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THE WAVE DRAG OF ARBTTRARY CONFIGURATIONS IN
LINEARTZED FIOW AS DETERMINED BY AREAS
AND FORCES IN OBLIQUE PLANES

By Harvard Lomax
SUMMARY

The wave drag, based on linearized theory, of any 1lifting or non-
1ifting plenar or nonplanar objeect in a steady supersonic flow is shown
to be identicael at a fixed Mach number to the average wave drag of a
series of equivalent bodies of revolution. The streamwise gradient of
area, measured normal to the free stream, at a section of each of these
equivalent bodles of revolution is given by the sum of two quantities:

1. The streamwise gradient of area, measured in parallel oblique
planes tangent to the Mach cones, along the given object

2. A term proportional to the resultent force on the object measured
in the same obligue planes.

INTRODUCTIOR

The evalustion of the wave drag of alrplanes traveling at transonie
speeds has, recently, been greatly simplified by the discovery of what
has been termed the transonic ares rule which ean be stated as follows:

A (reasonebly smooth) airplane flying at a
near sonic speed has the same drag as a body
of revolution with the same cross-sectlonal
area in planes normal to the flight direction.

The original statement of this rule (ref. 1) has since had many experi-
mental verifications. From a theoretical viewpoint, a paper written by
Heyes (ref. 2) also contains the concept in the semnse that it 1s a result
- _ of linearlzed supersonic flow theory when the Mach number is allowed to
approach 1, More recently, several papers have developed theoretical
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techniques which make 1t possible to include the study @f thickness
effects in slender alrplane theory.s & linearized floﬁ'theory devoted
specifically either to airplane®s flying at any speed but geometrically
glender in the streamwise direction, or to airplanes flying near the
speed of sound but smooth encugh and having an aspect ratioc low enough
for the pressure coefficient to be small almost everywhere on thelr
surface. The rule stated above lies at least implicitly in published
results based on the latter theory. See, for example, references 3 and k.

When linearized supersonlc flow theory was shown to be consistent
with the transonlc area rule as the Mach number approached unity, the
question naturally arcse as to whether or not it could be used to develop
an analogous rule applicable to the evaluation of wave drags on alrplanes
flying at supersonic speeds. Thereafter, a formula, often referred to as
the supersonilc ared rule, was presented (refs. 5 and 6) which did extend
the transomic area rule, again expressing the drag in terms of the stream-
wise dlstribution of airplane crass-gectional area - but this time in
terms of cross sections taken in planes tangent to the characteristic
Mach cones. However, this supersonlc area rule, when applied to general
girplane shapes, glvea only an approximation to the correct linearized-
theory value of the wave drag. The degree of approximstion rsnges from
very good, for cases such as a nonlifting wing centrally mounted on a
slender body (essentially the case to which Jones (ref. 5) limited his
result), to very poor, for cases such gs the Busemann biplane or a shrouded
body similar to that studied by Ferrl iIn reference 7. Further, the guan-
titative error made in applying the rule to general shapes flying at
supersonlc speeds was unknown., - -

The object of this report is to present a formula which gives the
correct (linearized theory) value of the wave drag for any lifting or

of wave drags of equivalent bodies of revolution

LIST OF IMPORTANT SYMBOLS

local pressure - free-stream pressure
q

Cp pressure coefficient,
D wave drag
1(x,0) oblique section 1ift (see eq. (17))
M free-stream Mach number

n normal to airplene surface

PR,
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%; directlion cosines with respect to the x,y,z axes
Og
q free-gtream dynamic pressure, %— poU02
T \KY‘YJ.)Z + (X'X:L)a
S(x,8) oblique section area (see eq. (12))
Uo speed of free stream
X5 X - Br
X,¥,2 Cartesian coordinates in wind-axes system
x,r,0 cylindrical coordinates in wind-axes system
8 W -1
v conormal to girplane surface
tE,0 coordinates defined in equation (10)
og coordinate defined in sketch (@)
Po free-streaem density
(0] perturbation velocity potential
DEVELOPMENT .

Consider an airplane in az steady supersonic stream. Let the surfaces
of the alrplane be Inclined to the free stream at angles small enough for
the disturbed flow field to be adequately epproximated by solutions %o
the wave equation

qu)xx"q)yy"q)zz=o (l)

where the free stream is moving in the positive x direction and
B2 = M2 - 1. A general solution to equation (1), developed by Volterrs,
1s given by '

_ 13 X _ . 3 x - x; +(x - x1)2 - pZr,°
QJ(X’Y,Z) B E Elf(Bvl @ aVl Brl d?l)
2
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where 12 = (y - y1)2 + {2z - 21)3, dS; is an element of surface area
on the sirplane, vy 1is the ocutward conormal (the conormal to the char-
acteristic cone lies along the cone) to that element, and T is that

portion of the sirplane surface within the Mach forecone from the point

KyY 22

culate the wave drag of a glven object.
téyz’ For this purpose the wave drag ie expressed
4¢//' in terms of the perturbation veloclitlies
Induced by the object on an enclosing
cylindrical control surface of infinilte
y radius. -This equation (see, e.g., ref. 8)

can be written in terms of the cylindri-
cal coordinate system defined in :

[Z We wish to use equation (2) to cal-

i‘//' sketch (a) (notice that the control sur-
\\)/// face 1s parsellel to the free-stream
direction, that 1s, we are using wind _
axes) as

21 -]
D = -pof def dx< lim q:rcpx> (3)
o] -~ r -

g
r The wave drag of an arbitrarily
b// shaped object (arbitrary except, of course,
) 4

for the condition that equation (1) must
adequately represent the flow field) can
be calculated by inserting equation (2)
into equation (3).

Sketch (a)

First let us inspect the conormal derivative 0/dv, and the differ-
ential area dS;. By definition (see ref. 9, p. 2i6)

~ 3 - 9 =
—-anl-é-x—l-+n2-§y—;+ngaz‘l

a _—

aVl

2 -2 -2 .
J%1 B* + B2° + fig-

where %,, Bz, and na are the direction cosines of an outward normal to
the airplane surface. 'For surfaces msking small angles with the free
atreanm . -

]-1'-122 + ﬁsz_” 1
i, » streamwlse surface slope

2
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Hence, within the framework of linearized theory

5} d
LS __ 9 L
dvy Onj ()

Where n; 1s elther the normal to the airplane surface or the normal to
the surface in the ¥,,2z; plane. BSimilarly, the differential area
dS, can be expressed as

ds ldxl

J1 - 8.2

dSl =

where ds; 1s an element of asrec along the airplane surface in an
x3 = constant plane; so, again, within the framework of linearized theory,
one can write

dS; = dsidxy (5)

For convenience equation (2) is divided into two parts such that

q)(x,y,z) = qu(X,y,Z) + QZ(X:Y:Z) (6)
where
- + - 2 _ 21' 2
(pl(x,y’z) = - é a_axffcpnl(xl’sl)ln X X1 J(x Xl) BT, dxds,
T Bry
(7N
and
3] - - 2 _ g2, 2
CPz(X:Y:Z) = % 'S‘;l/;fq’(xlgsl) al In X- % ® J(xﬁrlxl) B .l dx,dsy

(8)

Consider, first, equatlion (T). Accorging to equation (3), we need
to f£ind the value of @y and @. in the limit as r (which equals

Jyg + z8) goeg to infinity. However, since no disturbances can be
induced zhead of the foremost Mach cone enveloping the disturbing object,
it is convenlent to increase x as r 1s increased so that the point

X,r,0 remains in the vicinity of thils Maci cone. Therefore, we first
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set (see sketch (b))

Ar 7/
//
x=Br . Plx,r,6) X = %o + Pr
\EV/
7 and then let r approach infinity.
e In this way, as r becomes very
/s large, one can show that equation (7)
7/
/ reduces to
4 X
x -
,/
~—Br ——— x,—™
Sketch (b}
-1 Pn, (x1,81)dx1de;
va(x,r,0) = ——= [ [ (9)
2n~J23r ™ Jxo - Xy + Byicos @ + Bz, Bin 8
By means of the transformations
£ = x3 - Byicos @ - Bzy8in @
(10)
g = 83

equation (9) further simplifies to

pi(x,r,0) = - Eﬂ\’_?-B—f J—f on,lt - £(¢,0),0ldc  (11)

where ‘jn dg 1is & line integral around the alrplane surface in the
oc )

oblique cut.

The veloclty potential ¢, glven by equation (11) i1s exasctly the
same as that induced orn a large cylinder by a line of sources distribu-
ted along the x; axis from -o t0 x5, the variation of their strengths

being given by Pn,do. (This was first pointed out by Hayes in

oc
ref. 2.) The physical significance of the term L/n Pn,dc 18 more
oc
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readily grasped by referring to sketch (¢). TImagine a series of Mach
Z
i

Area equals

Sketeh (c)

planes parallel to the y: axis each given by the equation

X3 - Bz; = constant. Place the airplene In its normal flight sttitude.
Fach Mach plane slices through the alrplane, defining, thereby, a certain
aree composed of the reglon on the Mach plane within the airplane surface.
Project these areas on planes normal to the free stream.(i.e., Yi1,Z1

planes) and designate the resulting sres distribution by S(E, %); The

integral @n,d0 1= then propcortional to the streamwise rate of change
oc

of these normally projected, obliquely cut areas; that is, for the air-

plane so placed,

3
9n 80 = Uo = s@, %)

Now, keeping the Mach planes’fixed,l revolve the airplane about the x3
axis (not about its own body axis unless the latter happens to coincide
with the =x, axis in our wind-sxes system) and repeat the above process
for all orientations in a complete 360° rotation. For any given angle

oc

f Pn.do = Ug S S(&,8) = UsSt(¢,0) (12)
oc o8

10r holding the airplane fixed, rotate the Mach planes - always,
of course, keeping them tangent to the characteristic Mach cone.
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Since one can show (cpr)

-B(cpx)r o COmbining equations (11)
and (12) ylelds :

(¢1x)r_>m =-z ((Plr)

- f"o 11(g,00a8 (4
B r>o  oxJ2pr

NXo = &

and, by means of equation (3) s this gives the complete contribution to
the wave drag of the first term in equation (2).

Consider next equation (8).

Taking the derivative wilth respect to
n; a8 indicated, we have _

dyl dzy )
( ) 1 3 ff Q(X1,51)<an—l cog 8 + -é;l—l- sin @ )dx,d483
a\X,¥,2}) = - X
25 9
* [(y-

¥1)2 +(2-21)21 J(x-x;,)2 - p2(y-y1)2- p3(z-2,)2

Proceeding as before, settlng x = x5 + pr, y =r co8 8, z =r 8in 8,
and letting r go to infinity, we find

(x s)dy cose+d—-sinedxds
B a ¢ 1r"1 dn d.nl xR 1
sz(x:r,@) = ff

at JQBr dxe YT

NXo - x3 + Byicos 8 + Bzyein O
(1k)

Introduce the transformation given by equation (10) end @z can be
expressed as o,

B 3 f*o a dy1 dz;
- [e~-f(t,o o'}(———— cos 8+ ——gin adc
2¢ N2BT OXov_g rywry ocq’ ,9) 5 any dn,

c_Dz(X,I',G) =

dz,
Notice (see sketch (d)) that the term % cos 6 + E' sin 6)&151
nj 1

is simply the component of ds, normel to the plane 6 = constant.

i
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Designate this direction by the L3
coordinate g, as in sketch (4}, 4

and equation (14) becomes

7 dZ[

ay,
sz(X:r;e)

150

53 [ _a
on 2T O%o Y- WXo-E Yoc

edog

Integrating by pertes (notice that
f- olt - £(£,0),0] = ulg - £(,0),01 9
E :
where u(x,o) = -aa— o(x,0), since in dny dny
x .

linearized theory Of/0f can be cosy cosé + sinysiné = cos(y-6)
neglected relative to unity) and using

the relation for pressure coefficilent

20 §&
Cp = T = - 5 (15) 90°
> poU02 °
3—7 ag.
we find (-
S
CPZ(X;I':G)
= do, \ ’
e SN e -

Sketeh (4
The velocity potentisl @z 1s agein examctly the same as that induced

on a large cylinder by a line of sources dlstributed along the x; exis

from -w t0 Xo, the variation of theilr strength this time being given by

U .
_ﬁ?g Cpdog. The physical slgnificance of f deo'e can be demonstrated
oc oc
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with the aid of sketch (e). As before, imagine a series of planes

% f Gpdg = 4 UE T \

I

Y X;

C/ Malcc#’:'\
N S X T U/ N Z
\ | 7 N ¢
Y X N\
AN
N
N

Sketch (e)
(x, - Bzy = constant) parallel to the 7y, axis. Again place the airplane
in 1ts normal flight attitude. Then if we define 1(t, n/2) as the 1lift
(the component of net resultant force in the =z, direction, positive
upward) on a given section formed by the intersection of a Mach plane
with the airplane surface, one can show, for the alrplsne s0 placed,

w16
oc

where gq 1s the free-stream dynamic pressure. If we keep the coordinate
system and Mach planes fixed and revolve the alrplene about the x; axis,

for each @ +the term q\/h Cpdog represents at & given x the net
oc .
1ift® on the obliquely cut section. In general,

f Cpdsg = = 1(&,6) (17)
oc ’

Now combining eguetions (16) and (17), one can show

2If the alrplane 13 fixed and the Mach planes are rotated, 1(t,8)
represents the resultant obliquely cut section force normal to the free
stream and parallel to the plade @ = constant, and dog is an element
of length normal to that plane. ' '
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B ]
(02.) _ % (02,) . Us fxo 5 L (E,0)a8 (18)

X
r'—»oo ' o 281' -0 J-x—o—_—g-

where 11(t,0) = ga— 1(£,0), thet is, the streamwise gradient of the 1ift
E

on the obliguely cut section. Finally, if equations (13) and (18) are
placed into equation (3) and the x integration is carried ocut, there
results

p_ 1 p=_ pLe) L(e) . 5
a hﬂzj; de\[:]'_.l(e)dxj- -Ll(g)dxz[s (x1,8) - = 1 (xl,g):l

[S, JESORE zf(xZ,é>}1nixl-x2t (19)

where for constant 6 +the intersecting Mach planes extend from
x = -L1(0) to x = L(g).

Equation (19) gives the wave drag of any lifting or nonlifting ailr-
plane in a steady supersonic stream, the only spproximations beling those
basic Lo linearized theory.

SOME SIMPLE APPLICATIONS

A Plane Wing

In order to demonstrate the general spplicebllity of equation (19),
let us use it to solve some simple problems. Some of the simplest kinds
of serodynamic problems are those concerning single planar systems, that
1s, systems composed of thin wings, the surfaces of which are everywhere
close to a glven plane. For such cases the area and 1ift terms 1In equa-
tion (19) have certain symmetry properties. Specifically

st1(x,0) = s**(x,-0)

11(x,6) = - 11(x,-6)

N
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or 1'(x,6) i1s an odd and S'!'(x,9) 1s an even function of 6. Hence,
2n
JF str(x,0)1'(x,8)ds = O
o

and equation (19) reduces to

L(g) L(e)
D T tt - -
il ——-U[\ ~/‘L1(9) _Ll(e)dxas (x1,8)8'*(x2,0)1n}x,-x2|

1 21 L(6) L{e) B\2 ) -
= " axa(R) 14(x2,0)1 (x2,0)1n sl (20
hnE\[: detfiLl(e)dXI —Ll(e)dxz(é;) 1t(x%,,0)1' (x0,0}Inix1-x21 (20}

which simply exemplifies the well-known fact that 1n the study of a thin
planar wing, lifting and thickness effects can be analyzed separately.
Further, since one can prove (for any f(x) that can be expanded 1in s
Fourier series)

1 p1
-Jf JF £(x1)F(x2)In|x;-xp|dx,dxp 2 O
~1VY =3 '

equation (20) shows that the only way the wave drag of a single wing can
be zero is for both S'!'(x,0) and 1'(x,0) to be identically zero, which
is the trivial case of no wing st ell.

A Biplane

Consider next a blplane, in particulsr, the Busemann type biplane
ghown in sketch (f) traveling at the highest Mach number at which the
wave drag is known (a priori) to be zeroc, that is, at a Mach number

2 . . : .
equal to (é%) +l. Since the flow is two-dimensionel, we need only

study the cut represented by 6 = and consider strips of unit width

noja

.———-'
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in the spanwise direction., Sketch (f) Blx
shows the variation of 8(x), S'(x), and —
Bl (x) wit on. that th 4 2
2_q b4 h X, e can show. e A | |
)
two terms St(x) and -2% 1(x) are exactly Stx) — .:'f
L

equal for any given value of x and
thus, by equation (19), the total wave
drag is zero - the correct result Stx) X
according to linearized theory. e — et

A b 44

Shrouded Bodies of Revolution oSS e
Va Vd rd
Tb'/-7’., /’/ \ Mach
, .
As & finel example, let us develop 4 - 7 7 lines

a method for calculating the shape of a § .7 ’
body of revolution which when enshrouded  |=—— ¢ —
by a thin cylindrical tube (having neg-
ligible thickness) will result in zero Sketch (f)
wave drag for the combination. Let the
length of the tube be ¢ and 1ts ‘,
radius R (see sketch (g)). ---Mach cones
Assume a certain loading on the Cylindrical shroud
cylinder (i.e., 2 value of 2/ Body of
ACp(x) = “pinner ~ Chouter)* The e / revolution
equation of the projection in the F

Xy ©plane of the curve formed by
the intersection of the oblique

plane, x = § + Bz, and the cylin-
der, y© + 2z© = R2, is given by l | .

2
y2 ¥ (X 'B' §> = R= Fm-’-&-—-c —-’.-ﬂﬂ
Sketch {(g)
Hence, the obligue sectlon 1ift can be written
-
i-)-=:af acp(t + sJRE - yP)ay; -BRSE SO
o

q
(21a)
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(&) afRAcp(g + Bk]-l-%z_—-y—z)dy-- 2—fR Acp(g - BNRZ - y®)dy;
° &

0O<t <pR (21b)

2fntacp(§ + BJRZ - y¥)ay - ACy(t - pJR? - y¥)lay;

BR < f& <c - BR (21e)

and go forth. Now 1f the Interlor body &
to be analyzed by slender-body theory (1 e., source strength 1s propor-
tional to S*'(x)), the oblique section loading on the body 1teelf can be
neglected and the body shape for zero total wave drag is, therefore,

glmply

4,
H
@
3
]
I._l

1on 1g alender ancmigch
ron ugn

37
¥ - _— A sl i

s1(e) = £ 1(¢) (22)
q

where the values of 1(&) are given by equations (21).

If the body determined by the above
process is real and closes, the enshroud-
ing tube will be a perfect cylinder and
the velocity of the alr everywhere exter-
ior to the shaded region in sketeh (h)
will be equal in magnitude and direction
to the free-stream velocity.2

The solution given by equations (21)
and (22) has been applied to a tube for
which

2269

SThis follows directly from a theorem due to E. W. Grahem (unpub-
lished) which states that the flow fields of all finite systems having
& minimm wave drag under the same specifled restralnt are identical out-
slde thelr enclcsing fore-and-after Msch cones.

Sketeh (h)
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where A 1ig a constant. There resulis
s1(x) = i 1-2X%EX A-(X 3 + cog  {=2=)] -
c c/|BR BR R
i /BR x\278/2 o
HOIEREN o emsxsen

2
st (x) =1‘-§—:t<1-% 3 BR<x <e¢ - BR

and these values are identical? to those derived in reference 10 by means
of a different method.

CONCLUDING REMARKS

The wave drag of any object in a supersonic flow field governed by
the wave equation is ldentlcecal at a fixed Mach nuwber to the average wave
drag of = series of "equivaslent” bodies of revolution. The streamwise
gradient of arez, measured normael to the free stream, at a section of
each of these equivalent bodies of revolubtlon is glven by the sum of two
quantitles: :

1. The streamwlse gradient of area, measured 1n parallel ocblique
planes tangent to the Mach cones, along the given object

2. A term proportional to the resultant force on the object measured
in the same oblique planes.

Obviously, a formal general application of the ghove result requires
a complete knowledge of the shape of the disturbing object and its pres-
sure distribution - a knowledge which always, of course, fixes the drag
of the object, However, in many special aspplications one or the other
of the two terms mentioned above is small or can be estimated accurately
enough without a detalled knowledge of the entire airplane or its surface
pressures. For example, 1f one wilishes to find the wave drag of a wing-
body combination that is symmetrical sbout a horizontal.plane (e.g., &
thin nonlifting wing mounted centrslly on a body of revolution), it is
not necessary to know the pressures anywhere on the wing, since (if the
wing is thin enough) thelr contributions to the resultant forces on
oblique sections are negligible. Hence, for such an example the force
term in the drag equation depends only on the pressure over the body and,

“Tn the equation for radlal force in Grshsm's report the exponent 2
was omitted from the B term.

C—
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in fact, only on the asymmetry of these pressures in the obligue (Mach)
planes. If the body is slender, the latter effect is small relative to
the obllque-ares gradient, and, for such configurations, the form of the
supersonic area rule posed by Jones ls seen to be & good approximation.

Ames Aeronautical Laboratory
National Advisory Commitiee for Aercnautics
Moffett Field, Calif., Jan. 18, 1955
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