR2 
KRV2 = 2*NR2 
KRV3 = 3*NR2 
KRV4 = 4*NR2 

30. ANDRA 

SUMMARY 

ANDRA is a  Fortran  routine  to diagonalize a positive definite  symmetric  matrix.  The  routine 
was originally  designed to  be used by  subroutine  PSEU.  The  routine  has  a  parameter  to  command 
it to initialize on  the  first call. Two  different  modes can  be used for  pivoting  steps. I n  the  first 
mode,  the  routine  does  only  one  pivot  to  eliminate  only  one  row  at  a  time. In the second mode,  as 
many  pivots  as  possible  are  done in one call. Pivots  are  chosen in  order of decreasing  magnitude. 
They  are  rejected if smaller than  a  parameter  threshold.  The original matrix  input is destroyed  and 
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replaced with  artificial  values.  However,  symmetry  is  kept  after  each  pivot. The answer  matrix, T, 
is such  that if X is the inverse of the  input, 

x = T ~ T  

The  routine has error  exits  for  matrices  of  the wrong  size, and  for  those  that allow no pivot on  the 
first  try. 

USAGE 

CALL ANDRA(B,T,DPR,JP) 

Name 
B 

T 

DPR 

DPR 1 

Description 
Input  symmetric  matrix.  Destroyed. 

Answer. T ~ T  = inverse of B. 

Parameter  array  of  size  2. 

DPRl is the tolerance  for  trial  pivots.  Any less 
than  this  are  rejected  as  zero. 

DPR2 

JP 

JP 1 

JP2 

JP3 

JP4 

JP5 

DPR2 is the last  pivot  actually  used.  Unchanged 
if no new  pivot found. 

Integer  parameter  array  of size 5 .  

Zero if all pivoting to  be  done on one  call; 
nonzero if only  one pivot  per call. 

Zero if initialization call. Subroutine  sets  to  one 
when  a  pivot is found. 

Holds the effective  rank = number of pivots 
found. 

The integer giving the  row  and  column size. May 
range from  one to a  nominal figure. 

The  integer  row  where  the last  pivot was found. 
The  rows  are  left in the  same  positions as in the 
input  matrix. 
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METHOD 

Mathematical 

The  method is described  in the ASP manual, pages 137 to 139. 

The  square  matrix T is  initialized to  be  the  identity. 

Step 1 

The diagonal of B is scanned to  find  the largest pivot.  Pivots are  only  taken  from  the 
diagonal. If no pivot is found,  skip  to  step 3 .  

The  square  root  of  the pivot is taken.  The  pivot  row  and  pivot  column  are divided by the 
square root.  Thus,  the  pivot,  at  the  intersection  of  the  row  and  the  column, is reduced to  unity. 
The  corresponding row of T is also  divided by the  square  root. 

Step 2 

The  new,  reduced  pivot  row is used to  eliminate the  elements  of  the  pivot  column.  Let K be 
the pivot row  and  column.  The pivot row is multiplied  times the  element in the  j,k position.  The 
resulting  row-vector is subtracted  from  the  jth row.  This  process is repeated  for  each  row j that 
has not  yet been a  pivot  row.  Exactly the same operations  are  carried  out  on  the  corresponding 
rows  and  columns of T,  except  that,  of  course,  the  multiplier  for  a pivot row  comes  from B. Then 
the  pivot  row  of B, except  for  the  pivot, is set  to  zero.  The  pivot  row  and  its  corresponding  row in 
T  are  never used again. 

Step 3 

If  the  rank is maximal,  exit. If no pivot  has been found,  a test is made  to see if this  should be 
an error  exit,  or  normal  exit.  Otherwise,  repeat  step I .  

Computational 

In  practice,  a  number  of  modifications  are  made.  The  actual  calculations  are  rewritten to  
optimize  speed  and  storage.  The  reciprocal  of  the  square  root is used,  instead  of  a division. For 
single precision,  straight  division  would  probably  be  best.  In  step 3 ,  an  artificial  code is put  into  the 
pivot  position.  This  code is chosen  as one  that  cannot be the result of floating-point  arithmetic. 
Such  a  technique  works in a  great  many  different  Fortrans. If a  row is found  to be  marked  by  a 
pivot code,  it is skipped in steps I , 2, and 3 above. 

The pivot  position is forced  to be exactly 1 before step 2 is applied.  The  pivot-code is actually 
tested  for as an integer.  The  pivot size is tested  for in single precision.  These  modifications  are  for 
speed. A count is kept  of  the  number  of  pivot searches. If this  count is one  greater  than  the  num- 
ber of rows,  the  routine  always  stops searching for pivots. The  result, if B has  maximum  rank, is 
a  matrix T such  that TtT = inverse of B. The  input B consists  of 0's everywhere  except  the 
diagonal,  which holds  pivot  codes. 
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Error Messages From  ANDRA 

Message 
Dimension error 

Finds no pivots 

Explanation 
The  total  number  of  matrix  elements was too 
large or  too small. The  parameter JP(4) cannot 
be less than  one  nor  more  than MAXRC. 

ANDRA  could  find not a single pivot in its 
very first  search  of diagonal. 

31. DECOM 

SUMMARY 

Fortran IV subroutine DECOM generates  four double-precision output matrices  from the 
symmetric, non-negative definite  input  matrix B. One  output is a  matrix S such  that if E is a 
unity  matrix of rank  r,  then 

B = S E E W  

This  matrix is obtained as the inverse of a  matrix T, by calling subroutine INV; T  comes  from 
subroutine PSEU. It is defined by TBTt = E,  a  diagonal  matrix  with elements 0 or 1 .  E is also 
returned,  along  with  a  permutation  matrix P such  that 

PEPt = I, 

a diagonal  matrix  with all 1’s moved to  the  uppermost  left  corner. Given these  matrices,  and  the 
ability to find  a  pesudoinverse of A,  a  decomposition  of  any  matrix is possible. PSEU and DECOM 
are called and  the  matrices  then  multiplied  as  described in the  method  to give a  Kronecker  decom- 
position.  The  routine calls PSEUP and INV to  do most  of  the  calculation. Besides returning  the 
matrices P  and  E,  it  does  nothing  that  could  not be done by successive calls of  other  matrix 
routines.  It has  parameters  and  error  exits  similar to  that of PSEUP. 

USAGE 

CALL DECOM(A,B,C,E,J,DCM,KP,D) 

Arguments 
A 

B 

C 

Description 
The  symmetric non-negative definite  input. 

The  output matrix  E, diagonal of 0 and  1,  with 
1’s in the  independent  columns. B, C,  E, J ,  D, 
and  Dl are  all  of  same size as A. 

The  output T, such  that  TATt = diagonal of 
0’s and 1’s. 
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E 

J 

DCM 

DCM 1 

DCM2 

DCM3 

KP 

KP 1 

KP2 

KP3 

KP4 

D 

Holds  the  inverse  of  A (B does  not  hold  the 
inverse of A). (Not E of ASP.) 

A  square  integer  matrix  for  housekeeping  in 
INV and DECOM. 

Parameters,  just'  as  in  subroutine PSEUP. 

Multiplied  times  the largest  magnitude  of  diagonal 
of  A, to give a  lower  limit  for  an  acceptable  pivot 
in  PSEUP. Set  at 2( 10)"j if zero is input. 

Used only if the user  elects  to  iterate in  PSEUP. 
Set  at 1 .DO (no  effect) if zero is input. 
Note:  DECGEN uses the  default  options  for 
DCMl  and DCM2. 

The  last  pivot  accepted  by  subroutine PSEUP, 
during  diagonalization  of  input  matrix A. 

Integer  control  parameters,  just as for  subroutine 
PSEUP. 

Zero, do  not  iterate in  PSEUP. One,  iterate in 
PSEUP. 

Zero, d o  all calculations.  Nonzero, do  rank only 
Changed to reflect  the  rank  on output. Should 
be  set to zero or minus  one  before  each call. 
Note:  DECGEN uses KPI  and KP2 = 0. 

The row  size of the  matrix  input. 

The  column size. 
Note:  This  parameter is forced negative as  a 
signal if T cannot  be  inverted  by INV. 

D  has five parts, as does  the  "dummy"  array in 
PSEUP. Let  these  be  denoted  D, D l ,  D2,  D3, 
and  D4.  These five equal  arrays  must  be included 
in  the size of  parameter D if iteration by 
PSEUP is selected. I f  no  iteration is used,  D2,D3, 
and D4 may be omitted.  D  holds  the inverse of 
output  C.  Dl  holds  the  permutation  matrix P. 
Note: If rank oidy is computed,  Dl is computed, 
but D  is not. A, B, C, and  Dl are  thus  the  only 
matrices  with  useful  values  returned. 
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METHOD 

The  results  from DECOM are  an  effective  rank  r;  matrices  B  and  D,  which are used in 
further  calculations to  get  a  Kronecker  decomposition,  or to see which  variables  are dependent;  and 
the  permutation  matrix  P  in  D 1. This section  describes the sequence to  obtain  the  Kronecker 
decomposition in two  different cases. The goal is two matrices G and H.  DECOM does  not  produce 
these  matrices;  they  are  produced  either  by DECGEN or by the user  according to  the following  steps. 

Let R be  the  matrix to decompose.  Matrices G and  H  are  desired  such that 

R = H G  

H is to have only  r  nonzero  columns;  G is to  have only r nonzero rows.  Small r is the  rank of 
R. 

Case 1 

Matrix R is symmetric, non-negative  definite. Input R as  the  square  input A to DECOM 
Then  H  and G are  produced  afterward  from  the  matrices in the call statement as  follows: 

Parameter B is a diagonal matrix  with  r 1’s; H and G are computed  by: 

H = D X B  
G = (D X B)t 

A = original = D B B ~ D ~  

Case 2 

R is nonsymmetric, possibly not even positive  definite.  Form RRt (subcase  a) or else form 
RtR (subcase b). The subcases  are  chosen to give the  smaller  dimensions. I f  R is square, use RRt 
to agree with both PSEU and DECOM. Let  this  symmetric  result be the  input A to DECOM as 
in case 1. Obtain  D  and B as  before  and save them. I n  subcase a, X = Rt X E, but in subcase b, 
X = E X Rt. Then  for subcase a,  take 

H = D B  
G = ( X D B ) ~  

Similarly, in subcase  b, take 

H = X ~ D B  
G = ( D B ) ~  

Note:  The H and  G  matrices  produced have the same  dimensions  as  the  smaller  dimension of R.  
If the  rank  of  R is not maximal,  there will be zero rows or columns in H  and G. If the matrix Dl 
is used instead of B in the  above  calculations,  the  zero  rows or  columns will be  at  the right or  bot- 
tom,  and  the  dimensions may  be easily reduced.  This  latter is the  procedure used in subroutine 
DECGEN. 
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Computation 

In practice,  the  subroutine  is very short;  it calls on PSEUP  and  INV to  do  the  computations. 
No flowchart  is  needed, since there  are no loops of any  consequence. 

Step I 

The  matrix size is tested  for  reasonableness,  with  an  error  exit if it  is  not. KP( 1) is set to 
special  negative  values to  suppress  reinversion  by  PSEUP,  and to change  somewhat  the  matrix 
outputs.  This  change is not discussed  in  PSEUP. 

Step 2 

Entry  point PSEUP is used to diagonalize the  input.  C  holds  a  matrix T such  that 
TATt = B, a  matrix  of 0’s and 1’s. If the  rank  only  option is input,  the  routine  skips  to  step 4. 

Step 3 

Subroutine  INV  puts  an inverse of T into D. The flag PIV is tested. If zero, INV 
failed;  the  routine  prints  an  error message. INV  uses matrix J. 

Step 4 

The  matrix E, which is matrix  of 0’s and I’s, is scanned  along  its  diagonal.  A  matrix p of 
0’s and 1’s is constructed  such  that 

PEPt = I, 

1, has all 1’s moved to  extreme  upper  left  corner.  A  record of successive diagonal  positions  that 
are 0 is kept. As each 1 is found in the diagonal  in position  k,  the  record is checked to see if 
there is an earlier 0 (or 1 )  that  needs to  have  a 1 permuted  into  its place j by  permutation p. 
If so, a 1 is put  into  position j ,  k of P. Premultiplication by  P will move  position k, k to j .  k.  
Postmultiplication by Pt will move j ,  k to position j, j .  Position  k,  k is also  marked  as a 
hole  that  could be filled  by  a 1 lower on the  diagonal, since it vacates  its  old  position.  The 
record in the  first  column  of J has  the  structure  of  a  queue.  Matrix  P is in D I ,  the  second 
matrix  of  dummy  array D. 

Step 5 

Return. 

NOMENCLATURE 

The  nomenclature used in DECOM  is compatible  with  that used in  PSEU,  but  differs 
from  that used in the ASP manual  description  of  the  decomposition  routine, p. 154. Also, 
since DECGEN requires  dummy  storage,  the  nomenclature  there is different again. The 
following  table  lists  the  correlations: 
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DECOM 

A 

B 

C 

E 

D 

D l  

J 

DECGEN 

DUM1 

DUM( N7) 

DUM(N4) 

DUM(N.5) 

DUM( N2) 

DUM(N3) 

DUM(N6) 

ASP 

AAT 

E 

S 

P 
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APPENDIX  B 

LISTINGS OF ALL  VASP  SUBROUTINES 
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\D S I J H R O 1 I T I N E   P R N T ( A K , N A R , N A M , I P )  
C   S U H R   P R N T   P R I N T S   D U r J R L E   P R E C I S I O N   M A T R I X  

COMMON / F l l R M / N E P R , F M T 1 ( 6 ) , F M T 2 ( 6 )  
C O M M O N / L I N E S / N L P I L I N I T ~ T L E ( ~ ~ )  
C OMM ON /MA X /  MAXRC 

C- N O T E   N L P  N O o  L T N E S / P A G E   V A R I E S   W I T H   T H E   I N S T A L L A T I O N .  
D A T A   K Z , K L . ! q K R   / l H O ,   1 H 1 , l H  / 
R E A L * 8  A R  D 

NAMF = NAM 
D I M E N S I O N   A R ( l ) , N A K ( 2 )  

C - I F   I P   = l , H E A D L I r \ l E   S A M E   P A G E ,   I F   I P  = 2 9  H E A D L I N I E t  NEW PAGE 
c, I P = 3 ,  NO H F A O C I N E ~   S A M E   P A G E ,   I P = 4 1  \'(.I H E A D L I N E ,  -hIEbJ PAGE 

T T  = TP 

10 CALL L N C N T ( 1 0 0 )  
11 C A L L   L N C N T ( 2  1 

3 W R I T E ( 6 9 1 7 7 )   K Z , N A M E , N R , N C  

G O  T O   1 3  
1 2  C A L L   L N C N T ( 1 0 0 )  

G O  T O  1 3  
132 CALL LNCI\ IT(  2') 

W R I T E  (6 ,891 )  

NLPW = 3 







CALL ASPERR 

E ND 





I 

I 

300 f3( 1 )=A(   1 ) : kS  
1000 RETURN 

999 C A L L   L M C N T (  1 )  
W R I T E  ( 6 9 5 0 )  N A  

50 FORMAT ( 1  n I M E N S I 1 3 N  E R R O R  I N  S C A L E  I \ I A = 1 2 1 h )  
C A L L   A S P E R R  
R E T U R N  
E NO 



I F  ( N R  .LT .~ .OR.L .LT.~ .OR.L .GT.MAXKC)  c,n T O  9 9 9  
IR=O 
D O  300 I = l , N R  
I J = I - N R  

I J= I J + N R  
I R = I R + l  

300 B ( I R ) = A (  I J )  
RETI.JRN 

999 C A L L   L N C N T ( 1 )  

DO 3 0 0  J=l,NC 

W R I T E  (6 ,501 N A  
5 0  FORMAT ( I  DTMENS10h I   ERRnR I N  T K A N P  NA='2Ih) 

CALL ASPERR 
RETIJRN 
END 







K J  = K - N 

170 7 5  J= 1, 
K J  = K J  + I \ l  

I F ( J  - K )  709 7 5 ,  7 0  
70 A ( K J )  = A ( K J ) / H I G A  
7 5  C O N T I N I J E  

C PRUDUCT OF P I \ I O T S  
D E T = D E T * R   I G A  

A ( K K 1  = l . / P I G A  
C R E P L A C E   P T V O T  t 3 Y  K E C I P R n C A L  

D O  110 J= 11 bJ 
.JK = J O  + J 
HOLD = A ( J K 1  
J I  = JR + J 
A ( J K )  = - A ( J I )  

110 A ( J I )  = HOLD 
120 NPK=N+K 

J=L ( N P K  1 

1 2 5  K I  = K - 
I F ( J  - K )  100,  100 ,  1 2 5  

Df l  130 I= 1, 
K I  = K I  + N 
H O L D  = A ( K I )  
J I = K I - K + J  
A ( K I  1 = - A ( J I )  

130 A ( J T  1 = H n L n  

w 0 





MAR = M A (  1) 
NAG = N A ( 2 )  
L=NAR* hlAC 
IF ( N A R  .LT.l.OR.L.LT.l.OR.L.(;T.lvIAXKC) G O  T O  999 
COLMAX = 0 .  
R O W M A X  = n. 
K = 0 
no 300 I = 1,LIAC 
SUM = 0 .  
DO 3 0 1  J = 1 T N A R  
K = K + l  

I F  (COLMAX.LT.SIJM)  COLMAX = SIlivi 
3 0 1  SUM = SLIM + D A B S ( A ( K 1 )  

300 C O N T I N U E  
DO 302 I = 1 T N A R  
SUM = 0.  
K = I - hlAR 

K = K + LIAR 

I F  (ROWMAX.LT.SIJM 1 KO!.JMAX=SlIM 

DO 303 J = l T N A C  

303 S U M  = SUM + D A R S ( A ( K 1  1 

302 C ONT I NIIE 
AhlORM = @ M I N I .  (COLMAX,ROWMAXI 
R E T I I R N  

999 C A L L   L N C N T  ( 1) 
W R I T E  ( 6 . 9 5 0 )  N A  

S O  FOR.MAT ( D I M E N S 1  ON ERROR I N  N U K b i  1\14=12 I 6  1 
C A L L   A S P E R R  
R E T I J R N  
E ND 



J = -  N A (  1) - 
N A X  = N A (  1 j 
D O  3 0 0  I = l , N A X  
J=NAX +J+ 1 

G O  T O  1000 
300 A ( J ) = l .  

999 CALL LNCNT ( 1 )  

CALL A S P E R R  
1000 RET(IRhI 

" 

END 



COMMON /MPX/MAXRC 
I F  ( N A ( 1   ) . M F . N A ( 2 ) )  G O  TT) 6 0 0  

W R I T E  (6 ,1600)  N A  
1600 FORMAT ( I  T R A C E   R E Q U I R E S   S O I J A R E   M A T K I  X h!h= ' 9 21 h ) 

C A L L  A S P E R P  
R E T U R N  
END 



e 
0 
03 

300 B ( I )  A ( I )  

999 CALL  LNCNT ( 1  1 

- - 
1000 RETURN 

!dRITE ( 6 7 5 0 )  NA 
50 FORMAT ( 1  D I M E N S I O N  ERRnR IN EQUATE I \ I A = l Z I h )  

CALL ASPERR 
RFTIJRN 
END 



S U B R O U T I N E   J U X T C ( A , N A , R , N R , C , N C )  
D I M E N S I O N  A ( 1 ) , 8 ( 1 ) , C ( l ) , N A ( 2 ) , N H ( 2 ) , I \ I C ( 2 )  
DOUBLE P R E C I S I O N   A , B , C  

- 

COMMON  /MAX/MAXRC 

N C (   l ) = N A (  1 )  
N C ( 2 ) = N A ( 2 ) + N B ( 2 )  
L = N A I  1) * N A 1 2 )  
N N C = N C ( l ) + N C ( Z )  
I F  (NA(l).LT.l.OR.L.LT.l.OR.L.GT.MAXRC) GO TO 6 0 0  
I F  (NC(2).LT.l .OR.NNC.GT.MAXRC) GO TO 6 0 0  
MS=NA( 1) *NA ( 2 1 

I F  ( N A ( l ) o h l E o N I 3 ( 1 ) )  G O  T O  600 

10 C( I ) = A (  I )  
M B S = N A ( l ) * N R ( 2 )  

J=MS+I 
2 0  C ( J ) = B (  I )  

D O  2 0   I = l , M B S  

R E T U R N  
600 C A L L   L N C N T (  1 )  

W R I T E  (6,1600) N A , N B  
1600 FORMAT ( ; D I M E N S I O N  E R R O R  I N  JIJXTC, NA= I , 2  Ih ,5X,  'h!R=' 7 2  1 6 )  

CALL ASPERR 
R E T U R N  





NB ( 1) =NR 
NB( 2 1 =NCC 
L D= N R *  NCC 
I F  (MR.NE.NCC.OR.~IR.LT. 1 . ~ K . L ~ . G T  . M A X R C  1 GO -ru 998 

T = T T  
CALL N@RM( A ,NA V A M A A  1 
TMAX= 10 .01 /ANAA 
K=O 

101 I F  ( T M A X - T  1 103,104,104 
103 K = K + 1  - - T/7*sK 

I F  (K-1000) 10 1 ~ 1 0 2 ~ 1 0 2  
104 S C = T  

CALL SCALE( ATNA ,A ,NAY T )  
D O  4 0 1   I =  1, 2 

431 N B ( 1 )  = N A ( 1 )  
CALL UhIITY(B,NB 1 
CALL S C A L E ( R T N B T D I J M M Y ( ~ ) ~ N B , T )  
S = T/2. 

I 1=2 



W R I T E  ( h y l l n )  
110 F O R M 4 T  ( E R R O R  IN E A T  K I S  N E G A T I V E ' )  



P 

I 

IF(KDUM oLToNDD) G O  T O  998 
hlDD= tr)A ( 1 1 M I A  ( 1) +1 
T =TT 
CALL NORM(AyNA,ANAA) 
T M A X =  10.0 1 / A N A A  
K = O  

101  I F  ( T M A X - T  1 103,104,104 
103 K = K + 1  

T=TT/2**K 
I F  (K-1000) 10 1 9 1  02,102 

1 0 4  S C = T  
CALL SCALE( A,MA ,A T N A T  T )  
CALL UNITY(BpNB1 
I I = 2  
N = 35 
CALL A D D ( A ~ N A , B , t r I B , D U M M Y ( l ) r N D )  
CALL E O U A T E ( A , N A , D U M M Y f N D ~ ) T N ~ )  

106 CALL MIJLT(A,NA ,DIJHMY(NDD) T N D T B T ~ I ~  I 
S = l . D O / I I  
CALL SCALE(R,hlB,DUMMYIMDD),ND,S) 
CALL A O D ( D I J M M Y ( N D D ) , N D , D I I M M Y ( l )   T N D T B T N B )  
CALL E O U A T E ( B , N B , D U M M Y ( l ) , ~ I ~ )  %..I 

N=N- 1 
I F  ( N )  107,107,105 

105 I I = I I + l  
+ 
+ G O  T O  106 
w 



107 I F  ( K )  10991089212 
109 CALL LNCNT (1)  

110 FORMAT ( 8  E R R O R  I N  E T P H I  K I S  NEGATIVE')  

2 1 3   K = l  

W R I T E  (6,1101 

1 1 2   I F  ( K - 1 )  21392129212 

212 nrl  111 J=l ,K 
T = 2 2: T 





I. " 



M P 2 =   N S O + N P l  
NP3=NSO+NP2 
MP4=  NSO+hIP3 





401  CALL L K N T  ( 1 )  
W R I T E  ( 6 9  5 0 )  N T O T  
CALL PRNT ( K , h ! K T ' K (  T l ' T l )  

G O  T O  4 0 3  
402 CALL LNCNT ( 1 )  

W R I T E  ( 6 9  5 0 )  NTOT 

I F ( A L - . 0 0 0 0 1 )   2 1 0 ~ 2 1 0 ~ 4 0 3  
403 C ONT INUE 

c REARRANGE PHI M A T R I X  
210 CALL EBUATE(PHI(l)rNM,W(l),NM) 







I L S T =  I 
T=I+1 
I F   ( A L . L E 0 . 0 0 0 0 1 )  G O  TC) 300  
I F  ( 1 . G E . h I F I N )  G O  Tn 310 

c f N T F R M E D   I A T F   P R I  i\lT 





DATA S T A R / I * I  / 
I F ( N F ( Z ) o N E o N G ( l )  o O R o  N J ( 2 ) o N E o N R ( l )  o O R o  N K ( 2 ) o N E o N X ( l )  o O R o  

l N J ( 1 1  N t  NK ( 1 1  11K N K ( 2 1  N t  N X ( Z 1  IJK N H I Z )  N t  X ( 1 1  CIK 0 0  0 0  0 0  0 0  0 0 N 0 0  

Z N F ( 2 )   o N E o N X ( 1 ) )  G O  T O  999 
M A X  = h F ( l ) * ( N F ( Z )   + N G ( 2 ) +  1)  + N H ( l ) + N K ( l )  
I F  (KDIJM . L T .  M A X )  G O  T O  9 1 0  
I1 = 1 
MSO = N F ( I 1 )   * N F I I l )  
NX4 = NSO *4  

C 

C TRNSI P R O G R A M  
I F  (KDIJM . L T 0  NX4 1 G O  TO 900 

N2 = I 1  + NSO 
N3 = N 2  + NS(3 
N4  = N3 + NSQ 
L 3  = N 2  + N F ( I l ) * N G ( 2 )  
L 4  = L 3  + N J ( I l ) g < N R ( 2 )  
L S  = L 4  + N H ( 1 )  
L 6  = L 5  + N J ( T l ) * N R ( 2 )  
T l  = T ( 1 )  

NXR = N X ( I l )  
LAST = L h  - I1  - 

TT = T ( 4 )  

" 

N = ( T ( 2 )  + o S * T l ) / T l  
- 

- - . .. . . -. . _____ . 

CALL PRNT (FvNF,  I F ' 9 1 )  

CALL E A T ( F , N F , T ~ ~ ~ U M M Y ( N ~ ) T N N F T ~ I J M M Y ( N ~ ) , N N F T ~ U M M Y ( I ~ ) T K ~ ~ . J M )  
100 FORMAT(1HO 1 P R t l h .  I )  

CALL  PRNT(DIJMMY(N3)r NFT ' E A T  ' 9  1 )  
CALL E O U A T E ( D I J M M Y ( N 3 ) , N F , D U M M Y o 1 N N F )  
CALL  PRNT(DUMMY(N41,   NFT.   ' INT ' 9  1) 
CALL  MULT(DUMMY(N4)?  ~ F T G , N G t D I l M M Y ( N 2 ) t h l N G )  
CALL  MULT(   J ,NJrR(NRtDlJMMY(L3)  ,NII) 

~" _ _ . _ ~  "~ 

CALL LNCNT ( 1 0 0 )  
CALL LNCNT ( 3 )  

-. - 



5 0  FORMAT(1HO  'TRANSIENT RESPONSE, * INDICATES CONTRnL CHANGES') 
W R I T E ( 6 ,   5 1 )   N X R T   N H ( I l ) , N K ( I l )  

5 1  FORMAT(1HO 4 X y ' T I M E  F I R S T ' p I 3 , '  ELEMENTS CONTAIN X T  N ~ X T ' T ~ ~ T '  
1 ELEMENTS CONTAIN Y = HX, L A S T ' T I ~ , '  ELEMENTS CONTAIN U =JR - K X '  
7 )  

" 

202 CALL  WULT(DlJMMY(I1)T NNFT X, NXT DIJMMY(L6 I T N N X )  
CALL  WULT(DUMMY(N2)TNGT  DUMMY(L5)r NU, X, NNX) 
CALL  ADD(XrNXrDUMMY(L6  )*NNX,  XINNX) 

G O  T O  2 0 3  
C 
C DIMENSION ERROR DIAGNOSTIC 

999 WRITE(6 ,  990) 
990 FORMAT(1HO  'DIMENSION ERROR I N   T R N S I ' / 2 5 X y ' C O L  S I Z E  OF 1ST  MATRIX 

1 ROW S I Z E  OF 2ND M A T R I X ' )  
W R I T E ( 6 r 9 9 1 )   N F ( 2 ) r   N G ( 1 )  



1 S I Z E  OF R I S '  1593Xq 'OF X I S '  1 5 )  
9 9 5  FORMAT(1HO ' H  X '  1 7 X , I 1 5 , 2 O X , I 8 )  
996 FORMAT(1HO  'EXP(FoT1 X '  l O X 9 I 1 5 ~ 2 O X ~ I 8 )  

G O  TO 1000 
900 W R I l t ( 6 ,  52) NX4tKUUM 

52  FORMAT(1HO 'DUMMY MUST B E  DIMENSIONED AT LEAST'  1 4 9  ' X 1' 'BIJT I S  
1 DIMENSIONED  ONLY' 1 4 9 '  X 1 ' )  

G O  T O  1000 
910 W R I T E ( 6 9  5 2 )  MAX9KDUM 

1000 CALL ASPERR 
R E~TU R N 
END 



0 0  10 I=1,2 
D E P   ( I ) = O . O  

10 I P (  I ) = O  
20  I P ( 3 ) = N A ( l )  

E N D  





G O  T O   1 5 0  

C A L L   T R A N P   ( Y y N H , G y N G )  



e 
w 
0 

DOUBLE PRECISION A 
I F  ( N Z ( l l . F O . 0 )  G O  Tfl 410 
NR=I\IZ( 1) 
ryC=NZ ( 2 1 
h lLST=NR*NC 
J F ( N L S T  .GT.  MAXRC .OR. NLST  .LT.   1 .OR.NR.LT. l )  G O  T O  16 
D O  400 I = 11 NR 

400 R E A D  (5,101) ( A (  J ) ,  J = I , N L S T , N R )  
NA ( 1 1 =NR 
N A (  2 1 =NC 

410 C A L L   P R M T   { A , M A , N A M , l )  
101 FORMAT ( 8 F l 0 . 2 )  

R E T U R N  
1 6  CALL L h l C N T ( 1 )  



S U B R O U T I N E   A S P E R R  
D A T A  I / l o /  
C A L L   T R A C E  

C ERRTRA I S  T H E  360/67 T R A C E   R a l T I N E   T R A C E  I S  FOR T S S  
C C A L L   E R R T R A  
C T H I S   I S   A N   I N S T A L L A T I O N   D E P E N D E N T   S U R R O I l T I I \ ! F :  
C S U B R O U T I N E   E R R T R A  I S  A S U B R O U T I N E   S U P P L I E D  B Y  THE  AMES  OPERATING 
C S Y S T E M   T O   P R O V I D E   A N   E R R O R   W A L K B A C K  
C T H E   S T A T E M E N T   C A L L   E R R T R A   S H O U L D  BE E T T H F R  
C 1) C H A N G E D   T O   M A T C H   T H E   I I S E R S  0 P E K A T I N G  SYSTEM, 
C OR 2) OELETED  ALTOGETHER.  

I=I-1 
I F  (1.GT.O)  RETURN 
I= 10 
W R I T E  (6,100) 

100 FORMAT ( 1  TOO MANY  ERRORS. E X I T   C A L L E D ' )  
C A L L   E X I T  
R E T I I R N  
F Nl3 



C O M M O N / L I N E S / M L P , L I N , T I T L E ( 2 3 )  
C OMM ON /MA X /  MAXRC 
D A T A   M A X R C / 6 4 0 0 /  

C- N O T E   N L P  N O .  L I N E S / P A G E   V A R I E S   W I T H   T H E   I N S T A L L A T I O N .  
D A T A   L I N , N L P / 1 , 4 5 /  
D A T A   N E P R y F M T 1  / 7 , 1 ( 1 ~ 7 n i 6 . 7 ) ~  
D A T A   F M T 2 / ' ( 3 X , l P 7 D l h * 7 ) ' /  
D A T A   T I T L E  /19*1 7 1 \ /ASP  PROGRAM ' /  
END 



C-  SUBR  TO  COMPUTE  PSEUDO-INVERSE CF G E N E R A L   M A T R I X ,   R E T U R N   F I N A L   P I V O T  
C o o .  N O T E   I M P L I T   S T A T E M E N T S  MUST  BE - F I R S T -  CAhl RE R E P L A C E D   B Y   T Y P E  

I M P L I C I T   R E A L * 8   ( D l ,   I N T E G E R * 2  ( 0 )  
COMMON /MAX/MAXRC 

I N T E G E R * 2  M 
C D O U B L E   P R E C I S I O N   I S   T H E   O N L Y   T H I N G   E S S E N T I A L .  

D O U B L E   P R E C I S I O N   A V B T C T E E ,  D 
D I M E N S I O N  A ( 4 0 0 ) , B ( 4 0 0 ) , C ( 4 0 0 ) 1 E E ( 4 0 0 ) 1  1 7 ( 2 0 0 0 ) ~  

1 K R V ( 4 ) ,  
2 D E P ( 3 1 ,   D P R ( 2 ) 9   I P ( 4 ) T   J P ( 5 )  

DATA  ICC,  DFZO / 240000000 ,  0.DO / 
E Q U I V A L E N C E ( D D I , F D I ~ I D D ) 1 o M X , F M X )  
E Q U I V A L E N C E ( D D I , D S U M ) ~ ( D F Z O I F Z O ~ F Z R O , I Z T ~ Z ) ~ ( ~ L L ~ ~ R ~ ) T  ( K R V ( l ) , K R C ) ,  

OPS = 1 
G O  T O  1000 

Q P S  = I Z  
I P ( 4 )  = I P ( 3 )  

1000 C O N T I N U E  
D P 1  = D E P ( 1 )  

1 ( K R V ( 7 ) r K R C 2 ) r ( K R V ( 3 ) r K R C 3 ) r ( K R V ( 4 ) r K R C 4 )  

E N T R Y   P S E U   P ( A , R I C , E E ~ D E P , I P T  D )  

E F 2  = S N G L ( D E P ( 2 ) )  
C- S E T   D E F A U L T   V A L U E S  OF TOLERANCES 

I F ( D E P ( 1 )  .EQ.  DFZO) D P 1  = 2.0-6 
I F ( E F 2  .EO. F Z R O )   E F 2  = 1.0 
NCA = I P ( 4 )  

C NUMBER  OF ROWS OF O R I G N A L   I N P U T   M A T R I X  
~. 

OR = I P ( 3 )  

ONT = (3R*NCA 
C-  SET SW FOR =Ot D O  ALL STEPS,   NOT=O,   THEN .WANT RAhlK T)I\lLY. 

C- T E S T   D I M E N S I O N S   I N P U T  FOR  REASONARLENESS. 
I F ( Q N T   . L T .  2 .OR. ONT .GT.  MAXRC.OR.OR.LT.1) GO TO 691  

C- I F   D I M E N S I O N S  ABSIJRD,  PSEIJ ERR E X I T  1. 
ODCM = I P ( 1 )  
O I T R  = QDCM 

* I F ( O D C M   . L T .  0 2 )  O I T R  = QDCM +1  
% NR = QR 



L 

w c- T E S T   T O  SEE I F  S Y M M E T R I Z A T I O N  I S  NEEDED. 
P 

I F ( 0 P S  1 16, 150. 1 6  
c- T E S T  T O  FIND SMALLER DIMENSION OF MATRIX. 
16  I F ( n K  - N C b )  1 8 T 1 8 , 1 9  
19 RI R = NC A 

O L L  = OR 
(STP = 1 7  
G O  T O  170 

O X  = f\!R 
O R 2  = 1 
O L L  = NCA 
O T P  = 1 

1 8  C OMT I hlllE 

170 C O N T I N U E  
C- S E T  ROM-CCLIJMN L I M I T   T O   A P P R O P R I A T E   C A S E ,   E I T H E R  ROW OR C n L M   D I M E N S .  

0 0  1 8 1  I = l r  WR 
D O  1 8 1  K N R  
DSIJM = D F Z O  

G O  T O  1 8 8  
C- H E R E  M O V E  A T n  R. A I S  A L R E A O Y   P O S I T I V E   D E F I N I T E .  
1 5 0  DO 1 5 1  L = 1 7  OhlT 
1 5 1  R ( L )  = A ( L )  
C-• F O R C E   S Y M M E T R I Z A T I O N  OF R e  T O  COMPENSATE FOR R O U N D - O F F , M I J L T I P L I C .  
18.8 D O  1 8 9  I = I T  NR 

D O  189  K =1, hlR 
C c  R ( I , K )  = R ( K , I )  = 1 / 2  I R ( I , K )  + R I K T I )  1 

L = I + ( K - 1  ) * N R  
M = K + ( I - l ) * N R  



DSUM = ( B ( L )  + R I M )  1 * 0.500 
B ( L )  = nSllM 

1 R 9  R I M  1 - - I IM 
C HERE  SET  UP CALL - I N I T I A L -  OF ANDRA.  ONLY  COMES  HERE ONCE PER  MATRIX .  

ONT = NR*NR 
KRC = ONT 
K R C 2  = OhlT + KRC 
K R C 3  = ONT + KRC2 
K R C 4  = OhlT + K R C 3  

C - *   O M I T   S A V I N G  OF B ,  I F  R A N K  ONLY AN13 N O  ITERATICIrV 
I F ( I P ( 2 )  .NE. I Z  .AND. Q I T R  .EO. 1 2 )  GO TO 2 0 0  
DO 1891 I =1, QNT 

1891 D l 1 1  = B ( 1 )  
200 C O N T I N U E  
C- S E A R C H   D I A G O N A L  OF I N P U T  FOR  LARGEST  ELEMENT. r l S E  T n   I I E F I N E   F L .   P T .  

O R 1  = NR + 1 
L = l  
DMX = OF20 
M = I Z  
DO 23  I = 1, NR 
D D I  = D A B S (  B ( L )  1 
I F ( F M X  .GE.  F D I )  GO T O  2 3  

- 

M = L  
FMX = F O I  

2 3  L = Q R 1  + L 

C- SET TI71 FRANCE  FOR  ANDRA L I M I T  OF S I Z E  O F   D I A G O N A L  
I F ( M  .EQ. 1 2 )  G O  T O   6 9 2  

C TOLERANCE OF ZERO I N  ANDRA  CALL. 
D P R ( 1 )  = D A R S ( D P l *  B ( M ) )  

J P ( 1 )  = I Z  
C - ASK FOR ALL ROWS, DONE I N  1 C A L L  .. 

C- JP2 F I R S T   T I M E   I N I T I A L I Z A T I O N  FOR ANDRA 

I F ( O I T  .NE. 0 2 )  G O  T O  5 6 1  
J P ( 4 )  = NR 
M = I Z  
SOCD = - E F 2  

t; c " H A V E   F I N I S H E D   P R E L I M .   P A R T  
C I N I T I A L I Z A T I O h I  F O R   A N D R A   ( D I A C , O N A L I Z A T I O N )  NOW COMPLETED. 



w - C A L L   A N D R A   - T O   D I A G O N A L I Z E   S Y M M E T R I C   M A T R I X .  
o\ C C A L L   A N D R A   R E D U C E S  ROWS B Y   M O O I F I E D   G A I J S S   M E T H O D ,   I J S I N G   S O R T ( P I V 0 T ) .  

30 C ONT I NUE 

C- S A V E  OLD V A L U E S  I N  C A S E   P I V O T   I S   R E J E C T E D ,   l l N 0 E R   I T E R A T I O N   O P T .  

I J - ~ I S I  IK o t l l o  l J L l  b U  I U  5L 

DO 31 L =1, ONT 
J = K R C  + L 
K = K R C 2  + L 
D t J )  = B ( L 1  

3 1  D ( K )  = C ( L )  
32 C A L L  A N D R A   ( B T C p D P R ,   J P )  

J P ( 1  1 = O I T R  
I R  = J P ( 3 )  

C- CHECK C O M P L E T I O N -  I S   M A T R I X   A L L  DCI\JE I S   M A T R I X   I N V E R T I B L E . .  
I F I B I T R  .EQ. I Z  .OR. I R  .EO. NR .AND. Q T T  .F0. I Z )  GO T f l  700  0 

CHECK I F  I T E R A T I N G   h ! I T H   K H O   T E S T  OR N O T  
C* O l I T   I F  hln I T F R A T I O N  OR N O  NEId P T V U T  FOIJIW 
C,- O M I T   I T E R A T I O N   C A L C S .   I F  N f l  hlEW P I V O T .   O E C R F A S E   T O L E R A N C E  

C C O M P U T E   R H O   F O R   E S T I M A T I N G   T H R E S H H D L D  TO STOP S S  I S  RHO 
I F ( J P ( 5 )  .FO. M )  G O  T O  2 2 0  

S S  = ( B n ~ I R M ( N R , C , E E , D , K R \ / )  + RDNRM(-NR,C,EEID ,KRV)  1 * E F 2  ** I R  
C WHY O N L Y   S h l G L E   P R E C . / T H I S  I S  ONLY A ROI lGH T E S T   T O   S T O P   I T E R A T I O N .  
C T H A T - S  WHY. S I M I L A R L Y ,   O T H E R   I J S E S  OF S I N G L E   P R E C .  

I F ( S 0 L D  .LT. S S  .AND. S X O  .GT. F Z R O )   G O   T O  650 
C- I F  S U B S T A N T I A L   I M P R O V E M E N T   T R Y   A G A I N ,  
C t  O T H E R W I S E   O I J I T T   R E T U R N  JHF A P S E U D O   I N V E R S E ,   € \ / E N  I F  OFF.  
730 CONT I NlJE 

O I T  = 0 1 7  +1  
S O L D  = s s  

M = J P ( 5 )  
I F ( O I T  .EO. N R )  G O  T O  700 

DPR (1) = DPR ( 2  1 * 2.D-5 

C /  S A V E   P R E V I O U S  ROW I N  W H I C H  A P I V O T  WAS FOLIND 

C- P U T  IN S M A L L E R   T O L E R A N C E  I N  C A S E   D I A G O N A L   T O O   S M A L L   O T H E R W I S E .  

C- T R Y   T O   R E D I J C F  1 MORE ROW. 

h 5 0  C ONT I NIJF 
C* R E S T O R E  B AhlO C T O   T H E I R   P R E V I O U S   V A L U E S .   T H E   L A S T   P I V I I T   H A S   B E E N  

I F ( I R  - N R )  307 700, 606 

C R E J E C T E D   ( B A C K - T R A C K )  9 W H I L E   I T E R A T I N G .  



J P ( 3 )  = J P ( 3 )  -1 

J = KRC + I 
K = KRC2 + I 
B ( I )  = D ( J )  

DO 6 5 3  I =1, QNT 

6 5 3  C ( 1 )  = D ( K )  
700 C ONT I hllJE 

I R  = J P ( 3 )  
M = I Z  

L = l  
DO 704 I = 1, NR 
D D I  = B ( L )  

C- H E R E   W I S H   T O   R E P L A C E   M A R K E R S  I N  D I A G O N A L   W I T H   L E G I T I M A T E  1.DO 

I F ( I D D )  7019 7 0 2 ,  7 0 1  
7 0  1 I F ( 1 D D  .MF. I C C )  G O  T O  7101 

B ( L )  = 1.DO 
G O  T O  704 

C A T  7101 FORCE  SMALL  TRASH T n  ZERO. 
7101 R ( L )  = DFZO 
7 0 2  M = 1 
704 L = O R 1  + L 
C - I F  A L R E A D Y   T R I E D   A N O T H E R   R E D U C T I O N ,   T O   G E T  I 4 A T K I X  I N  -1IPPES- I I I A G a  
CQR O M I T   P A R T  OF C A L C U L A T I O N S   I F  ONLY  RANK IS D E S I R E n .  

I F ( I P ( 2 1  .NE. 1 2 1  G O  TO 877 
b 

OOCM SUPPRESSES L A S T   P H A S E  I F  D t C O M  WAS C A L L t R . .  
ZF(M .LT, 1 .OR. QDCM .LT. O Z )  GO TO 8 0  

C BELOW H A V E  S I N G .  M A T R I X   T H A T  NEEDS FURTHER  bIORK. 
C- HAVE M A T R I X  D I A G O N A L I Z E D   W I T H  1 s t  O S  I N T E R S P E R S E D  ( A  I S  S I N G I J L A R )  C- RE-00 T O  GET PS-INV T H A T  M O V E S  A L L  1 s  OF DIAGONAL TO UPPER LEFT DIAG. 
" 

C,To  CmPUTE IJ MATRX AS I N  ASP, FOR T R A N S F O R M I N G  O R I G  R I N   S I N G U L A R   C A S E  
L =t 
DO 527 I = 1 9 N R  
D O  525 J = 1 ~  NR 
K = ( J - l ) * N R  + I 
I F ( B I 4 )  1 5 2 1 , 5 2 2 9 5 2 1  

572 C(K) = - C ( K )  
C ( L )  = D F Z O  

+ 
w G O  T O  525 
4 5:l C ( K )  = D F Z O  



e 
w C4L) = 1.DO 
ca 525 CONTINUE 

57 7 L = OR1 + L 
<-SAVE RANK S O  FAR, SHOULD B E  SAM.E S I Z E   A F T E R   R E - I N V E R S I O N  

O R 2  = IR 
D O  5 4  I = 1, NR 
DO 5 4  K =1q NR 
DSUH = DFZO 

- - ( K - l ) * N R  

H ( J - l ) * N R  + J 
L = Q N + J  

L = Q N + I  
EE( L )  = DSUM 

DO 5 3  3 = 1 ,  NR 

5 3  OSUn = C ( M ) * D ( L )  + DSUM 

54 CONTINUE 
DO 5 6  I =1, NR 
Do 56 K =I, NR 
DSUM = DFZO 
QN = ( K-l)*NR 
00 5 5  J = 1 ,  NR 
t = ( J - l ) * N R  + I 
W = Q N + J  

L = Q N + I  
B ( L )  = DSIIM 

55 DSUM = E E ( L ) B C I M )  + DSIJM 

5 0 CONTINUE 
C T  S E T  IJP FOR  SECONDARY A N D K A  C A L L  F O  I T E R A T I n N  J.P4 = IVR 

O I T  = 1  
C G O  F I N D   L A R G E S T   D I A G .   E L E M E N T   A G A I N  

5 6 1  J P ( 3 )  = I Z  

I R  = J P ( 3 )  

- 
Ga T O  200 

C A L L  ANDRA ( 6 , E E T D P R T  J P )  

C- T E S T   F O R  A C H A N G E  I N  R A N K  . . . ERROR 

568  C A L L  T T R M ( N R T E E T D )  
C- T R A N S F O R M  C SHARP IN D.. R S  = ((U)::: D :k(U T R P )  ) 

I F ( O R 2  - I R )  6 9 3 9  56RT 694  

DO 5 8  I = l e  NR 



DO 58 K =1, NR 
DSUM = D F Z O  
ON = ( K - 1   ) * N R  
DO 57  J = 1 ~  NR 
M = ( J - l ) * N R  + I 

5 7  DSUM = C ( M ) * D ( L )  + DSUM 
L = O N + I  
B ( L )  = DSlJM 

5 8  C  ONT I NUE 
DO 60 I =1,MR 
DO 60 K = l r  NR 
DSUM = D F Z O  
DO 59 J =1, NR 
ON = ( J-1)::NR 
M = Q N + K  
L = O N + I  

. .  
59 DSIJM = B ( L  ) * C ( M )  + DSUM 

L = ( K  - l ) * N R  + I 
- 

EE(  L )  = DSIJM 
60 C O N T I N U E  
C-  NOW R E - E N T E R   M A I N   S E Q U E N C E   W I T H   P S - I N V .  IIV €E.  

G O  T O  808 
C G O  F I X  U P  6 PSIJEDO-INVERSE.  PRESUMABLY H A V E   D I A G O N A L I Z E D  
C. H A V E   D I A G O N A L I Z E D   W I T H   A L L  1s I N  UPPER L E F T  
C-  HERE WE H A V E   F I N I S H E D   D I A G O N A L I Z .  WANT  TO  GET  PSlJEDO  INVm I N  R. 
870  I F ( 0 D T . M   . I T .  (37) G f l  T O   8 7 7  
C N E E D   T O   S A V E   D I A G O N A L I Z E D  R FOR USE B Y  DEGUM  CALL  (ODCM r\lEG. F L A G )  

DO 871 I = 1,ONT 
C-  A WAS SYMMETRIC.   J IJST  MOVE EE T O  6 RETURN  FRnM  PSE l lP   ENTRY 
8 7 1  B ( I )  = E E ( 1 )  

8 0  C O N T I N U E  
C NOW FORM ( T   T R P )  * T = APPROX 6 SHRP  PSUEDIN\ I  I N  MATRX EE 

G O  T O  877 

CALL T  TR M ( N R I C T E E )  
808  I F ( Q P S  .EO. O Z i  G O  T O   8 7 0  

I F ( ( S T P 1  819, 8 1 9 , 8 1 8  



D O  8181  J = 1,NR 
DSUM = O F 2 0  
Q N  = ( J  - 1 ) * N R  

~~~~~~ 

D O  8182  K = l , N R - ~ -  
L = ( 1  - 1 ) * Q R  + K 
M = O N + K  

8 1 8 2  DSUM = DSUM + A ( L ) * E E ( M )  
L = ( J - l ) * N C A  + I 

8 1 8 1  R (  L )  = O S I I M  
G O  T O  877 

8 1 9  D O  8 1 9 1  I = l T N R  

DSUM = D F Z O  

L = ( K  - I . ) * O R  + J 
M = I K  - 1 ) * N C A  + I 

8 1 9 2  DSUM = DSUM + A ( L ) * E E ( M )  

L = ( J  - 1 ) * N C A  + I 

DO A192 K = l T N R  

C- MOTE  NCA I S  USED, BECAUSE  A-SHARP I S  T R A N S P n S E D  I N  DIMENSIONS 

C HERE B = EE ( A  T R A N S )  = ( A  T R P * A ) - S H R P  * ( A  TRANS)   NRA  .GT.  INCA 

C- H E R E   G E T   R E A D Y   T O   R E T U R N  
877 C O N T I N U E  
C- M O V E  RANK TO R E T U R N   P A R A M E T E R  

. .  

I P ( 2 )  = I R  
DEP ( 3 )  = D P R ( 2 )  

R E T U R N  
C. A R f l V F   R F T l J R N   F I N A I   P I V C r r   F R O M   A N D R A   A L G .   D I A G O N A L I Z A T I O N  

691 CALL L M C N T (  1) 
W R I T E  (6 ,1691)  OR,NCA 

1691 FORMAT ( 4  D I M E N S I O N   E R R O R  I N  P S E U  N A = l Z I h )  
G O  T O  1700 

6 9 2   C A L L   L N C N T (  1) 
W R I T E  ( 6 9 1 6 9 2 )  

1 6 9 2   F O R M A T  ( '  ERROR I N  PSEIJ - D I A G O N A L   E L E M E h I T S  nF M A T R I X = O l )  
G O  T O  1700 

693 CALL L N C N T ( 1 )  
W R I T E  ( 6 9 1 6 9 3 )  

1693 FORMAT ( 1  ERROR I N  PSEtJ  RANK  HAS  LIECREASED  C( lMPl lTATI0N E N D E D I )  
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P 
h) F U N C T I O N   R D N R M ( N R t C T , E E t n , K R V )  

I N T E G E R * 2  OF 
D O U B L E   P R E C I S I O N   C T T E E t D ,  AN,BRY DFZO,DSIlI4 
D I M E N S I O N   C T ( 4 0 0 ) , E E ( 4 0 0 ) 1  11(2000)9  h ! \ / ( 2 ) ,  K R V ( 4 )  

C- D HOLDS 5 M A T R I C E S .   T H E   F I R S T   A N D   T H E  L A S T  2 A R E  llSEn P E S E  
D I M E N S I O N   P P P ( 2 )  

D A T A  D F Z O  / O . D O /  
E B U I V A L E N C E ( A M , F N )  7 ( B R T F R )  

C T  E Q U I V A L E N C E S  BELOW J U S T  T O  S A V E   S T O R A G E  
E O U I V A L f N C E ( D F Z O ~ I Z ) , ( A N 1 D S U M ) , ( B R , P P P ( 1 ) ~ 1  ) T ( P P P ( ~ ) ~ K ) ~  

1 ( N V ( ~ ) ~ L ) T ( N V ( ~ ) ~ M ) I ( I R , ~ I L )  
C T E S T Y ,  I F  NR NEG.,THEI\I T R A N S P O S E   R O L E S  UF L) A h1II ( C T T R P, ill S :::C T 1 

OF = NR 
K D 3  = K R V ( 3 )  
K D 4  = K R V ( 4 )  
I F ( N R 1  109 10, 20 
E N T R Y   T T R M ( N R 9 C T V E E )  

C T O  D O  T T R  * 7 O N L Y   E N T R Y   T T R M  
OF = IZ 
GO T O  20 

10 NR = -NR 
20 I R  = NR 

DO 30 I = 1, I R  
L L  = ( I - l ) * I R  
DO 30 K - I R  
OSUM = D F Z O  
KK = ( K  - 1 ) * I R  

- 

DO 2 9  J = 1 9  IR 
L = J + L L  
M = J +  KK 

29 DSUM = DSUM + C T l L ) * C T I M )  
C ABOVE F O R M A I N G  T T R A N S P O S E   T I M E S  T. W H I C H  I S  APPROX . OF H SHARP 

L = ¶ + K K  
I F ( 0 F )  3 1 9  399 32 

31 KK = K O 3  + L 



G O  T O  30 
C-39 COMPUTE T TRbNSPOSE * T oF\ILY.. P R O V I D E S   I N V E R S E  R SHARP 
39 E E ( L 1  = DSUM 

GO T O  30 

C A L L  N O R M ( n ( K n 3 + 1 ) , ~ t \ / , R K )  
C O I J O T I F N T   N F A R S  0.0 A S   B S H R P   A P P R O A C H E S   T H A T   F I T T I I \ ! G  2 MO(lR-PEMRSE AXIf l lv l  

9 R E T I I R N  
RDNRM = F N  / FR 

66 BDNRM=FN 
C 6 6   I S  A DUMMY REALLY  WANT  MATRX  MIJLT.  OIVLY. 

G O  T O  9 

END 
C S I D E   C O M P U T A T I O N S  J W ANDREldS  INF.   SYSTEMS Cn. MAY 1969 

c 

w P 



c 
P 
P S U B R O U T I N E   A N D R A ( B   , T , D P R I J P )  

C- S U B R O U T I N E   A N D R A   D I A G O N A L I Z E S   P O S . 0 k F . S Y M P I .  J ANDREWS I . s. cn. 
C - S U E R   A N D R A   C A L L E D  B Y  PSEIJ  J W A N D R E \ z S )   I N F o   S Y S T E M S  G O .  A P R I L  1969 

I M P L I C I T   R E A L * 8  ( D l ,  I N T E G E R * Z  ( 0 )  
D O U B L E   P R E C I S I O N  B ,  T 
D I M E N S I O N   P ( 4 0 0 ) y   T ( 4 0 0 ) ~   D P R ( 2 1 ,   J P ( 5 )  
E O U I V A L E N C E ( D D I , F D I , I D D ) , ( D C C , I C C ) ( ( D M X , F ~ ~ X ) ~ ( ~ R S T I I S )  
E Q U I V A L E N C E   ( D F Z O T F Z R O ~ I Z )  
D A T A   I C C ,  D F Z O  / Z 4 0 0 0 0 0 0 0 ~  O.DO/ 

C - D P R 1  I S  M A G N I T U D E   T H A T  I S  C O N S I D E R E D  Z R O   P I V n T  MIJST RE Nn SMALER.  
C- D P R ( 2 )  I S   T O   R E T U R N   F I N A L   P I V O T ,  S O  T H A T   U S F R  M A Y   T E S T   S M A L L N E S S .  
CC- ANORA  CAN BE U S E D   A L L   B Y   I T S E L F   T O   G E T   I F \ I V O T   R A N K  OF P0.S  SYMM. 
C N O T F   T H A T   D S Q R T   H A S  T O  B E  T A K E N  OF P I V O T S   A L O N G   T H E   F ) I A G O t \ [ A L .  
C- N O T E  I AM D E L I B E R A T E L Y   A L L O W I N G  S O M E  PARAMETERS T O  CHANGE ON S I J R S E -  
C - O U E N T   C A L L   D P R ( 1 )   C H A N G E S   P I V O T   S I Z E  A ROIJGH  T l lLERANCE  FOR ZRO.  

C- T E S T -  I S  T H I S  AN I N T I A L I Z A T I O N   C A L L /  

C I N T I A L I Z E -  F O R M   I D E N T I T Y   M A T R I X  
1 (3s = J P ( 4 )  

- - GI f D P R ( 1 )  1 

I F ( J P ( 2 ) )  2 9  1, 2 

ONT = QSSOS 
I F ( O $  .LT. 1 .OR. QNT  .GT. 6 4 0 0 )  G O  T O  691 
D O  1 8  I = 1, QNT 

L = l  
O R 1  = OS + 1  
DO 1810 I = 1, O S  
T ( L )  = 1.DO 

1810 L = O R 1  + L 
D P R ( 2 )  = D F Z O  

C- S E T   R A N K   T O  ZRO. T R I A L   P I V O T   V A L I J E   T O   Z E R O .  
O K R  = IZ 

C S E T   P I V O T   C H O I C E   I T E R A T I O N   A T  0 ALLOWANCE CIF Nfl. R O W S + l   I T E R .  
Q I T R  

2 C O N T I N U E  
2 00 C O N T I N U E  - 

18 T ( I )  = D F Z O  

- - 

- Rn n l l T  M A X  T)TAG, A N D   C T  DTAG. T F M P n R A R Y   V A K I A R I  F S  



FMX = F Z R O  
I = IZ 
M = IZ 

L = 1 - O R 1  

I = I + 1  
L = O R 1  + L 
DD.1 = R ( L )  

C- BELOW SEE I F  ALL D I A G  E L E M E N T S   T E S T E D   Y E T  

30 IF(I .EO*  OS) G O  T O  40 

C- G E T   C U R R E N T   D I A G .   E L E M E N T   F O R   I N T E G E R ,   S I N G L E   P R E C  T E S T  
C-  IJPDATE L TO  GET  -NEXT-   D IAG.   ELEIV IENT 
C-BELOW  TEST  FOR D I G .  E L E M E N T   a A L R E A D Y @   R E O U C E D   T n  1. (CODEMARKED)  ,ICC 

I F (  I D D  .EO. I C C )  G O  T O  30 
I F ( F D 1  - F M X )  3 0 9 3 0 ,  32  - 

C- T E S T   F n R   N E G L I G I B L E   F L .   P T .   O T Y o - T K E A T   T H E S E ,  AND i’IEG., AS  ZEROS. 
32 I F ( F D 1   . L T *  E F )  G O  T O  30 
c- S E T  NEW M A X ,  ~ R L E  P R E C  ., S A V E  B E S T  KnW FOR PIVOT X V V I K ~  

OMR = I 
D M X  = D D I  
M = L  

a 

G O  T O  30  
40 S O N T I N U E  

R (  L )  = DDM 

R ( t 0  = DDM 
K = K + l  

L1 L = O S + L  

C”SYMMETRICALLY,   FORCE COL(JYM T O  SAME V A L t I E  I N  B @NLY 

. C  F O R C E   P I V O T   E L E M E N T   T O   E X A C T   V A L U E  OF U N I T Y  
R ( M )  = 1.DG - 

R C- NOW REDlJCE  ALL  ClTHER KOWS OF 8 ,  T, E L I M I N A T I N G   C O L ( J M h l  OF P I V C l T   V A R I A R  
D O  460 I = 1, O S  



c. 
p C- T E S T   F O R   P I \ I O T A L  ROW. O T H E R  RnWS 
a? I F (  I .EO. O M R )  G O  T n  460 

J = I - O S  
K = (3S:kI + J 
D R S  = B ( K )  

I F (  I I S  .EO. ICC) G U  T O  460 

K = Q M R % O S  + J 
DMM = - R ( K )  
L = 0 14 R 
K = I  

- C n E F F ,   T O   R E  ZEKClEO C A N  NnT R E  P R E V I O U S   P I V U T .  

c, RELOW T E S T  FOR A ROW A L R E A D Y  REDIJCEU, TU S K I P  

C- G E T   C O E F F   I N   P J V O T   C O L U M N   T O  B E  E L I M I N A T E O  

DT) 47 J = I T  0s 
C- L I S  ROW USE0 T O  R E D U C E 9   b J I T H   P I V O T .  
C  K I S  C I J R R E N T  ROW T H A T   P I V O T   G E T S   E L I M I N A T E D  FROM. 

R ( K )  = B ( K )  + B ( L ) * D M M  
T ( K )  = T ( K )  + T ( L ) * D M M  
L = Q S + L  

47 K = O S + K  
460 C O N T I N U E  

L = OMR 
D O  461 I = 1 9  O S  

C F O R C E   M O S T  OF P I V O T  ROW T O  Z E R O .   C O P i P L E T E S   P f U l I C T I 0 N   W I T H  1 P I V O T /  

461 L = Q S  + L 

B (  MI = OCC 

J P ( 2 )  = 1 

O K R  = O K R  +1 
D P R ( 2 )  = DMX 
J P ( 5 )  = OMR 

I F ( O K R  .EO. O S )  G O  T O  480 
I F ( J P ( 1 )  .EO. I Z )  G O  T O  490 

B ( L )  = D F Z O  

C F O R C E   P I V O T   T n  3CODEn7  FOR  ONE 0 .  

C- S I G N A L  N O  L O N G E R   F I R S T   T I M E   C A L L E D .  

C" l J P D A T E   E F F E C T I V E   R A N K   F O U N D  

C- NOW T E S T  - I S  T H I S   A N   I T E R A T I O N   T O   O N L Y  1 RC)M A T  A T I M E /  

c (  A T  THIS P O I N T ,  EITHER S T O P  WITH m E  R O W  O K  T R Y  N E X T .  
C H E R E   G E T   R E A D Y   T O   R E T U R N .   R A N K   P A R A l w I l f T E R .  



480 JP( 3 )  = OKR 
R E T U R N  

C I F  ENOUGH T R I E S  T O  D A L L  ROWS PLlJS 1 PIORE, O I I I T .  
490 I F ( Q 1 T R  .EO. O R 1 1  G O  T O  480  

O I T R  = Q I T R  +1 

691  C A L L   L N C N T ( 1 )  
W R I T E  (6 ,1691)  QSTONT 

1691 F n R M A T  ( 1  D I M E N S I O N   E R R O R  I N  ANDRA N R = ' * I 4 , 5 X , ' N R ~ N C = ' I 4 )  
R E T U R N  

692 C A L L   L N C N T (  1) - 

W R I T E - (  6,16923 
1692 FORMAT ( '  ERROR I N  A N D R A ,   F I N D S  NO P I V U T S ' )  

CHECK F O R   D I A G O N A L   A L L O W I N G  NO P I V O T S / /  
505 IF(JP(~)  .E@. I Z  .uR. OKR .GT. O K 1 )  GO TO 692 

G O   T O  480 
END 



c 

~" C- S E T  S P E C I A L   P A R A M S  FOR P S E U   C A L L   T H E S E   A R E   T O   S l l P P R E S S   T H E   W n R K  OF 
C R F - I N V E R T I N G   P S F U O O   I N V E R S F  I N  T H E   C A S E   I r l H E R E  A SINGIILAR.. .  

K P ( 1 )  = - K P ( 1 )  -1 
C- C A L L   P S E I J  P T O  G E T  M A T R I X  T. I N  C 
C M O T E   T H E   L A S T  3 M A T R I C E S  OF T H E  5 I N  0 U S E D   f l N L Y  I F  P S E U P   2 I T E R A T E S i i )  

I = K P ( 2 )  

K P ( 1 )  = O L  
I F ( 1  .NE. I Z )  G O  T O  38 

CALL  PSEIJ  P(A,B,C,E,DCM,KP,  D l  

C /  P L E A S E  D O  N O T   T R Y   T O   T A K E  A.S.P. N A M E S  FClR M A T R I C F S   H E R E .  
C- SIJCH M A T R I C E S  !nlERE MOT RETI IRh lED  BY  ASP,   NOR  BY IdY. R O I I T I N E .  
C 

13  D ( I )  = C ( I )  
nn 1 3  I = 1 ,  ONT " i - 

N V ( 1  ) = O S  



C-  FP H A S  ALL ONES  MOVED T O   E X T R E M E  l l P P E R   L E F T   n F   D I A G n l \ l A L .  
C.:'fi\lOW S E T  U P  T O   M A K E  P P E R M I I T A T I O N  M A T R I X  P = D ( K l 3  +1) 

C.- Z E R O  OIJT P ,  WILL R E  ZEROS  AND  ONES 
DO 3 9  I = 1 ,  ONT 

C-ZERO  HOIJSEKEEPING  ARRAY  ONLY  NEED  F IRST  COLI IMN.  
J L ( I  1 = I Z  
K = K D + I  

3 9  D ( K )  = O F Z O  
L =1 
M = 1  
n L  =1 

7 8 0 3  J = J L ( 0 L )  
CHECK  FOR ROW OF D I A G .  THAT  NEEDS A 1 MOVED I N T O   I T  

I F (  J .EO. IZ) G O   T O   7 R 6  
I = ( K - l ) * O S  + J + Y D  

D ( I )  = 1.D0 
nL = O L  +1 

C / F / A R K   T H I S  1 AS ZRO T O  B E   F I L L E D - -  I T   I S  MOVEn IJP AND OIJTQF HERE 
7 9 0 1  J L ( M )  = K 

M = Y +1 
G r l  T O  780 

7H6 J = K D  + L 
T,.MAKE PART OF I D E N T I T Y   A T  7 8 6  DCN-T  NEED  TO  MOVE 1 T n  A H n L E .  

O (J )  = 1.00 
7 8 0  L = O R 1  + L 
C. R E T U R N .   M A T R I C E S   C O M P L E T E D  E W I T H   I R  li3S D E L I R E S A T F L Y   L E F T  OUT. 

RETIJRN 
c- 
n 6 9 1  CALL L N C N T (  1) 
io I d R I T E  (6 ,1691 1 OSIONT 



1691 FORMAT ( '  D I M E N S I O N   E R R O R  I N  OECOM NC=' , I4 t5X, 'NR: : : I? IC= ' , I4 )  
R E T U R N  

692 C A L L   L N C N T I 1 )  
W R I T E  (6 ,1692)  

1692 FORMAT ( 1  ERROR I N  DECOM PIVOT=ZERO') 
K P  ( 4 )= -OS 
G O  T O  38 
E N D  



APPENDIX C 

USE OF VASP ON AMES’ TSS 

NONCONVERSATIONAL (BATCH OR RJE) 

In  using VASP on  TSS,  the  system  must  be  told  about  the  job  library in which the VASP 
subroutines  are  located,  the  source of input  data,  and  the  location  to  send  output  data;  and  the 
block  data  program  must  be  loaded. 

A  procedure  has  been  written  for  doing  this  automatically.  The call to  the  procedure is 

VASP$$  [input  data  set]  [,output  data  set] 

The  procedure will then  perform  the  steps  indicated  above. If the  first  parameter is omitted,  the 
data will be  taken  from  SYSIN,  which is from  cards in your  data  deck. If an  input  data  set is 
named,  then  the  data will be  taken  from  the  named  data  set,  which  must have  been stored 
previously. 

Likewise, if the second  parameter is omitted,  the  output will be  placed  in  SYSOUT, for 
printing on  the high-speed printer. If an  output  data  set is named,  the  output will be  placed in 
that  data  set. 

If the  name  of  the  input  or  output  data  set  must be changed, use the  procedure call 

CHNGIN [new  input  data  set  name] 

CHNGOUT [new  output  data  set  name] 

These  two  procedures will then  change  the  DDEF to  the new data  set  name. If  the 
parameter is omitted,  the new data set  name will  be SYSIN or SYSOUT.  A  listing  of  these 
procedures is included  in  this  appendix. 

CONVERSATIONAL 

Provisions  have also been  made  to  allow  conversational use of the VASP program, so that  the 
user  can easily perform  matrix  operations.  The  operations can be  strung  together in a  sequence  as 
desired with  as  much  output as desired.  The user indicates  the  operations  by use of Fortran 
statements,  and  may  not  only call the VASP subroutines,  but also may  execute  any  other  Fortran 
statements  that  he wishes. 

Data  are  requested for  the  program  by  means  of  subroutine  INPUT,  allowing  free-form  data 
from  the  typewriter. If Fortran  type  input is used, the  data  should also be  obtained  from  the 
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typewriter. If you  try  to  use  an  input  data  set,  INPUT will also  read the same data set. 
Variables  may  also  be set  by  Fortran  arithmetic  statements. 

Output may be  from  the VASP subroutine  PRNT,  or  any  Fortran WRITE or  PRINT 
statement.  Two  standard  formats  are available if desired for  unlabeled  output. 

The program automatically  dimensions 14 arrays to  the desired  size,  and the user may 
‘, supply  his  own  names to  7 of them. 

Usage 

The use of conversational VASP is demonstrated  by  the  accompanying figure  (fig. 9). 
Lower case letters  are  input  and  upper case are the  computer responses.  Detailed comments  on 
the various statements  follow.  To  start,  the user calls VASP$$  (line 1) as for  nonconversational 
usage. If  desired,  an output  data set may be  named.  Line 2 lists the DDNAME being  used. 

The  next  two lines  (lines 3 and  4)  indicate  where  input  and  output are to  reside. The 
computer  then gives an  underscore,  after  which  the  procedure “CONVASP”  is  called. The param- 
eters of this  procedure  are  first  the  total  number  of  elements  in  a  matrix, followed by up  to 
seven matrix  names. If the  parameters  are  defaulted,  the  system will select  matrices  with 9 ele- 
ments,  and  name  the  matrices  A, B, C, W, X, Y, Z. In  addition,  7  dummy  matrices D l  through 
D7 are available for use. In the figure, all matrices are t o  be  dimensioned  16  (line 5 ) ,  the second 
matrix is to be renamed F, and  the Z matrix is to  be  renamed  FSTAR.  That is, if you wish 
to  rename  a specific matrix,  put  a  dollar sign in front of  the original name  and  then  equate  it  to 
the desired  name  as  in the  example.  Fourteen  arrays, NA through  ND7, used for  dimension 
information, are  also  defined and  renamed to agree with  the  working  matrices. 

Lines 6, 7, and 8 then  define the  matrices available. Note  that  no  1-element variables  are 
defined. The user may define  them in his  program but  they will not  be available from  one 
computation  to  the  next. 

The  computer will then ask for  FORTRAN  STATEMENTS?. At this  point,  a  data  set 
SOURCE.MNPG$$  has  been  set up  for  editing  and  the necessary DIMENSION and other initial- 
izing statements have been stored.  These  statements  are  listed in figure 12, lines 4600 through 
6000.  The  computer  prompts  the user with 100 and  the user  may enter any  Fortran  statements 
he wishes. The full power of the  text  editor is  available at  this  point. 

In the  example, we have entered  four  statements,  lines 10 through  13.  Note  that we have 
defined  a single variable t  for use in the  etphi  statement.  The value of  this  variable will not 
be remembered by the  system. 

After  completing  the desired Fortran  statements,  the  user  requests  compilation by entering 
- CMPL (line 14). The  computer  then  indicates  that  compilation is proceeding  (line 15) and will 
give the usual error messages if the  compile is unsuccessful. After  compilation  the program is 
automatically  executed,  and  the  first  item in the  execution is a  request  for  data  from  the  INPUT 
subroutine  (line  16).  Data  are  entered  free  style as in line  17,  with  the  elements  of  the  matrices 
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1 VasPSS 
DDNAME-JB LBO001 _ _ _  - 

- $ " T J T T R O M  TERM1 NAL 
4 OUTPUT TO TERMINAL 

6 *****MATRICES  AVAILABLE,  ALL DIMENSIONED 16, ARE; 
5 convasp  16, , f ,$z=fs tar  

7 A,F,C,W,X,Y,FSTAR;  FOR INPUT OR COMPUTATIONS 
8 .. FOR COMPUTATIONS__W _- .. " 

9 * * * Y * ? W A N  STATEMENTS? 
10 0000100 t=1.0 
11 0000200 c a l l   e t p h i  (f,nf,t,a,na,dl,3,2) 
Y c a l l  p r n t  ( f ,n f , ' f  TLl) 

13 0000400 c a l l  p r n t  (a,na,'a ',l) 
14 0 0 0 0 5 0 0 ~ c r n p l  

16 DATA? 
17 f = 1 . 1 , 1 . 2 , 1 . 3 , 1 . 4 , 2 . 1 , 2 . 2 , 2 . 3 , 2 . 4 , 3 . 1 , 3 . 2 ~ ~ ~ ~ 3 . 3 . 4 ~ 4 . 1 ~ 4 . 7 ~ ~ . 3 ~ 4 - ~ ~ n f = ~ ~ ~ *  

18 F MATR I X 4 ROWS 4 COLUMNS 
19 1.1000000D 00 2.1000000D 0 0  3.1000000D.a- ~ 

~ " - ~ . ~ ~ - ~ O ~ ~  2.2000000D 0 0  3.2000000D 00 4.2000000D 00 

22 1.4000000D 00 2.4000000D 00 1,40000001) C O  4- lrnonnonn nn 

23 A MATR I X 4 ROWS 4 COLUMNS 

7 5 * * * * W T F G $ $  NOW COMPI  L I NC;***** 
"_ -.-___ - 

21 1.3000000D 00 2.3000000D 00 3.3000000D 00 4.3000000D 00 
." 

29 Lecrnpt  
30 DATA? 

32 f(4)=2.11,2.22,2.33, 
33 f(7)=3.11,3.22,3.33 

-3 T=T. '1 1,-1.72; 1 . 3  3 
- - - - -. - . . "" ...  - - " .  . .""  " - -- -.. . 

3 4 n t  = 3 , 3  
~ - .. " 

35 * 
c 
vl 
w Figure 9.- Example of conversational VASP. 



L 3 6  F MATR 1 X 3 ROWS 3 COLUMNS 
37 1.1100000D 0 0  2.11000000 00 3.1100000D 00 
38 1.22011000D 0 0  2.2200000D 00 -J-&W"QLQQ--" 
3"" - 1 . 3 3 0 0 0 6 0 0 0 0 " "  F. 3300000O 00 3.3300000D 00  

-I-- 

40 A -4 . I."5U31J6m'02 -. . 
MATRI X 3.-ROWS.- , . . - . . . -  "-3 C.OCUMbLs.~- -_  _-.-"____-.-------. 

2.6866611b  02  3.8799809D  02 
42 1.57051531) 02 2 . 8 3 4 6 1 1 7 D  0 2  4.07870809  02 
43 1.6476893D  02  2.96256230-02 4 J . 5 2 D - 0 2  

" T * - G m * * *  
" 

45 L e w r t  

47 0000100 call  mu1 t (a,na,x,nx,y,ny) 
48 0 0 0 0 2 0 0   c a l l  p r n t  ( Y , ' Y  - L .  I 1) 

- 4 4 - Q o 0 - r e v i   s e  Ti3F""" 
50 0000200 c a l l  p r n t  (y,ny, ' y  ',I) 
51 0 0 0 0 3 0 0 - i n s e r t  150 
S f O 1 l C i " ' j F T n i n X i f  
53 - cmpl 
54 *****MNPG$$ NOW COMPl L I N G * * * * *  ~ , ' D A  , *:' "_"" "" .- --.-------~-~- 

56 nx=3,1, x = l .  0, O., 0. * 
57 1.110000D 00 1.220000D 00 1.3300000 00 2.110000D 00 2,2200000.._2,YaaOQa--W-" 

' 3 8 " -  ~ 3 ~ ~ 1 1 ~ 0 ~ ~ ~ K - ~ ~ " 3 ~ . ' 2 2 ~ 0 0 ~ ~ 0 ~ ~  3 . 3 3 0 0 ~ 0 0 D ~ 0 0 ~ " 3 ~ ~ 0 0 0 0 0 D  0 0  3.3OOOOOD 0 0  3.400000D 00  
59 4.100000D 00 4.200000D 0 0  4.300000D 0 0  4.400000D 00 

" - -- - - 
46 * * * F o R T R A N " s f A T E M - E N T ~ ~  " 

, .- " . ". - .  . "- 

"- ""- 

". ". ". .- 

"- 

-"mI 3 Rows - 
X 

- " " - - ""I" 

1 COLUMNS 
61 1.50334130 0 2  

64 *****COMPUTING DONE*****  
65 r e w r t   1 5 0  
Dd-UTUU-7%TL MULT  (A,NA,X,NX,Y,NY) 

"I__.----- "- 

71 *****MNPG$$ NOW COMPl L I N G * * * * *  .__. - . " " 

Figure 9.- Example of conversational VASP - Continued. 



r L ( 1 ( 1 m b O  t ***  ( NOT FOUND WHERE REQUIRED 
7 3   0 0 0 0 3 5 0  CALL  PRNT  X,NX,'X ',l) 
74  W350, c a l l  ~rnt-(x,n-x~.-.x- I --.411...-....-- I .""I__" 
/5" 
76 MOD 1 F I CAT1  ONS? 
77 n "- 
t8 DATA? 
79 * 

W W  MATR I X 3 ROWS 1 COLUMNS 
81 1 . 5 1 3 3 4 1 3 D  02  

- ." _ _ _  ~. " 

82 1 , 5 7 0 5 1 5 3 D  0 2  
1 . 6 4 7 6 8 9 3 D  0 2  

"." 

R3984  

Figure 9.- Example of conversational VASP - Concluded. 



being  entered  columnwise.  Do  not  forget to input  the  matrix  dimensions  such as NF in the 
example.  Data entry is ended  with  an *. Execution  of  the  program  continues; lines 18  through 
27 display the  requested  output,  and  line  28  indicates  completion. 

At  this  point  (line 29) the  computer gives an  underscore  and  the user may do anything  he 
wishes. In  the  example, we are going to recompute  with  the  same  program, using new  data. 
Accordingly, the user  asks for RECMPT  (line  29). The program is again executed,  and  new  data 
are asked for  (line 30). They  are  entered in lines 31  through  35, using  a different  style  than in 
line  17 to  show  the  flexibility available. On  completion  of  the  data  entry,  the  results  are 
printed in lines 36 through  44. 

At  this  point,  it is  desired to rewrite  the  entire  program, so the user issues the  command 
REWRT  (line 45).  The  system,  as  at line 9, prompts  the user with  “FORTRAN  STATEMENTS,” 
and  a line number  (lines 46 and  47),  after  which  the  user  enters  Fortran  statements as  desired. 
Inlthe  example,  line 48 is entered  incorrectly  and  then  corrected  (lines 49 and 50). Following 
this,  a  line 150 was inserted  (lines  5 1 and  52).  Then  a CMPL was issued (line 53)  to compile 
and  execute  the  program. New data were entered  at  line  56,  and lines 57  through  59  are  the 
output  requested  by  the  statement  “print  6,f.”  Note  that all 16 elements  of  f  are  printed 

i using one  of  the  two  FORMAT  statements  compiled  into  the  program  for  convenience (see 
lines 5900  and  6000  of VASPPROC, fig. 12): 

6  FORMAT ( 1 X, 1 P6D  13.6) 

13  FORMAT ( 1 X, 1P4D20.13) 

These  statements  request  the  output  of  a  6  decimal  number  or  a  13  decimal  number.  In  the 
example, we are  printing  a  6  decimal  number.  The  remainder  of  the  output is then  printed 
(lines 60  through  63). 

Now, it is  desired to  rewrite  only  a  portion  of the program  from  line 150  on. Accordingly, 
the  REWLl’  command is issued with  a  parameter  (line  65).  The  system  then erases 
SOURCE.MNPG$$ from line 150 inclusive to  the  end.  It  then lists that  portion  of  the program 
being  used, in this case,  line 100 only  (line  66)  and  prompts  the user for  additional lines  with  a 
line  number  (line  67).  The user then  adds lines as desired  (lines 67  through  69)  and  requests  a 
compile  (line  70).  It  can be seen that line 69 is missing a  left  parenthesis so the compiler  prints 
a  diagnostic  and  requests the line  be  corrected  (lines 72 and  73).  The  correction is entered 
(line 74),  after  which  the  compilation is completed  (lines  75  through  77). No data  are  needed, 
so the  data  request  (line  78) is answered  with * only  (line  79). The results  are  printed on lines 
80 through 88. Since no  more  computations were  desired. a Logoff command was issued 
(lines 89 and  90). 

Housecleaning 

A  procedure called  “CLRVASP” is available. This procedure erases all data  sets  that have 
been  set up by the various other  procedures,  and  allows  the user to  keep his  storage  low. Use of 
the  routine is not required  since the  other  procedures have appropriate erase statements as 
needed. 
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LISTINGS  AND  FLOWCHARTS 

Figure 10 shows  all the  procedures associated with VASP, and  indicates  what  each  one does. 
A complete listing  of the  procedures is given in  figure 11. Figure 12 is  a  listing of data  set 
VASPPROC. If the user  executes  this  data  set,  it will generate all the  procedures  and place them 
in the user’s USERLIB. 

TSS ACCESS 

For access to  the VASP  program,  an  Ames  TSS  user  should  issue the following statements: 

SHARE VASP, FSTJSW, VASP 

which  allows access to  the VASP subroutines 

SHARE VASPPROC,  FSTJSW, VASPPROC 
EXECUTE VASPPROC 

which  first  allows access to a data  set  containing  the  various  procedures,  and  then  enters  these 
procedures  in  the user’s USERLIB. Note  that  the EXECUTE command  sets  up a batch  job, and 
that  the  procedures will not  be available until  that  batch  job is completed,  and  the user  has 
issued either a LOGOFF  or ABEND command.  After  once issuing these  commands  the user 
need  only  call the  procedure,  as discussed earlier. 

Further,  for  conversational use, issue the  command 

SHARE  VASPl , FSTJSW,  VASPl 

which  allows access to  the  proper version of subroutine INPUT. 

157 



VASP$$ 
JBLB VASP 
LOAD  BLKDTA$$ 
Input & Output DDEF 
Default  Options 

CONVASP 
JBLB VASPl 
DISPLAY Matrix Names 
Edit SOURCE. VASPMN$$ 
Compile  VASPMN$$ 
Load  VASPMN$$ 
Edit SOURCE.  MNPG$$ 
EXCERPT  beginning  of  Fortran 

Display FORTRAN STATEMENTS? 
Programs 

CMPL 
Add end of Fortran Program 
Display  MNPG$$  Now  Compiling 
Compile  MNPG$$ 
Call MNPG$$ 
Display  COMPUTING  DONE 

RECMPT 
Call MNPG$$ 

REWRT 
EDIT SOURCE.  MNPG$$ 
EXCISE  Program 
Display FORTRAN STATEMENTS 

or 

CHNGIN 
Change Input DDEF 

CHNGOUT 
Change Output  DDEF 

CLRVASP 
Erase al l  Programs & 
Data  used by Conversational 
VASP 

REWRT N 
Edit SOURCE.  MNPG$$ 
EXCISE from Statement N 

List  program 
to last 

Figure 10.- Flowchart VASP procedures. 

158 



CHNGOUT 0 0 0 0 0 0 0  PROCDEF  CHNGOUT 
CHNGOUT 0000100 PARAM $OUTPUT *"668*2,fj+ REHASF F.imjool " . . ". 

CHNGOUT 0000300 I F  '$OUTPUT' '=";DDEF FT06FOOl,,$OUTPUT;DISPLAY 'OUTPUT PLACED IN DATA  SET $OUTPUT' 
CHNGOUT 0000400 I F  '$OUTPUT' =" ;DISPLAY  'OUTPUT TO TERMINAL' 

. - " . . . . . .  " . - ....... -- . . . . .  - . .. " ". . .... ... 

0000900 
etRttftSP-"m6u6mmm~E+"R 
CLRVASP 0000050 END 
CLRVASP 0 0 0 0 1 0 0  UNLOAD MNPG$$ . . . . .  ...... 

CLRVASP 0000300  ERASE SOURCE.VASPMN$$,SOURCE.MNPG$$,USERLIB(VASPMN$$)  
CLRVASP 0000400 ERASE USERLIR(MNPG$$) e t R v A ~  .68u6~60 ~ t ~ : A S € ~ V A S P I . . .  - . -  "_ -. " 

CLRVASP 0000600 DISPLAY  ' * * * * *ALL CONVERSATIONAL VASP PROGRAMS CLEARED***** '  
CLRVASP 0000700  DISPLAY  ' * * * * *YOU YAY RESTART  WITH  COMVASP********' . . . . .  . 

- - 

.. ... - - -. ..... 
" . . " - . " . " - - - . -. " 

CLRVASP-3000'200 UNLOAD- VASPMN$$ 

.. .. ... 

. . . . .  - .  . ." - - 

CMPL 0~00000 PROCDEF  CMPL 

CMPL 0 0 0 0 0 5 0  ED1 T SOURCE.MNPG$$ 

, .......... "" - -  . f3tPt"--"0030 - ~ D E F A t J L f S Y S l N X = E "  '-  

- -. .- . - 

CMPL 
CMPL 
CMPL 
CM PL 
CMFJt 
CMPL 
CMPL 
CM BL 
CMPL 
CMPL 
CM P t  

0000100-EXCERPT SOURCE.VASPMN$$, ,1600,1700 
0000150 END 
0000200  
0 0 0 0 2 2 0  
"000 64% 
0 0 0 0 2 7 0  
0 0 0 0 3 0 0  
-0000400 
0 0 0 0 6 0 0  
0000700 
0000800 

DISPLAY ' * * * * * M N P G $ ~  NOW COMPI L I N G * * * * * '  
DEFAIJLT  LIMEN=N 

I J N L O A D  MNPG$$- 
ERASE USERL I B (MNPG$$) 
FTN MNPC;$$, Y 
LOAD MNPG$$ 
CALL  MNPG$$ 
DEFAULT L I MEN=W 
l71SPLAY  -***** .*COMWTI NG DONE***'**' 

.- " - . . - " " 

Figure 11.- List of VASP procedures. 



d 

-. tcfNVASP 6 D O O O O O  - PROCDEF CONVAS P 
" . - . - .  . - . _" . - . "" - - . " . 

0 CONVASP 0 0 0 0 0 2 0  PARAM $N,$A,$B,$C,$W,$X,$Y,$z 
CONVASf' 0 0 0 0 0 4 0  DDEF V A S P l , V P , V A S P l , O P T I O N = - ' C ) R L I B  

CONVASP 0000110  DISPLAY  '*****MATRICES  AVAILABLE,  ALL  DIMENSIONED $N, ARE;' 
CONVASP 0 0 0 0 1 4 0   D I S P L A Y  $A,$B,$C,$W,$X,$Y,$Z; FOR INPUT OR COMPUTATIONS' , " . ". " " 

- - - ~ ~ - 6 6 6 M - 7 0  " D i S P t A Y  " -. ~ -or,~2;rrr;Ds,-m,D6S~- FOT COM'FOl-KTTOrO-N~Y- 
CONVASP 0000200  DEFAULT  SYSINX=E 
CONVASP 0000250  DEFAULT  LIMEN=N 

CONVASP 0000340-EXCI S E  1, LAST 
CONVASP 0000380   INSERT  100  

"mm. -*L Bs SYSITL1 . . - - - " .._ - - -" 

.. "600".EDtf.sbmE;.ttft5mptm$S 

.""..eOWVAS-Bf2800f00- ~tMPttCt~~REAL*8CA-H,O-ZZ""~ "- 

-" "~fJy.&y-. CoNVASP CONVASP 0 0 0 0 4 3 0  0 0 0 0 4 6 0  COMMON /ASP/l -tmA(*) ~ ~ ~ ~ ~ ~ : ~ ~ ~ ~ ~ ~ : ~ ~ ~ ~ ~ ~ : ~ ~ ~ ~ ~ ~ : ~ ~ ~ ~ ~ ~ : ~ 4 ( $ N ) , D 5 ( $ N ) , D 6 ( $ N ) , D 7 ( $ N ) , ~  lq.$.s~"$~.2~~-N$F- m$m"'; 

. . ,_ . . " , " -. ." . . . . - - -- 

CONVASP 0 0 0 0 5 2 0  3 N$Y(2):N$Z(2):NDl(2):ND2(2):ND3(2):ND4(2),ND5(2),ND6(2),ND7(2) 
CONVASP 0 0 0 0 5 5 0  COMMON /MAX/ M A X R C  

CONVASP 0 0 0 0 7 0 0   1 0   P R I N T   1 5  
CONVASP 0 0 0 0 8 0 0   1 5  FORMAT ( '  DATA? ' )  

CONVASP 0 0 0 0 8 8 0  1 t $ ~ t , $ ~ , t $ ~ l , $ ~ , t $ ~ u , $ ~ , t ~ $ ~ ' , ~ $ ~ , -  
CONVASP 0 0 0 0 9 2 0  2 'N$B',  N$B, 'N$C', N$C, 'N$W', N$W, 'N$X',  N$X,-_ 

CONVASP 0 0 0 1 0 0 0   1 3  FORMAT ( l X , l P 4 D 2 0 . 1 3 )  
CONVASP 0 0 0 1 1 0 0  6 FORMAT ( l X , l P 6 D 1 3 . 6 )  tOtQtlftSP Mz-D KtTtTRN- , .. . "" ._ .. "" - ~ .." 

CONVASP 0 0 0 1 3 0 0  END I 

CONVASP 0001400-END 

CONVASP 0 0 0 1 5 0 0   F T N  VASPMN$$,Y 
CONVASP 0 0 0 1 6 0 0   X L I S T  VASPMN$$ 

CONVASP 0001770  DEFAULT  LIMEN=N 
CONVASP 0 0 0 1 8 0 0   E D I T  SOURCE.MNPG$$ 

CONVASP 0 0 0 1 9 5 0  INSERT 1,l 

. .. - .  . .  " ~--eotQtt~w~ooasm - RAXRC=SIP 
-. " "" - . - .. . . "" - . - -. . 

- ~ A - ~ P ~ - c ~ - - ~ N P u T - . ( ~ ~ A ~ , $ A - , ~ ~ ,  t$p-gc -  .~sqr;m:---- , .  # 

3 'N$Y', N$Y;'N$7', N$Z)"- 
-. . - . . . . . . - . _. . . . m t Q V A S  p . -3. - .- - -  . " . - .- 

- - . -  - 

- 

- COWASP  'OOUI45U ERASE USERLI-B(VASPMN$$) ". 

. .  . ." . -. . . .  

"cnmvASP-bb**M~-  DAD-^ .. "" -- -. --- . " - _. - . " - . . ". - 

. -. . . - . "" .. 
"-03NVASP ~ ~ O l ~ O - € X C t S F  1, LAST . 

_ _ _  - t O N t l A . ~ ~ - . D 7 S ~ * r * ~ r ~ ~ A m . . S T ~ m T S . 7 r . . . . - - -  CONVASP 0 0 0 2 0 0 0  EXCERPT SOURCE.VASPMN$$, ,100,1500 

" .- . . - "" -. - .  . - 

CONVASP 0 0 0 2 1 5 0  DEFAULT  LIMEN =W 
CONVASP 0 0 0 2 2 0 0  INSERT 1 0 0  

... . ". . - - .. - . .  .. - " 
.. -. - - -. " ~ . . - -. .. . . . 

Figure 11.- List of VASP procedures - Continued. 



RECMPT 0000000 PROCDEF  RECMPT 
RECMPT 0 0 0 0 1 0 0  DEFAULT  LIMEN =N 
RECMPT 0000200  CALL MNPG$$ 
RECMPT 0000300 DEFAULT  LIMEN-W 
RECMPT 0000400 DISPLAY  '***COMPUTING  DONE***' 

REWRT 
REWRT 
REWRT 
R EW RT 
REWRT 
REWRT 
REWRT 
REWRT 
REWRT 
R EWRT 

0000000 PROCDEF  REWRT 
0000100  PARAM $ L I N E  
0000200 DEFAULT  LIMEN =W 
0 0 0 0 4 0 0  DEFAULT  SYSINX-E 
0000500  EDIT SOURCE.MNPG$$ 

0000700 IF  '$LINE'= ' lOO' ;DISPLAY  ' * **FORTRAN STATEMENTS?' 
0000800 I F  '$.LINE''='lOO';LlST  100,LAST 
0000900 DEFAULT  SYSlNXpG 
0001000  INSERT $ L I  NE 

0080600_EX€.I SE $ L I Nf, LAST 

YAS  P$$ 
VAS P $  $ 
VAS P$ $ 
VAS P$ $. 

- V A S p s S  
VAS P j $  
VASP$$ 
VAS P$$ 
VAS P$ $ 

" 

0000000 PROCDEF VASP$$ 
0 0 0 0 1 0 0  PARAM $INPUT,$OUTPUT 
0 0 0 0 1 5 0  DEFAULT $ N = 9 , $ A = A , $ U = B , $ C = C , $ W = W , $ X = X , S Y = Y , $ Z = Z , ~ L l N E ~ l O O  
0000200  JRLB VASP 

0 0 0 0 4 0 0   I F   ' S I N P U T '  -=" ;DDEF FT05FOOl , ,$ INPUT;DISPLAY ' INPUT FROM DATA SET $INPUT'  
0000500 I F   ' $ I N P U T '  =";DISPLAY  'INPUT FROM TERMINAL' 
0000600  IF   '$OUTPUT'  '-I ';DDEF FT06FOOl,,$OUTPUT;DISPLAY 'OUTPUT  PLACED I N  DATA SET  $OUTPUT' 
0 0 0 0 7 0 0  I F  '$OUTPUT'  =";DISPLAY 'OUTPUT TO TERMINAL' 

o w a m o C o m  R L K D T A $ $ .  . . .. . 

Figure 11.- List of VASP procedures - Concluded. 



o\ 0 0 0 3 0  LOGON USERID,,9 

00090-EXC I SE 1, LAST 
0 0 1 0 0  PROCDEF CHNGIN 
fj+~+""-$.f wu=f .. . . ". . .. . . ." .... " "" "- 
00300RELEASE  FT05F001 
0 0 4 0 0  I F   ' $ I N P U T '  '=";DDEF F T 0 5 F O O l , , $ l N P U T ; D I S P L A Y  ' INPUT FROM DATA  SET  $INPUT' 
~ 0 0 5 0 0  tF- '$ttdPUTL  =";DtS-PLA'f  L-tNPUT FROM TFRPFINAL'.. " 

00540- PROCDEF  CHNGOUT 
00580-EXCISE 1, LAST 
,00~"PRO~~E-F-CFt~dC;eUi". " ..- . . . "_ -- 

0 0 7 0 0  PARAM $OUTPUT 
0 0 8 0 0  RELEASE F T 0 6 F 0 0 1  - o w -  - 1 F 1 s m ~ p u ~  I .-.=I I ;DDEF FT06FOOl;  ,$OUTPtjT;DtSPt-A? 'OWWT"AC€D. t N  -DATA  -SET.-$OUTFUT+ 
0 1 0 0 0  I F  '$OUTPUT'  =";DISPLAY  'OUTPUT TO TERMINAL' 
01040- PROCDEF CLRVASP 

*>Q"EH+*+* ". --- " 

0 1 2 0 0  END 

0 1 4 0 0  UNLOAD VASPMN$$ 
0 1 5 0 0  ERASE SOURCE. VASPMN$$,SOURCE.MNPG$$,USERLI B(VASPMN$$) 

0 1 7 0 0  RELEASE  VASPl 
01800 DISPLAY  '*****ALL  CONVERSATIONAL VASP PROGRAMS CLEARED*****' 
01900 -DISPLAY- '*****YOU MAY RESTART N I T #  CONVASP********'. ' 

01940- PROCDEF  CMPL 
01980-EXC 1 S E  1, LAST. 

02100  DEFAULT  SYSINX=E 
0 2 2 0 0   E D I T  SOURCE.MNPG$$ 
023-("€:Xe€ftPT SOURCE. VASPMN$$,  ,-16OO, 1-7m 
0 2 4 0 0  END 
02500  DISPLAY  ' * ****MNPG$$ NOW COMPILING**** * '  

0 2 7 0 0  UNLOAD  MNPG$$ 
0 2 8 0 0  ERASE USERLIB(MNPG$$) 

0 3 0 0 0  LOAD MNPG$$ 

Q ,oooee MCMF- CHHGI N .. - " 
. . . . . - - . - . - - -. - . .- " 

.- . "_ - -. . . " - .. "" - - " 

O ~ ~ O O - P R O C D E F  C L R V A S P  
01308  UNLOAD MNW;$$ - - - - -  - - .-. 

. . . "" . . .. . - .. . . . . - - - . . . 

, ~ ~ o  ERAS E f j s m . ~ . m P $ f - -  - . . . .- ---.__---___-- - -" . - - 
" 

. -. . - - " . " - - - - . . . . 

~ ~ 6 e r n - m ~ ~  - . _  . -. _ _  - -- -~ 

- . . . , -. . . . - . . . . - -. . - . . 

.e.26Q 0 _ _ _ _  BEfftfj.jfr- L .- _ _  _ _  . . __  -. .. 

w q e o  FTN MNPG$$,Y . . - . . - . .. . . . . .  - . -. - .. . . .. . - . . . . . . . . . . .. 

Figure 12.- List of data  set VASPPROC. 



03100  CALL MNPG$$ 
fl"m-ii i m i  
03300  DISPLAY  '*****COMPUTING  DONE*****' 
03340- PROCDEF  CONVASP 

03400-PROCDEF  6ONVASP 
03500  PARAM  $N,$A,$B S C  $W,$X,$Y,SZ 

03700  JOBLIBS  SYSULIB 

03900  D I SPLAY SA,SB,$C,$W,QX,$Y,$Z; FOR INPUT OR'COMP~TATIONS' 
04000  DISPLAY ' Dl,D2,D3,D4,D5,D6,D7; FOR COMPUTATIONS ONLY I 

"- " - 
04200  DEFAULT  LIMEN=N 
04300  ED 1 T SOURCE. VASPMN$$ 

04500  INSERT  100 
0 4 6 0 0   I M P L I C I T  REAL*8(A-H,O-Z) 

04800  l ~ $ N ) , D l ( $ N I ~ N ! : D 4 ( S N ) , D S ( $ N ) , D 6 ( $ N ) , D 7 ( $ N ) , -  
04900  2 N$A(2),N$B(2),N$C(2),N$W(2),N$X(2),- 

05100  . COMMON /MAX/  MAXRC 
05200  MAXRC=$N 

0 5 4 0 0   1 5  FORMAT ( ' DATA?' 1 
05500  CALL  INPUT ('$A',$A,'$B',$B,'$C',$C,'$W',$W,- 
--.- i ' $ xLT;bX;w;-LW ,$t;*-, - " . " 

05700  
0 5 8 0 0  3 'N$Y',N$Y,  'N$z',N$z) 

- - 

0 3 w f t ~ ~ * ~  - - ~ - " - 
- . - r  - 

- " -Wcr V%-i4+& 4%Sh8narlt. 

838w - - B t f P t f t S C - - ~ ~ ~ R f ~ - ~ t f A ~ t A B t r , - A ~ M S t - 6 f Q E R - ~ ~ " " - ~ - ~ - - - - - " " - - -  

e4-4-*-Ee-t5€3* " " 

*"* w,Aif+w+, 

8" ~ ~ - - P t ; ~ i 2 i , ~ ~ , ~ ~ ~ j , ~ ~ i j , ~ "  

\ 

.r q r  
I A >  

.- 

- 
2 'N$B',N$B,  'N$C',N$C, 'N$W',N$W, 'N$X',N$X,- 

- 7  #- -.\ 

06100  RETURN 
(3&2f)-o"-HB 
06300-END 
06400 ERASE USERLIB(VASPMN$$) 
4Hx-w-"ff 
06600  XL-N;; 

"" " - - - 

U - 

+. 06700  LOAD VASPMN$$ 
o\ 
W Figure 12.- List of data  set VASPPROC -Continued. 



+ fime-~~-~~tft'f.~.~~-~.. ~ _ _ _  - ~ "" m 
0 6 9 0 0   E D I T  SOURCE.MNPG$$ 
07000-EXCl SE 1, LAST 
i3+i+e""l 
07200-E%~bTL~6URCE. VASPMN$$, ,100,1500 

H k f j &  ".bEFAUiT.*MW _" .. . . ". . - "" 

07500  INSERT  100 
07540- PROCDEF RECMPT 

- 

"r .1 .1 __- "_ " 

07300  D I S P L A Y  ' * * * * *FORTRAN STATEMENTS?' 

" - . . - I -~ 
m c ;  EF 1k i T  
07700  DEFAlJLT  LIMEN =N 

07900  DEFAULT  LIMEN=W 
08000  DISPLAY  '***COMPUTING  DONE***'  

08080-EXC I SE 1, LAST 
0 8 1 0 0  PROCDEF  REWRT 
0 8 2 0 0  PARAM $ L I N E  
"B~j""""  "_ " 

08400  DEFAULT  SYSINX=E 
0 8 5 0 0   E D I T  SOURCE.MNPG$$ 

078"mt;t- ptwm$$J 

4l-ww3" " P* R € F f w "  " - "- 

. . _ _ _  -. - - - - . . - .  . "" __.___-__ 

"_ " 

~ x " - $ t + ~ . - L - A S T "  ". - - _ _ _ - ~ - - - -  "" . - " 

08700-IF l $ ~ ~ ~ ~ l = ' l ~ ~ ' ; ~ ~ ~ ~ ~ ~ ~  ' ***FORTRAN STATEMENTS?' 
0 

0 8 8 0 0   I F   ' $ L I N E " = '  1 0 0 '  ; L I ST  100,  LAST 

09000 INSERT  $L INE 
09040- PROCDEF VASP$$ 

I , .  .r n - 
U L I  o m  - IJ " "____I ~ 

" .1 . . "" -_ ____ "" -~ - " 

! " E E E F 1 b Z $ $  
0 9 2 0 0  PARAM $ I NPUT, $OUTPUT 

09500LOAD  BLKDTA$$ 

09700   IF   ' $ INPUT '   = " ;D ISPLAY  ' INPUT FROM TERMINAL' 
0 9 8 0 0   I F   ' $ O U T P U T '  '=";DDEF FTO6FOOl,,$OUTPUT;DISPLAY 'OUTPUT PLACED I N  DATA  SET  $OUTPUT' 

i F  '$WFWUT' - !';ui- "m" - 

66666"- w-~";m€F--~FTofFuoT;, $ 1  mpuT 
; ~, PLAY. ", 'TNPLIT"FROMD"~~A- s-E.T" Sr .~Pm'-"--~-- - 

Figure 12.- List of data  set VASPPROC - Continued. 



10000-L I ST 
10100 END 

10300 VASP  PROCEDURES NOW READY.  DO ' A S E N D '  TO M A K E  THEM A V A l   L A B L E  
10400  LOGOFF 

..... .. 
U lHLh 1 

Figure 12.- List of data set VASPPROC - Concluded. 
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