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THE AERODYNAMIC FORCES ON SLENDER PLANE- AND

CRUCIFORM-WING AND BODY COMBINATIONS

By Jorx R. SPREITER

SUMMARY

The load distribution, forces, and moments are calculated
theoretically for inclined slender wing-body combinations con-
sisting of a slender body of revolution and either ¢ plane or
cruciform arrangement of low-aspect-ratio pointed wings. The
results are applicable at subsonic and transonic speeds, and at
supersonic speeds, provided the entire wing-body combination
lies near the center of the Mach cone.

The analysis of the slender cruciform-wing and body combi-
nations results in thé following conclusions: The lift and pitch-
ing moment are independent of the angle of yaw, and the side
force and yawing moment are independent of the angle of attack.
If the vertical and horizontal wings are identical, the rolling
moment is zero for all angles of pitch and yaw. By symmetry
considerations, these resulis are shown to be equally applicable
for any cruciform-wing and body combination haring identical
korizontal and vertical wings of arbitrary plan form and aspect
ratio.

INTRODUCTION

A great amount of research is being conducted on aircraft
configurations that may be described as slender wing-body
combinations, that is, a wing-body combination consisting
of a slender pointed body and pointed low-aspect-ratio
wings. Although the aerodynamic characteristics of the
components may be well known, the mutual interference
resulting from their combination may be so great that it is
desirable to study the aerodynamic properties of the com-
plete configuration. The mutual interference, in an incom-
pressible medium, of a fuselage and a wing of high aspect
ratio (to which lifting-line theory is applicable) has been
investigated by Lennertz, Wieselsberger, Pepper, and Mul-
thopp in references 1, 2, 3, and 4. Since these results were
not applicable to the present problem, a theoretical analysis
of the aerodynamic properties of slender wing-body combi-
nations was undertaken. The results of this investigation
were first reported in reference 5 and were later extended in
reference 6 to include cruciform-wing and body combina-
tions. The present report summarizes and extends the
theory and results previously presented in these references.

The serodynamic properties of slender wing-body combi-
nations may be approrximated by the method originally used
by Munk in, studying the aerodynamics of slender airships
(reference7). R.T.Jones (reference 8) extended this method
to the study of low-aspect-ratio pointed wings and Ribner
(veference 9) applied it to determine the stability derivatives
of low-aspect-ratio triangular wings. The essential point in

the study of slender bodies by this method is the fact that
the flow in the vicinity of the body is approximately two-
dimensional when viewed in planes perpendicular to the
direction of motion.

This theory is applied first to plane-wing and body combi-
nations inclined at small angles of attack. For this portion
of the analysis the wings must have a pointed leading apex,
& swept-back leading edge, and such a plan form that no
part of the trailing edge extends forward of the station of
maximum span. The theory is next applied to cruciform-
wing and body combinations inclined at small angles in
yaw and pitch. In addition to the restrictions mentioned
previously, it is necessary, for this case, to specify that the
trailing edges of the wings are unswept. The resuits of
this analysis are applicable to combinations having very
low-aspect-ratio wings at all Mach numbers or to combi-
nations having wings of moderate aspect ratio at Mach
numbers near 1. Examples are included to illustrate the
caleulation of the load distribution, forces, and moments on
several elementary wing-body combinations having either
plane or cruciform wings.

The analysis of slender cruciform-wing and body combi-
nations resulted in the discovery of certain general charac-
teristics of combinations having identical horizontal and
vertical wings complying, of course, with all the require-
ments of slender wing-body theory. To ascertain whether
all these requirements were necessary, an investigation of
the forces and moments of cruciform-wing and body
combinations having identical wings was made on the basis
of symmetry considerations. It was found that, within the
limitations of linear theory, these particular conclusions
were valid for all eruciform-wing and body combinations
regardless of the plan form or aspect ratio of the wing.

SYMBOLS
. (maximum span squared
A aspeet ratio ( = pan 59
area
B cross-section area of body of revolution (=a?
B, cross-section area of base of body of revolution
) . . _ (volume
B, mean cross-section areaof body of revolution ( Tength )

] . L
(43 lift coefficient (gTS”E)
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e, . ’ iel M
p1t1chmg—momenL coefficient (gSch)
. 1 _N ’
yowing moment cosficient (3

: . Y
side-force coefficient (E)

lift
rolling moment
rolling moment due to 11ft1ng forces

rolling moment due to side forces

pitching moment about leading edge of root chord of
horizontal wing
free-stream Mach number

yawing moment about leading edge of root chord of

vertical wing
wing area
free-stream velocity
complex potential function (¢--i¥)
complex variable (y-1iz)
side force
radius of body
mazximum radius of body
root chord of wing
effective wing chord
semispan of flat plate

. imaginary unit (+—1)
_length of the portion of the body forward of the wing

static pressure

local pressure dlﬂerence between. lower and upper
surfaces’

local pressure dlf’ference between port and starboard
surfaces

free-stream dynamic pressure

polar coordinates

local semispan of horizontal wing

maximum semispan of horizontal wing

local semispan of vertical wing

maximum semispan of vertical wing

perturbation velocity component in the free-stream
direction

Cartesian coordinates _

distance from leading edge of root chord of horizontal
wing to center of pressure of lifting forces

distance from leading edgé of root chord of vertical
wing to center of pressure of side forces

angle of bank

stream function

angle of attack

angle of sideslip

transformed rectangular coordinates

complex variable (n+4¢)

density of air

perturbation velocity potential

perturbation velocity potential corresponding to unit
angles of pitch or yaw

SUBSCRIPTS
body
horizontal wing
vertical wing .

w basic wing without body

a pertains to angle-of-attack case having zero yaw

b pertains to sideslip case having zero angle of attack
4 lower side

P port side

8 : starboard side

U upper side

ANALYSIS

The prime problem to be treated in this report is the
prediction of the load distribution, forces, and moments on
inclined slender wing-body combinations traveling at sub-
sonic, sonic, or supersonic speeds. In the major porlion of
the analysis, it is assumed that the bodies are slender bodics
of revolution and that the wings have pointed leading apexes,
highly swept-back leading edges, and plan forms such that
no part of the trailing edge lies forward of the station of
maximum span. The wing plan forms are otherwise arbi-
trary. In certain special cases, however, these requirements
will be relaxed so as to include wings of arbitrary aspeel
ratio and sweep. The study will consist essentially of two
parts: The first will be devoted to plane-wing and body
combinations each consisting of a body of revolution and a
horizontal wing; the second, to cruciform-wing and body
combinations each consisting of a body of revolution and a
cruciform arrangement of horizontal and vertical wings. In
the latter section, the horizontal and vertical wings may be
of different plan form and size.

The principal approach to the problem will be based on
the general arguments advanced in references 7, 8, and 5 for
slender bodies, wings, and wing-body combinations. The
assumptions involved in the study of these configurations
permit the Prandtl linearized differential equation for the
pertubation velocity potential of a compressible flow in three
dimensions

1)

to be reduced to a particularly simple parabolic differential
equation in three dimensions

¢w+ ¢u=0

(1 —Mﬂz) ¢zz+ ¢w+ ¢zz=0

@

The slender-body and low-aspect-ratio wing theories (ref-
erences 7 and 8) neglect the term (1—24) ¢, in comparison
with ¢,, and ¢.. because ¢., is very small for slender wings
and bodies. Therefore, the loading and aerodynamic prop-
erties of plan forms having very low aspect ratios are in-
dependent of Mach number. As pointed out in reference 5
and discussed in greater detail in reference 10, the theory is
also valid for swept-back plan forms of moderate aspect
ratio at sonic velocity, since the term (1—»Ad)¢.. can be
neglected because 1— M is zero, provided that ¢.. does not
become very large in comparison with the other velocity
gradients ¢,, and ¢... In both the low-aspect-ratio and
sovic applications, it should be noted that, with the excep-
tion of the infinitely long swept wing, it is possible to solve
only problems involving the differential pressure arising
from an asymmetry of the flow field. Thus, lifting problems
may be treated satisfactorily; whereas, in general, thickness
problems cannot. If a thickness problem is attempted by
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this method, however, it will be found that the theory
predicts infinite longitudinal perturbation veloeities and
hence infinite pressures at all points on the surfaces of wings
and bodies other than the infinitely long swept wing.

The form of equation (2) permits the analysis to be under-
taken as a two-dimensional potential-flow problem at this
point; each vertical plane, therefore, may be treated in-
dependently of the adjacent planes in the determination of
the velocity potential. Thus, the potential is determined for
an arbitrary =1z, plane; then, since the z, plane may represent
any plane normal to the fuselage center line, the potential
distribution is known for the entire wing-body combination.

SLENDER PLANE-WING AND BODY COMBINATIONS
THEORY

The first problems to be counsidered in this report are
those related to slender plane-wing end body combinations
inclined at small angles of attack. Such a wing-body com-
bination is considered to consist of a slender body of revolu-
tion and = flat highly swept-back low-aspect-ratio wing
extending along the continuation of the horizontal meridian
plave of the body. (See fig. 1.) These problems may be

FIGTRE 1.—View of plane-wing and body combination showing coordinate axes,

treated by determining the perturbation velocity potential
¢ by means of equation (2) together with the following
boundary conditions:

at the surface of the wing

3)

01' [«
nN "'9~
o

at the surface of the body

0|y
S e
<|_L

(4)

infivitely far ahead or to the side of the wing-body combina-
tion _
grad ¢’=k-‘700’.

where % is the unit vector in the 2 direction and finally ¢
is continuous everywhere except across the surface of the
wing-body combination or its wale.

Velocity potential.—As a consequence of the differential
equation and the boundary conditions, the perturbation
velocity field in the 2; plane at any station forward of the

- station of maximum span is similar to the velocity field

around an infinitely long cylinder, the cross section of which
corresponds to the trace of the wing-body combination in
the z, plane. For a slender plane-wing and body combina-
tion inclined an angle « in pitch, the flow in the x, plane is
as shown in figure 2 {a) where the flow veloeity at infinity is

§
|

(a) ()

FicTtre 2.—Two-dimensional flow fields corresponding to plane-wing and body combination.

in the direction of the positive z axis and has a velocity of
¥Vee. The flow around a section such as shown in figure 2(a)
may be derived from the transverse flow around an infinitely
long flat plate (fig. 2(b)) by application of thé principles of
conformal meapping using the Joukowski transformation.
Thus, we consider the mapping of the #{ plane of figure 2(b)
onto the yz plane of figure 2(2) by the relation

=X+% ®
where

E=n+1§
and

X=y-tiz

The complex potential function for the flow in the 5{ plane
is (see, for instance, reference 11, p. 66}

Hra = ¢a+'i\[’c= '_'7:‘7005 '\/Ez—'dz (7)

If d=2a, the flow around a flat plate expressed by equation
(7) transforms by equation (6) into the vertical flow around
a circle of radius @ having its center at the origin. If 4 is
taken larger than 2q, the flat-plate flow transforms into the
desired vertical flow around a cylinder consisting of a eircular
cylinder of radius e with thin flat plates extending outward
along the extension of the horizontal diameter to a distance
s from the origin. When the #{ plane is transformed into the
yz plane in this manner, the complex potential for the flow in
the yz plane is found to be

T y S &l T
We= ¢a+"-¢a= —i¥ oaJ(LY-!——Y) —d?

T ®

since the point ¢ in the 5 plane corresponds to the point ¢
in the yz plane. The velocity potential ¢, for the flow in
the ¥z plane may then be found by squaring equation (8),
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substituting X=r(cos 64 sin 8), and solving. Thus is
obtained

o= V"a%[ <1+—) 2 cos 26+ s <1+ ):l-l'
[r“ (1-———4) +4a* cos? 26—}—8“(1—&-?) -
2s“<1+ )<1+ 72 cos 20] }1 -(9)

where the sign is positive in the upper half plane 0<8<w
and negstive in the lower half plane #<6<2x.

Load distribution.—The lifting differential pressure coeffi-
cient in linearized potential flow is given by

A_‘p_; 2Au,, 2(’05“—%;)_ bd);, :_ a(f)r, dS+Aa¢L da)
V.~ TV _V Vo A% & da dx
(10)

where A represents the difference in values between cor-
responding points on the upper and lower surfaces of the
wing-body combination. The load distribution may now
be determined by substituting the expression for the velocity
potential given in equation (9) into equation (10) and
letting ¢ equal 0 or ¢ equal = for the wing loading and r equal
a for the body loading. The loading over the wing is then

found to be given by
ds Eoafa af\]
(420) —se (- )+dx_2§<§f—rz),_l an
q ' at 2 N
L VOH)R0)

and that over the body is giw}en by

(A_pz) » ds(l 84)4—2%:( « 2%—2
L \/(H?)“*s—z

It should be remembered that equations (11) and (12) are
valid only at stations forward of the station of maximum
wing span. To extend the solutions to stations farther aft,
consideration must be given to the influence of the vortex
wake trailing from all portions of the trailing edge of the
wing that lie aft of the station of maximum span. This
point will be discussed at greater length in the application
of the theory to specific configurations.

Total forces and moments.—The total lift and pitching
moment of a complete wing-body combination may be
determined by integrating the loading over the entire plan-
form area. Expressed in nondimensional form, these
characteristics are given by

g f@ew o
Cn= —mff<ApL>x dedy (14)

. c O
xc:.=___c_,_ — . e T (15)

(12)

where Sy is the reference area, ¢z is the reference chord or
length, and the integration is carried over the complete plan
form. It is often convenient to carry out the integration
by first evaluating the lift on one spanwise strip and then
integrating these elemental lift forces over the length of the
wing-body combination, thus

= (L) f-l'" (APL) dy 4ras [ds <1 a4)+ ( a”):l+
4
e |2 (18- (1) 12?- 0o

The lift and pitching-moment coefficients may now be de-
termined by integration of the forces on all the clemental

strips
1 (fd /L
o |5 (0) an

Cn==— Saca f dx (L) dz (18)

where the integration interval extends from the most forward

to the most rearward part of the wing-body combination.

PLANE-WING AND BODY COMBINATIONS

APPLICATIONS

For a given wing-body combination complying with the
general requirements of the present theory, the load distri-
bution may be determined directly by substituting the proper
values for the body radius and wing semispan and their rate
of change with 2 into equations (11) and (12). In addition,
closed expressions for the lift, pitching moment, and center-
of-pressure position of several elementary configurations may ,
readily be found by simple integration of the integrals indi-
cated by equations (13), (14), and (15). Several such appli-
cations will be presented in deteil in this section and the
results will be compared with those from other theories
when possible.

Pointed low-aspect-ratio wing.—Although the assumptions
of this note have been used previously by R. T. Jones in
reference 8 to determine the acrodynemic propertics of low-
aspect-ratio wings, the load distribution, lift, and pitching
moment wilk be rederived for completencss of presentation
and to show a simple application of the preceding expressions.
The aerodynamiec properties of a low-aspect-ratio wing with-
out fuselage may be determined by letling

a da
CC

By substitution of these values into equation (11), it follows
that the load distribution along any elemental spanwise

()= \/_,

strip is

(19)
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The loading thus shows an infinite peak along the leading
edge of the wing. The total load on an elemental spanwise
strip is found from equation (16) to be

L
(l.r ( ) q 4:11 azgs ) (20)

Equations (19) and (20) show that the development of lift
by the long slender wing depends on an expansion of the sec-

tions in a downstream direction. Accordingly, a part of the

wing having parallel sides would develop no lift; whereas a
part having contracting width would have negative lift with
infinite negative loads along the edges. In the actual flow,
however, no such loads can exist on the trailing edge. Fur-
ther, it-can be shown, by consideration of the Kutta condition
and of the fact that the portion of the wing behind the station
of maximum span lies completely within the vortex sheet
trailing from the surface ahead, that the downwash field of
these vortices is just such that the flow is directed parsallel
to the wing surface at all points behind the station of maxi-
mum span. Therefore, it can be concluded that the differ-
ential pressure acting on all such points is zero. This is
known to be an oversimplification of the truth in the case of
wings of nonvanishing aspect ratio at other than sonic speeds
and caution should be exercised in applying the present re-
sults (particularly the pressure-distribution results) in regions
of constant or contrating width.

The lift coefficient for this wing is found by integration of
the load on the elemental strips between the leading edge
and the widest section as indicated by substituting equation
(20} into equation (17)

Crp= 5. f 411'018 ds A f sds= g:igoz

(21)
Yhere ¢/ 15 the effective wing chord and S' —AH the aspect

wl H

(&
ratio. It isseen that the lift-curve slope —ﬁ depends only

on the aspect rato. It should be noted, however, that the
actual lift force depends only on the span and angle of
attack and not on the aspect ratio or the area.

By similar substitution and integration by parts of equa-
tion (18), the pitching moment about the leading apex is

_ _ r 43y 48n” .
= SHCHf 41'0:.5 .c dr= Se  Sa
7 g Sm™ y E
=T e (1‘?.;-7; (22)
where ' ’
D I
Spi=—— $*dr
C g jo

and where moments tending to produce a nosing-up rotation
are considered positive. The center-of-pressure location is
then found by dividing the moment coefficient by the lift
coefficient as indicated in equation (15),

=(-%)

ey Cmyg_ 'y 4sm

¢y = —O_LH SEAH

(23)
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. For a more specific example, consider a triapgular

wing moving point foremost. Then, since sy, —-—% 8¢ and

¢’g=cg, the pitching-moment coefficient and center-of-

T4
3=

2 .

=3 The center of pressure is seen to be at the

pressure position are given, respectively, by Cr,=

and =& ; =
two-thirds chord point or the center of area.

To provide further insight into the range of applicability
of the present theory, figure 3 has been prepared illustrating
the variation of lift-curve slope with Mach number as pre-
dicted by the present theory (solid lines) and by linearized
lifting-surface theory based on equation (1) (dotted lines).

16 -
| K ] [ :
| K \——Slender wing fheor_y
14 I y \~~-Lineorized wing
A =C£ N - d I“‘ fheory
12 s *
Y ,i - u
g ; = g o iy
.A =4- _(’ ‘ \‘\ “\
dC_:,, 08 | \ P ~ s
do/ I \ i -~ ‘-:\‘
...... - .
.06 } =
A=Z-~ T s T
.04 : e
A=ln -~
2, IS ISy i I A SN i i e
. Elliptical planforme——sfriangulor p[anforml
I I |

a 2 <4 6 8 g 2 14 I6
Mach number, Ma

FIGTRE 3.—Variation of lift-curve slope with Mach number.

In the subsonic range, the dotted curves are for wings of
elliptical plan form and are based on Krienes’ lifting-surface
theory (reference 12) as modified for the effect of compressi-
bility by Robinson and Young (reference 13), using the
three-dimensional Prandtl-Glauert rule. For the supersonie
case, the dotted curves are for wings of triangular plan form
and are based on the theories of Robinson, Stewart, Brown,
and others (references 14, 15, and 16). The solid curves
representing the results of the present theory are valid for
both elliptic and triangular wings; in fact, they are valid
for any plan form such that no part of the trailing edge
extends forward of the station of maximum span. It is
clearly seen that for wings of low aspect ratio, the present
theory agrees very well with the prediction of linearized
lifting-surface theory at all Mach numbers; whereas for
wings of larger aspeet ratio the agreement is only satisfactory
at Mach numbers near 1. This latter observation is very
important for these wings if the aspect ratio is less than
perhaps 3 or 4. For wings of higher aspect ratio, however,
the agreement is probably only of academic interest since -
it is a well-known fact that experiment and linearized theory
are in poor agreement for high-aspect-ratio wings at Mach
numbers near unity. If comparable information were
available for wing-body combinations, it is presumed that
the results of the present theory would bear a similar relation-
ship to the results of linearized theory.

8 20
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- Pointed slender body of revolution.—The present method
for treating the flow around long slender bodies was intro-
duced by Munk in reference 7 for the determination of the
distribution of forces along the longitudinal axis of & body
of revolution (airship hull). In the present section, these
results will be rederived and, in addition, expressions for
the total lift, pitching moment, and load distribution will be
presented.
For the slender pointed body of revolution, the following
relations exist:
a_;. da__ds
dz  dz

s 7
where %—:: is not necessarily constant. If these values are

substituted info equation (12), the load distribution along
any elemental strip is

— .
<Ap,-, —-Sadxsm& Saﬁz—‘/ —%5 (24)

The load distribution on any strip is thus seen to be elliptical,
being zero at the extremities of a horizontal diameter and &
maximum at the midpoint. The total load on an elemental
spanwise strip is found from equation (16) to be

?%; (5) g=41ra§_fa ——-2aq (éf : {25)

where B is the local cross-section area. It is seen that
equation (25) is identical to equatlon (20) for the 1ntegrated
load on an elemental spanwise strip of & triangular wmg,
even though the distribution of load in the two cases is
widely different. However, in contrast to equation (20),
which is to be applied only to wings of increasing span,
equation (25) may be applied to bodies of .revolution in
regions of either increasing or decreasing radius, since the
Kutta condition does not apply to bodies of revolution.
Thus, in general, the lift and pitching moment of a body of
revolution are different from those of 2 wing of identical
plan form; however, if the maximum diameter of the body
of revolution is at the base station, its lift and pitching
moment are equal to those of a wing of identical plan form
at the same angle of attack.

As before, the lift coefficient will be determined by sub-
stituting equation (25) into equation (17). Taking the area
of the base cross section B, as the reference ares and in-
tegrating over the length of the body !, the lift coefficient
is found to be

Cr==+ f2acd de=2a (26)

since the cross-section area B is B; at x=1[ and zero at =0,
It is thus seen that the lift of a slender body of revolution
depends only on the cross-section area of the base, and is
independent of the general shape of the body. _
Such a relationship is indicative of an effect -thatwould
result from the inclusion of viscosity in the analysis, since
the effective base area of the body will be larger than the
true base area by an amount dependent on the boundary-
layer thickness. Therefore, equation (26) will tend to
underestimate the true lift-curve slope, particularly at lower

Reynolds numbers where the boundary-layer thickness is
greatest.

By similar substitution and integration by parts, the
pitching-moment coefficient about the leading apex is

1 (t, dB Ba
0m=—'m f; 26\6%33 dz=—2a (I_B—b) (27)
where By, is the mean cross-section area (i. e., the volume of

the body divided by the length). The center-of-pressure
location is then found through use of equation (15) to be

I =707, @8)

For a more specific example, consider a cone moving point
foremost. The base cross-section area is

B = ﬂ'aoz

The mean cross-section area is

1 2
m=§ Ty

The center of pressure is thus seen to be at the two-thirds
point as would be anticipated by the conical nature of the
load distribution for this case.

Triangular wing with conical body.—The first example of a
wing-body combination to be considered is that of a conical
body mounted on a trianguler wing so that their vertices

coincide. The geometry of such a configuration requires
that
a_dafds__
“dsfdr =Ky

where both da/dx and ds/dx are constants. If these values
are substituted into equations (11) and (12) as described in
the two preceding examples, the load distribution along
any elemental strip of the wing is given by

2
1+ Kt —2K A S
(Apb) d.'t: b o d T (29)
\/1-}-1{,, ¥ (1+KH4 f—)
and on the body by
(Ap ) —4a \/ (1+K32)2—4%: (30)

The in tegrated load on an elemental strip is

(L)Q drags + { 1+ K4+

{1+ Kz%)? sin~! ——— 1+K } 41rags§ (31)

e [21{,,(1-1{32) —

where ' '

D]
o7 =14+Kg'+ 2% [2KH(1——KH’) — (14 Kz")? sin™! 1—I—-T-Kg52]
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The lift coefficient for the entire conical wing-body combina-
tion is then

01;:-'% AHC\’. gg— OLWO’ p: 3 (32)

where O, is the lift coefficient of the basic triangular wing.
Due to the radial nature of the lines of constant pressure, the
center of pressure lies at the two-thirds chord point

Te.p._ 2
Cm _3 (33)
The moment coefficient is then obviously
Gm=—§ Aga- O-H=Gmw og (34)

where, as before, (., represents the pitching moment of the

basic wing. In equations (32) and (34), the refererice ares,
aspect ratio, and chord of the wing-body combination are
considered to be the same as those of the basic wing.

Figures 4 and 5 show, respectively, the lift and pitching-
moment results. It may be seen that, although the wing

Lo \ = P
s
3 NaSh 7
- %’? l
s =

.2 \
.......... Supersonic conical flow, ref 17
o > =4 & 8 L
K73 ==
Sa T

FiGerE 4.—Lift and side-force ratios for several wing-body combinations.

alone and body alone have identical lift- and moment-curve
slopes since the widest section is at the trailing edge, the
lift- and moment-curve slopes of the wing-body combination
are always less than those of either the wing or the body
alone.

Also shown in figure 4 is a curve presented by Browne,
Friedman, and Hodes (reference 17) for the lift-curve slope,
as calculated by means of conventional linearized theory, of
a wing-body combination consisting of a conical body having
a fixed radius of 0.1322 the Mach cone radius and a triangular
wmg of varying span. This curve never deviates from that
given by the present theory by as much as 1 percent.

Low-aspect-ratio wing on an infinite cylindrical body.—The
next example to be considered is that of a low-aspect-ratio

-~

1L.O ———_
W

8
. \
Crmr

Crn .4 +
=
.2 \
a 2 R .& 8 rLa
Qg Qo
Seo to

FIGURE 5.—Pitching-moment and yawing-moment ratios for several wing-body
combinations.

wing mounted on an infinite cylindrical body. Except for
the requirement that no part of the frailing edge may lie
forward of the station of maximum spen, the wing plan form
is arbifrary. The essential relationships to be used are that

(l‘—"_d-g; E=

and that ds/dx is a positive quantity. By using these rela-
tionships as in the previous examples, it is found that no lift
is carried on the body ahead of the leading edge of the root
chord. Further, as in the case of the wing alone, no lift is
carried on either the wing or on the body aft of the stations
of maximum wing span. Befween these stations, however,
1ift is carried on both the wing and body and is distributed on
any elemental strip of the wing in a manner deseribed by

4o d—s (1_02_0:)

Apr
(%)x /<1J_ ) v <1+ ) (35)
and on the body by
1—
(Ap ) \/<1 <) —4)—2 e

The integrated load on an elemental strip is given by

&
E%: (g) g=4rags % (1 —-%) 37

By integration along the length of the body, the lift coefficient
for the complete wing-body combination is found to be

C=T Age(1-%) =¢, (1-%) 38
1=¢q dne ) =~ Yw P (38)
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where C; and (%, are both based on the same reference

area. It may be seen from equation.(38) and figure 4 that
the addition of a cylindrical bedy to a low-aspect-ratio wing
produces a loss in lift-curve slope just as in the preceding
example with the conical body. With the cylindrical body,
however,. the lift-curve slope has no minimum value, but
continues to decrease as the radius-semispan ratio increases
until finally, when the latter ratio is-one (corresponding to a
body without wings), the lift-curve slope is zero. This is as
it should be, since an infinite ¢ylindrical body has zero lift-
curve slope in an ideal nonviscuous fluid. The moment
coeﬁicient about the leading edge of the root chord is

o et 14)- [ )50

For a more specific example, consider the case where the
leading edge of the wing extends in a straight line from the
body to the point of maximum span. The shape of the trail-
ing edge is arbitrary, except for the requirement that no part
of the trailing edge may lie forward of the station of maximum
span. The pitching-moment coefficient about the leading
edge of the root chord is then

Gum-im 2 (-2 (o103 0 5]
o [(-2erzo]  w

where ¢y represents the root chord of the wing and ¢z
represents the effective chord, that is, the longitudinal
distance between the leading edge of the root chord and the
station of maximum span. If each half-wing is a triangle,
the ratio of the pitching moment of the wing-body combina-
tion, to that of the wing alone for various body radii to wing
semispan ratios may be represented by a single curve, since
the effective chord ratio ¢/z/cxy is a constant. This curve is
shown in figure 5. If the complete wing is a triangle (or
each half-wing is a right triangle), the effective chord ratio
is, of course, unity. If figure 5 is used, or the latter form of
equation (40), it should be remembered that C, represents
the pitching moment about the leading edge of the root chord
and is nondimensionalized using the root chord as a reference
length.

It is important to note that the ratio of the lift of a wing- -

body combination having a low-aspect-ratio wing and an
infinite cylindrical body to that of the wing alone given by
equation (38) can be shown directly by momentum-theory
considerations to apply to any wing-body combination com-
prised of an infinite cylindrical body and a completely arbi-
trary wing and traveling at either subsonic or supersonic
speed, provided the span loading is that corresponding to
minimum vortex drag. This conclusion, in a more restricted
sense, has been given previously by Lennertz (see reference
18, p. 276) for the incompressible flow about wing-body
combinations composed of an infinite cylinder and a lifting
line.

Low-aspect-ratio wing on a pointed body —The case of a
low-aspect-ratio wing mounted on, a pointed body, closed
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in an arbitrary manner at the nose, cylindrical along the
wing-root chord, and either cylindrical or tapered behind
the wing, may be studied by combining the results of two
previous examples. The portion of the wing-body combina-
tion ahead of the leading edge of the wing rooi may be con-
sidered to be equivalent to the arbitrary body of revolution
treated iv the second example. The portion of the wing-body
combination at stations along the wing root is equivalent to
& low-aspect-ratio wing mounted on an infinite cylinder as
discussed in the preceding example. The forces exerted
on the portion of the body aft of the wing will be considered
to be zero. As can be shown by the extension of slender-
body theory to cases involving curving air streams given in
reference 5, this conclusion is only strictly true if the portion
of the bedy aft of the wing is cylindrical or is tapered to a
point. For intermediate cases, however, the forces are
always very small quantities and can be taken, for the present
problem, to be sensibly zero. The load distribution and the
integrated load on any elemental spanwise strip are then the
same as those given in the corresponding examples.

The lift coefficient is found by adding the lift forees of the
component parts of the wing-body combination and dividing
by the dynamic pressure ¢ and the characteristic area. The
lift coefficient is then found to be

Cy=F e (1~ 2+ 25) 1)

Figure 4 shows the variation of the lift-curve slope with body-
radius wing-semispan ratio. A comparison of the lift-curve
slopes shows that the loss in the lift of & wing resulting from
the addition of a body having a pointed nose is much less than
that resulting from the addition of an infinite body.

The moment coefficient for this wing-body combination
may be found in a manner similar to that used in finding the
lift coefficient, taking care to transfer the moments of both
component parts to the same axis. The moment cocfficient
about the leading edge of the root chord is

WAHOZCH[< “0) (0+3 az-i- )]4—2 E’f:c—x
(42)

Cn=—

- where [ and B, represent, respectively, the length and mean

cross-sectional area (i. e., volume divided by length) of the
portion of the body ahead of the leading edge of the wing
root and a, represents the radius of the cylindiieal portion
of the body.

CRUCIFORM-WING AND BODY COMBINATIONS

THEORY

The foregoing theory may be extended to enable the pre-
diction of the load distribution and aerodynamic propertics
of slender cruciform-wing and body combinations inclined
at small angles of pitch « and yaw 8. (See fig. 6.) As in
the preceding case, the wing-body combination is considered
to consist of a slender body of revolution and flat highly
swept-back, low-aspect-ratio wings. The wings, designated
horizontal and vertical, extend along the continuation of the
horizontal and vertical meridian planes of the body. These

®
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problems may be treated by determining the perturbation
velocity potenial ¢ by means of equation (2) together with
the following boundary conditions: at the surface of the
horizontal wing

—E=O (4:3)

09 :
oy (44)
at the surface of the body
a__¢=0 * (45)
r

infinitely far ahead or to the side of the wing-body combina-
tion

gr&d ¢=EVoa—;Vuﬁ (4:6)
where 7 and k are unit vectors in the y and z directions,
respectively, and finally ¢ is continuous everywhere except
across the surface of the wing-body combiration or its wake.

FIGGRE 6.—View of cruciform-wing and body combination showing coordinate axes.

Velocity potential.—As in the case of plane-wing and body
combinations, the perturbation velocity field in the xz; plane
is similar to the velocity field around an infinitely long cylin-
der, the cross section of which corresponds to the trace of the
wing-body combination in the &, plane. For a slender cruci-
form-wing and body combination inclined an angle e in pitch
and 8 in yaw, the flow in the z; plane is as shown in figure
7 (a) where the component of the flow velocity at infinity in
the z direction is Vhe and that in the y direction is —V,8.
The flow field of figure 7 (2} can obviously be considered to
be the sum of the two flow fields shown in figures 7 (b} and
7 (c), since the vertical wing in figure 7 (b) and the horizontal
wing in figure 7 (¢) lie in planes of symmetry and cannot
affect the flow shown in their respective figures. Thus, the
flow fields shown in figures 7 (b) and 7 (c) are identical to
those of figures 7 (d) and 7 (e), respectively. The velocity
potential for such a flow field was derived in the preceding
section from the flow field about a straight line (fig. 7 (f)).
The expression for the velocity potential of the flow field

956646—51 19
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shown in figure 7 (b) is thus identfcal to that given in equa-
tion (9) for the flow field of figure 2 (a)

T 4 4
b=+ 1/“;‘{ [—(1 +%1) r? cos 26+ 82 (1 —i—%)]—[—
4\ 3 £\ 2
l:r* (1 —(:7‘) +4a* cos? 26--¢* (1 +a?-4 —

& ] 1/2y1/2
2¢* (1 -[—%4) (1 -l-%) % cos 26] I }

where the sign is positive in-t-he upper half plane (0<{8<lx)
and negative in the lower half plane z<{6<2x. The expres-

(47a)

@ @
x - ]
'y 4 | -4
. -
Y ¥ G 17
4\/_ -d- /
A}

@ (e) (£)

FIeURE T.—Two-dimensional flow fields corresponding te eruciform-wing and body
combinations.

sion for the velocity potential for the flow field shown in
figure 7 (¢) is found in & similar manner to be

3’;{ |:<1 -‘r:-'-i) r? cos 264 (1 +‘§_:):|_i_

[r4(1—§)2+4a* cos? 26-+* (1+‘;—:)2+

4 4 1/2Y1/2
o (1 +%) (1 +%) r cos 23] }

where the sign is positive in the left half plane (v/2<0<37/2)
and negative in the right half plane (—=#/2<{8<#/2). The
perturbation velocity potential for the flow field about a
cruciform-wing and body combination inclined in both pitch
and yaw is then given by

d=0a1 ¢ " (470)

H-

bp=

(47b)

Load distribution.—As shown in equation (10), the dif-
ferential pressure coefficient between any two points in
linearized potential flow is given by

Ap_28u

TV (48)

where Ay is the difference of the components in the free-
stream direction of the perturbation velocities at the two
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points. Since body axes are used in the present freatment
rather then wind axes, the component of Aw in the free-
stream direction will be approximated to first-order terms.
The differential pressure coefficient is then given by

Ap_ 2

-7, (49)

—pA ay-l- A

The last two terms of equation (49) are often omitted,
since they each represent the product of a small angle and a
small perturbation velocity and are generally much smaller
than the first term on the right-hand side, which represents
ds at a* a?
z(—2)r2 a6 P

ada,
s dz
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only a perturbation velocity. For the long slender wings,
bodies, and wing-body combinations considered here, how-
ever, 0¢/0x 1s much smaller thaen 0¢/0y and 34/0z; therefore,
all three terms are retained. The last term of the right-
hand member of equation (49} was not included in the corre-
sponding equation (equation (10)) for plane-wing and body
combinations inclined only in pitch since, for that case, it is
zero by reason of symmetry.,

Through application of equations (47) and (49), expres~
sions for the lifting differential pressure (fower minus upper)
on the horizontal wing aod body are found to be, respec-

Fe2(-3)

tively,

V(+5)-5 (+5) J
£
(Tds at ada (a’ y y*
APy (& (—5) 25 G- )]Jf[“ (1“)] 1608 (1) y/1-F
vt o
- - () -4 \/<1“z‘2) +4%
where, in equation (51), the plus sign is taken for the starboard side of the body and the minus sign for the port side. Simi-
larly, the yawing differential pressure (port minus starboard) on the vertical wing and body are given, respectively, by
[ [d¢ at ada (a* a® 2 at
(422 45 L& (=522 G5 -10-9)] 52)
¢ )= V22 (1+5) .
L ) 8 &
([ Tde < ada ' .
[ (1) p228 (T, 2):|+|:4a (1 ):I 16a)3< ) 1——-- -
(F),=164 == P g 63)

-

where, in equation (53), the plus sign is taken for the upper
side of the body and the minus sign for the lower side. As
was pointed out for plane-wing and body combinations, the
expressions for the pressures on the body are not applicable
at stations behind the trailing edge of the wing, From the
same arguments as advanced before, the forces on this por-
tion of the body will be taken to be zero.

Total forces and moments.—The total forces and moments
exerted on a complete cruciform-wing and body combination
may be determined by integrating the loading over the entire
surface area. As with plane-wing and body combinations,
it is convenient to carry out the integration by first evaluat-
ing the forces and moments on one transverse strip, and then
integrating these elemental quantities over the length of the
wing-body combination. The lift and side force on a trans-
verse strip of width da are given, respectively, by

—ade [T (APz
clL-—quf_s ( 7 )dy

+
dY=qda:f_g (A% dz

(54)

V@

(85)

zz
\/ (=5)+43
The rolling moment on this elemental strip is given by
L' =qdx [—f_ay<A—p" dy— f y( Dz cly+
-3 q "
~ (Apy ‘ (% .
f—c z( g )de+J; g )®
where the integration is carried only over the surface of the
wing, since pressures on the body cannot produce a rolling
moment. When the indicated operations are performed, the
following expressions for the elemental lift, side force, and
rolling moment are obtained:

L)) ()
11 oo
L@ 03))

da a a?\? . 2at
_2[#@[2 (1—t—2 2 (1+z2-) sin. lt—,+—a.;] (58)

(56)

2as

oxa] ©0
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£ o3 ()-
1+t) cos & AT 2] 204332[ (1——)—}—
(l—l—a“L (1 l'—Z) cos™ .92—[—22] (59)

The forces and moments for the complete wing-body com-
bination may now be determined by integration of the forces
on all the elemental strips. Expressed in nondimensional
form, these characteristics are given by

g |40
0"‘=_Sﬁ f;—x(%)xdz (61)
T LI
d,= _SLVCV dc—.lr G;) z dz (63)
e fE@e o

where the integration interval extends from the most forward
to the most rearward part of the wing-body combination.
~ To achieve a unity of expression for side force and lift and
for yawing moment and pitching moment, the side-force
coefficients have been based upon the area of the vertical
wing rather than the more conventional horizontal-wing
area, and the yawing-moment coefficients have been based
upon the area aud root chord of the vertical wing rather than
the area and span of the horizontal wing.

The expressions for the forces and moments on the ele-
mental strips (equations (57), (58), and (59)) indicate four
Important general characteristics of slender eruciform-wing
and body combinations. First of all, there is & complete
correspondence of the expressions for the lift and side force
as would be expected from the geomeiry of the configuration.
Second, the lift is independent of the angle of yaw and the
side foree is independent of the angle of attack. Third, the
expressions for the lift and pltchmg moment for slender
cruciform-wing and body combinations are identical to those
for plane-wing and body combinations. Last, if the vertical
and horizontal wings are identical, the rolling moment is zero.

SLENDER CRUCIFORM-WING AND BODY COMBINATIONS

APPLICATIONS

The general expressions developed for slender eruciform-
wing and body combinations will now be applied to several
particular configurations. The discussion will be brief since
the results are similar in many ways to those given for plane-
wing and body combinations.

Pointed low-aspect-ratio wings, no body.—The first and
simplest example of a slender cruciform configuration to be
considered consists of a set of pointed low-aspect-ratio
wings, which may have different plan forms and aspect

ratios, and no body. The aerodynamic properties of such .
a configuration may be determined by letting

=0; da:— 0
By substitution of these values into equations (50) and (52),

it follows that the load distributions for the horizontal and
vertical wings are given by

(APL) =4a cla:+6 )
j: 4

These expressions are similar to that given by Ribner (refer-
ence 9) for the loading on a single low-aspect-ratio triangular
wing inclined in pitch and yaw. The symmetric first terms
contribute to lift and side forece; the antisymmetric second
terms contribute to rolling moments. To illustrate this point
further, figure 8 has been prepared showing the load distribu- .

FiGTRE 8.—Load distribution on a trisngular cruciform wing.

tion on a eruciform arrangement of triangular wings. The
loading on the vertical wing is shown by the two top sketches,
while that on the horizontal wing is shown by the lower
sketches. The sketches on the left represent the contribution
of the symmetric first terms of equation (65); those on the
right, the contribution of the antisymmetrie second terms.
In accordance with the stated assumptions, these expressions
are invalid when either the angle of piteh or yaw becomes so
large that the leading edge passes beyond the stream direc-
tion and becomes, effectively, a trailing edge. Mlathemati-
cally expressed, the expressions are valid when [8] <ds/dz and
|e| < dtfdz. If it is desired to investigate wings inclined at
larger angles, consideration must be given to the influence
of the trailing vortices lying outboard of one of the sides of
the wing. Such a problem may be treated by an extension of
the methods employed in the treatment of a swept-back wing
in reference 10. The total load on an elemental strip is found
from equations (57) and (58) to be
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d (L '4 ds

Lo
% (%) e=—smp 3

The rolling moments exerted on the horizontal and vertical
wings are given, respectively, by the corresponding terms of
equation (59)

(66)

d L) q=—2nafgs’®

d L,) g=2mwafqi?

The lift and side-force coefficients for the cruciform wing
are found by integration of the forces on the elemental strips

(67)

between the leading apex and the trailing edge as indicated

by substituting equation (66) into equations (60) and (62)

OLW—'_—% .AHG! -

o . . (68)
OYW= _§ AVﬂ

where Az and Ay are the aspect ratios of the horizontal and
vertical wings, respectively. .

Similarly, the pitching-, yawing-, and rolhng—moment co-
efficients are found by substituting equations (66) and (67)
into equations (61), (63), and (64), respectively, and inte-
grating:

Sp
i , (69)
Cu=5 4v8 (1-2)
C’;W=§—§§]— (Cvtni—ensn?) (70}
where
1 Cgr
2. 2
Smi= o dx
1 (ev
a_ = 2
tm —GV . o t Clﬂﬂ

Attention is called to the fact that the pitching- and yawing-

moment coefficients represent moments about the leading
apexcs and are nondimensionalized through use of the area
and root chord of the horizontal and vertical wings,
respectively.

For a more specific example, consider the wings to be of

triangular plan form moving point foremost. Then, since
1
8 2-—"'?; Sg
and
1
tm2=73‘ toz

the moment coefficients given by equations (69) and (70} are

Om——%- Az;a
(71)
On=% A8
____‘E'Olﬁ Svto
=" 8—555—1) 79)

Pointed slender body of revolution.—Expressions for the
aerodynamic characteristics of a pointed slender body of
revolution inclined in pitch and yaw may be derived from
the previously derived equations by letting

Since these results are essentially the same as given pre-
viously, only the final equations will bé listed

A AD
()l h (3)-si i w

& (D) e Bomreg BB E(T) gm
dz\q) 1= =g’ dz

Cr=2a Cy=—28 (75)
Cp=—2a (1—— C,=28 (1—%‘) (76)

where B is the loeal cross-section arca, B, is the area of the
base, and B, is the mean cross-section area (i. e., the volume
of the body divided by the length). In the cocfficients, the
reference area is taken as the aree of the base cross section.

Triangular cruciform wings with conicel body.—The first
example of a ng-body combination to be considered is a
conical arrangement (coincident vertices) of a conical body
and triangular vertical and horizontal wings of, in general,
different aspect ratio. The geometry of such a configura-
tion requres that

ﬂq a’.n (74)

g, da/dx
T dsldz

—'I{[; B

where da/dz, ds/dz, and di/{dz are constants. The load dis-
tribution along any elemental strip of the wings and body
is given by

().

(é&s
q

2 (1+KH —ok S e Y (1-Knt &)
\/(1+K,,4)—'”— (145 5

=4a %l \/(1+K,,)2—4K : (y )+

% (1) (-5)

o | QK 4K (’i)
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where the plus and minus signs are taken as in equations
{51} and (53).
The integrated lift, side force, and rolling moment on an

elemental strip are
'L
FE)i=trers Lo £(5)t=—tett fov @9)

d (L'
7 (5) =2e00ry—sra (79)

where ¢ and 7 are constants given by

=1+ K5 | 2KO—KY)— 1+ sin 5 22,

4

ol > iy >, - 1 K
=2K(1—-EK*»+x(1+EK%H—(1+4+K??2 cos™? TR
The subscripts H and 17 on ¢ and 7 refer to the use of Kz or
K- in the above expressions. The lift, side-force, and rolling-
moment coefficients for the entire conical cruciform-wing
and body combination are then
Cy= "7_‘?1: Arfoy (80)

T
=35 Apacy

0,="_%JB ( . Z"TZ—TH) (81)

Due to the radial nature of the lines of constant pressure, the
center-of-pressure positions of both the lift and side forces
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are independent of the body-radius wing-semispan ratios
and.lie at the two-thirds chord point. The pitching and
yawing moments are then given by

Cw=—3 Agasy  Ci=3 Arfoy (82)
The lift, side-force, pitching-moment, and yawing-moment
results are plotted in figures 4 and 5. Figure 9 presents
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FisUeE 9.—Rolling moment for conical cruciform-wing and bady combinations.

rolling-moment results for selected ratios of vertical wing
span to horizontal wing span. To facilitate the computation
of further results, the values of 7 for use in equation (81) are
plotted as & funetion of K in figure 10.

Triangular cruciform wings on an infinite cylinder.—The
next example tobe considered is that of a triangular cruciform
wing mounted on an infinite eylindrical body. The essential
relationships associated with this configuration are that

a=ay; g_a 0

.

and that ds/dx and di/dx are positive constants. As with the
corresponding case for plane-wing and body combinations,
no forces are exerted on the body at stations ahead of the
most forward or aft of the most rearward part of the wings.
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Between these stations, forces are exerted on the wings and body in accordance with the following relations:

B-8)20-5)

(A—pz-‘)tz =4u
q

RlCRaE

(ﬂe) e
¢ /B
Tz (1

NeTRY
4)+et(-3)

(),

\/ (+%)-5(+%)

(%8r) 48 —_%(1—%25)?:‘ §<1;£§2 1090 35 _“z (8
R G RN N T

where the plus and minus signs are taken as in equations (51)

and (53).
’ <L> g=4mags (1 EZZ::

dL’

The integrated forces and moments on an clemental strip

are given by

< )q--—éarﬁgt (1 O
(L pmzapye [2%’(1-—)% (1+%)-(1+%)

cos™! 75— t—ag’l_
# +a

20:;39[82[2%(1— )-{-r (1——) <1+ )cos‘ls_l_ao (85)

The force and moment. coefficients are found by integration
tobe

3. 2\ 2
Cy=3 Ana (1—%5 ; Oy==% A8 (l—f—ﬂz) (86)

Gm=~;7—r-.A,;a [(1——) (2-} 3 “°+3 2)]

=T Ay [(1——) (2+3%+3%)] o
=% (§2 y—vr) (58)
where
y=2K(1—K?»+r(1+4K3*—3K*— (1+6K*—K*

—K? 7 2K*
1+K2+2K log T e

cos

where, for determining vy, K is taken as aofty and, for vy, K
is taken as a@o/s;. In equation (87), the moments are taken
about the leading edge of the root chord. The lift, side-
force, pitching-moment, and yawing-moment results are
plotted in figures 4 and 5. The rolling-moment results
cannot be plotted in general, however, as was done in the
case of the preceding example since there are now three signi-
ficant parameters instead of two. To facilitate calculation
of these results, therefore, the variation of » with K has been

plotted in figure 10. As was shown in general, the rolling

moment vanishes when the two wings become identical.

.T \ f'/w'
. . 4 '
Vo . ” \\ h
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FIGURE 10.—~Variation of r and » with K,

Triangular cruciform wings on a pointed body.—The theo-
retical characteristics of a triangular cruciform wing mounted
on a nointed body of revolution, closed in an arbitrary manner
at the nose but cylindrical along the wing root, may he
determined by combining the results of two previous exam-
ples. The portion of the wing-hody combination ahcad of
the leading edge of the wing root may be considered to be
equivalent to the arbitrary body of revolution treated in the
second example. The portion of the wing-hody combination
aft of the leading edge of the wing root is equivalent to a
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fore evaluated by integrating the first bracketed term over -

the entire projected area of the wing-body combination.

LepVe f f [(ag’x ¢’ ) :I dedy (94)
B
The pitching moment is given similarly by
M= —pVia f f [( agbx axa),] 2dzdy  (95)
B.H

An expression for the rolling moment due to Lifting dif-
ferential pressures may be obtained in & similar manner.
The first and third bracketed terms in equation (93) need

not be considered; the first because it is even in y, the third
because it is different from zero only on the surface of the -

body. Hence, the rolling moment due to the lifting differ-
ential pressure is given by

Lip=+ PVoﬁJ fH [ ag)y

where the integration is carried over only the area of the
horizontal wing.

In a similar manner, expressions for the side force, yawing
moment, and rolling moment may be developed from the
differential pressure between corresponding points on the
port and starboard sides of the wing-body combination, thus

— azg,,)t] ydedy  (96)

Y=oV f f 1 ( ) - aai")_,] dedz ©7)

[T~ Joe
B, 1"

1=—pVgaﬁff [ o¢’ ") - aaib),] zdrdz  (99)

where the integration is carried over the projected area of

the wing-body combination in equations (97) and (98) and

only over the area of the vertical wing in equation (99).
The total rolling moment is

rersrremi [ [ [(5) -5
2¢"p\ _ (99’5 A_
0 e

since it can be seen that the two integrals have identical
values because the flows they represent are identical save
for orientation in the coordinate system.

From examination of equations (94) through (100), it may
be seen that the aerodynamic properties of cruciform-wing
and body combinations having identical vertical and hori-
zontal wings of arbitrary plan form and aspect ratio may

(100)
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be summarized in the following statements. The lift and
pitching moment are independent of the angle of yaw and
the side force and yawing moment are independent of the
angle of attack. Further, the rolling moment is zero for all
combinations of angles of pitch and yaw. For the corre-
sponding problem relating to a cruciform-wing and body
combination inclined in pitch and bank, the conclusions may
be restated as follows: The lift and longitudinal center-of-
pressure position are independent of the angle -of bank and
the rolling moment is zero for all angles of bank.

It should be noted that the value of zero for the rolling
moment in the case of identical wings results from a complete
balancing of the rolling moment exerted on the horizontal
wing by an equal but opposite rolling moment on the vertical
wing rather than by having zero rolling moment on each
wing. Since such a complete balancing may be easily
disturbed by factors neglected in the analysis (for instance,
higher-order terms neglected in the analysis! or separation
along the wing-body junection), particularly at large angles
of inclination, the pitch and yaw range over which this con-
clusion is expected to apply may be more limited than that
of the conclusions regarding lift and side force.

CONCLUDING REMARES

[

An analysis has been made and expressions have been
developed for the load distribution, forces, and moments
on inclined plane- and cruciform-wing and body combina-
tions consisting of a slender body of revolution and low-
aspect-ratio pointed wings.

These results indicate four general characteristies of
slender cruciform-wing and body combinations. First,
there is & complete correspondence of the expressions for the
lift and side force. Second, the lift is independent of the
angle of yaw and the side force is independent of the angle
of attack. Third, the expressions for the lift and pitching
moment for slender cruciform-wing and body combinations
are identical to those for slender plane-wing and body com-
binations. ILast, if the vertical and horizontal wings are
identical, the rolling moment is zero. For the corresponding

problem relating to cruciform-wing and body combinations

inclined in pitch and bank these conclusions may be restated
in the following manner. The lift and pitching moment are
independent of the angle of bank and the rolling moment
is zero for all angles of bank. It is further shown, by sym-
metry considerations that these conclusions are applicable
to any wing-body combination having identical horizontal
and vertical wings of arbitrary plan form and aspect ratio.

1 Maple and Synge (reference 19} have shown that inclusion of higher-order terms results

in rolling moments proportional to the fourth and larger powers of the angle of inelination -
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cruciform arrangement of triangular wings mounted on an
infinite cylinder discussed in the preceding example. The
load distribution and integrated load on an elemental span-
wise strip are then the same as those given in the corre-
sponding example. ‘

The lift and side-foree coefficients are found by adding the
forces on the component parts of the wing-body combina-
tion and dividing by the dynamic pressure and.the charac-
teristic area: The lift and side-force coefficients are then

P Cr=—3 AsB (1 +5 )
(89)
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These relationships are shown graphically in figure 4.

The pitching- and yawing-moment coefficients for this
wing-body combination may be found in a manner similar
to that used in finding the lift ‘and side-force coefficients,
taking care to transfer the moments of both components to
the same axis, namely, the leading edge of the root chord.

Wbl
i (GO Y

The rolling-moment coefficient is given, of course, by
equation (88).

(90)

GENERAL CRUCIFORM-WING AND BODY COMBINATIONS
HAVING IDENTICAL WINGS

The analysis of slender cruciform-wing and body combina-
tions resulted in the discovery of certain general characteris-
tics of wing-body combinations having identical vertical and
horizontal wings. It is the purpose of this section to enlarge
the range of configurations to which these conclusions are
applicable by removing the requirement of slenderness. To
accomplish this, an analysis of the aerodynamic forces and
moments exerted on cruciform-wing and body combinations
having identical wings will be undertaken on the basis of
symmetry considerations. For this treatment the wings
may be of any plan form or aspect ratio; provided the vertical
and horizontel wings are identical and sre mounted at the
same longitudinal position of the body. The concepts of
linearized theory are used in this treatment; therefore, the
usual restrictions that the body is slender and that the
angles of pitch and yaw are small must be observed. The
conclusions are applicable at all speeds, since the Mach
number does not enter the problem directly. Consider the
cruciform-wing and body combinations as being inclined
small angles « in pitch and 8 in yaw from the free-stream
direction, the free-stream velocity being 17 Since super-
position is a valid principle in linearized theory, the perturba-
tion velocity potential ¢ may be considered to be the sum
of the two components

p=ag’s+B¢" (91)

where ¢’; and ¢, are the perturbation velocity potentials of

285

the flow about a cruciform-wing and body combination,
inclined unit angles of pitch and yaw, respectively.

Consider now the differential pressure between corre-
sponding points on the upper and lower surfaces of the body
and the horizontal wing

A0 (G2
{ [ 0¢” a) a@ b
[ (39).- °§’;“)J+ﬁr aaif“) z)]]

(92)

Ordinarily, only the potential gradients, or perturbation
velocities, in the x direction would be included in equation
(92). For long slender objects, however, the perturbation
velocities in the x direction are so much smaller than those
in the ¥ and z directions that the products of small angles
and perturbation velocities in the ¥ and z directions must be
retained as well as the perturbation velocities in the z diree-
tion. Since the inclusion of these terms does not introduce
any particular restrictions into the problem, they will be
retained throughout the present discussion even though in
many instances, such as with high-aspect-ratio unswept’
wings, it is unnecessary to do so. In general, none of the
individual terms in equation (92) is zero and the pressure at
every point depends upon both ¢‘, and ¢, or, what is
equivalent, upon both the angle of attack and the angle of
of yaw. However, several of the terms are equal and will
cancel. Thus, remembering that equation (92) represents
the lifting differential pressure, it is apparent from symmetry
considerations that

06’5\ a¢'b) —0- a¢'5) _{%¢'s
or Ju or Jr ! oY Ju

u

everywhere and that
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on the horizontal wing. Therefore, equation (92) simplifies
to

APL_E o¢’
Y {a[
-

=9

[T b)

2 3
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where the third bracketed term differs from zero only on the
body. The second and third bracketed terms are odd in y;
hence, they cannot contribute to the lift. The lift is there-
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