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GENERAL THEORY OF AIRFOIL SECTIONS HAVING ARBITRARY SHAPE OR

El

PRESSURE DISTRIBUTION

By H. Jurian ALLEN

SUMMARY

In this report a theory of thin airfoils of small camber 18
developed which permits either the velocity distribution cor-
responding to a given airfoil shape, or the airfoil shape corre-
sponding to a given velocity distribution to be calculated. The
procedures to be employed in these calculations are outlined and
illustrated with suitable examples.

INTRODUCTION

Before the advent of the low-drag and high-critical-speed
airfoils, the shapes of airfoil sections having desirable aero-
dynamic characteristics were found by the purely empirical
method of testing families of related profiles. The pressure
distribution over any of these shapes could be calculated by
any of a number of methods, but notably by the method
of references 1 and 2. . ' : ,

Subsequently, experimental and theoretical investigations,
on the one hand, of the laminar boundary layer and the
phenomenon of transition and, on the other, of the compres-
sion shock wave promoted a better understanding of the fac-
tors affecting the drag of airfoils. It became apparent that
the control of the aerodynamic characteristics of airfoils
was to be found in the control of the pressure or velocity
distribution. Hence, in the design of an airfoil having certain
desirable aerodynamic characteristics, the “inverse’” prob-
lem of finding the shape of an airfoil which would promote a
specified velocity distribution over its surface became of
considerable importance.

One notable method has been advanced (reference 3) for
solving this inverse problem. However, this method is
intricate and laborious to employ.

In this report a new method, which has been used for
the past several years in the design of a large number of low-
drag and high-critical - compressibility -speed airfoils, is
presented. This method, which is comparatively rapid and
easily applied, may be used to solve either the direct or the
more important inverse problem. Illustrative examples are

included.
THEORY

It is shown in reference 4 that in a determination of the
pressure distribution over a cambered airfoil the effects of the
camber and the thickness distribution may be considered
independently. Specifically, it is shown that the induced
velocity at any point on the cambered airfoil may be found

by superposing the induced velocity at the point due to the
vortex system, which may be considered to replace the mean
camber line, and that at the point due to the source-sink
system, which may be considered to replace the “‘base profile.”
The base profile of the airfoil is the profile if the camber were
removed and the resulting symmetrical airfoil set at zero
angle of attack. In the airfoil theory of this report it is
convenient to consider separately the base profile and the
mean camber line which together make up a given airfoil.

CAMBER-LINE THEORY
Glauert (reference 5) has considered the problem of the
mean camber line which, in a more convenient form for cal-

culation and extended so as to include the theory of the strut
as well as airfoil mean camber lines, is given in the following:

p
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v, Azyeyey) d—gd.t
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FIGURE 1.—Diagram of mean camber line,

Counsider the mean camber line shown in figure 1. If the
camber is small, the velocity induced at a point P (xo,y.,) on
the mean camber line by a vortex at any other point P(z,y.) on
this line is approximately that which would be induced at
the point on the z-axis P(2,0) by the same vortex at the

point £(x,0). If the vortex strength at any point is %-g dzx;

the velocity induced at any point on the camber line due to
all the vortices distributed along the camber line is

1 (e ((115 dx
v (10)2:2';’;.[; @l; &) (1)
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and is perpendicular to the z-axis. The flow direction close
to the camber line must be parallel to the surface of the
camber line so that if the angle o between the z-axis and the
flow direction of the undisturbed stream is small, then

Vi=dz (2)

where V, is the velocity of the undisturbed stream.
It is convenient to introduce the new coordinate # for =
such that

x—-— (1—cos 9)

ro=% (1—cos ) (3)
dz=2 gin 0 do
z=75 si

where ¢ is the airfoil chord. Assuming the distribution of
vorticity o' (where the prescript , indicates that this circu-
lation applies to an airfoil of zero thickness) along the z-axis is

%":—;-—2% (Ao cot 5 0+Ao" tan 5 0+ 2 A, sin "0)

Then
d" da:-cVo [Ao (14cos 8)+ A, (1—cos §)
+$ A, sin né sin 0] do (5)

Writing sin 76 sin 0=-;— [cos (n—1) 8—cos (n+1)49 ], then

from equations (1), (2), (3), and (5) the slope at 6, may be
obtained from

dyco__ 1
dx a“ﬂ' 0

2? A,[cos (n—1) 8~—cos (n+1) 6]

€08 fp—cos 0 b (6)

Ay (14-cos 8)+ A4, (1—cos 6)
cos §p—cos ¢

wlv-'

T

It is shown in reference 5 that

*  cosnd
J:) cos 6—cos §, di=7
so that equation (6) becomes for the slope at 8

%?i—’—a—Ao'+Ao”+$ A, cos né (8)

sin 16y
sin 0 <

The coefficients are given by

dyc

a—Ao’+A0 _;I: 0 d0

- (9)
n=g fr %y—‘ cos nodo
rJo X

The lift force may be found from
[ d,T
oL—ﬁ pVo ‘E; d.’):
=0pV02J: I:Ao’(l—i—cos 8)+ A,”(1—cos 6) ‘
-{—}i A, sin né sin 0] db
1
== 7r6p'V02 (Aol +A0” +% Al)
so that the lift coeflicient is
? ”n 1 N
or=2m (A0 +4)" +34) (10

According to theoretical hydrodynamics, in an inviseic
fluid a strut section with a rounded trailing edge should ex
perience no net lift at any angle of attack so that in this cas«

A= —% A—Ay (11

whence the relations (9) become

Ao == a—-—f 2y (14cos O)dﬂ:‘ )

Ao”——'—% a—i fo' ‘2’; (1—cos 9)do] (12
2 ('~ dy.
=z, cos nf do

In the case of an airfoil wherein the trailing edge is sharp
the “Kutta condition” must be satisfied (i. e., the flow mus
leave the trailing edge smoothly). To attain this th
vorticity at the trailing edge must be zero, which require
that 4y’=0. So the coefficients become

—'a-——-f dyc do

A" =0 « (13
An==z fr % cos nd do
T Jo X

It will be noted that for airfoils only A, and for strut
only Ay and A, vary with the angle of attack. Th
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coefficients A, are independent of the angle of attack and
are functions of the mean camber-line shape only.

Denote by P the difference at z between the upper and
lower surface pressure coefficients, P;,—P,. (The pressure
coefficient is the pressure in terms of ¢, the stream dynamic
pressure.) Then, from the Kutta-Joukowski theorem of lift,

doT
PVodr_ 2 dir ”

P =V

so that, from equation (4),
“oP=4 (Ao’ cot % 0+ Ay tanzl, 6+ZT:‘,A,. sin na) (15)

It has been found convenient in the past to denote that
part of the chordwise lift distribution which is in magnitude
independent of the angle of attack and in form dependent
solely upon the camberline shape, as the basic lift distri-
bution; and that which is in magnitude variable with the
angle of atteck and in form independent of the mean camber-
line shape, as the additional lift distribution. (These
concepts first appeared in reference 6 and were later used
in the development of the methods of references 7 and 8.)
Hence, for the infinitesimally thin airfoil or strut the addi-
tional lift distribution is given by

0P¢=4 (Ao, Cot % 0+Ao” t&n% 0) (16)

and the basic, by )
' oPy=43"4, sin n8 a7
1

It is convenient to consider the basic lift distribution only
as characteristic of a given camber-line shape since the
additional distribution may be modified at will by a change
in the angle of attack and so, at some angle, must be zero.
The angle of attack at which the magnitude of the additional
distribution is zero for an airfoil is called the ideal angle a,
(references 6 and 9), and is given by

1 d1/c
a‘~'; 0 d:t

d8 , (18)

The ordinates of the mean camber line corresponding to the
case when the additional distribution is zero, denoted by ¥.,,
are related to the ordinates y. by

Ye ' s

ot <w>
and so

dyc dy ¢

d_:cb dz~ “ (20)

From equations (8) and (17), then

ay.
—y—"—-ZA cos nf

and (21)
"—E!'—Zzi sin né

and the coefficients are given by

~ dy,
A,,=—f g b cos nf df== f 2 sin nd do (22)

TJo

Using equations (21) and (22), the chordwise list distribu-
tion corresponding to & given mean camber line,or the mean
camber line corresponding to a given chordwise lift distribu-
tion can be found. The calculations will in the generai case
be very lengthy so that it is desirable to replace the Fourier
expansions by integral expressions, as was done in the de-
velopment of the method of reference 1. To this end, the
expression for the Fourier coefficients given by equation
(22) can be substituted in equations (21). At 6, then

P dy.
2 b° Zf y"Z}sinno‘,cosnGdo

and p (23)
Ye * ©
%0 _--2-f ‘%Z sin nd cos nfd, db
0 1

dz r

Now,
sin né, cos n0=—é— [sin n(8+8,) —sin n(6—8,)]

sin né cos m9.,=l [sin n(b—{-ao)—!-sin n(6—0,)}
2

and further

cos (2n+1) <0i20">

2 sin (0——:; 0“)

En sin n(646,) =% cot <0i20°>——
1

so that substitution gives

dy., 0+e(. 09— 6,
T —}g—)c 2= f) [ ( cot < 2 ) 40—
L (rdy. | €08 (2n+1) (0-;00 cos (2n+1) (0 00)
or d;: a0
0

sin (Q;;—a—"> sin <B—T>

dycbo . 1 'OPD 0+ e{, 89— 00
=t o [ Lot () oo (557) -

cos (2n-+1) ("—?) cos (2n+1) <9“;90>

1 f *oPy +
N L d9
2rJo 4 sin (0——-; 00) sin (0_ 9")

5)

A

In the limit, the second integrals in the above Trelations
become zero so that the equations may be written as

o_{’bo f d./c,,[ (04—0(,) o (9—;on>'| o
< /4
ig%’%i, for ‘-’% [cot (0-;0°>+cot (0_20(’)] de

When either function is known in simple algebraic form,
it is sometimes convenient to express these integrals as
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follows: From known trignometric relations, equations (24)
may be written

oPr_ 1 ~dye, sin gdf

4 7)o dz cos6—cos
dy . (25)
Wepy 1 [Py __sin 6do

de~ 1w Jo 4 cosf—cosb,

which may be useful if the functions under the integrals are
expressed as simple functions of 4.

When the functions are expressed in terms of z, the follow-
ing forms, obtained by substituting the relations of z with 6
given by equation (3), are sometimes useful:

yl’ I VY
-d—xb v xg(e—xy)

4 7 Jo (x—2)vZ(c—2) (26)
We, 1 (¢ Pyl
dx 7 Jo 4(x—x)

The second equation has been used to determine the shape
of a variety of camber lines, notably the type “a’” mean
camber lines (reference 9) used with the more common low-
drag and high-critical-compressibility-speed airfoils.

Unless the algebraic expressions for (P, or dy./dr are very
simple, the direct integrations using equations (25) and (26)
are not convenient so that, in general, it is desirable to per-
form the integrations numerically using equations (24).

The computation may be shortened considerably by use
of the following mathematical device:

ﬁ j 16).cot (”‘;"°) do=— f " H(2r—8) cot (""2"°) do

Hence, equations (24) may be written

P 2% d’l e — h'
"—;’-’°=—-2-11-r . ;x” cot (6 2"“) ds,
. (dye, dy.,
defining < g )r+o=(7i?>f_o
- (27)
(ﬁc_bo—i i ‘113.'3 t 0_00> a9
dz 2rJo 4 '\ T2 ’
: oﬁ) _ (P
deﬁnmg( T )™ —-(—4—>’_9 )

These integrals may be evaluated numerically by the method
of reference 1 which is given in Appendix A of this report.

In the preceding theory it was assumed that the airfoil
was of infinitesimal thickness, hence the velocity at each
elemental vortex along the camber line was taken to be the
free-stream velocity Vo, For airfoils of finite thickness, the
velocity differs somewhat from V,. A better approximation
is to assume that the velocity at each vortex is the velocity

on the surface of the base profile at the same station. Hence,
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the effect of airfoil thickness will be to change the local lift
at x to approximately

Vv
P=,P Vi) (28)

where V, is the local velocity on the base profile at . The
calculation of V; is considered later in this report.

8
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FIGURE 3.—Additional lift distribution for NACA 0018 airfoil.

Values of P./ci.. caleulated by equation (28) for the NAC
0012 and 0018 airfoils are shown in figures 2 and 3, respe
tively, along with the values given by the method of rei
ence 7 which were obtained by interpolation of experiment
pressure distributions. Shown dotted are the theoretic

| values «P.jci,, for the infinitesimally thin airfoil obtain

from equation (16) and given in table I. In figure 4 t

calculated and experimental basic lift distributions for t
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Fi1GURE 4.—Basic lift distribution for NACA 35-213 low-drag airfeil.

2=0.5 mean camber line of the NACA 35-215 airfoil are
shown. It is evident from these figures that equation (28)
gives 2 close second approximation to the value of P.

The basic lift coefficient becomes

1 ‘,’
ev=J,oPo(7) (%) (29)
and the quarter-chord moment coefficient is
! Vi\/1_z x
enai=JooP (7 )(5=8)2() 30

It is obviously inconsistent to make the approximate
velocity correction to the lift distribution (equation (28))
and not to the velocity ratio »/V, in equation (2). How-
ever, the correction to the lift distribution accounts for
nearly all the discrepancies between the calculated and ex-
perimental results so that the additional computational dif-

Ye
[ 3
aq
dax 4= B,y )
N v
!’——D - * v > 30
P(,0) P(x,,0)

FiGure 5.—Diagram of base profile.
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ficulties associated with a further improvement of the theory
are not considered to be justified.

BASE-PROFILE THEORY 3

The problem of determining the velocity distribution over
a given base profile or the base profile which will promote a
given velocity distribution over its surface may be treated
in & manner analogous to that of the mean-camber-line
theory.
~ Consider the base profile shown in figure 5. If the thick-
ness is small, the velocity induced at a point P (%,yx) on
the surface of the profile by a fluid source or sink at the point
P(z,0) is approximately that which would be induced at the
point P(x,,0) by this source or sink. If the source strength
at a point z is (d(/dz)dzr, then, the velocity induced by all
sources or sinks distributed along the z-axis will be

dQ
)_L e E—xdx
v(xo —21I' 0 Lo—7T

(31)

The source strength can be related to the shape in the
following approximate manner: If the profile is thin, the ve-
locity at the surface does not differ materially from the free-
stream velocity V,, and hence the flow velocity within the
profile due to the sources and sinks is as a first approxi-
mation V,. Within the profile the difference between the
quantity of fluid flowing at z+dz and z is the amount sup-
plied by the source contained within this interval, hence

d 7 d
d—g dz§2V0 \yg+7d_:i“ dx) "'2V0yg

so
aQ_ v W
%——2V0 dz (32)
and so equation (31) become approximately
dy,
¢ 4 dx
v 1 dr (33)

—Vo—‘ﬂ' 0 Lr—&

Replacing z by the 8 coordinate defined by equation (3)
and assuming that the slope of the profile is given by

d_y_l_ ’ 1 ’ 1 = :
P =B, cot §6+Bo tan 5 0+Z B, sin né

(34)
then by analogy with the similar development in the mean
camber-line theory

v

~=By — By’ —> B, cos ng
1

a (35)

and
x
wn_L1f v

. S O (36)

Bu=—2{"Z cosnod
= ;ﬁ) T/(;u)sn [7/:] )



The condition that the trailing edge shall close is given by

o _ rdyl _
jo dy,—ﬁ —(de—-O

Substituting the slope as given by equation (34) and inte-
grating, it is found that

By'+B,"+% B,=0 (37)

It is of interest to note that setting all coeflicients except
By and By’ equal to zero then requires
: By'=—B/
Hence
dy,_ 5, 1 1 )
%—Bo <cot§6-—tan§0

which becomes after integration,

y=cB, sin ¢

rJE (12
y=ZCBo -J(:(l C)

This is the equation of an ellipse of thickness

or

t= 2030,

The induced velocity from equation (35) is
'2'=2Bo’ =£
0 c

so that adding this induced velocity to the stream velocity
Vo, the ratio of the local velocity at any station z to the
stream velocity is found to be

Ve, .t .
Vo— 1 +E (38)

Again, if all coefficients except By’ and B, are set equal to
zero, then from equation (37)

Bl = 230,
Hence

4y, 1 .
. = B, (cot 3 6—2 sin 0)

which becomes, after integration,

cB,

’
“%- sin 8 {14-cos 8)

y=2cBy (1 —f)"\/ 2

This is the approximate equation for a thin Joukowski base
profile of thickness

U=

or

3V Bye

¢ 4
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The induced velocity from equation (35) is then

%:Bo'(l-{-z cos e)=3—i,§ (%) [3—4 <3—£>] ‘

Hence, the ratio of the local to stream velocity is

v, 4 (t) - 2\T
Vo 3v3\¢/L ¢
L5
L ———m From potential theory E "
nmmweeFrom equation 38
1.3
1.2
t P
T —c—-O./c — 1
/5 <
oL/ < N
N ¢
1.0 \?:005
.9
.8
.7 i

S5 6 7 8 .9 L
=
e

F1GURE 8.—Theoretical velocity distribution over elliptic base profiles.

.5
1.4 -
—— From potential theory
--===- From equation 39
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‘ £.0.06 P~
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7 Ll R .
(O l{ ™ [t
Pead
10 N&&%:
22 ;‘-qneq‘
.9
-8
.7 L
g / .2 3 4 .5 .6 .7 .8 .9 U
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c

FiguRre 7.—Theoretical veiocity distribution over Joukowski base profiles,

The velocity distribution for the elliptic base profile :
calculated by equation (38), and for the Joukowski ba:
profile as calculated by equation (39) is shown in figures
and 7, respectively, along with theoretically correct velocit
distributions as calculated from potential theory. It is sec
that the approximate velocity distributions are satisfactor
except in the region where the slope dy,/de becomes infinit
This was to be expected sinee the assumptions made in i
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development of the theory in effect require that dy./dx be
small. Inaccuracies due to such infinite slopes may be
avoided by the following device: It is evident from equations
(34) and (35) that superposition is permissible in regard to
both base-profile shapes and the corresponding induced
velocities. Hence the method may be used to find the
change in shape corresponding to a specified change in veloc-
ity distribution or, inversely, the change in velocity distribu-
tlon corresponding to a specxﬁed change in shape from some

“reference base profile.” If this reference base profile is one
properly chosen so as to have the same slope characteristics
at the leading and trailing edges as has the profile under con-
sideration, then the By’ and By’ coefficients in the series to
represent such changes can be made zero since now slope
differences need never become infinite. For example, for an
airfoil with rounded leading edge and pointed trailing edge,
the Joukowski base profile having the same leading-edge
radius may be used as the reference base profile; for a strut
with rounded leading and trailing edges, the elliptic base
profile having the same leading- and trailing-edge radii- may
be used as the reference base profile. Letting Ay, and Av
represent the change in shape and velocity, respectively, then
equations (34) and (35) become

d(gf') E B, sin n§
(40)
é’i.=_2 B, cos nd
and the coeflicients are
B,=2 f YY1 gin g
T Jo &L
or : (41)
2
B,= = )5 V Y cosnddo

Since By’ and By’ have been set equal to zero, then from
equation (37) the coefficient B, must also be zero.

When it is desired to find the change i the velocity dis-
tribution corresponding to some given change in shape, the
given change in shape—if so chosen that d(Ay.)/dz is not
infinite at the leading and trailing edges—automatically sat-
isfies the condition that the coefficients By, By’’, and B, are
zero. However, when it is desired to find the change in base-
profile shape corresponding to a given change in the velocity
distribution, the change in velocity dlstnbutlon must be so
chosen that

82 =0
o Vo
and (42)

* Ay
J; 7 cos 8d8=0

if the velocity distribution chosen is to correspond to a real
base profile.

As shown in the preceding theory of the mean camber line,
the sine and cosine series can be replaced by the integral rela-
tions which are generally superior tor purposes of computa-

788741~-48—2

tion. Where the change in shape or velocity distribution is
known as a relatively simple trigonometric function in 6, it
is sometimes convenient to use the equations

d(Ay,,) __1 ("Av_ sin gdf
dz x Jo Vi, cos §—cos 6,
and ' (43)
Avy _1 (d(Ay,) _ sin 6df
Vo #Jo dr cosf—cos 6

When the change in shape or velocity distribution is
known as a relatively simple function of z, then it is some-
times convenient to use the equations )

Av
d(Ayy) 1 fc Vo va(c—x)
dx "« 2—1y) zlc—
o (#—>) r(c—2) (44)
A?)o l ¢ dx
Ve, wJo z—x

In the general case when the equations for Aw/V, and
d(Ay,)/dz are complex or unknown, the most useful forms
of the equations are

dAyy) 1 2'Av 69— o.,) b, A
d:t 21!' 0

defining <VO>M V)

Av,y 2"ﬂl(Ay,) (6— 00))
= . t( do,

o120, {12

These integrals can be evaluated numerically by the
method given in Appendix A.

y(45)

J/

APPLICATIONS OF THE METHOD

THE CALCULATION OF THE VELOCITY DISTRIBUTION OVER A GIVEN AIR.
FOIL SECTION

In this section the procedure to be followed to calculate
the velocity distribution over a given airfoil section is
presented, and the calculation of the velocity distribution
over the NACA 4412 airfoil section is used as an example.

The procedure may be summarized as follows: The ordi-
nates of the base profile are obtained from the airfoil ordi-
nates by removing the camber. The velocity distribution
over the base profile is found by adding to the known velocity
distribution over some reference base profile having the same
leading-edge radius, the change in the velocity discribution
due to a change in shape from the reference to the given
base profile. Next, the ordinates of the camber line are
obtained from the airfoil ordinates by removing the thickness.
The chordwise lift distribution over this infinitesimally
thin camber line is calculated and corrected for the effect
of thickness. Finally, the effect of camber is combined with
the velocity distribution over the base profile to give the
velocity distribution over the given airfoil section.
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From the known airfoil section, the ordinates y,¢, the
nose radius of the base profile 7, ¢ /¢, and the ordinates of
the mean camber line y./c are determined for some or all
of the standard stations z/c listed in table V. In the general
case this may be done graphically from a large plot of the
airfoil, taking care to measure the base-profile ordinates
perpendicular to the mean camber line at each station. All
modern NACA conventional and low-drag airfoils are
formed from specified base profiles and mean camber lines,
and the ordinates or equations for the ordinates can be found
in NACA reports. For the NACA 4412 airfoil, the ordinate
of the base profile (i. e., the NACA 0012) and the equation
for the ordinates of the camber line are given in reference 10.

The base-profile velocity distribution is calculated as
follows: A reference base profile having approximately the
same nose radius is chosen from the Joukowski profiles listed
in table II. The thickness ratio of a Joukowski profile
having tbe leading-edge radius 7z g. is

i=o.918\/@£*
[ [

For the NACA 4412, the leading-edge radius is 0.0158¢,
the proper thickness ratio for the Joukowski base profile is
then 0.1155. It is sufficiently exact and more convenient
to use the Joukowski section with ¢/¢=0.12. The difference
between the ordinates of the given and reference profile is
found from

(51)

Ay;_yz_ytr
T ¢ ¢ (52)
and listed as in table III. These difference ordinates are
plotted as a function of /e, as in figure 8, and the slopes
graphically determine. These slopes are plotted as func-
tions of 8 in radians (fig. 9) with the slopes at =0 and ==
arbitrarily set equal to zero. Then the ordinates and slopes
at the proper @ stations given in the Appendix A for the

numerical integration of equation (45) are found and listed
04
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FIGURE 8.—Difference ordinates for base profile of NACA 4412 airfoil section as a functior
of zje.

in table IV. (Note that the value of the ordinate at statio:
r-+0 must be taken as the value at =—& but with opposit
sign.) If the curve of figure 9 is fair, the “20-point’’ metho
of integration, used in the example, is sufficiently exacf
The integration is performed as illustrated in Appendix A
The resulting values of Av/V, are plotted as a function ¢
z/c using the conversion table V, and the values at the stanc
ard stations, taken from this curve, are listed as in table IT.
The velocity distribution over the base profile is found fror
V] Vr Av

V% VT &

where the values of V,/V, are those for the reference profi
given in table II. For comparison, these calculated valu
have been plotted in figure 10 to an expanded scale «

V,/V, along with those determined by the method I
reference 1.

~
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F1aurk 9.—Slope of the difference ordinates for base profile of NACA 4412 airfoil section as a function of 6.
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F1GURE 10.—Velocity distribution over NACA 4412 base profile,

The chordwise lift distribution is calculated, in general, as
follows: From a curve of the mean-camber-line ordinates as
a function of z/e, the slopes are determined and plotted as a
function of 9. From this graph, the ordinates and slopes are
determined at the proper 8 stations given in Appendix A
for the numerical integration of equation (27). (The
values of ordinates at station #-r must be taken as the
same in sign and magnitude as the values at station §—=.)
The integration is performed to obtain the value of oP,.

For the mean camber line of the NACA 4412 airfoil,
because the equation of the shape is given in elementary
functions of z/c, the procedure may be simplified. From the
leading edge to z/e=0.4

Ye_1[gg2_(2Y
0—4[0'80 (c)]

and from z/¢=0.4 to z/c=1.0

1/?% [0.2-1-0.8 %’—(E)z]

(It is to be noted that if (P, is found from the integral
equations (25), (26), or (27), regardless of whether y,, or y.
is used in the calculation, the additional distribution will not
appear in the final answer.) Differentiation gives

dy. 1 z\'}. T
dy._ 1 z\]. z
dx —6 [0.8-.—2 ('5>]: 0.4<c<1.0

Using equation (3), these may be written in terms of 9 as

‘fl_?;c% (cos 6—0.2); 0<8<cos™(0.2)
dy.

U2 (cos 1—0.2); cos™1(0.2) <0<

These relations could be employed directly in equation (25)
and the lift distribution obtained. The existence of the
singular point, however, makes the algebra tedious.

To employ the numerical method of integration, the slopes
d/de (dy./dz), may be obtained by differentiation of the
above. '

gg %% =—%sin 6 0<6<cos"1(0.2)
% ‘fi_?a/cc =_%Sin9 c0s™1(0.2) <<

Using the above equations, the ordinates and slopes of the
curve of dy./dz as a function of 6 can be calculated directly
for the proper @ stations used in the numerical integration
(table VI) and the integration performed. The values of
P, are then plotted as functions of z/c (fig. 11) and the
values obtained for the standard stations. These values
apply to an airfoil of infinitesimal thickness, and the values
must be corrected to correspond to the airfoil of finite thick-
ness (loc. cit. equation (28)) by use of the equation (table
VII)

vV,
Pr‘-(ﬁ) on (54)
/.1
1.0
.9
.8 ‘i
7 NN
T NN
~
6 / \
P { o Py N |

FIGURE 11,—Calculated basic lift distribution for NACA 4412 airfoil section,
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These values are also plotted as in figure 11. The basic or
ideal list coefficient is then determined from an integration
of the plot of P, as a function of z/c.

The additional distribution can be caleulated by finding
first the values of P, for 4, of unity from

oPa

ol

P;(ocz,,=1)= —%) (55)

using the values of (4P./o¢;,) from table I. This function is
plotted and the integral ¢; (,¢;,,=1) is determined. Then the
additional distribution is found from

P, _Pa(ocz,,=]2
Cza> —Cta(ocla—‘—-l)
as in table VII.

The chordwise lift distribution corresponding to a litt
coefficient ¢; can be found from

P=P,+(c;—cy) (f—,:)

(56)

(57)

The velocity distribution over the airfoil may be found by
superposition method of reference 4. The upper and lower
surface velocity distributions, respectively, are

Vu_Vy, P4
Vo Vo ViV,

and (58)

vV, V, P

Vo Ve ViV,

In table VIII, the velocity-distribution calculations for
the NACA 4412 at ¢;=0.72 are given. The calculated values

[ T 1T T
2.2 Jl I ‘E xperimen_t!:l r'esu/rL from reference /I 4
x-~ --Calculated by method of reference |
Q—-— " ' . " this report
20 —
o -,
Ape 2. o
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v NS
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A i =Xy ] A
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4
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FIGURE 12.—Velocity distribution over NACA 4412 airfoil section at ¢/=0.72,
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FIGURE 13.—Velocity distribution over NACA 4412 airfoil section at ¢;=2.05.

of (V/V,)? are plotted in figure 12 along with the calculate
values obtained by the method of reference 1. Also show:
for comparison in the solid curve are experimental value
obtained by interpolation of the experimental pressure dis
tributions of reference 11.

In figure 13 are shown the calculated values of (V/ Vo)? fo
NACA 4412 at ¢;=2.05 as determined by the method of thi
report and of reference 1.

The procedure to be followed to calculate the velocity dis
tribution over a strut section having a rounded trailing edg
is the same as that for the airfoil, except that the referenc
profile must.be one having both a rounded leading an
trailing edge. The elliptic sections given in table IX ar
recommended for use as base profiles in these cases. Stru
sections are usually not cambered, so that the procedure t
be followed for cambered strut sections is only of academi
interest and is accordingly not considered here. It maj
however, be desirable to calculate the velocity distributio
over a strut section at some angle of attack other than zerc
In this case, the value of (P, is calculated from

2

ol %]
=) |

and the lift distribution from

_ Vf |
Pa —(vo) OPa N (6(

oPa=2a (cot 1 §~—tan % 0> .

or
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With this lift distribution the integrated value of the lift
coefficient may .not be zero as required by the potential
theory. A small shift of the distribution would allow this
requirement to be met, but such a refinement is not justified
in view of the fact that for real fluids, as a result of the fluid
viscosity, this requirement is not actually fulfilled. Using
the value of P,, the velocity distribution over the strut is
found from equations (58).

THE CALCULATION OF SHAPE OF AN AIRFOIL SECTION CORRESPONDING
TO A GIVEN VELOCITY DISTRIBUTION

In this section the procedure to be followed to calculate
the airfoil section shape corresponding to a desired velocity
distribution is presented. To demonstrate the general pro-
cedure to be employed in the calculation of an airfoil shape
corresponding to a desired velocity distribution, the shape
of a “semi-low-drag’’ airfoil over which the maximum velocity
occurs near the leading edge on the upper surface and at the
midchord location on the lower surface is used as a first
example. As a second example, the specific calculation of
airfoil shapes having a “double-roof” type velocity distribu-
tion is considered.

It should be noted at the outset that the shape of a two-
dimensional body corresponding to some desired velocity
distribution may not represent a real airfoil section which is
both ‘“closed” and pointed at the trailing edge. As a con-
sequence the desired velocity distribution can be considered
only as a ‘““first choice” and must be modified, if necessary,
to satisfy these conditions. The procedure employed in ad-
justing the desired velocity distribution and calculating the
shape of the corresponding airfoil is as follows: From the
desired airfoil velocity distribution, the corresponding ve-
locity distribution over the base profile is found by averaging
the upper and lower surface velocities at each chordwise sta-
tion. This distribution is examined to determine whether
it corresponds to a real profile and adjusted, if necessary, to
satisfy this requirement. The base-profile shape corre-
sponding to this adjusted velocity distribution is calculated.
The airfoil velocity distribution is finally adjusted, if re-
quired, to take into account the modifications made to the
original base-profile velocity distribution. The chordwise
lift distribution is determined from this adjusted distribu-
tion. Then the chordwise lift distribution for the airfoil
with the thickness removed is determined and the mean
camber-line shape calculated. The calculated mean camber-
line and base-profile shapes are then combined to give the
airfoil section shape corresponding to the finally adjusted
velocity distribution. In the example of the semi-low-drag
airfoil, these steps are considered in detail.

Example 1
(a) First choice

In general, a desired velocity distribution will be one laid
out to some specified ideal lift coefficient, although it will
only be required that the quarter-chord moment coefficient
not be objectionably large. This, as will be seen later, al-
lows the lift coefficient to be varied within a relatively large
range without affecting the desired characteristics of the
velocity distribution. Hence, under these conditions the ad-

TRRTH1- —48— 3

11

ARBITRARY SHAPE OR PRESSURE DISTRIBUTION

justment to a particular ideal lift may be casily made after
the base-profile-shape calculation is completed, provided the
first choice of the velocity distribution is one having a lift
coefficient within a few tenths of that desired. ,

In practically all cases it is required that the shape corre-
sponding to some desired velocity distribution be one having
a specified thickness ratio. This requirempnt—together
with the requirement, discussed previously, that the desired
velocity distribution corresponds to that for a real airfoil
section which is both closed and pointed at the trailing
edge—complicates the problem since it is not apparent from
the velocity distribution whether these requirements are
fulfilled. These complicating difficulties can and .must
largerly be eliminated by choosing the velocity distribution
wisely. Reference to known velocity distributions over
existing airfoils having nearly the same thickness ratios and
similar velocity distributions with that desired will aid in
this choice.

Suppose, for example, that the semi-low-drag airfoil, used
for illustration, is to have a low ideal lift coefficient and a
maximum thickness equal to 14 percent of the chord, with
an upper surface velocity distribution similar to that for a
Joukowski base profile and a lower surface velocity distribu-
tion similar to that for an NACA 65-series low-drag base
profile. 1t is to be expected under these conditions that
reference to the velocity distribution over a Joukowski base
profile for which #/c=0.14, and over an NACA 65-014 base

_ profile will aid in the choice of the desired velocity distribu-

tion. In figure 14, the velocity distributions for these airfoils
.3
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F1aURrEg 14.—Preliminary velocity distribution over the semi-low-drag airfoil,
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are shown. The velocity distribution for the Joukowski sec-
tion was taken directly from table I1 of this report. The
NACA 65,2016 is listed in reference 9, and the approximate
velocity for the NACA 65-014, plotted in figure 14, was ob-
tained using the approximate relation

_Vr) - &1_4[_":/ _]
Vo o.14_1+0-16 (Vo>o.1e 1

Based on the foregoing consideration, a choice is made of
the desired upper and lower surface velocity distributions,
designated (V./Vo): and (Vi Vo), respectively, as in figure
14. * The base-profile velocity distribution (V,/Vj), shown in
the figure is the average of these (loc. cit. equation (58)). The
subscript ; is used to denote that these velocity distributions
are a ‘‘first trial.”

Having decided upon the desired velocity distribution, the
shape of the base profile is then determined as follows: A
reference base profile which has nearly the same leading-edge
radius as the airfoil to be derived is selected from the Jou-
kowski base profiles listed in table II. The airfoil to be
derived in the example will clearly have a leading-edge radius
approximately midway between that for the Joukowski base
profile, for which #/¢=0.14, and the NACA 65-014. The
leading-edge radius of the Joukowski base profile is

Ly _ i)’_.
- _1.185( £ ) =0.02322

For the NACA 65,2-016 from i‘eference 9

22 —0.01704

so for the NACA 65-014, since the leading-edge radius of any
airfoil varies as the square of the thickness ratio,

TL.E. w 2__
—0——0.01704 (O.lﬁ) =(.01305

The airfoil to be found will have approximately the leading:
edge radius

r_Lc_,,,=o.01305-12~0.02322= 0.0181

The Joukowski base profile for which #/¢=0.12 has nearly this
radius (0.01706) and so is used as the reference profile/in thi
example. '

The difference between the desired and Joukowski base
profile velocity distributions is found from (table X)

Av) VA V.

VAN ARZ (62

and the values of (Av/Vy), cos 8 are calculated using the value
of the cosines given ia the conversion table V. Then botl
(Av/Ve): and (A9/Vy); cos 8 are plotted as functions of
(fig. 15).
(b) Adjustment of first choice

In order that the desired velocity distribution will rep
resent a real airfoil which closes and has a sharp trailing edge
it is required that the relations (loc. cit. equations (42))

" Ay
J; vode—o

" Av
A T,‘; cos 0di=0

(63

¢ be satisfied.
06 mEN
"—(Av/vﬂ)l
o — (Ao/Va )2 \ -
.05 o— (8v'V) p
x--- (AofVs ), cos 8
0--- (Av/Vp), cos 8 3 ;
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FIGURE 15.—Difference velocity distribution for semi-low-drag airfoil.
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In the example, numerical integration of the curves of
fiigure 15 gives -

T/ Av
. J;(—V;>ld0—+0.0046

L (%’) cos 8d8=—0.0077
0/1

It is clear that if the values of (Av/Vy), are decreased over
the range ~;-1r<0<r, the integrals will both be nearer zero.

This suggests that as a second trial, the difference velocity
distribution (Av/V). shown in figure 15 will more nearly
satisfy the integral equations (63) and at the same time will
not destroy the desired characteristics of the given velocity
distribution. In this case

T/ AY
J; (V;)zdo_—o.oom

T/ Av _
J; —V;), 0s 8df=—0.0012

The conditions of equations (63) are very nearly satisfied.
The conditions may be satisfied completely by slightly
translating and rotating the second trial of Ay/V,. Assuming
that a small increment

(A
A(-V%>=k1+ ks (g-—o> (64)
be added to the distribution (Av/Vy)s, since
‘I;'A A“—z do=1l'k1
and (65)
[ %%) cos 0 di=2k,
then making
k1=0.0034=0.0011
T
and
k=222 —0.0006
the velocity distribution
Av_(8) L, (A
y=(v),+a (¥ (66)

will completely satisfy the equations (63) as required.
In table X, the values of

Avy_ T_
A <7o>—0.0011+0.0006 (2 0)

are given and the difference velocity distribution Ao/ V, is
calculated, using equation (66). These values are plotted
as a function of @ in figure 15. (The value at 6=0 is
arbitrarily made zero.)

(¢) Calculation of base-profile ordinates

The ordinates and slopes of the Av/V, curve at the
proper 6 stations given in Appendix A for the numerical
integration of equation (45) are found and listed, as’ in
table XI. (Note that the value of the ordinate at station
x+0 is equal in sign and magnitude to the value at =—¥6.)
The integration is performed, and the resulting values of
d(Ay.)/dz are plotted as functions of z/c (fig. 16) and integrated

05

/ A\

.04 A

03 / \\

02

o/ \

Q

dtay,)/da

FIGURE 16.~Slope of the base profile ordinates for the semi-low-drag airfoil.

to give the values of Ay,/c at the desired standard stations.
The ordinates of the base profile are then found, as in table
X, from

Ve _Yr, AY:
c—¢c T ¢ (67)
which corresponds to the velocity distribution
Vf_ Vr Av
v=v+(%) (68)

It is fortuitous that in this example the maximum thick-
ness was precisely 14 percent of the chord as desired. In
the event that the final thickness were ¢, and that the desired
thickness were f,, the ordinates and velocity distribution,
respectively, for the base profile of thickness f could be
obtained from the equation

Ye) b2 (Y
< c>2“tl (c )1 (69)
and the approximate equation

R

Vl) , 1Ttl ""0 . 1 (70}
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(d) Final adjustment

Before the calculation of the shape of the mean camber
line corresponding to the given lift distribution is undertaken,
it will be necessary to revise the lift distribution correspond-
ing to the first trial of the given distribution so as to take
into account the effect of the changes made to the original
base-profile velocity distribution to make that velocity
distribution represent a real profile. This may be done

L L L A DL DL AL I L L
y Given upper surface velocity —
e distribution, Vu/V,
L Lower surface ve/ocity ]
1.3 o , distribution VifV, —
B L / lr===—Given base profile velocity
I S o agistribution, Ve/Vy
A RF——hx—-—Calculated airfoil velocity
/ ‘A distribution by method of
_d reference /
a4 X
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L2 ’ e Ty . P
‘ s L "\\ -r AN
7 7 = = \\
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FIGURE 17.—Velocity distribution for semi-low-drag airfoil.

graphically on the plot of the corrected base-profile velocity
distribution.

For example, in the case of the semi-low-drag airfoil used
for illustration, the upper surface velocity distribution, to be
similar to the Joukowski type of velocity distribution, must
be nearly straight from the stations x/e=0.2 to 1.0, as seen
in figure 17. The base-profile velocity distribution must be
a mean between the upper and lower surface velocity dis-
tributions; hence, when the upper surface distribution has
been chosen, the lower swrface distribution is determined

(fig. 17). The velocity distributionTover the upper and
lower surface of the leading-edge section (0<x/c<{0.2) is
then suitably chosen so that the base-profile distribution is
the mean. The basic chordwise lift distribution is related
to the upper and lower surface velocity distributions by
(loc. cit. equations (58)).

El

V.V, P
Vo Vo ViV, 71
ViV, Py
Vo Vo ViV,

(e) Calculation of mean camber-line ordinates

Now in the calculation of the mean camber-line shape
(table XII), the basic lift distribution corresponding tc
zero profile thickness (P, must be used. From equation (54

_ P e
oP»——““‘—Vf/VO (72
so that this distribution can be obtained directly from
(Y Vi
Po=2(7:-; @3

To determine the mean camber-line shape which wil
promote this lift distribution, the procedure is as follows
The value of ,P,/4 is plotted as a function of 8 (fig. 18)
The ordinates and slopes at the proper § stations given 11
Appendix A for the numerical integration of equation (27
are found (table XI1I) and the integration performed
(Note that the value of (P,/4 at station =+6 is equal i
magnitude but opposite in sign to that at =—6). Th
resulting values of dy.,/dz are plotted as a function of z/
(fig. 19) and the values of y., obtained by integration.

The resulting mean camber line is at the ideal angle o
attack (the angle of attack for which the additional lif
distribution is zero) and hence, unless the ideal angle i
zero, the trailing edge is either below or above the x/c axis
Ordinates of camber lines are generally specified with th
extremities of the camber line on the x/c axis and designate
by the conventional symbol y..

The ideal angle of attack is simply

- %) _<3./2) -
o (c z/cmQ C / zic=1.0 (74

and
Yo Yoo 2
c c+c !

and (75
dyc:_dyc, :
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In the case of the semi-low-drag airfoil used for the
.07 _example
a;=+0.01233 radians=0.706°
o6 and the values of y.¢ and dy.dx listed in table XII are
05 obtained from the equations
Ye_Yo z
04 \‘ Je—=240.01233 ;
\
.03 dy.__ %Y,
\\ T = dz 7001233
.02
Using these values of y./¢c and dy./dx along with the pre-
o viously determined values of ./c, the ordinates of the airfoil
oq can be calculated, as shown in table XIV for the semi-low-
dyey o \\ W drag airfoil used as an example, from
&
\ 4 ;
=0/ "_t_!—__l‘ 1
s ¢ sin 8
=02 \
\ 7 %'—‘=?—/j+"lﬂ cos §
=03 -
- (76)
T Ty
-04 // =3 + ¢ Sin B
=05 \ Yi_Ye_ Y.
' / ¢ ¢ ¢ b
- N J
06 where
-07 —tan-t (e
' T 2 3 4 5 6 7 & 9 10 B=tan™( 5~
a
c . . . . °
FIGURE 19.—Slopes of the mean camber line ordi for the semi-low-drag nirfoil, The PeSUltmg airfoil is shown in ﬁgure 20.
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F16URE 20.—Semi-low-drag airfoil.

The chordwise basic lift distribution over the airfoil is

found from
1%
P=i(v)

and is plotted and integrated to give the basic (or ideal) lift
coefficient. For this semi-low-drag airfoil, the basic lift dis-
tribution was plotted and the value of the basic lift coefficient
was found by integration to be

(77)

¢1,=0.0489

The velocity distribution over this semi-low-drag airfoil
was calculated by the method of reference 1 at this value of
the lift coefficient. The results of this calculation are shown
in figure 17 to an enlarged scale of V/V, for comparison with
the given (solid line) distribution. It is seen that the
agreement is close.

If it is desired to calculate the velocity distribution at a
value of the lift coefficient other than the basic lift coefficient,
the procedure to be followed is that given under the heading
entitled Applications of the Method.

In the preceding analysis it was tacitly assumed that the
lift and quarter-chord moment coefficients corresponding to
the finally adjusted velocity distribution were those desired.
Tt is clear that in the final adjustment these coefficients could
have been adjusted by changing the upper and lower velocity
distributions, taking care only to keep the average of these
equal to the base-profile velocity distribution. On the other
hand, since superposition of camber lines is always permis-
sible, such adjustments can be made at any time. There are,
of course, an infinite number of adjustments possible, some
of which are particularly convenient. As an example, the
a=1 type mean camber line (reference 9) can be conveniently
used to adjust the lift or quarter-chord moment coefficient
of this semi-low-drag airfoil. Since the addition of this
camber line simply shifts the upper and lower surface velocity
distributions up or down with respect to that of the base pro-
file, these adjustments do not disturb the desired character-
istics of the velocity distribution.

To cite one example, suppose it is desired that the semi-
low-drag airfoil be adjusted to an ideal lift"coeflicient of 0.4.
With this base profile the =1 type mean camber line for
o€, of unity attains a lift coefficient ¢;,=1.080 (loc. cit.

equation (29)). The required lift coefficient for this compo-
nent of the basic lift is

0.4000—0.0489=0.3511

so that if the mean cargber-line ordinates of the a=1 typ¢
for 4¢;, of unity given in reference 9 are multiplied by

0.3511

and the resulting ordinates added to those in table X1I, a nev
mean camber line for which ¢;,=0.4 is obtained. These
turn can be combined with the original ordinates of the bas
profile to give the corresponding airfoil ordinates.

As a second example, suppose it is desired that the semi
low-drag airfoil be adjusted to zero quarter-chord-momen
coefficient. For the mean camber line given in table XII
the quarter-chord-moment coefficient is +0.0224. The a=
type mean camber line for «;, of unity attains a quarte:
chord-moment coefficient of —0.2506, or, for ¢x,,—=—0.022
the corresponding o¢;,=0.0894 and ¢;,,=0.0965. Henc:
zero quarter-chord-moment coefficient can be obtained b
combining the original mean camber line with an ¢=1 typ
camber line for which o¢;,=0.0894. The corresponding basi
lift coefficient is

c,b=0.0489—{—0.0965=0. 1454

In retrospect, it can be seen that the more exacting t}
characteristics of the desired velocity distribution, the mo
attention must be given to the first choice and final adjus
ment of this distribution. In the case of the semi-low-drs
airfoil used for illustration, it should be quite clear that he
the desired lift and moment characteristics both been spec
fied, the effort required to obtain a satisfactory first. choi
and final adjusted velocity distribution would be considerab
increased. The possible variations in the choice of desire
velocity distributions are unlimited so that no general rul
can be laid down for the special treatment required in ea
and every case. Facility in the use of this method for t]
inverse problem can be acquired only through experience.
Example II

Experimental studies of a large number of low-drag a:
foils have been made in which the effects of various modific
tions in pressure distribution were determined. Airfo
having pressure-distribution characteristics like that of t
series 3 and 6 low-drag airfoils were found to be definite
superior in most respects. The somewhat decreasing b
nearly constant favorable pressure gradients which occ
over the forward part of such airfoils, from the nose section
wher- severe gradients due to the necessary rounded leadi
edge occur—to the minimum pressure point, are desirab
This allows relatively large additional lift increments to
added, as well as some waviness of surface to be tolerats
without such additional lift or waviness promoting lo
adverse pressure gradients and so ‘‘premature” transiti
to turbulent flow in the favorable gradient region. T
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nearly constant adverse gradient back of minimum pressure
has been found to be influential in increasing the critical
boundary-layer Reynolds number at the transition point
with' given surface conditions, and so increasing the upper
limit of the Reynolds number range for lowest drag co-
efficients.

Airfoils similar to the NACA series 3, 4, and 6 low-drag
airfoils are obtained by superposing the ordinates of a base-
profile shape which promotes a double-roof form of velocity
distribution on the ordinates of an appropriate Joukowski
base profile. The problem of finding the shape correspond-
ing to the double-roof velocity distribution, although it was
solved originally for the NACA series 3 low-drag airfoils and
series "4 high-critical-compressibility-speed airfoils by use
of the numerical method (equation (45) ), is a rather im-
portant example of one which may be solved by integration
using the trigonometric expressions for the velocity distri-
bution in equation (43). In trigonometric form, the equa-
tions for the double-roof velocity distribution are

%=h+hcm0 0<0<0n
(78)
Ay
—v‘=k3+k4 cOo8s 0 0m<9<w
0

where @ corresponds the point r and 8. corresponds to the
minimum pressure point Tp.

The conditions that the value of A»/V, must be the same
in either equation at 6,, and that the equations (42) be sat-
isfied require that

["sin O+ (7 —0x) COS On b
cOS O, SIN B+ 71 —01p

o

(X

|

|
1 wolewe
v—

(79)

8 [ _sin 6n—0xn cos On
2| c0S O, SiN Op+7—0n

b —S COS O SITL O—0rm
4 2 [.cos 8y, sin O+ 7—0m | ]

where s is the slope of the velocity curve between z/c=0 and
z/e=1&n/c; that is,
a0 (& :
( V°)a:/c=a:,,./c ( V°)x/c=0

§= ZnmfC

(80)

The corresponding shape of the base profile which will pro-
mote this velocity distribution is

sin 8, sin 8 (1—cos 8 cos 8,)
sin —;— (On+0) ‘
~—(cos 0,—cos 8)%n —a

: l (81)
A sin 5 (8m—0)

cos O, sin O+ 7—0n

where the vertical bars indicate the absolute value. In
table XV, the velocity distribution and ordinates of the
double-roof base profile which may be superimposed: on
other base profiles are given.

For those double-roof base profiles the value of AoV, is
not zero at =0, so that it is obviously incorrect to super-
pose such base profiles on: & reference base profile having an
infinite slope at the leading edge since for such referemce
base profiles V,/V,=0. Nevertheless, the velocity distri-
bution calculated by superposition for such combined
profiles is in reasonably satisfactory agreement, with experi-
ment except in the immediate vicinity of the leading edge.

By combining these double-roof base profiles with 2
suitable reference base profile, a variety of satisfactory low-
drag airfoils can be derived. An example is the super-
position of a double-roof base profile for which xn=0.4c
and s,,=0.3059, and a double-roof base profile in which
Zn=0.7c and s,,=0.1367 (table XV) on a Joukowsk: base
profile for which #/c=0.10 (table II). A base profile results
which, when combined with a type ¢=04, ¢,=0.8201
mean camber line superposed on a type a=0.7, ¢p=—0.5513
mean camber line gives an airfoil for which t/e=0.14 and
which has an upper-surface velocity distribution similar in
form to that of the NACA 64-series low-drag airfoil and a
lower-surface velocity distribution similar in form to the
NACA 67-series low-drag airfoil. This airfoil, the velocity
distribution for which is shown to an expanded scale of
V'/V, by the solid-line curve in figure 21, is completely satis-
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FIGURE 21.—Velocity distribution over a low-drag airfoil having minimum pressure at 0.4 ¢
on upper surface and 0.7¢ on lower surface.
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factory except for the fact that the nose radius is unneces-
sarily small so that the maximum lift coefficient may be
adversely affected. One way in which this difficulty may
be alleviated to some extent is to add the increment Ay,
normal to the surface of the reference base profile rather
than normal to the z-axis so that the ordinates are given by

Y=y, + Ay, \/ 1+(%%>2 4 (82)

where dy,/dz is the slope of the surface of the reference base
profile at the station under consideration. This procedure
is hardly justifiable, however.

A" very satisfactory method for improving the shape at
the leading edge is to calculate the velocity distribution over
the base profile carefully by the method of reference 1.
Then, by using the graphical method of reference 12, a
change in shape of the base profile and the corresponding
change in the velocity distribution may be found by trial
which will allow an increase in the leading-edge radius that
will not promote a “bump” in the velocity distribution near
the leading edge.

DISCUSSION AND CONCLUSIONS

In the theoretical development of the method of this
report a number of simplifying assumptions were made in
order to facilitate the mathematical treatment, some of
which are clearly contrary to fact. The method of reference 1
by comparison would appear exact. However, two assump-
tions common to the development of both methods are
that the fluid is incompressible and nonviscous. The first
is justifiable if the velocities are everywhere negligibly small
in comparison with the velocity of sound. The second can
never be considered strictly justifiable although in the usual
Reynolds number range the error is small. It should be
noted, however, that in the usual case, as may be seen in
figure 12, the inaccuracy of the method of this report resulting
from all the other assumptions except that concerning the
viscosity of the fluid (and compressibility when it is impor-
tant) is small as compared with the inaccuracies of both
methods resulting from the neglect of the effects of viscosity
(and compressibility).

Concerning the method of reference 1, it has been found
that the second approximation for the value of ¢ should be
employed in the calculation if the base profile under con-
sideration differs markedly from the Joukowski base profile,

as is the case with a number of low-drag airfoils, particularly
for thick sections or for those sections with the minimumr
pressure point far back along the chord. The inadequacy o
the first approximation is not very evident in figure 21
wherein the velocity distribution as calculated by the methoc
of reference 1 using both the first and second approxima:
tions is shown for comparison with the method of this report
since the maximum thickness is fairly far forward and the
airfoil is relatively thin.

The satisfactory application of the methods of this repor
rests on a thorough understanding of the limitations on the
principle of superposition as it applies to the mean cambel
line and the base profile. In the theory of the mean cambe:
line it was assumed that the camber, as well as the slope o
the camber line, was small. Hence, superposition of mear
camber lines or of lift distributions should be permissible
for all usual camber lines, provided the camber or lift i
small. Experiment has shown that for usual mean cambe!
lines calculations based on this method are in good agree
ment with experiment, provided the basic lift coefficient i
less than unity, but that even up to basic lift coefficients o
two the agreement is fair. In the theory of the base profil
it was assumed, in effect, that the slope of the surface is small
At the leading edge of an airfoil section and at the leading
and trailing edges of a strut section, the slope of the profils
is infinite so that, as was shown for the Joukowski and ellipti
base profiles, the method of this report cannot be used di
rectly to determine the velocity distribution or shape of sucl
bodies. Rather, the method must be used to determine th
change in velocity distribution or shape corresponding t«
some specified change in shape or velocity distribution
respectively. This change can represent a marked altera
tion in shape at all points except the leading and trailing
edges.

Again, in the theory of the base proﬁle it was assumed tha
the profile is thin. Experiments have indicated that th
method is satisfactory for all airfoils of usual thickness (uj
to thickness-chord ratios of 0.18) and even reasonably satis
factory in the case of an airfoil having a thickness-chor
ratio of 0.25 (NACA 45-125).

AmEs ABRONAUTICAL LLABORATORY,
NaTioNaL Apvisory COMMITTEE FOR AERONAUTICS,
MorrerT F1eLp, CALIF.



APPENDIX A

NUMERICAL INTEGRATION METHODS
A numerical evaluation of the integral

60—

b
3 do

1 2r
E=é— f F cot
T Jo

is given in the appendix of reference 1.
A “20-point’’ solution is

E=a, (%4‘9‘ 0+“1(F1—'F—1)+a2(F2"‘F—2)+ Lo+
aO(FQ_F—D)
where F| is the value of F at o+ —

F, is the value of F at 00+11—"——;

(n=1,—1,2,—2 . .. 9,—9)

dF is the value of aF at =0,
a9/, d

where now

and the coefficients are given by

F, is the value of F at 00+%

(n=1; —1; 2y

F, is the value of F at 8,+

nr
20

—2,...19, —19)

dr
0

%) is the value of - at 9=4,
0

d

by=0.05000 b1»=0.02503
b,=0.34906 b;;=0.02139
bg=0.16129 b12=0.01819
b;=0.10514 b13=0.01532
b,=0.07735 5,=0.01273
b;=0.06057 b15=0.01036
bs=0.04918 bs=0.00814
b,=0.04087 b1,=0.00599
by=0.02929 10=0.00197

and the coefficients are

a,=0.1000 as=0.0503
al=0.3473 ag=0.0366
a2=01572 (l1=0.0281
a;=0.0996 as=0.0163
a,=0.0691 ay=0.0080

The value of Av/V, for 8=4x/10 given in table IV for the
NACA 4412 base profile, for example, is obtained in the fol-
lowing cyclic form:

%.1;=—[ 0.1000(40.0138)
40.3473(~-0.0283—0.0192)
10.1572(+0.0178—0.0006)
+0.0996(—0.0044+0.0397)
+0.0691(—0.0406+0)
+0.0503(—0.0901—0.0397)
40.0366(0-0.0006)
+0.0281(4-0.0901+0.0192)
40.0163(--0.0406-+0.0283)
+0.0080(+0.0044+0.0283)]= —0.0059

A more accurate “40-point’’ solution is

B=bo () + 0 F—Fo) +b(Fi=F )+ Fbu(Fo—F 1)

The 40-point solution need be employed only when the
function F' changes more or less abruptly with z/c.
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TABLE 1—CALCULATED VALUES OF ADDITIONAL LIFT
COEFFICIENT DISTRIBUTION % FOR INFINITESI-
MALLY THIN AIRFOILS

oPa_2(1+cos6) _2 1—z/c

a El

o€, x8in @ ® z
4 )
z 1P z P
] oct, T oy
0 = . 4500 704
L0125 5. 658 . 5000 .637
. 0250 3.976 . 5500 .576
. 0500 2.715 . 6000 .520 i
. 0750 2.235 . 6500 . 467
.1000 1.910 . 7000 417
L1500 1.515 . 7500 368
. 2000 1.273 . 8000 318
. 2500 1.103 . 8500 267
. 3000 .973 . 9000 212
. 3500 . 868 . 9500 146
4000 . 780 1. 0000 0

TABLE II.—SURFACE ORDINATES AND VELOCITIES FOR JOUKOWSKI BASE PROFILES

t/em0.02 t/e=0.04 t/e=0.08 t/c=0.08 t/e=0.10 tle=0.12 tie=0.14
I
c -
wle Vi Vo ele V./Ve ¥ole ViiVe ¥r/c Vil Vo vl Vi Vo Pele Vi Vo vele Vi Vo
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
.005 0021603 | 1.0230 | .0043170 | 1.0045 | .0064662 9589 | 0088040 9018 | .0107266 8427 | .0128292 7875 | .0149061 L7379
0075 | .0026358 | 1.0306 | .0052674 | 1.0321 | .0078000 | 1.0107 | .C104992 .9749 | .0130810 .9322 | .0156613 .8879 | .0182067 L8449
0125 | .0033772 | 1.0387 | 0067491 | 1.0556 | .0101096 | 1.0583 | .0134538 | 1.0479 | .0167757 | 1.0282 | .0200710 | 1.0026 | .0233351 .9738
.025 . 1.0407 | 0003647 | 1.0732 | .0140288 | 1.0971 | .0186712 | 1.1128 | .0232853 | 1.1210 | .0278644 | 1.1226 | .0324027 | L1.1190
.05 0063737 | 1.0418 | .0127303 0799 | .0190873 | 1.1145 | .0 1.1452 | .0316082 | 1.1719 | .037945¢ | 1.1946 | .0441438 | 1.2132 |
075 10075003 | 1.0408 | .0149025 | 1.0708 | .0224669 | 1.1i71 | .0209154 | 1.1522 | .0373208 | 1.1849 | .0447022 | 1.2151 | .0520252 | 1.2428
.10 10083121 | 1.0396 | .0166168 | 1.0783 | .0249050 | 1.1159 | .0331600 | 1.1523 | .0414012 | 1.1872 | .0495043 | 1. L0577410 | 1.2524 !
.15 ‘0093443 | 1.0368 | .0186836 | 1.0736 | .0280109 | 1.1096 | .0373208 | 1.1454 | .0466080 | 1.1807 | .0558669 | 1.2154 | .0650827 | 1.2495
.20 0008525 | 1.0338 | .0197030 { 1.0676 | .0295472 | 1.1014 | .0303826 | 1.1350 | .0492067 | 1.1685 | .0500167 | 1.2019 | .0688103 | 1.2351
.25 | .C099996 | 1.0308 | .C 1.0616 | .0300000 | 1.0924 | .0400002 | 1.1233 | .0500006 | 1.1542 | .0600015 | 1.1851 | .0700034 | 1.2161
.30 0098775 | 1.0277 | .0197585 | 1.0554 | .0206445 | 1.0832 | .0305386 | 1.1110 | .0494436 | 1.1388 | .0593626 | 1.1 0692088 | 1.1949
.35 . 009! 1.0246 | .0190994 | 1.0492 | .0286614 | 1.0737 | .0382383 | 1.0083 | .0478351 | 1.1230 | .0574571 | 1.1478 | .0671100 | 1.1727
.40 0090516 | 1.0215 | .0181107 | 1.0429 | .0271825 | 1.0643 | .0362743 | 1.0856 | .0453930 | 1.1070 | .0545230 | 1.1284 | .0637395 | 1.1500
.45 0084262 | 1.0184 | .0168610 | 1.0366 | .0253107 | 1.0848 | . 1.0728 | .0422883 | 1 0508326 | 1.1000 | .0594254 | 1.1271
.50 0076091 | 1.0153 | .0154070 | 1.0304 | .0231311 | 1.0453 | .0308802 | 1.0601 | .0386631 | 1.0748 7 | 1.0806 | .0 1.1043
.55 0068946 | 1.0122 | .0137980 | 1.0241 | .0207177 | 1.03%9 | .0276624¢ | 1.0474 | .0346412 | 1.0589 | .0416628 | 1.0702 0487372 | 1.0816
.60 1.0001 | .0120784 | 1.0170 | .0181372 | 1.0285 | .0242199 | 1.0348 | .0303348 | 1 .0364 1.0511 1.0500
.85 0051413 | 1.0060 | .0102002 | 1.omm7 | .0154520 | 1.0171 | .0206371 | 1.0223 | .0258503 | 1.0273 | .0311003 | 1.0322 0363056 | 1.0368
.70 1.0020 | .0084744 | 1.0065 | .0127266 | 1.0079 | .0169870 | 1.0100 | .0212020 | 1.0118 | .0256184 | 1.0135 1.0150
.75 9908 | .0086730 9084 | 0100214 L0087 | .0133844 . 9977 0167670 0201746 51 0236127 . 9934
.80 0024638 9068 0049314 .9833 | .0074058 9805 | 0088908 . 9856 0123902 9814 0149079 9769 0174480 9723
.85 0016495 .9037 | .0033015 L9872 | .0049579 0805 | .0066212 9736 | .0082038 9664 | .000978¢ 9591 | .0116775 .9516
.90 . L9907 | .0018401 L9812 | .0027767 .9715 | .0037079 L9817 | .0046441 L9517 | .0085866 L0418 | .0065368 .9313
.95 .0003356 L9876 | 0006716 9752 | .0010085 9628 | .0013465 L9500 | .0016862 .9372 | .0020280 .9243 | .0023725 L9114
1.00 0 L9845 |0 9602 |0 L9536 |0 .938¢ |0 L9220 10 L9072 {0 .8019
T, T . TL.X. £ .
T . 00047 TE-2: ~9.00190 T mg 00427 T2 E: g 00758 2001185 "B mgot7 LEmgozmn |
TABLE I1I.—BASE-PROFILE VELOCITY-DISTRIBUTION TABLE IV.—INTEGRATION CALCULATION OF ay/1, FOI
CALCULATION FOR NACA 4412 AIRFOIL SECTION NACA 4412 BASE PROFILE
z ] e Au d(ag) 9 v, A v s d(ay) | 4 [d(ays) an r
¢ ¢ c ¢ dz Ve Vo Vo dz o} dz Vo c |
0 0 0 0 | .. 0 0 0 0 L . i
L0125 | .01804 | .02007 | —.00113 | —0.0612 | .2241 | 1.003 /10 ~.0397 L1875 —0.0226 |
1025 | .02615] .02786 { —.00171 | —.0362 | .3176 | 1.123 2x/10 . 0006 . 0867 !
.05 03555 | .03705 | —.00240 | —.0182 | .4510 | 1.195 3x/10 L0192 L0423 ;
075 | 04200 | .04470 | —.00270 | —.0070 | .5548 | 1.215 4x/10 L0283 L0138 '
1 04633 | .04950 | —.00276 0012 | .6435 | 1.221 5x/10 .0283
15 05345 | .05587 | —.00242 0122 | .7954 | 1.215 fx/10 L0178
. 05738 | .05802 | —.00164 0185 9273 | 1.202 Tx/10 —. 0044
.25 05941 | .0 ~. 00059 0224 | 1.0472 | 1.185 8x/10 —.0406
.3 06002 | .05936 . 00066 0266 | 1.1583 | 1.187 9x/10 —.0901L ;
.4 05803 | .05452 . 00351 0200 | 1.3604 | 1.128 x o | 0 | 1
.5 05204 | 04649 . 00645 0280 | 1.5708 | 1.090 11w/10 - 0901 . i
.6 04563 | .03649 . 00914 0258 | 1.7722 | 1.051 12x/10 . 0406 . . .
.7 03664 | 02562 . 01102 0094 | 1.9823 | 1.014 13%/10 . . ) i
.8 02623 | .01491 01132 | —.0053 | 2.2143 977 14x/10 -.0178 - R ;
.9 01448 | 00560 00889 | —.0410 | 2.4081 942 15%/10 —. 0283 . R |
.95 00807 | 00203 00604 | - 2. 6008 16x/10 —.0283 - R ;
1.00 00126 | 0 . 00126 31416 | ... | ... 17%/10 ~.0192 B _
18x/10 -. . .
19%/10 0397 . . :
28 | 0| eceeieen | emcenses :
|
1
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