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MODIFICATION oF WING—SECTION SHAPE TO ASSURE
A PREDETERMINED CHANGE IN DRESSURE DISTRIBUTny*

Ey A. Betz
SUMMARY

In order to find an airfoil for a predetermined pres-
sure distribution, the problem must be so posed that the
pressure distribation creates no drag. Another fundamen-
tal difficulty is that, properly speaking, it is impossi~
ble to specify a pressure distribution without first know-
ing the place where these pressures are to be applied,
iseey the wing-section shape.

This difficulty may be avoided by directing the prosw
sure distribution along tho contour of the wing sectiono
Thon 1t becomes possible to define the change in wing
section shape which cffects a certaln modification of the
pressure distribution.

The limitations underlying the required pressure dise~
tribution are discussed and it is found that the solc os-
sential limitation is zero drage. The method is illustrate-
ed with an example.

* The author also refers to several reports on wing
sections (references 1 and 2) used in water, i.e4¢y marine
propellers and turbines and cavitation phenomena.

;INTRODUCTION

Compared to the problem of finding the wing-section
shape for a given pressure distribution, the reverse prob-
-lem of finding the pressure distribution for any wing sece:
‘tion is relatively simple and may, in fact, be considered

“fi
*"Anderung der Profilform zur Erzielung einer vorgegebenen
Anderung der Druckvertcilung." Iuftfahrtforschung,

December 5, 1934, pp. 1658-164,

.
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as solved (references. -3, 4, b, -and 6). : The procedure is to
start from an airfoil which can be simply developed into a
circle by conformal transformation and thus become readily
theoretically tractable. -Minor. changes then effected on
its form will produce, as a rule, only minor changes in
the flew which .can be -calculated: by conformal transforma-
tion of the original to ‘the new a1rf011.' Conformal transe
formation itself is simplified when: theé form changes are
kept small. The best airfoil to start from is a Joukows-
ki airfoil (reference 7) because the trailing edge of the
usual Joukowski airfolls ends :in-a mathematical point
(zero edge angle), and so are very thin vicinal to the
trailing edge. When the necessary airfoill shape here is
substantially thicker, that .is, varies considerabdly from
the Joukowskil airfoil, one may proceed from the.general-
ized Joukowski airfoils (reférence 8). with slightly round-
ed .trailing edge or from Karaan—Trefftz airfoils (refer—
ence 9) with finite edge. angle at. the trailing edge.

By virtue of the smallnqss_of the-changgs, the results
are very simple relations between form change and pressure-
.distribution changes.. It therefore. suggests the use of
these relations for calculatlng the form change by proceeds
ing from the latter. Here, however, we encounter two fun-
damental difficulties: First, it is utterly 1mpossib1e to
- realize all pressure distributions. . A body. in a potential
flow, as it is assumed, has no drage Hence, all pressure
Aistributions yielding a drag, must Dbe excludecd., The methe-
ods of the conformal 4transformation applled here, stipu~.
late further llmltatlons which, however, may be removed as
shown elsewhere. Another difficulty is.the fact that a
pressure distribution can be specified only when knowing
the surface over. which the pressure .is distributed. But,
since our first problem is to find the.form of this sur—.
face, it is ‘necessary -to elucidate the underly1ng princi@le.

The pressure distribution is above all important for
appraising the processes in the boundary layer, and partic-
ularly, of its course along the surface of the body.

Hence it is advisable to prescribe the course of the proes=-
sure .along .the development of the airfoil contour. There-
by one . is 1arge1y 1ndependent of the unknown form of the
profile, except that the length of the development is for
the time not exactly known., However, proceeding from the
forward stagnation point, the pressure distribution can

be definitely established at least along the greater part
of the surface, leaving only an indeterminate zone on the
trailing edge due to the uncertaln 1ength of the develop—
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ment. On the other hand, since the form changes are mi~. -
rnor, the extent of the profile 'is but 1little modified, so

that the still remaining uncertainty is confined toa very
smpall zone id which, morcover, the p:essures are not very

changcable. c

RELATION BETWEEN ChANGES OF WING—SECTION SHAPE

ARD PRESSURE DISTRIBUTION
By virtue of Bernou‘lli's equation
D +~W %; = constant : g (1)

which expresses the relatlon between velocity v and
pressure p (p = fluid den31ty). the pressure distribue
tion is given with the velocity distribution. Thus, in

the following we 1ntroduce the velocities instead of the
Pressures.

Let us assume that our original wing séction is the
result of conformal transformation of a circle in rlane
2 into a plane {; without modification of the flow at

infinity. - If the orlglnal airfoil is, say, a Joukowski
airfoil, tnen

. Ca . .
1 =z + 2~ (rig. 1) ().~
The velocities v; on the surface of the airfoll are

readily computable on the basis of the transformal function.

Then we transform plane "ty to a plane ¢z through
functlon ‘- o ' ' '
whereby A{ = £({¢;) and < <!§¢} The velocity assumed as

vi at a coertain point P, of plane {1 becomes ¥ in
the corresponding point Pz of plane ¢{.,,  whereby

va_ 9ty . 3nt | |
Lo Yreo @
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HIg it gAEE roviiue L L
vl.,Aﬁ,,V S9by -
consequently Ag = f_'V'l A _%‘ d-Cl | (8)

I

So, when the veloclty dlstrlbutlon v, of the origi-
nal airfoil and the desired dhange oF these velocitics,
that is, its reciprocal valde A L ‘is given, the form

changes necessary for the ve1001ty change may be obtained
by 1ntegrat10n. Fowever, ‘it -shodld- be remembered that
€1, AL, v, , and lﬁg‘are all directional vectors; that is,

complex quantltles.: Aami»tedly,, v, .. is known in diree~
tion and quantity (~— lies in direction of the tangent to

the original wing sectlon), whereas. of v, only the amount
can be .given because its. dlrec*ion is as yet unknown.

And the latber may.not dbe: arbltrarllJ stipulated along
with. the amount because with a complex function of the’
planc such as v, ~tle amount similtaneously defines the
direction. ILikxewise, thc real part defines the imaginary
part and vice versa. For this reason the desired data

must first be obtained through caleuwlation. (See the fole-
low1ng section, page 5.) '

Let R(Vl 3;)

real part and J(vl —) 1mag1—f
nary part of the complex function v, A

v’ and A ana

An the resl and the imaginary part (iee¢, the ¢ and n
component) of A(, and lastly, dfi be replaced dy its

component df and dn, so that

v %“—"R(Vlw—-\-i-lJ(lel) L H9)
*With A{% sufficientiy small compared to é:,ﬁ vy A %
nmay be replaced by 313; whereby Av =.v, - v, . But we
1 - . , .

preserve the more general form v; A=
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AL =Ab+ 1 xR T (10)
Tand U at = gt ran (D)

Then equatlon (8) becomes

BEsia = rg (.vllfj '1\; i ; <v1 \ _)] Cat+ 1 am

(12)
The separatlon of real and 1mag1nary parts give the
two real equations : .
At ( <v1 —> at- J' vy A -) an (13)
An = fJ &vl ~> at + R <v1 >dm (14)

3
Xnowing tho functlon v A'% along ‘the perimeter of

the original wing secL:on, a ‘simple 1ntegrat10n along axes
and m gives the. £ and m. components of the regquired
displacements of the points of the surface.

DEFIKITION OF FUNCTION v, A %

Figure 1 shows the original and the derived airfoil.
A point P, of the original profile (coordinate (1) be-
comes point P, (Cz coordlnate) by conformal transforma-
tion. The distance P; Pz is Af. The trailing edges

of both airfoils are assumedly coincident, thus precluding
in general a coincidence of the forward stagnation points
Sty and Stz. Since the conformal function is to be rege

uvlar, point St is transformed again in a stagnation
pointe Gonscquently, St; and Stz are points which
correspond with cach other in conformal transformation.

Now we transform tho contours of both wing sections
into a straight line (fig. 2). The forward stagnation
points are to be neutral points and the distances - as
measured along the transformation - from the forward stage
nation point of the original and the desired wing section
are denoted by s; and sy. The points of the lower sur-

face of the airfoil are figured positive, those of the up-
per surface, negative, We plot the given velocity vi as
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well as the d351red modified veloclty vz along its sure-
face. .

""" Since the two fields of flow in plane ¢, and (
¢, are created separately by conformal transformation,
corresponding points must have equal flow potential @,
Ascribing zero potentlal to the forward stagnation points,
the potentials existing on the surfaces-aré found by in-
tegrating the‘veloc1tles, starting from the stagnation
point. Identical points in which these have equal.poten-
tial are then readily reccognized. With P;  and Fp; - repe-
resonting two corresponding points, it is /

_oj v, ds =of vy ds (15)

This immediately ylelds'tne stlllnunkﬁown length of devel-
opment of the desired profile prov1ded, however, that v,

moets the subsequently dlscussed presumptlons.

Yow we can find the p01nt P,  with veloclty ¥
and distance s; for each correspondlng point of the

original wing sectlon w1tL veloclty Yy and distance s
- from the forward stagnatlon p01nt, and from the differ-
ence of the reclprocal velocltles in these corresyond1ng
polnts. , : . S . _

S e

Multlpllcatlon w1th v gives fhe:fﬁnctioﬁ with respect,;
R mE | a [3] ifkiw o (1)
Flgure 3 (top) illustraﬁes the geometrlc relatlon of
A, Qﬁ; and.Al and (bottom) the connectlon of 1, ~L
Ty Wge i Ll R P
and ,vlpgjv_ugfter,@ivisjon.by %—. It is seen that for
AL <l21%% ”%hekdifferenée ‘;ﬁlv~.l is almost equal to
1

the progectlon of v, A = 'on the real axis; that is, the

real part of vl_A_%,.whence:

-1l ™ R("l‘[‘_\ 3._}_) L

Il el3- 1%

2
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From  the momeatarlly given amounts -of -the initial veloc—~
1ty vy and the requlred velocity vz,,Awe can accordlng—

"1y compute’ the ‘réal nart of tae- function C vy wN v,' which,
however, must be complcted with 1t correspondlng Anagin-
ary part J (v, A %\.; This i& a problem of the. function

theory. Accordingly, we trans*orm function vy A % on
plane 1z, in Whlch the ,onformal transformatlon changes

the profile cOntour to- 2 ;01rcle with a ¢énter such as =z,
and radius. ro.. The real parts of the de51red funetion

vy A % are then given- on. tbe perlphery of this circle.

Assuming the real’paft of  this function at the edge
of the circle as the .radial component of a flow, the cor-
responding imaginary part is the tangential componeant of
this flow, which again may be reprodmnced as field of a
source digtribution over the edge of the circle, In this
case the source strength per unit of length equals the
doudbled radial compoment.. & source of strength E in
point Kz (fig. 4) with polar coordinates v, P2 pro-

duces in point K,  (polar coordinates . r, 91) a speed
wo= g7 (18)

whereby 1

1
1
8
2]
o
wn
N
5
TN

denotes the distance X; Xp. This speed is in X; K; di-
rection; it forms with the tangent in point K; the an~-
gle ' :

T o= 23 _71 : (19)
The component of w in dircction of this tangent is-

Wy = W cos T = o cot —4¥:~—7 N '(20)
- For a source distribution -of
dE = 2R r, 49 : E ' (21)

over the edge of the ecircle, with R = R (vl A %
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den0uing the- real part of the functlon vi A % plotted

Nover perlphery (@) we have in point P; .a tangential
Ve10c1ty :
CoRm ogw o -9 1 27 ¢ - @
wy = [ pom= cot —5—— a9 = = J R cot —5—L ap.
8T Ty 2 2 g 2 (22

, The radial component resulting under the. influence
of all sources graded over the circle edge is zero when
the sum of these sources is zero, which is always the case
for reasohs of continuity. The wy component is the im-
aginary part of our v, A % function at point P, , which

we shall designate with J,+ Accordingly, we can calcu-

late it for every point of the circle and conseguently also
for the correspondlag point of the proflle in the .=z,

plane by 1ntemrat10n. It is

21T ) @ ‘
J R cot ~—§~-— d@ T (23)
o " ..

The fact that the iantegrant for "9 = @3 becomes infinite,
interferes with the evaluation of the integral. But by
virtue of orr

J cot (9 - 9;) ap =0
[e]

the formula for the imaginary part may also be written as:

27
1 P -9
= R - L . 3
S - g’ ( R;) co 5 aQ (24)
For ¢ - 91, R - R, approaches zero in the same measure
as cot 9*%—% epproaches iafinity, so that the product

remainsg finite.

*The imaginary part may equally be computed by resolving
the real part in Fourier series and substituting

- gin n® for cosn®; and cos ny for sin nanP. 3But
since this imposes a limitation to a finite number of
Tourier series, thig method is, as a rule, much more ian-
accurate than the iantegration method.
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‘LIMITATIONS IN THE GHOLCE oF VELOGITY DISTRIBUTION

R R L P S -

The preceding section assumes an altogether arbltrary
velocity distribution along the development sz, which

allows the calculation of the v A % functlon and subge~

_quentlJ also the values of A{ for each po1nt by integra-
tion along the periphery s, according to egquations (8),
(13), and (14). The profiles are permitted to coincide at
the trailing edge, so that A¢ = 0., The A{ values may
be computed along s; by starting the integration at the

trailing edgee In the end -we reach the trailing éddge
again and compute in gemeral a A{ value other than zero.
.So the new profile no longer closes at the tralling edge.
To obtain a closed profile the A{ value, resulting with
a complete enclosure from (8), must be zero:

vy A %.dﬁi'= 0  (25)

The condition that the closed integral over a func-
tion shall be zero assumes a prominent role in the theory
of funetions. It is met when the function has no residu-
um within the closcd integrating distance, 1. c., no Co

point in whose vicinity the function is as TT__ —e Vig=

ualizing the function as speed, such points would denote
sources or vortices. Since in any case it is imperative

hat the function v, A % displays no singular points
outside of the profile and that in addition it disappears

at infinity, DPecause the veloc¢ity is to remain unchanged
at infinity, the function may be expanded according to the

powers of f?. Then the integration over a closed inte-

gration path gives all terms with a power higher than 1
the amount zero, only the term with '1_ giveg a finite

amount., Then the premise of zero 1ntegra1 means that in
a development of the function accordlng to powers of éﬁ

the first term must be absent, Naturally, since the func-
tion is %to disappear at infinity, no constant term nor
positive power of {3 may appcar. .

The power development may equally be made in the g

plane rather than in the {; plane. With Joukowski and




210 N}A.C.A. Techﬁicai-Memoran&um'Ndi 767

Karman—Trefftz alrfoils* the transformal function of the
z on the {1 plane is such that with the transfer of the

~z° to the {1 series, the term w1th R remalns uia-
changed and goes iato that wita Z— so that the res1d1-

um is preserved;
We had already transferred tne funct10nal values

v

the imaginary part of Vi;A.%y

vy A‘L‘ to the periphery in the _z plane for computing

‘With the power series déyeiopment

1 C a, + i b, L 2z + i bz

v, A == ag + 1 b, + : + 26
at ‘ 19
we have/the circle periphery =z - 2%y, = r, e ', that is,
a;+ib;, .3 a,+ibd -2
v, A L.:: ao+1'bo+ i e 39 + 22 A
v - ‘T,  To
‘= ay + m— cos @ + ——x cos 29 + ..,
B T, : -
i) b, | B
+ —* gin @ + =25 sin- 2 @ + ..
T a ' a, .
- i} — sin @ + ) sin 2 @ + ...
LTo To~
N 51 | by . - .
= by = T cos 9 - =55 cos 2 @ -} _ (27) .

To _ o -

Coefficient = b, = itself becomes zZero according to
(23) and (24). To find the coefficients ag, ai, and b

¥The same applies equally to all pertinent frahsformal
functions. The stipulation is the constancy of infinity
By the transformatlon.
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‘of the power series development we merelj define the cor=
respondlng coeff1C1ents of a “Fourier- serles for the real

part Of A % that 1s{H ,vl(‘dul%ﬂ.: It 1s. :f SRR
s 2 o 7 *w s]Ffee )
7o = E“df‘lvli.A.4; sin @ 49 g

If the resultant - al,'and b; values are other
than zero, the function

“a, by,
ag + 7o ocos @+ 7 sin @
)

muét be subﬁracted from v, A %, which then voids the

particular terms, Of course it is mnecessary to check
whether or not the tlus stipulated change in speed v,

still corresponds to our purposes. In general, this core
rection entails only a very even chaange in velocity dis-—
tribution which in most cases is insignificant since, as a
general rule, the purposé is to remove the individual
humps or peak values of the velocities which promote pre-
mature breakdown of flow. And this occurs primarily
through the higher terms of the Fourier seriese

We have limited the changes in profile so as to pre~
serve the applicability of conformal transformation. This
implies the stipulation that the line integral of the ve-
1001ty from the forward stagnation point up to the trail-
ing edge of both the top camber &y &nd the bottom cam~

ber @q remain uwnchanged. In itself this 11m1tat10n is

arbitrary; for instance, it precludes profile changes
which correspond to angle-of—attack changes, as in this-
case 1t modlfles the circulation @O - Dy However, this

may be. av01ded by nrov1d14g the or1 inal profile w1th the
desired values of ®q and oRy throuéh other than con- -
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Wﬁp;m@l;changgs.g_Bquodifying-the;angla-of,attack;,uwe can,
as.previously indicated, influence :the difference | Jo=dy«*
A sipilar erlargememt of the profile increases - dy and .
¢y in proportlon.y When combining both methods, any de=
sired value of @4 and @u may tnus be obtalned.

The thought sugges}s 1tse}f as to whether these non-
conformal changes 1d‘hs OF” thé’above PrEwise) of
i} vl A % ds = 0, - Since"’ vl.A-% is an analytical function

of §l, without singular points outside of the profile,
we likewise may prefer the closed integration path at in-
finity to that along the profile surface. Then v, be~

comes the constant flow velocity vy. The change in ve-
locity Ave Dbeing arbitrarily small at infinity, we have

AV, < < V. Therefore we may write

1 1 AV
Sf'V;‘AG"dS:?‘V?A;;dsmzf—;;dsm

= = f v s, (29%
o]

The real part of § A v, ds, is the chaﬁge in cir-

\ culation around the wing, the imaginary part, the change
‘*of the outward flowlng fluid resulting from the closed
?flntegrat1on path. - The circulation may be influenced
/ through angle-of-attack change, and consequently, also the

% ds. But, for reasons of conti-

nuity, the fluid gquantity through the closed integration
path must be zero. It can therefore not be influenced,
and the result is that.

Teal part of v, F v, &

J (vq, $v,al ds> =0 (20)

remains the essential limitation of the chosen velocity
distribution. The inner reason for this limitation bases
on the fact that a velocity distribution, for which

*Teinig has established simple relationships for changes
in velocity distribution with the angle of attack, which
are useful for this generalized treatment of the problem
(reference 10), '
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% § Vi A ¥ ds % 0 yields a change in the forco acting
on tne profale‘ and - spec1f1cally the real part signifies

the componont of - thig additive force in 1ift direction,

and the: im“glnary part that in direction of’ thc &rag.‘

Consequently, the premise - (mm [ Yy A l'ds) is iden~

tical with the originally made stipulation° i.e., that the
chosen pressure and velocity distribution must create no
drag. .

. BXAMPLE

-Thé déshed,iineé'in figurejS'Show-a'Ioukoﬁski airfoil

-developed from a.circle conformal to

_ a®
C‘J.' = .g +"Z

The pbsition of the center of the circle 1z, (fig. 1)
govorvs the camber and tnlckness of the airfozl.

At an anblc of attacL a = 7° the pressure grading
and the local pressure minimum near the nose (fine lines)
are as shown in fi5ure 6. Yow we attempt to remove this
pressure grading and to attain the one shown as full-

drawn curve. Since c¢irculation and 1ift are to be pre-

served, we must from the very first attempu to equaligze

‘the surfaces cut off in the pressure~distribution curve

through a correspondlng pressure rise at other points),
while bearing in mind that this new distribution also is
to create no drag. In order to facilitate the choice of
a suitable position for the reguired supplemeantary sur—
face, we show in figure 7 the prohibited pressure change
whlcb correspoads to a

1 : -
v, A S= cos @ = = 0,05 cos ¢

and produces drag. It is readllv seen that the equaliza~
tion .of the separated pressure tip must not be effected
in the rear portion of the suction side. On the contrary,
it ‘must be allocated either.to the fore part of the suc-
tion side, that is, directly behind the separated tip, or
else to the rear portion on the pressure side. -We prefer
the first and preserve the rear part of the suction side
and the whole pressure side as it is.
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Figure 8 shows thoe volocity . v, over the gurface of

the Joukowskl airfoils plotted agalnst its development *
The forward stagnation, point i's :chosen as nukl point. .

Further, the dosired change An velocity dlstrlbutlon, the

separation of the velocity maximum, (Wg)_ is included.,_.

he equally shown potential gradzﬁgs

. . . i ~"s

J‘ v1 ‘ds and @2-— j’ vh ds -

were obtained through planimetry of the veloclty curves.
By virtue of the equalization of the pressure distribution
surfaces in a small zone, the potential curves outside of
this zone are almost exactly coincident, so that in this
case the total Iength 'of the ‘developument of  the upper as
well as of the lower surface remains ‘unchanged. Calculate
ing in points with egual potential (&, = &), the dif-
0 I B
V2 ‘Vl
then plotting these values against the deviation corre-
sponding to v, followed by mult1plicat10n with . v )y, We

?

ference of the reciprocal- vélocities A ]1‘ =

finally have the curve 1v1| A lll Whlch is also shown in

figure 8. There are no finite values excapt in the vicin-
1ty of the effected pressure changes. The transfer of

the latter values to the transformation of the cirecle..
which corresponds to. the Joukowski airfoil (fig. 1), glves
the’ heavy curve of flgure g, At this point we must ascer-—
taln whether the desired velocity dlstrlbution is service~
able.' Planimetratlon glves L .

. om o
I N 1 .

‘The constant terﬁ':dé"is best removed by effecting a
change on the pressure side (thin line in fig. 9), which

at the same time assures a somewhat smoother shape of the
curve. For this modified curve we determine-

*Phe length unit chosen for this and the following graphs
is thé distance of the trailing edge of the airfoil from
the .null point of the (, and the (. plane. This is

eqiial to 2a, whereby a has the notation given in (2) and
figure 1. The velocities are made nondlmen31ona1 through
d1v1s1oa Wlta the velocity at inflnity Vo o )
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1T

e, 1 gl,_l 1 S
et EeTw S A AT e 9T T 00098
21T v ‘ '
L l . _ .
To 'r_r [u] & ’ | sin @ 49 = - 0.0012

o _ i a; b o
The subtraction of the values E%vcos ¢ + ;Lzsin ¢ =

-Q.COBB cos ¢ -0.0012 sin @ from.the curve R (vl A %SEQ
gives the difference shown as dashed line, The correspond-
ing changes of the curves in figure 6 are also shown as:

dashed lines. These corrections are ostensibly minor and
do not detract from the intended purpose.*

With the corrected values (dashed curve) for -
Ivil ‘!"I

= RK v, A —>, we then compute the imaginary
values J <v A i) for different points of the circle

periphery according to (24) by plotting and planimetry of
the corresponding integrants. The result is shown in fig-
ure 9 (top). With this function the first terms of the
Fourier expansion must of themselves be zero. But owiag
to the incvitable inaccuracies, it is advisable to check
this characteristic particularly and, if necessary, make
minor corrections on the shape of the curve.

The points of the contour of the Joukowski airfoil
projected on the £ axis, then on the m axis, followed

by plotting of R (v, A ~\ as well as J ( ~> against
both projections (%igs. 16 and 11) gives the coordinate

displacements Af and Amn according to (13) and (14)
through progressive planimetry.

For the trailing edge, to which we return after into~
grating over the whole periphery, we must have Af = =
O. This condition is an exceptional criterion for the
correct integration. Such a criterion is, in fact, need-
ed, becausé¢ the pertinent surfaces consist, as seen from

*Moreover, part of this correction could have been avoided
by changing the angle of attack of the original airfoil.
But we shall keop to the request that the new wing section
shall have the same 1ift as the original airfoil,
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figures 10 and 11, of large positive and negative parts,
so that the result, as comparatively minor discrepancies
in positive and negative component parts, is quite apt to
become inaccurate. Since the terms for Af  and Amn con-
sist of two integrals, it is not readily ascertainable how
the inaccuracies are distributed over the individual inte~
grals, if the cited criterion. is not correct.  Yet for ob~
viating the inaccuracies, it is important to know them in-
dividually for every integral. This may bé accomplished
in the following manner: The ordinates £ . and m of the

- original airfoil may be represented-as functions of .the -

circle perimeter of plane z; that is, as functions of an-
gle ¢. Then ¢ and m may. be split into

: =~€1-+ ge CoomEny ﬂz : (31)
whereby
El = <ro + %§> cos @ and n, = (ro - %%) sin® (32)

As ‘the tgrm_s' for R (vl A %—) 'a:;d,' J <V1 A %) may contain
no terms with sin ¢ and cos @, we “have: ' :

FRAL =F Tt =FRan = FTam =0 (59)

Thus it is possible to check each one of these four.
integrals to their being zero and, if necessary, to remove
the discrepancies by minor cnanges of the limitedly exact

1 1N
curves for R (vl A v,\i and J |\vl A ;{,—/{,.

As concérns the lack of individual clheck on the re-
maining integrations over §{, and m,,  these are usual=

1y so small compared to the separated 1ntegrals over &
and- n,» . that any existing discrepancy is no longer of
any significance. Figures 12 to 15 illustrate the eight
functions to be integrated, whick manifest the subordi-. -
nate importance of the integrations over ¢, and n;
(the scale used for ¢, is greater tkhan for §,). The

ensuing values for Af and Am are gompiled in figure
16, Theé resultant .changes of the wing section are in-
cluded in figure 5. The full line in this figure is the
original; the dashed line the modified shape. - :

Translation by J. Vanier,
National Advisory Conmittee for Aeronautiecs,
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Figs.

1,2,3,4

Figure l.-Transformation of a circle (z plans) in a Jowrowsky airfoil
(él plane, full) and a modified airfoil (§2 planc, dashed),
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Pigure 2.-Course of velocities and potentials along the development of
the profiles.
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Figure 3.-Geometrical relationship of
the different wvelocity

vectors.
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Pigure 4.-Illustration for
computing the imag-
inary from the real part.



N.A.C.A. Technical Memor%$dum No 767

Figs. 5,6,7,8,9
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Figure 6.~ Pressure

distribu~

tion chenge of
original vprofile.

Figure 7.- Prohibited
oressure
.34 distribution change.

Pigure 7.

dfigure 8.~ Course
of
velocity and
potential along
the develonment
of the profile.
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Figure 10. : : Figure 11.

Figures 1C,11.-Course of R and J along the profile contour projected on
axis £ and on axis n.
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Figures 12,12.-Course of R and J along axesgi and nj.
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Figures 14,15,-Course of R and J along axes igand no.
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