
REPORT 962

THE AERODYNAMIC FORCES ON SLENDER PLANE- AND
CRUCIFORM-WING AND BODY COMBINATIONS

By JOHN R. SPEEITEE

SUMMARY

17w load distribution, fwcw, and moments are calcxdated
theoreticallyfor incline! &nder wing-body combinations ccm.-
.~”stingof a slender body of revolution and either a plane or
cruci~ormarrangement of low-aspect-ratio pointed wings. The
Tewlts are applicable at subsonic and tromsonicspeeds, and at
supersonic speeds, prot~ded the entire mung-bodycom.binati-on
lies near the center of the Mach cone.

1%.eanalysis of the slender cruciform-wing and body combi-
nations results in thefolloun”ngconclusions: The lifi and ~“tch-
ing moment are independent of the amgle of yaw, and the m“d~
force and ywing momentare independent of the amgleof attack.
If the rertical and horizontal wings are identical, the rolling
moment i! zerofor all angles of pitch and yaw. By symmetry

ccmm”derat”ions,these results are shown to be equally applicable
for any cruciform-wing and body combination.hewingidentical
horizontal and wrtical wings of arbitrary plan form and aspect
ratio.

INTRODUCTION

A great amount of research is being conducted on aircraft,
con&ura.tions that may be described as elencler wing-body
combinations, that is, a wing-body combination consisting
of a slender pointed body and pointed low-aspect-ratio
wings. Although the aerodynamic characteristics of the
components may be melI knomn, the mutual interference
resulting from their combination may be so great that it is
desirable to study the aerodymrnic properties of the com-
plete configuration. The mutual interference, in an incom-
pr&sible meclium: of a fuselage and a wing of high aspect
ratio (to which Mting-line theory is applicable) has been
irmestigated by Lennertz, Wieselsberger, Pepperj and Mul-
thopp in references 1, 2, 3, and 4. Since these resuhs were
not. applicable to the present problem, a theoretical analysis
of the aerodynamic properties of slender wing-body combi-
nations was undertaken. The results of t-hisinvestigation
were fis~ reported in reference 5 and were later extendecl in
reference 6 to include cruciform-fig and body combina-
tions. The present report summarizes ancl extends the
theory and results preciously presented in these references.

The aerodynamic properties of slender wi.ng-bocly combi-
nations may be approtia.ted by the method origins.Uyused
by Munk in, study@ the aerodwtics of eJender airs~ps
(reference). R.T. Jones (reference 8) extended this method
to the study of low--aspect-ratio pointed wings and Ribner
(reference 9) applied it to determine the stabiIity derivatives
of lo-w-aspect-ratio triangular wings. The essential point h

the study of slender bodies by this method is the fact that
the flow in the vicinity of the body is approsimate~y tvro-
dimensional when viewed in planes perpendicular to the
direction of motion.

This theory is a.ppIiedfirst to pkme-wing and body combi-
nations inclined at small angles of attack. For this portion
of the analysis the wings must have a pointed leading apex,
a swept-back leading edge, and such a plan form that. no
part of the trailing edge extends forward of the station of
maximum span. The theory is next appIied to cruc.iform-
wing ancl body combinations inclined at small angles in
yaw and pitch. In addition to the restrictions mentioned
preciously, it, is necessary, for this case, to specify that the
trailing eclges of the wings are unswept. The results of
this analysis are applicable to combinations hatig ~ery
lovr-aspect-ratio wings at all Mach numbers or to combi-
nations ha~u wings of moderate aspect ratio at- Mach
numbers near 1. lkamples are included to illustrate the
mlcula.tion of the ~oad clistribution, forces, and moments on
several elementary wing-body combinations having either
plane or cruciform wings.

The analysis of slender cruciform-wing and body combi-
nations resultecl in the discovery of certain general chmac-
teristics of combinations ha~-ing iclent.ical horizontal and
vertical wings complying, of course, with all the require-
ments of slender wing-body theory. To ascertti whether
all these requirements were necessary, an in-restigation of
the forces and moments of cruciform-wing and body
combinations having identical wings was made on the basis
of symmetry considerateions. It was foumd that, within t-he
limitations of linear theory, these particular conclusions
were -did for ti cruciform-wing and body combinations
regardless of the plan form or aspect ratio of the wing.

SYMBOLS

A (maximum span squared
aspect ratio we-a )

B cross-section area of bocly of revoMion (+
B, cross-section area of base of body of re~olut-ion

B. R%:)mean cross-section areaof body of revohltion —

c. ()lift coefficient $.

c’,
L’

()
rolling-moment coefilicient —2@Hso
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M
()

pitiching-momen~ coefficient —
Q%&
N

()
yawing-moment coefficient —(#lvcv

Y
()

side-force coefficient —
qsv

lift
rolling moment
rolling moment clue to lifting forces
rolling moment due to side forces
pitching moment about leading edge of root chord of

horizontal -wing
free-stream Mach number
yawing moment about leading edge of root chord of

vertical wing
wing area
free-stream velocity
complex potential function (@+i#)
complex variable (y+iz)
side force
radius of body
maximum radius of body
root chord of wing
effective wing chord
semispan of fiat plate
imaginary unit (4–1)
length of the portion of the body forward of the wing
static pressure
local pressure difference between lower and upper

surfaces”
local pressure difference between port and starboard

surfaces
free-stream dynamic pressure
polar coordinates
local semispan of horizontal wing
maximum semispan of horizontal wing
local semispan of vertical wing ‘.
maximum semispan of vertical wing
perturbation velocity component in the free-stream

direction
Cartesian coordinates
distance from leading edge of root chord of horizontal

wing to center of pressure of lifting forces
clistance from leading edg6 of root chord of vertical

wing to center of.pressure of side forces
angle of bank
stream function
angle of attack
angle of sideslip
transformed rectangular coordinates
complex variable (q+if)
density of air
perturbation velocity potential
perturbation velocity potential corresponding to unit

angles of pitch or yaw

SUBSCRIPTS

body
horizontal wing
vertical wing ,“

w basic wing without body
a pertains to angle-of-attack case having zero yaw
b pertains to sideslip case having zero ungle of attack
1 lower side
P port side
8 starboard side
u upper side

ANALYSIS

The prime problem to be treated in this report is the
prediction of the load distribution, forces, a.nclmoments on
inclined slender wing-body combinations trmwliig at, sub-
sonic, sonic, or supersonic speeds. In the major portion Of

the analysis, it is assumed that the bodies are slenclcrbodies
of revolution and that the wings have pointed leading apexes,
highly swept-back leading edges, and plan forms such that.
no part of the trding edge lies fomard of the stat-ion 01
maximum span. The wing plan forms are otherwise mbi-
trary. In certain special cases, however, these requirements
will be relaxed so as to include wings of arbit,raly aspect
ratio and sweep. The study will consist essentially of two
parts: The first will be devoted to plane-wing and body
combinations each consisting of a body of revolution and m
horizontal wing; the second, to cruciform-wing ancl body
combinations each consisting of a body of revolution a.ncln
cruciform arrangement of horizontal and vertical wings, In
the latter section, the horizontal and vertical wings may l.w
of difhrent p~anform and size.

The principal approach to the probhxn wiI1 be based on
the general arguments advanced in references 7, 8, and 5 for
slender bodies, wings, and wing-body combinations, Tho
assumptions involved in the study of these configurations
permit the Prandtl linearized differential equation for the
perturbationvelocity potential of a compressible flow in t.hrcc
dimensions

(1–M?)#Jzz+4J,,+ 4..=0 (1)

to be reduced to a particuhuly simpIe parabolic differmt.id
equation in three dimensions

+,,++22=0 , (2)

The slender-body and low-&pect-ratio wing t,heorics (ref-
erences 7 and 8) neglect the term (1—M$) & in comparison
with I#UUand rp..because 4=Xis very small for slender wings
and bodies. Therefore, the loading and aerodynamic prop-
erties of plan forms having very low aspect ratios me in-
dependent of Mach number. As pointed out in reference 5
and discussed in greater detail in reference 10, the theory is
also valid for swept-back plan forms of moderate nspcct
ratio at sonic velocity, since the term (1—&foz)#=, can ‘bc
neglected because 1—L& is zero, provided that &Z dots not
become very large in comparison with the other velocity
gradients @uVand @,,, In both the low-aspect-ratio and
sonic applications, it shotdd be noted that, with the excep-
tion of the infinitely long swept wing, it is possible to solve
only problems involving the dillerential pressure arising
from an asymmetry of the flow field. Thus, lifting problems
may be treated satisfactorily; whereas, in general, t,hickncss
problems cannot. If a thickness problem is attempted by
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this method, however, it fl .be found that. the theory
predicts infinite lorghudina.1 perturbation velocities and
hence in6nite pressures at,aIIpoints on the surfaces of tinge
and bodies other than the in.hit.ely long swept wing.

The form of equation (2) permits the ana&s to be under-
taken as a two-dimensional potential-flow problem at. t-his
point; each vertical plane, therefore, may be treated in-
dependently of the acljacent planes in the determination of
the velocity potential. Thus, t-hepotential is cleterminedfor
an arbitrary Z=XOplane; then, since the ZOplanemay represent
any plane normal to the fuselage center line, the potential
distribution is known for the entire wing-body combination.

SLENDER PLANE-WING ANI) BODY COMBINATIONS

THEOBY

The first problems to be considered ~ this report me
those related to slender plane-wing and body combinations
inclined at smaU angles of attack. Such a wing-body com-
bination is considerecl to consist of a slender body of revolu-
tion and a flat highly swept-back low-aspect-ratio wing
e.tiending along the continuation of the horizontal meridian
plaue of the body. (See fig. 1.) These problems may be

\
%<

ne

‘..
‘x

FIGUM I.—l-iew of pkm+wing and body comb~t.ion showing wordfnate axea.

treated by determining the perturbation velocity potential
@ by means of equation (2) together = ith the following
boundary conditions:
at the surface of the wing

Zh$
Z=o

at the surface of the body

●

(3)

(4)

infinitely far ahead or to the side of the wing-body combina-
tion

grad 4=~lrW

where ~ is the unit, vector i~ the z direction and finally @
is continuous everywhere except across the surface of the
wing-body combination or its make.

Velocity potenthd.-.ls a consequence of the dtierential
equation and the boundary conditions, the perturbation
velocity field in the *Ophme at, any station forward of the
station of maximum span is similar to t-he velocity field
around an im6.nitelylong cyhncler, the cross section of which
corresponds to” the trace of the wing-body combination in
the X. plane. For a slender plane-wing and body combina-
tion inclined a.n angle a in pitch, the flow in the ZOplane is
as shown in figure 2 {a) where t-heflow -relocity at infinity is

.++/; _d{‘),.
(a) (b]

FIGUCE2.—TwcdhnensionaI flow fields cmrespondii- to pkm+wirg end body combination.

in the direction of the positive z axis and has a velocity of
I’oa. The flow a-rounda section such as shown in figure 2(a)
may be derivecl from the tranmerse flow around an infinitely
long flat plate (fig. 2(b)) by application of th~ principles of
conformal mapping using the Joukowski transformation.
Thus, we consider the mapping of the q~ plane of figure 2(b)
onto the yz plane of @ure 2(a) by the relation

-where
~=?j’+ir

and
X=y+iz

The complex potential fuuction for the flow in the ~~ plane
is (see, for instance, reference 11, p. 66)

JT-tT.= 4.-W.= —iVocY : —dz (7)

If d=2a, the flow around a flat plate expressed by equation
(7) transforms by equation (6) into the -rertiealflow around
a circle of radius a haviryg its center at the origin. If d is
taken larger than %, the flat-plate flow transforms into the
desired vertical flow around a cylincler consisting of a circular
cylincler of radius a with thin flat plates extending outward
along the extension of the horizontal diameter to a distance
s from the origin. When the Trplane is transformed into the
yz plane in this manner, the complex potential for the flow in
the yz plane is found to be

W==e$a-w== —+.”oc’IKy+%dz
‘-’’7%(X+3++:) (8)

since the point d in the qr plane corresponds to the point s
in the yz plane. The velocity potential & for the flow- in
the yz plane may then be found by squaring equation (8),
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substituting X=r(cos 8+i sin 6),
obtained

and sol%ng. Thus is

(9)

where the sign is positive in the upper half plane O<19<r
and negative in the lower half plane .7r<8<27r.

Load distribution,—The lifting differential pressure coeffi-
cient in linetmizedpotential flow is given by

(lo)
where A represents the clifference in values between cor-
responding points on the upper and lower surfaces of the
wing-body combination. The load distribution may now
be determined by substituting the expression for the velocity
potential given in equation (9) into equation (10) and
letting @equal Oor @ equal r for the wing loading and r equal
a for the body loading. The loading over the wing is then
found to be given by

W-$)+a’%-$)1](%%=’”{~(1+$)-$(1+$) “J.
and that over the body is given by

(11)

(12)

It shouId be remembered that equations (11)and (12) are
valid only at stations forward of the station of maximum
wing span. To extend the solutions to stations farther aft,
consideration must be given to the influence of the vortex
wake trailing from all portions of the trailing edge of the
wing that lie aft of the station of maximum span. This
point will be discussed at greater length in the application
of the theoly to specific configurations.

Total forces and moments,—The total lift and pitching
moment of a complete wing-body combination may bc
determined by integrating the loading over the entire plan-
form area. Expressed in nondimensional form, these
characteristics are given by

“=is’s(%’)-
c~=-+JK%’)-

x~~ c_= —s. =.
c~ c’

(13)

(14)

(15)

where & is the reference area, CHis the refercncc chorcl or
length, and the integration is carried over the complete plan
form. It is often convenient to carry out the integration
by first evacuating the lift on one spamvise strip and then
in~egrating these eIemental lift forces over the h.mgthof the
wing-bedy combination, thus

da
‘as z 1‘(’-$)-:(1+W+$’16)

.,

The lift and pitching-moment coefficients may now bc clc-
termined by integration of the forces on all the clcrncntal
strips

J oCL=.+ $ $ dx

c~=+m’)”

(17)

(18)

where the integration interval extends from the most forwarcl
to the most rearward part of the wing-body combinat.ion,

PLANE-WINGAND BODY COMBINATIONS

APPL1CATIONS

For a given wing-body combination compIying with the
generaI requirements of the present theory, the. loncI distri-
bution may be determined directly by substituting the proper
values for the body radius and wing semispan and their rate
of change with x into equations (11) and (12). In acklition,
closed expressions for the lift, pitching moment, and ccnt.er-
of-pressure position of several elementary codigurations may ,
readily be founcl by simple integration of the intcgrrds indi-
cated by equations (13), (14),and (15). Several such appli-
cations will be presented in detail in this seckion and tlm
results wiIl be compared with those from ot.her thcorics
when possible.

Pointed low-aspect-ratio wing,—Mhough the assumptions
of this note have been used previously by R. T. Jones in
reference 8 to determine the aerodynamic propcrt.ics of low-
aspect-ratio wings, the loacl distribution, lift,, ancl pitching
moment will be rederived for completeness of prcsenta.kion
and to show a simple application of the preceding exprwsions.
The aerodynamic properties of a ~ow-aspect-ratio wing with-
out fuselage may be cletcrmined by letting

da
a o; ~=o-.=
s

By substitution of these vahles into equation (11), it,follows
that the Ioad distribution along any ekmcnta.1 spanwiee
strip is

ds

(19)
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The loacling thus shows an infinite peak along the lead~~
edge of the wing. The totaI load on an elemental spanwise
strip is found from equation (16) to be

Equations (19) and (20) show that the development. of liit
by the long slenclerwing clependson an espansion of the sec-
tions in a clovmstrea.mdirection. _&ccordi@y, a.part-of the-
wing having paraUel sicleswoulcl develop no lift; whereas a
part having contracting width WOUICIha~-enegative Iift with
infinite negative loacls along the eclges. In the actua.1flow,
hovre-rer,no such loads can exist-on the traihng edge. Fur-
ther, it-can be shown, by consideration of the Kut ta condition
and of the fact that the portion of the -wingbehind the station
of mtmimum span lies completely within the -rortex sheet
trailing from the surface aheacl, that the clown-washfield of
these -rortices is just such that the flow is directed parallel
to the wing surface at all points behincl the station of mati-
mum spctn. Therefore, it can be concluded that the differ-
ential pressure act&~ on all such points is zero. This is
know-nto be an oversimplification of the truth in the case of
-wingsof normmishmg aspect ratio at-other than sonic speeds
and caution should be exercised in applying the present re-
sults (particularly the pressure-distribution results) in regions
of constant or contractingmiclth.

The lift coefficient for this -wingis found by integration of
the loacl on the element.cdstrips between the leadmg eclge
and the vcidest section as indicated by substituting equation
(20) into equation (17]

pl)

*a=A= the aspect-‘iTherec’H is the eftective wing chord and ~=

dc.w
ratio. It is seen that the lift-curve slope ~ c~epenckordy

on the aspect rate. It should be noted, however, that the
actual lift- force clepcncls only on the span and angIe of
attack and noi on the aspect ratio or the area.

By similar substitution and integration by parts of equa-
tion (1S), the pitching mom-ent about the leading apex is

(22)

where

ancl where moments tending to procluce a nosing-up rotation
are considered positive. The center-of-pressure location is
then founcl by clivicling the moment coefficient by the lift
coefficient as indicated in equation (15),

, For a more specific csample, consicler a triangular

wing moving point foremost. Then, since S.2=$ S02and

C’E=CE, the pitching-moment coefficient and center-of-

pressure position are given, respecti~ely, by Pmw= – ~ A=a

--=;. The center of pressure is seen to be at theand ‘~~

tvro-th~rdschord point or the center of area.
To provicle further insight into the range of applicability

of the present theory, figure 3 has been prepared illustrating
the variation of lift-curre slope -with Mach number as pre-
dicted by the present theory (solicl lines) and by linearized
lifting-surface theory basecl on equation (1) (clotted lines).——

.lt3-

~~ ,:

i
1. I

l— Slender w;ng theory
. [4

,1 ‘ ‘i--:~~ “n’A=+, , .“
.12 , ., ‘

----
---- ?-- i ‘,] i

&
.10 : !’ z’‘.

~’

,, ‘. .
A=4--(’ , ‘.. ‘.

dc.w ~8 , ,’
.

cm - I

_+-:~ r----------
‘j-:$~

.06 ,
‘..

I I

~::-<c-::-:-----=-----: ----- -----i-
t

.04
, + -+’--.. L----- --

A= 1~:, ~
---------~

---- .-A _____.. ---- .------ ---
.02

-+---- . ---- i--+- -----
I

Eliip?ical ~lanfarm~ -
I I

Trianguf’or pfanibrml
, II I I

o 2 ..4 .6 .8 LO 12 L4 [6 [8 ,20
Mach number, IWO

FIGCRZ 3.—\-miation of lift-crime sIops with Mach number.

In the subsonic range, the dottecl curves are for wings of
elliptical plan form a.nclare based on Krienes’ Iift@surface
theory (reference 12) as modified for the effect of compressi-
bility by Robinson and Yo~~ (reference 13),using the
three-climensiona.lPrancltl-G1auertrule. For the supersonic
case, the clottecl curves are for Ttingsof triangular plan form
and are based on the theories of Robinson, Stewart, Brmrn,
and others (references 14, 15, and 16). The solict curves
representhg the results of the present theory are did for
both elliptic ancl trianguhm wings; in ftict, they are -ialicl
for any plan form such that no part of the trd.iug edge
extends forward of the station of rnatinmm span. It is
clearly seen that. for tigs of low aspect ratio, the present
theory agrees very -well tith the prediction of Iinekrized
lifting-surface theory at all Mach numbers; whereas for
tigs of larger aspect ratio the agreement is only satisfactory
at Mach numbers near 1. This latter obser-ra.tion is ~ery
important. for these wings if the aspect ratio is less than
perhaps 3 or 4. For tigs of higher aspect ratio, however,
the agreement- is probably only of acaclemic interest since
it.is a -well-knonmfact that experiment ancl linearized theory
are in poor agreement for high-aspect-ratio vringg at Mach
numbers near unity. If comparable information mere
available for wing-body combinations, it- is presumed that
the results of the present theory would bear a similarrelation-
ship to the results of linearized theory.
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. Pointed slender body of revolution,—The present method
for treating the flow around long slender bodies was intro-
duced by MunlI in reference 7 for the determination of the
distribution of forces along the longitudinal axis of a body
of revolution (airship hull). In the present section, these
results will be rederived and, in addition, expressions for
the total lift, pitching moment, and load dk$tributionwill be
presented.

For the shmder pointed body of revolution, the following
relations exist:

da cl.s
:=1; —=—dx dx

where $x is not necessarily constant. If these values are

substituted into equation (12), the load distribution along
any elemental strip is

(–)Ap~ —. da
=8a$sint3=8ci&

~B J
1–~ (24)

The load distribution on any strip is thus seen to be elliptical,
being zero at the extremities of a horizontal diameter and a
maximum at the midpoint, The total load on an elemental
spmnvise strip is found from equation (16) to be

(25)

where B is the local cross-section area. It is seen that
equation (25) is identical to equation (20) for the integrated
load on an elemental spanwis.estrip of a triangular wing,
even though the distribution of load in the two cases is
widely different. However, in contrast to equation (2o),
which is. to be applied ordy to winga of increasing span,
equation (25) may be applied to bodies of revolution in
regions of either increasing or decreasing radius, since the
Kutta condition does not apply to bodies of revolution.
Thus, in general, the lift and pitching moment of a body of
revolution are different from those of a wing of identical
plan form; however, if the maximum diameter of the body
of revolution is at the bm.e station, its lift and pitching
moment are equal to those of a wing of identical plan form
at the same angle of attack.

As before, the lift coefficient WN be determined by sub-
stituting equation (25) into equation (17), Taking the area
of the base cross section”Bb as the reference area and in-
tegrating over the length of the body i!, the lift coefficient
is found to be

(26)

since the cross-section area B is Bb at x= 1and zero at a=O.
It is thus seen that the lift of a slender body of revolution
depends only on the cross-section area of the base, and is
independent of the general shape of the body.

Such a relationship is indicative of an effect .thattiould
rwdt from the “inclusion of viscosity in the analysis, since
the effective base area of the body will be larger than the
true base area by an amount dependent on the boundary-
layer thickness. Therefore, equation (26) will tend to
underestimate the true lift-curve slope, particularly at lower

Reynolds numbers where the boundary-layer thickness is
greatest.

By similar substitution and integration by parts, the
pitching-moment coefficient about the le.adingapex is

where B~ is the mean cross-section area (i. e., the volume of
the body divided by the length). The center-of-pressure
location is then found through use of equation (15) to be

(28)

For a more specific example, consider a cone moving point
foremost. The base cross-section mea is

The mean cross-section area is

The center of pressure is thus seen to be at the two-thirds
point as would be anticipated by the conical nature of the
load distribution for this case..

Triangular wing with conical body,—The first example of a
wing-body combination to be considered is that of a conical
body mounted on a triangular wing so that their vertices
coincide. The geometry of such a configuration requires
that

;=d-=Kx

where both da@c and ds/dzare constants. If these vrdues
are substituted into equations (11) and (12) as dcsc.ribcclin
the two preceding examples, the load distribution
any ekunental strip of the wing is given by

and on the body by

(?)B=4”$d(1+KH2)2-4$

The integrkted load on an elemental strip is

idong

(29)

(30)

(31)

where t

a.7= l+K~4+~
[

2KIr
2KH(l—K#) —(1+KE9) 2sin-l 1lFjzQ

1
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The lift coefficient for the entire conical wing-body combina-
tion is then

c~=: &~ ~== C~#H (32)

where CLWis the lift coeficient- of the basic triangular wing.
Due to the radial nature of the lines of constant pressure, the
center of pressure lies at the two-thirds chord point

x=_2
CE 3

(33)

The moment coefficient is then obviously

Cm= –~ Axa- CE=CmwUE (34)

where, as before, C’~Wrepresents the pitching moment of the
basic wing. In equations (32) and (34), the refererice area,
aspect ratio, and chord of the wing-body combination are
considered to be the same as those of the basic.wing.

Figures 4 and 5 show, respectively, the lift and pitching-
moment results. It may be seen that, although the wing
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FIGCRE4.—Ltit and efde-form rotics for several wfng+wdg combfm+tirm.

alone and body a-lonehave identical lift- and moment-curve
slopes since the widest section is at the trailing edge, the
lift- and moment-curve slopes of the wing-body combination
are ahvays less than those of either the wing or the body
alone.

Also shown in figure 4 is a curve presented by Browme,
Friedman, and Hodes (reference 17) for the lift-curve sIope,
as calculated by means of conventional linearized theory, of
a wing-body combination consisting of a conical body having
a fixed radius of 0.1322 the .Mach cone radius and a triangular
wing of varying span. This curve never deviates from that
given by the present theory by as much as 1 percent.

Low-aspect-ratio wing on aninfinite cylindrical body.—The
next example to be considered is that. of a lo-iv-aspect-ratio

1.0
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c.
Tiy,
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c. A
x..

,
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,“ I
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FIGTXCE5.—Pitchu-moment and ywifng-rnoment ratios for saveral wfr@odY

wing mounted on an infinite cylindrical body, Except for
the requirement that no part of the trailing edge ma-y lie
forward of the station of ma-.ximumspan, the wing p~anform
is arbitrary. The essential relationships to be used are that

. da
a=ao; z= 0

and that ds/dx is a‘positive quantity. By using these rela-
tionships as in the previous examples, it is found that no hft
is carried on the body ahead of t-heleading edge of the root
chord. Further, as in the case of the wing alone, no lift is
csrried on either the wing or on the body aft of the stations
of maximum wing span. Between these stations, however,
lift is carried on both the wing and body and is distributed on
any elemental strip of the wing in a manner described by

(–)ApL ()

‘ ‘=W%Z+$) ’35)
and on the body by

()
——

@)’=i:i2:$)

(36)

The integrated load on an ekzmmta-1strip is given by

(37)

By integration along the length of the body, the lift coefhient
for the complete wing-body combination is found to be

QL=iAE”(’-3Y=QLw(‘3”
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where CL and CL~ are both based on the same ieference
area. It may be seen from equation. (38) and figure 4 that
the addition of a cylindrica~body to a low-aspect-ratio wing
produces a loss in lift-curve slope just as @ the preceding
example with the conical body. With the cylindrical bocly,
however,. the lift-curve slope has no miniium value, but
continues to decrease as the radius-eemispan ratio increases
until finally, when the latter ratio is one (corresponding to a
body without wings), the lift-curve slope is zero. This is as
it should be, since an infinite cylindrical body has zero lift-
curve slope in an ideal nonviscous fluid. The moment
coefficient about the leading edge of the root chord is

For a more specific example, consider the case where the
leading edge of the wing extends in a straight Iinc from the
body to the point of maximum span. The shape of the trail-
iug edge is arbitrary, except for the requirement that no part
of the trailing edge may lie forward of the station of maximum
span. The pitching-moment coefficient about the leading
edge of the root chord is then

“$%[(’-:)0+3:+331cm=–-—
‘iom.[(’-%)@+3:+3$)l ’40)

where c~ represents the root chord of the wing and c’H
represents the effective chord, that is, the longitudinal
distance between the leading edge of the root chord and the
station of maximum span. If each half-wing is a triangle,
the ratio of the pitching moment of the wing-body combina-
tion to that of the wing alone for various body radii to wing
scrnispan ratios may be represented by a single curve, since
the effective chord ratio c’11/cHis a consta+ Thk curve is
shown in figure 5. If the,,complete wing 1s a triangle (or
each half-wing is a right tr]angle), the effective chord ratio
is, of course, unity. If figure 5 is used, or the latter form of
equation (40), it should be remembered that cm represents
the pitching moment about the leading edge of the root chord
and is nondirnensionalizedusing the root chord as a,reference
length.

It is important to note that the ratio of the lift of a wing-
bocly combination having a low-aspect-ratio wing ancl an
infinite cylindrical body to that of the wing alone given by
equation (38) can be shown directly by momentum-theory
considerations to apply to any wing-body combination com-
prised of an infinite cylindrical body and a completely arbi-
trary wing and traveling at either subsonic or supersonic
speed, provided the span loading is that corresponding to
minimum vortex drag, This conclusion, in a more restricted
sense, has been given previously by Lennertz (see reference
18, p. 276) for the incompressible flow about wing-body
combinations composed of an infkite cylinder and a lifting
line.

Low-aspect-ratio wing on a pointed body,—The case of a
low-aspect-ratio wing mounted on a pointed body, closed

in an arbitrary manner at. the nose, cylindrical along the
wing-root chord, and either cylindrical or taperccl behind
the wing, may be studied by combining the results of two
previous examples. The portion of the wi.ng-boclycombina-
tion ahead of the leading edge of the wing root may be con-
sidered to be equivalent to the mbitral~ body of rcvohlt.ion
treated iu the second example. The portion of the wing-body
combination ah stations along the wing root is cquiwdcnt to
a low-aspect-ratio wing mounted on an infinite cylinder M
discussed in the preceding example. The forces cxertccl
on the portion of the bocly aft of the wing will be consiclerccl
to be zero. As can be shown by the extension of slcnclcr-
body theory to cases involving curving air streams given in
reference 5, this conclusion is only strictly true if the portion
of the bcdy aft of the wing is cylindrical or is tapered to a
point. For intermediate cases, however, the forces arc
always very small quantities and can be talccn, for the present
problem, to be sensibly zero. The load distribution and the
integrated load on any elemental spanwisc strip arc then the
same as those given in the corresponding exarnplcs.

The lift coefficient is found by adding the lift forces of the
component parts of the win-body combination and divicling
by the dynamic pressure q and the characteristic mea. The
lift coefficient is then found to be

(CL+h! 1–$+$) (41)

Figure 4 shows the variation of the lift-curve slope with bocly-
radius wing-semispan ratio. A comparison of the lift-curve
s~opesshows that the loss in the lift of a wing resulting from
the addition of a body having a pointed nose is much lCSSthan
that resulting from the adclition of an inilnite body.

The moment coefficient for this wi.ng-bocly combination
may be’ found in a manner sidar to that used in fincling the
lift coefficient., taking care to transfer the moments of both
component parts to the same axis, The moment coefficient
about the leading edge of the root chord is

. cm=-*2[(’-5Y(2+’%+3)
(4q

where 1and l?~ repre.sentt,respectively, the length and mc.an
cross-sectional area (i. e.j volume divided by lcngt.h) of the
portion of the body ahead of the leacling eclge of the wing
root and a. represents the radius of the cylindrical portion
of the body.

CRUCIFORM-WINGAND BODY COMBINATIONS

THEORY

The foregoing theory may be exterided to enable the pre-
diction of the load distribution and aerodynamic properties
of slender cruciform-wing and body combinations inc.lined
at small angles of pitch a and yaw & (See fig, 6.) As in
the preceding case, the wing-body combination is considered
to consist of a slender bocly of revolution and flat highly
swept-back, low-aspect-ratio wings. The wings, designakcl
horizontal and vertical, extend along the continuation of the
horizontal and vertical meridian planes of the body. These

*
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problems may be treated by determining the perturbation
-relocity potenial @ by means of equation (2) together with
the following boundary conditions: at the surface of the
horizontal wing

at the surface of the vertical wing

at the surface of the body

acj
5=0

(43)

(44)”

* (45)

infinitely far ahead or to the side of the wing-body combinat-
ion *

grad 4=1-VOct-~Vofi (46)

where ~ and ~ are unit vectors in the y ancl z directions,
respectively, a.nclfinally @ is continuous everywhere except
across the surface of the whq-body combination or its wake.

“k.V=.l

x

FIGGRE6.—Vfew ofcruciform-wingand body combiition showfng coordinate sses.

Velocity potential.-As in the case of pkme-wing and bocly
combinations, the perturbation velocity field in the % plane
is similar to the velocity field mound an inflnitely long cylin-
der, the cross section of which corresponds to the trace of the
wing-body combination in the Z. plane. For a s~endercruci-
form-wing and body combination inclined a.nmgle a in pitch
and P in yaw, the flow in the ~. plane is as shown in figure
7 (a) where the component. of the flow velocity at infinity in
the z direction is VW and that in the y direction is —?’OP.
The flow field of figure 7 (a) can obviously be considered to
be the SD of the t-ivoflow fields shown in figures 7 (b) and
7 (c), since the vertical wing in @re 7 (b) and the horrzont.al
w=@ in @e 7 (c) lie ‘in planes of symmetry and cannot
affect the flow shown in their respective @es. Thus, the
flow fields shown in figures 7 (b) and 7 (c) are identical to
those of figures 7 (d) and 7 (e), respectively. The velocity
potential for such a flow field was derived in the preceding
section from the flow field about a straight line (fig. 7 (f)).
The e.spression for the velocity potential of the flow field

*36646—51—19

shown in figure 7 (b) is thus iclentfcel to that given in equa-
tion (9) for the flow field of figure 2 (a)

,==*~{[-(l+$)T~ cos2,+s++$)]+

[T’(’-$)+h’cos’’e+
‘s’(’+$(’+%’’cos’(47a)

where the sign is positive in the upper half plane (O<O<T)
and negative in the lower half plane fi<6<2~. The expres-

_s@, +),*,

(a) (v (c) -

(d) (e) (f)
FIGURET.—Two-dimensional IIOWfidds corresponding to srusifork-wing snd bady

combinations.

sion for the velocity potential for the flow field shown in
figure 7 (c) is found in a similar manner to be

(47b)

where the sign is positive in the left half plane (@<@<3@)
and negative in the right half plane (—z/2 <8<r/2). The
perturbation velocity potential for the flow field about a
cruciform-wing and body combination~c~ecl ~ bothpitch
and yaw is then given by

$=$a+#b ‘ (47C)

Load distribution.-b shown in equation (10), the dif-
ferential pressure coefEcient between any two points in
linearized potential flow is given by

Ap_ 2Au
y– Vo

(48]

where Au is the difference of the components in the free-
stream direction of the perturbation velocities at the two
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points. Since body axes axe used in the present treatment I
~ather than wind ‘axes, the component of 4U in the free-
stream direction will be approximated to first-order terms.
The differential pressure coefficient is then given by

(49)

The last two terms of equation (49) are often omitted,
since they each represent the product of a small angle and a
small perturbation velocity and are generally much smaller
than the first term on the right-hand side, which represents

only a perturbation velocity. For the long slender wings,
bodies, and wing-body combinations considered here, how-
ever, h#@x is much smaller than b@y and &@c; therefore,
all three terms are retained. The last term of the right-
hand member of equation (49) was no~ includccl in the.corres-
ponding equation (equation (10)) for plane-wing and body
combinations inclined only in pitch since, for that-case, it k
zero by reason of symmet,~y,

Through application of equations” (47) ruIcl (49), expres-
sions for the lifting differential pressure (lower minus upper)
on the horizontal wing MCI body me found to be, respec-
tively,

AT. =4a ~E(I-$)+2:~G-$)l+[P?(I-$)j](-) \~H J(’+$)-$1’+$)J
(50)

=4a .E(l-$)+2:*($+:-Y)l+F’:(’-$].*4)11= ‘,51(){Ap~- —
~B

J’+$F4$ “- “-“ 1J(=Y=
where, in equation (51), the plus sign is taken for the starboard side of the body and the minus sign for t.hcport side. Simi-
[arly, the yawing dif7erentia1pressure (port minus starboard) on the vertical wing and body are given, respect.ively, by

=4~ -[:(’-$)+2:%6-$)1+[”:(’-$)1(){Ap~
TV

~ }

(52)

where, in equation (53),the plus sign is taken for the upper
side of the body and the minus sign for the lo~er side. As
was pointed out for plane-wing and body combmations, the
expressions for the pressures on the body are not applicable
at stations behind the trailkg edge of the wing. From the
same arguments as advanced before, the forces on this por-
tion of the body wilI be taken to be zero.

Total forces and mornents,-The total forces and moments
exerted on a complete cruciform-wing and body combination
may be determined by integrating the loading over the entire
surface area. As -ivithplane-wing and body combinations,
it is convenient to carry out the igtegmtion by fist evaluat-
ing the forces and moments on one transverse strip, and then
integrating these elemental quantities over the length of the
wing-body combination. The lift and side force on a trans-
verse strip of width da are given, respectively, by

‘L=~~xJ:(%9dY
(54)

(55)

The rolling moment on this elemental strip is given by

‘L’=’’’J:’:(?)H’HJ’-J’(?)
- L’”(%9V’’+JW-W(56)

where the integration is carried only over the surface of the
wing, since pressures on the body cannot procluc.c a rolling
moment. ‘When the indicated operations are performed, the
following expressions for the elemental lift, side force, rmd
rolling moment are obtained:

:(3=4””’[:(1-$)+%231+
‘dw’-$)-:(’+$)sin

H3=-4”@[w-9+w$ll-
2’t*F(l-$)-:(’+$Y

(57)

(58)
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(59)

The forces and moments for the complete wing-bocly com-
bins.t.ionmay now be determined by integration of the forces
on aU the elemenhd strips. Espressed in nondimensional
form. these characteristics are tiven by

c.= –+dw)x’x
CI=&JH3’X

(60)

(61)

(63)

-wherethe integration interval extends from the most formmd
to the most reammrcl part of the wing-body combination.
To achieve a unity of expression for side force and lift and
for yawing moment and pitching moment, the side-force
coefficients have been based upon the area of the vertical
wing rather than the more conventional horizontal-ming
area, and the ya.wi.ug-moment coefficients have been based
upon the mea aud root chord of the vertical wing rather t-ha.n
the area and span of the horizontal wing.

The e.spressionsfor the forces and moments on the ele-
mental strips (equations (57), (58), ~.nd (59)) i.ndlcate four
important ge~eral characteristics of slender cruciform-fig
and body combinations. First of all, there is a. complete
corresponclence of the e.xpressionefor the lift and side force
as -rrouJdbe expected from the geometry of the cordiguration.
Second, the Lift,is independent of the angle of yaw ancl the
side force is independent of the angle of attack. Third, the
e-xpressions for the Iift and pitching moment for s~ender
cruciform-wing anclbody combinations me identical to those
for pkme-wing and body combinations. Last,, if the vertical
and horizontal wings me identical, the roiling moment is zero.

SLENDERCRUCIFORM-WINGAND BODY COMBINATIONS

APPLICATIONS

The general expressions de-reloped for slender cruciform-
wing and body combinations will nom be applied to se-reral
particular configurations. The discussion will be brief since
the results are similar in many ways to those gi-ien for plane-
wing and body combinations.

Pointed low-aspect-ratio wings, no body.—The first and
simpk% example of a slender cruciform configuration to be
considered consists of a set of pointed low-aspect-ratio
wings, -which may have different plan forms and aspect

ratios, and no body. The a.erodpamic properties of such
a configuration may be determined by letting

a. a. da
~–O; d<=o—=—_

s

By substitution of these values into equations (50) and (52),
it folIows that t-he load distributions for the horizontal and
vertical figs are gi-ren by

These expressions a!e similar to that given by Ribner (refer- .
ence 9) for the loading on a single low-aspect-ratio triangular
wing inclined in pitch and yaw. The symmetric first terms
contribute to Lift a.nclsicle force; the a.ntisymmetric second
terms contribute to rolling moments. To illust-rcrtethis point
further, figure ?3has been prepared showing the loacl distribu-

+
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FiG~E 8.—Load distribution on a trkmgnkr cruciform Wng.

tion on a cruciform arrangement of triangular wings. The
loading on the -iertiea.lwing is shown by the two top sketches,
while that on the horizontal wing is shown by the lower
sketches. The sketches on the left represent the contribution
of the symmetric fist- terms of equation (65); those on the
right, the contribution of the antispwnetric second terms.
In accordance with the stated assumptions, these expressions
are inmdiclwhen either the angIe of pitch or yaw becomes so
large that the leading edge passes beyond the stream direc-
tion and becomes, effectively, a trailing e~~e. Mathemati-
cally expressecl,the expressions are ~aliclwhen [j3[< ds/dxand
Ia[< dtldz. If it is desired to imrestigate wings inclinecl at
larger angles, consideration must be given to the influence
of the trailing vortices lying outboard of one of the sides of
the wing. Such a problem maybe treated by a.nextension of
the methocls employed in the treatment of a swept-back wing
in reference 10. The total loacl on an elemental strip is found
from equations (57) and (58) to be
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The rolling moments exerteclon the horizontal and vertical
wings are given,
equation (59)

respectively, by the corresponding terms of

(67)

The lift and side-force coefficients for the cruciform wing
are found by integration of the forces on the elemental strips
between the leading apex and the trailing eclge as indicatecl.
by substituting equation (66) into equations (60) and (62)

CLW=;AHCY1“ (68)
C,W= –: AVP

where AH and AV are the aspect ratios of Lhehorizonhl and
vertical wings, respectively.

Similarly, the pitching-, yawing-, ancl rolling-moment co-
efficients w-e found by substituting equations (66) and (67)
into equations (61), (63), and (64), respectively, and inte-
grating:

%-&80–@- (cvtmz–c~smz) (70)

where

t.2= ~
fq?, ocvt2~x

Attention is called to the fact that the pitching- a.nclyawing-
moment coefficients represent moments about the leading
apexes and are nondimensionalized through use of the area.
and root chord of the. horizontal and vertical. wings,
respectively.

For a more specific example, consider the wings to be of
triangular plan form moving point foremost. Then, since

SJ=;5$
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the moment coefficients given by equations (69) and (70)are

.

(71)

-%2-’)
Pointed slender body of revolution.—~xpressions for the

aerodynamic characteristics of a pointed slenclcr body of
revoht,ion inclined in pitch and yaw may be dcrivccl from
the previously derived equations by letting

:=1; da ds dt—=_ ._
dX dx dX

Since these results are essentially the same
viously, only the final wquationswill be listecl

m given pru-

CL=skl lj+–2p (75)

()cm=–z. l+ ; cn=2#(l–g
)

(76)

where B is the local cross-section area, Bb is k area of the
base, and B~ is the mean cross-section area (i. e., the volume
of the body divicled by the length). In the coefficients, the
refwence area is taken as the area of the base cross sectiou.

Triangular orucifor~ wings with conical body,—The first
example of a wing-bocly combination to be considered is n
conical arrangement (coincident vcrticcs) of a conical body
and triangular vertical and horizontal wings of, in general,
clifferc.nt aspect ratio. The geometry of such n configura-
tion requres that

where da/dx, ds/dx,ancl dt/d~are constants. The lord clis-
tribution along any elemental strip of the wings and body
is given by

,

1

1

and ‘“(9(’-$)*
.4 (“)(l+ K.2)2–4K.2 ~
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(n)

w-herethe plus and minus signs are taken as in equations
(51) and (53).

The integmtecl lift, sicle force, and rolling moment. on an
elemental strip are

d L’
z ()Y.

q= 2a&&717-s*T’J (79)

where mand ~ are constants given by

[

~K
G= I +K+& 2K(1 —K*) —(1+37)2 sin-l — 1l+K’

1–P
r= 2&”(1—~r’”+T(l +~’~)— (1+K’)z COS-l =2

i

The subscripts H and ~“ on IJand r refer to the use of ~==or
~“~~in the above cvrpressions. The lift.,side-force, and roLlirg-
moment coefficient for the entire conica.1cruciforrn-ting
cmclbody combination are then

CL=; A#rfl C’y-=–: .4#@ (80). .

(81)

Due to the radial nature of the lines of constant pressure, t-he
center-of-pressure positions of both the lift ancl side forces

are inclepenclent.of the body-raclius vring-semispcm ratios
and. lie at the two-thirds chord point.. The pitcling and
yawing moments are t-hengiven b-y

cm= —; AWW c==: Al+rp (Sz)

The lift, side-force, pitching-moment, and yavring-momenli
results are plot tecl in figures 4 and. 5. Fiaqre 9 presents

61 I I 1 ! 1

-4! I I I I

o .2 .4 .6 .8 i
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z

FIWJEE 9.—RoUing moment for cunicaI cruciform-wing and body mmbiiationz.

rolling-moment results for selected ratios of vertical wing
span to horizontal wing spcm. To facilitate the computation
of further results, the -dues of r for use in equation (81) are
plot teclas a function of Kin fiegure10.

Triangular cruciform wings on an infinite cylinder.-The
next example tobe considered is that of a triangular cruciform”
wing mounted on an infinite cylindrical body. ‘The essential
relationships associated with this configuration are that

da
a=ao; z= 0

.

a.nclthat ds/dzand dtid.rare posit i~e constants. As with the
corresponding case for plane-tig and bocly combinations,
no forces are exertecl on the bocl-y at stations ahead of the
most forward or aft of the most rearward part of the wings. ._
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Between these stations, forces me exerted on the wings and body in accordance with the folIovfig relations:

where the plus and minus signs are taken as in equations (51) I The integr@d forces a.nclmoments on an clernentrdstrip
and (53) . are given by

.

() () ()g : fl=’wls 1–:: $ d ~ ()
q=–4@# l–~’ g

&q_
(84)

,( ) [ t ( -$’)+. (l+w’-+”gycos-’-,]-:x ; ~=~4it2 2 ~ 1
.—

The force and moment. c.oeffi.eientsare found by integration
to be

22.

.( )
CL=;”AHCY1–~ ;

()
22 (86)G=-:A.P 1–;2

cm=-;A1,a[(l-g)(2+-3:+3s)] ,87,

an=; Av,[(l-:)(2+3;:+3 $)] 1
(88)

where

~=2K(l —K2)+r(l+4K3-3K4) —(1+6K2—KA)

_l1–K2 7
Cos ~+K2+g 1<3log =1+K2

where, for determining vv, K is taken as aJto and, for %Z,K
is taken as so/so. In equation (87), the moments are taken
about the leading eclge of the root chord. The lift, side-
force, pitching-moment, and yawing-moment results are
plotted in figures 4 and 5. The rolling-moment results
cannot be plottecl in general, however, as was done in the
case of the preceding,example since there are now three signi-
ficant parameters instead of.two. To facilitate calculation
of these results, therefore, the variation of v with K has been
plotted in figure 10. As was shown in genero,l, the roIIing
moment vanishes when the two wings become. iclentical.
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Triangular cruciform wings on a pointed body.—Thc theo-
retical characteristics of a triangular cruciform wing mounted
on a pointed bocly of revolution, closeclin an arbitrary mnmwr “
at, the.nose bu.ti cylindrical along the wing root, may hc
determined by combining the rcsults of two previous cxmn-
pies. The portion of the wing-body combination ahcacl of
the leading edge of the wing root may be considcrccl to bc
equivalent to the arbitrary body of revolution treated in t,hc
second example.. The portion of the wing-body combination ,
aft of the leading eclge of the wing root is ccluivnlcnl, to a.
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fore evaluat,eclby integrating the first bracketed term over
the entire project ed area of the ring-body combination.

BtH

The pitching moment is given similarly by

AU expression for the rolling moment clue to lifting clif-

ferenticd pressures may be obtained in a simikw manner.

The first and third bracketed terms in equation (93) need

not be considered; the fist because it is even in y, the third,

because it is different. from zero only on the surface of the

bocly. Hence, the roiling moment- due to the lifting cl.iffer-

ent.icd pressure is given by

“’=+’’”’’J[(*)U)(%)J)””””‘“)
where the integration is carried o-rer only the area. of the
horizontal -wing.

In a similar manner, expressions for the side force, yawiug
moment, and roUing ruomeni may be developed from the
differential pressure between corresponcliug points on the
port and starboard sides of the wing-body combination, thus

“l-=-’’’~fr[(w)zwr+)rld.dz’dz‘“)
-where the integmtion is carried over the projected area of
the wing-body combination in equations (97) and (98) and
only over the area of the -rert,icalwing in equation (99).

The total roiling moment is

L’=L’L+L’I.=P770LYP{SSE[(*)U-(*)l]’C””-
JJ[(%)P-(W)S12’Z’’}=”(loo)

since it can be seen thai the two integrak ha-re identical
-dues because the flows they represent are identical save
for orientation in the coordinate system.

From examination of equat.ione(94) through (100), it may
be seen that the aeroc[.ynamicproperties of cruciform-wing
and body combinations hating identical vertical and hori-
zontal wings of a.rbihry plan form and aspect ratio may
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be summarized in the fo!ilotig statements. The lift and

pitching moment are independent of the angle of yaw and

the side force &d yawing moment are independent of the

a.@e of attack. Further, the roiling moment is zero for all

combinations of angles of pitch and ya~w. For the corre-

sponding problem relating to a cruciform-wing and body

combination inclined in pitch and bank, the conchsions may

be restated as follows: The l.ifk ancl Iongituclina.1 center-of-

pressure position are independent of the angle of bank and

the r?lling moment is zero for W angles of bank.

It should be noted t-hat the vcdue of zero for the robg

moment in the case of identical wings results from a complete

balancing of the rolling moment exerted on the horizonta.1

wing by a-nequal but opposite rolling moment on the vertical

wirg rather than by htiving zero roLIing moment on each

wing. Since such a complete bdancirg may be easily

disturbed by factors neglected in the analysis (for instance,
higher-order terms neglect ed in the analysis 1 or separation

along the wing-body junction), particularly at hrrge angles

of inclination, the pitch and yaw range over which this con-

clusion is expected to apply may be more limitecl than that

of the conclusions rega.rcl@ lift and side force.

CONCLUDING REMARKS

Au ana.lysis has been made and e.spressions hare been

developed for the load distribution, forces, ctncl moments

on inclined plane- and cruciform-wing ancl body combina-

tions consisting of a slender body of revolution and 10W-

aspect-rat.io pointed wings.

These results indicate four general characteristics of

slender cruciform-tig and body combinations. First,

there is a. complete correspondence of the expressions for the

lift and sicle force. Second, the Iift is independent of the

angle of yaw and the side force is independent of the angle

of attack. Third, the expressions for tie lift and pitching

moment for slender cruciform-wing and bocly combinations

are identical to those for slender plane-wing and body com-

binations. I~a-st., if the -rertical and horizontal vri.ngs are

identicd, the rolling moment is zero. For the corresponding

problem relating to cruciform-wing and body combination@

inclinecl in pitch ancl bank these conchisions maybe restated

in the follow~~ manner. The lift and pit thing moment are

independent of the angle of bank ancl the rohg moment

is zero for all angles of ba.zk lt is further shown, by sy-m-

met.ry considerations that these conclusions are a-ppIica.ble

to any wing-body combination having identical horizontal

and vertical wings of arbitrary plan form and aspect ratio.

1.MapleW Synge (reference 19) k-e shown that hrcksskm of hfgher-order terms results
in rolffng moments proportford to the fourth and larger powers of the argle of hmffnatfon.>
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cruciform arrangement of trianguhm wings mounted on an
infinite cylinder discussed in the preceding example. The
load distribution and integrated loacl on ai elemental span-
wise strip are then the sa,me as those given in the corre-
sponcLingexample.

The lift and side-force coefficients are found b~ a.ddicqgthe
forces on the component parts of the wing-bocly combinct-
tion and dividing by the d-ynamic pressure and. the chrwac-
teristic mean The lift and side-force coefficients me then

(39)

These relationships are shown graphically in figure 4.
The pitching- and yawing-moment, coefficients for this

wing-body combination may be found in a manner similar.
to that used in finding tie lift ‘ancI side-force coefficients,
taking care to transfer the moments of both components to
the same axis, namely, the lea.clingedge of hheroot chord.

cm= –-+ [(’-9(’+%’+-$)]++:

}“n=+T*[(’-$YG+’:+s)l-’~%:“0)
The roI.@-moment. coefficient is gi~en, of course, by

equation (&3).

GENERAL CRUCIFORM-WING ANI) BODY COXIBIh’ATIONS
HAVING IDENTICAL WIN”GS

The a.nalysieof slender cruciform-~~ingand body combina-
tions resulted in the disco-rery of certain genera.1characteris-
tics of wing-body combinations having identical vertical and
horizontal wings. It, is the purpose of this section to enlarge
t-he range of configurations to which these conclusions are
applicable by removing the requirement of slenderness. To
accomplish this, an anal.ysisof the aerodynamic forces ancl
moments exerted on cruciform-~~ingand bocly combinations
having identical tinge wiII be undertaken on the basis of
symmetry consicIerations. For this treatment the wings
may be of any plan form or aspect ratio; pro~ided the -rertical
and horizontal wings are identical and me mountecl at the
same longituchual position of the body. The concepts of
Linearizedtheory are used in this treatment; therefore, the
usual restrictions that the bocly is slender and that the
angles of pitch and yaw me small must be observecl. The
conclusions are applicable at all speeds, since the Mach
number cloes not enter the problem clirectly. Consicler the
c.ruciform-tig and body combinations as being inclined
smd angles a in pitch and P in yaw from the free-stream
direction: the free-stream -relocity being ~“O. Since super-
position is a valid principle in Iiuearized theory, the perturbat-
ion velocity potential @ may be considered to be the sum
of the two components

where #. and ~’b are the perturbation velocity pot.entialsof

the flow about a cruciform-ming ancl body combination,
inclined unit angles of pitch and yaw, respectively.

consider now the differential pressure between corre-
sponding points on &heupper ancl lower surfaces of t-hebocly
ancl the horizontal W@

(92)

Orclinarily, only the potential gracLient.s,or perturbation
wdocities, in the x cLirect.ionwoulcl be included in equation
(92). For long slencler objects, however, the perturbation
velocities in the x cLirectionare so much smaller than those
in the y ancl z cIirections that the prochlct.sof small angles
ancl perturbation velocities in the y and z directions must.be
retained as well as the pert.urbat.ionvelocities in the z direc-
tion. Since the inclusion of these terms does not introduce
any particular restrictions into the problem, they d be
retainecl throughout the present cliscussion even though in
many instances, such as with &oh-aspect-ratio unswept’
wings, it is unnecessary to do so. In general, none of the
inditiclual terms in equation (92) is zero ancl the pressure at
every point depends upon both 4’= and bfb, or, what is
equivalent, upon both the angle of at-tack and the angle of
of yaw. However, several of t-he terms are equaI and till
cancel. Thus, remembering t-hat equation (92) represents
the lifting clMerent.ialpressure, it is apparent from symmetry
considerations that

(%$).-(w=o’(%).-(%9.=0’
(%9.-(%31=0

everywhere ancl that

(%’).=(%),=O
on the horizontal wing. Therefore, equation (92) simplifies -
to

w+Kwu-G31-
1

where the third bracketed term clifFersfrom zero only on the
body. The second and third bracketed terms are odcl in y;
hence, they cannot contribute to the Mt. The Mt. is there- .
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