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REPORT No. 452

GENERAL POTENTIAL THEORY OF ARBITRARY WING SECTIONS

By T. TeeoporseN and I. E. GARRIOK

SUMMARY

This report gives an exact treatment of the problem of
determining the 2-dimensional potential flow around
wing sections of any shape. The treaiment is based
directly on the solution of this problem as advanced by
Theodorsen in N. A. C. A. Technical Report No. 411.
The problem condenses inlo the compact form of an inte-
gral equation capable of yielding numerical solutions by
a direct process. .

An attempt has been made to analyze and coordinate
the results of earlier studies relating to properties of wing
sections. The existing approximate theory of thin wing
sections and the Joukowsky theory with s numerous
generalizations are reduced to special cases of the general
theory of arbitrary sections, permitting a clearer perspec-
tive of the entire field. The method not only permits the
determination of the velocity at any point of an arbitrary
seclion and the associated Lift and moments, but furnishes
also a scheme for developing new shapes of preassigned
aerodynamical properties. The theory applies also to
bodies that are not airfoils, and is of importance in other
branches of physics involving potential theory.

INTRODUCTION

The solution of the problem of determining the
2-dimensional potential flow of & nonviscous incom-
pressible fluid around bodies of arbitrary shape can be
made to depend on a theorem in conformal represen-
tation stated by Riemann almost a century ago,
known as the fundamental theorem of conformal rep-
resentation. This theorem is equivalent to the state-
ment that it is possible to transform the region
bounded by a simple curve into the region bounded by
a circle in such a way that all equipotential lines and
stream lines of the first region transform respectively
into those of the circle. The theorem will be stated
more precisely in the body of this report and its sig-
nificance for wing section theory shown—suffice it at
present to state that if the analytic transformation by
which the one region is transformed conformally into
the region bounded by the circle is known, the poten-
tial field of this region is readily obtained in terms of
the potential field of the circle. )

A number of transformations have been found by
means of which it is possible to transform a circle into

& contour resembling an airfoil shape. It is obviously
true that such theorefical airfoils possess no particular
qualities which make them superior to the types of more
empirice] origin. It was probably primarily because
of the difficulty encountered in the inverse problem,
viz, the problem of transforming an airfoil into a
circle (which we shall denote as the direct process)
that such artificial types came into existence. The
2-dimensionel theoretical velocity distribution, or what
is called the flow pattern, is known only for some
special symmetrical bodies and for the particular class
of Joukowsky airfoils and their extensions, the out-
standing investigators! being Kutte, Joukowsky, and
von Mises. Although useful in the development of
airfoil theory these theoretical airfoils are based solely
on special transformations employing only a small
part of the freedom permitted in the general case.
However, they still form the subject of numerous
isolated investigations. .

The direct process has been used in the theory of
thin airfoils with some success. An approximate
theory of thin wing sections applicable only to the
mean camber line has been developed * by Munk and
Birnbaum, and extended by others. However, at--
tempts * which have been made to solve the general
case of an arbitrary airfoil by direct processes have
resulted in intricate and practically unmanageable
solutions. Lamb, in his “Hydrodynamics” (reference
1, p. 77), referring to this problem as dependent upon
the determination of the complex coefficients of a
conformal transformation, states: “The difficulty,
however, of determining these coefficients so as to
satisfly given boundary conditions is now so great as
to render this method of very limited application.
Indeed, the determination of the irrotational motion of
8 liquid subject to given boundary conditions is a
problem whose exact solution can be effected by direct
processes in only a very few cases. Most of the cases
for which we know the solution have been obtained by
an inverse process; viz, instead of trying to find a
value of ¢ or ¢ which satisfies [the Laplacian] v?¢=10
or v3=0 and given .boundary conditions, we take
some known solution of these differential equations

1 8ee bibliography given in reference 9, pp. 34, 84, and 583.
3 Cf. footnote 1.
' S8es Appendix IT of this paper.
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and inquire what boundary conditions it can be made
to satisfy.” .

In a report (reference 2) recently published by the
National Advisory Committee for Aeronautics & gen-
eral solution employing & direct method was briefly
given. It was shown that the problem could be stated
in a condensed form as an integral equation and also
that it was possible to effect the practical solution of
this equation for the case of any given airfoil. A
formula giving the velocity at any point of the surface
of an arbitrary airfoil was developed. The first part
of the present paper includes the essential develop-
ments of reference 2 and is devoted to & more com-
plete and precise treatment of the method, in particu-
lar with respeet to the evaluation of the integral
equation.

In a later part of this paper, a geometric treatment
of arbitrary airfoils, coordinating the results of earlier
investigations, is given. Special airfoil types have
also been studied on the basis of the general method
and their relations to arbitrary airfoils have been
analyzed. The solution of the inverse problem of
creating airfoils of special types, in particular, types of
specified aerodynamical properties, is indicated.

It is hoped that this paper will serve as a step
toward the unification and ultimate simplification of
the theory of the airfoil.

TRANSFORMATION OF AN ARBITRARY AIRFOIL INTO
A CIRCLE

Statement of the problem.—The problem which this
report proposes to treat may be formulated as follows.
Given an arbitrary airfoil® inclined at a specified angle
in a nonviscous incompressible fluid and translated
with uniform velocity V. To determine the theoreti-
cal 2-dimensional velocity and pressure distribution at
all points of the surface for all orientations, and to
investigate the properties of the field of flow suiround-
ing the airfoil. Also, to determine the important
aerodynamical parameters of the airfoil. Of further
interest, too, is the problem of finding shapes with
given aerodynamical properties.

Principles of the theory of fluid flow.—We shall
first briefly recall the known basic principles of the
theory of the irrotational flow of a frictionless incom-
pressible fluid in two dimensions. A flow is termed
“2-dimensional’’ when the motion is the same in all
planes parallel to a definite one, say zy. In this case
the linear velocity components » and » of a fluid
element are functions of z, ¥, and ¢ only.

The differential equation of the lines of flow in this
cage is

v dz—u dy=0

¢ By aa alrfoll shape, or wing section, Is roughly meant an elongated smooth shape
rounded at the leading edge and ending in & sharp edge at the rear. All practical
alrfolls are characterized by a lack of abrupt change of curvature except for a rounded
nose and a small radius of curvature at the tall.

REPORT NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

and the equation of continuity is

ou ou, dp v bu 0 (—1)
oz oy o oy
which shows that the above first equation is an exact

differential.
If @=c is the integral, then

u=% and o= _?EQ

This function @ is called the stream function, and
the lines of flow, or streamlines, are given by the equa-
tion @=c¢, where ¢ is in general an arbitrary function
of time.

Furthermore, we mnote that the existence of the
stream function does not depend on whether the motion
is irrotational or rotational. When rotational its
vorticity is

=00

_du_vQ, 9
or oy oz' oy
which is twice the mean anguler velocity or ““rotation’’
of the fluid element. Hence, in irrotational flow the
stream function has to satisfy

b’Q o*Q ’
W 2"

Then there exists a veloclty potential P and we have

or_ 29

% o

oP_ _ _2¢

o T om
The equation of continuity is now

o*P | P

a{'l- 33/3—=' 0 2)
Equations (1) show that

oP g,

oPog_,
oy oy
so that the family of curves
P =constant, @=constant

cut orthogonally at all their points of intersection.
For steady flows, that is, flows that do not vary
with time, the paths of the particles coincide with the
streamlines so that no fluid passes normal to them.
The Bernoulli formula then holds and the total pres-
sure head H along s streamline is a constant, that is

% pvitp =H

where p’ is the static pressure, v the velocity, and p
the density. If we denote the undisturbed velocity
at infinity by V, the quantities p’—p’, by p, and
% p V* by ¢, the Bernoulli formula may be expressed as

-
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The solutions of equations (2) and (2’), infinite in
number, represent all possible types of irrotational
motion of a nonviscous incompressible fluid in two
dimensions. For a given problem there are usually
certain specified boundary conditions to be satisfied
which may be sufficient to fix & unique solution or a
family of solutions. The problem of an airfoil moving
uniformly at a fixed angle of incidence in & fluid field
is identical with that of an airfoil fixed in position and
fluid streaming uniformly past it. Our problem is
then to determine the functions P and @ so that the
velocity at each point of the airfoil profile has a direc-
tion tangential to the surface (that is, the airfoil con-
tour is itself a streamline) and so that at infinite dis-
tance from the airfoil the fluid has a constant velocity
and direction.

The introduction of the complex variable, z=2z+1y,
simplifies the problem of determining P and @. Any
analytic function w(z) of a complex variable 2, that is,
a function of z possessing & unique derivative in a
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each real functions of # and y. Suppose now in the
zy complex plane there is traced a simple curve f(z).
(Fig. 1.) Each value of z along the curve defines a
point w in the w plane and f(z) maps into a curve f(w)
or F(z). Because of the special properties of analytic
functions of a complex variable, there exist certain
special relations between f(z) and F(z).

The outstanding property of functions of a complex
variable analytic in a region is the existence of a unique
derivative at every point of the region.

dw_ lim w-v' _ .,
dz " z=d z—2 P
or
dw=petrdz

This relation expresses the fact that any small curve
zz' through the point z is transformed into a small
curve ww’ through the point w by a magnification p
and a rotation +; 1. e., in Figure 1 the tangent ¢ will
coincide in direction with 7" by a rotation y=fg—a.

z Plane w Plone
S=at+3h
S=a+zh
4 7 4 S=a+h
T S=a
F R=a+3h
“/ R=aa+2h
w’ Reath
R=a
w
o~
g
7 o £ 0 x

F1GURE 1.—Conformsl property of analytic functions

region of the complex plane, may be separated into its
real and imaginary parts as w(z)=w(@+iy)=P(z, ¥)
+1Q(z, v7), determining functions P and @ which may
represent the velocity potential and stream function of
a possible fluid motion. Thus, analytic functions of a
complex variable possess the special property that the
component functions P and @ satisfy the Cauchy-
Riemann equations (eq. (1)), and each therefore also
satisfies the equation of Laplace (eq. (2)). Conversely,
any function P(z,y)+1Q(z,y) for which P and @
satisfly relations (1) and (2) may be written as w(z+
)=w(z). The essential difficulty of the problem is
to find the particular function w(z) which satisfies the
special boundary-flow conditions mentioned above for
a specified airfoil.

The method of conformal representation, & geomet-
ric application of the complex variable, is well adapted
to this problem. The fundamental properties of trans-
formations of this type may be stated as follows:
Consider a function of a complex variable z=z+1y,
say w(z) analytic in a given region, such that for each
value of z, w(z) is uniquely defined. The function
w(z) may be expressed as w=£+14n where ¢ and 7 are

Figure 2.—Orthogonal network obtained by a conformal transformation

This is also true for any other pair of corresponding
curves through z and w, so that in general, angles
between corresponding curves are preserved. In par-
ticular, a curve zz’’ orthogonal to 2z’ transforms
into & curve ww’’ orthogonal to ww’.

It has been seen that an anslytic function f(z) may
be written P(x, y)+1Q(x, y) where the curves P=con-
stant and @=constant form an orthogonal system.
If then f(2) is transformed conformally into jf(w)
=P 1) +iQ( n) that is into flw(2)]=F(2)=R(z, y)
+18(z, y7), the curves P(z, ) =constant, @(z, y)=-con-
stant map into the orthogonal network of curves
R(z, y) =constant, S(z, ¥) =constant. (Fig.2.) If the

magniﬁcationl%%’ I =p is zero at & point w, the trans-

formation at that point is singular and ceases to be
conformal.

We may use the method of conformal transforma-
tions to find the motion about a complicated boundary
from that of & simpler boundary. Suppose w(z) is a
function which corresponds to any definite fluid motion
in the z plane, for instance, to that around a circle.
Now if a new variable { is introduced and 2 set equal
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to any analytic function of {, say z=7(¢), then w(z)
becomes w{f(¢)] or W(I) representing a new motion in
the ¢ plane. This new motion is, as has been seen,
related to that in the z plane in such a way that the
streamlines of the z plane are transformed by z=£({)

.into the streamlines of the { plane. Thus, the con-

tour into which the circle is transformed represents
the profile around which the motion W(¢) exists. The

- problem of determining the flow around an airfoil is

now reduced to finding the proper conformasl transfor-
mation which maps a curve for which the flow is known
into the airfoil. The existence of such a function was
first shown by Riemann.

e shell first formulate the theorem for a simply
connected region * bounded by a closed curve, and
then show how it is readily applied to the region
external to the closed curve. The guiding thought
leading to the theorem is simple.” We have seen that
an analytic function may transform a given closed
region into another closed region. But suppose we
are given two separate regions bounded by closed
curves—does there exist an analytic transformation
which transforms one region conformally into the
other? This question is answered by Riemeann’s
theorem as follows:

Riemann’s theorem.—The interior T of any simply
connected region (whose boundary contains more than
one point, but we shall be concerned only with regions
baving closed boundaries, the boundary curve being
composed of piecewise differentiable curves [Jordan
curve}, corners at which two tangents exist being per-
mitted) can be mapped in a one-to-one conformal
manner on the interior of the unit circle, and the
analytic ® function {=f(z) which consummates this
transformation becomes unique when a given interior
point z of T and a direction through z, are chosen to
correspond, respectively, to the center of the circle and
& given direction through it. By this transformation
the boundary of T is transformed uniquely and con-
tinuously into the circumference of the unit circle.

The unit circle in this theorem is, of course, only a
convenient normslized region. For suppose the re-
‘gions 7} in the { plane and T3 in the w plane are
transformed into the unit circle in the z plane by
t=f(z) and w=F(z), respectively, then 7; is trans-
formed into 7% by {=%®(w), obtained by eliminating =
from the two transformation equations.

In airfoil theory it is in the region external to a closed
curve that we are interested. Such a region can be
readily transformed conformelly into the region in-
ternel to a closed curve by an inversion. Thus, let us
suppose a point z, to be within & closed curve B whose

3 A reglon of the complex plane Is simply connected when any closed contour Iying
entirely within the region may be shrunk to a point without passing out of the region.
Cf. reference 3, p. 367, where a proof of the theorem based on Green's function is
given.

¢ Attentlion Is here directed to the fact that an analytic function {s developable at
& point In a power serles convergent in any circle about the point and entfrely
within the region.,

external region is T, and then choose a constant %
such that for every point z on the boundary of T,
|z—2|>k. Then the inversion transformation w=

k
z2—2
T into a point internal to a closed region I lying
entirely within B, the boundary B mapping into the
boundary of I', the region at infinity into the region
near z,. We may now restate Riemann’s theorem as
follows: T

One and only one analytic function { =f(2) exists by
means of which the region T external to a given curve
B in the ¢ plane is transformed conformally into the
region external to a circle  in the z plane (center at
2z=0) such that the point z= = goes into the point

will transform every point in the external region

¢= o and also %51 at infinity. This function can

be developed in the external region of Cin a uniforhxly
convergent series with complex coefficients of the form

f—m=j(z)—m=z+%+2—%+z—§+ v “

by means of which the radius B and also the constant
m are completely determined. Also, the boundary B
of T'is transformed continuonsly and uniquely into the
circumference of C.

It should be noticed that the transformation (4) is
a normalized form of a more general series

a
f—m=ay+a_z+ j+%+ -----

and is obtained from it by a finite trunslation by the
vector @, and s rotation and expansion of the entire
field depending on the coefficient a_;. The condition
@_1=1 18 necessary and sufficient for the fields at
infinity to coincide in magnitude and direction.

The constants ¢; of the transformation are functions
of the shape of the boundary curve alone and our
problem is, really, to determine the complex coeffi-
cients defining a given shape. With this in view, we
proceed first to & convenient intermediate trans-
formation.

2
The transformation §=z'+‘z£,--—This initial trans-

formation, although not essential to a purely mathe-
matical solution, is nevertheless very useful and
important, as will be seen. It represents also the key
transformation leading to Joukowsky airfoils, and is
the basis of nearly all approximate theories.

Let us define the points in the ¢ plane by {=z+1y
using rectangular coordinates (z, ¥), and the points in
the 2z’ plane by 2z’=ae¥*? using polar coordinates
(ae¥, 6). The constant ¢ may conveniently be con-
gidered unity and is added to preserve dimensions.
We have

2
f= (6)
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and substituting 2’ = ae¥*+¥
we obtain ¢=2a cosh (y+16)
or ¢=2a cosh ¢ cos 6+ 2ia smhr,bsmﬁ

Since {=xz-+1y, the coordinates (z, ) are given by

z=2¢ cosh ¢ cos 0}_ ©
y=2a sinh ¢ sin §
If ¢y=0, then z’=ae® and {=2a cos 8. That is, if P

and P’ are corresponding points in the { and z’ planes,
respectively, then as P traverses the z axis from 2a to
—2a, P’ traverses the circle ae® from 6=0 to 0=,
and as P retraces its path to {=2a, P’ completes the
circle. The transformation (5) then may be seen to
map the entire { plane external to the line 4a upiquely
into the region external (or 1nterna.1) to the cu'cle of
radius @ about the origin in the 2’ plane.

Let us invert equations (6) and solve for the elliptic
coordinates ¥ and 4. (Fig. 3.) We have

g’ H,

& Plane

z' Plane
F1GURE 3.—Transformation by elliptic coordinates

T
cosh "{":20, cos 8
; - Y
sinh ¢ 2a sin
and since cosh ¢ —sinh 2y=1

3 2
(zreees) ~(zats)
2a cos @ 2q s1in 0

or solving for sin? (which can not become negative),
—G
2 sin*0=p+\/pf+<%) )
z k] 1 3
p= 1—<972> _(2a

Similarly we obtain

<2a cosh ¢>’+(2a, e «,b),:'l

or solving for sinh 2y .
2 sinh = —p+ —‘/p’+<%>2 ®)

We note that the system of radial lines §=constant
become confocal hyperbolas in the { plane. The circles
¢ =constant become ellipses in the { plane with major
axis 2a cosh ¥ and minor axis 2a sinh . These orthog-
onal systems of curves represent the potential lines and
streamlines in the two planes. The foci of these two
confocal systems are located at (& 2a, 0).

where
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Equation (8) yields two values of ¢ for a given

" point (x, %), and one set of these values refers to the

correspondence of (z, ¥) to the point (ae?, 6) external to
a curve and the other set to -the correspondence of
(2, ¥) to the point (ze~¥,—06) internal to another curve.'
Thus, in Figure 3, for every point external to the
ellipse E; there is a corresponding point external to the
circle 0, and also one internal to C;’.

The radius of curvature of the ellipse at the end of

2 2
the major axis is p=2a 11(1)1_8_]]111}’_0 or for small values of ¢,
p==2ay?. The leading edge is at
2a cosh ¢gza(1 + %gmw -%-

Now if there is given an airfoil in the { plane (fig. 4),
and it is desired to transform the airfoil profile into a
curve as nearly circular as possible in the 2’ plane by
using only transformation (5), it is clear that the axes
of coordinates should be chosen so that the airfoil
appears as nearly elliptical as possible with respect to
the chosen axes. It was seen that a focus of an
elongated ellipse very nearly bisects the line joining
the end of the major axis and the center of curvature
of this point; thus, we arrive at a convenient choice of
origin for the airfoil as the point bisecting the line of
length 4a, which extends from the point midway be-
tween the leading edge and the center of curvature of
the leading edge to a point midway between the
center of curvature of the trailing edge and the trailing
edge. This latter point practically coincides with the
trailing edge.

The curve B, defined by ae**™, resulting in the 2’
plane, and the inverse and reflected curve B’, defined
by ae ¥ %, are shown superposed on the { plane in
Figure 4. The convenience and usefulness of trans-

Fi1GURE 4.—Transformation of airfoil into a nearly circular contour

formation (5) and the choice of axes of coordinates

will become evident after our next transformation.
:;3 Cs
® ¥ —Consider the trans-

The transformation z’=ze
formation 2’ = ze™ where f(z) = = c_z: Each exponential
0
Ca
z represents the uniformly convergent series

1+% +2l(z,.>+ - %(g)ﬁ- )

term e
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where the coefficients ¢,=.4,+ 1B, are complex num-
bers. For f(z) convergent at all points in a region
external to a certain circle, 2/ has a unique real abso-
lute value [z]e™®! in the region and its imaginary part
'is definitely defined except for integral multiples of
27i. When z= o, 2/=ze%. The constant co=A,+
Bi, is then the determining factor at infinity, for the
afield t infinity is magnified by e% and rotated by the
angle By. It is thus clear that if it is desired that the
regions at infinity be identical, thatis, 2’ =2z at infinity,
the constant ¢, must be zero. The constants ¢; and ¢z
also play important réles, as will be shown later.

We shall now transform the closed curve? 2’ =ae¥*"
into the circle z=ae¥t** (radius ae¥, origin at center)
by means of the general transformation (reference 2)

(10)

~WM8
SRS

2/ =2e

which leaves the fields at infinity unaltered, and we
shall obtain expressions for the constants .., Ba., and
Yo. The justification of the solution will be assured by

the actual convergence of EZ—:. since if the solution
1
exists it is unique. ’

By definition, for the correspondence of the bound-
ary points, we have

g Yo 60— 0) (10°)
54y +iB),
Also 2 =ze #
Consequently
| o+ i0— o) =3 (AuHiB)
where z=ge¥ytt

On writing z=R(cos ¢+7 sin ¢) where E=ae%, we
have

Y=o+ i(0— ¢) = 2+ iB,) 5 (cos mp—i sin ng)

Equating the real and imaginary parts of this relation,
we obtain the two conjugate Fourier expansions:

;b—gbo=?|:1‘%f cos n¢+%sinn¢] (11)

(12)

From equation (11), the values of the coefficients %ﬁ:

%. and the constant @o are obtained as follows:

[ B, Aa .
0—¢p=§|:ﬁ cos nqo—R—usm 'an:I

Aa 12‘5’

B .(/)'4' cos ny de (2)
B, 127

I?F;.(/)'sbsmwdso (b)

7 Unless otherwisa stated, ¢ and 6 will now be used in this restricted zense, i. ., as
defining the toundary curve Itself, and not all points in the 2’ plane.
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%‘2_;.6"# @ (c)

The evaluation of the infinite number of constants
as represented by equations (a) and (b) can be made
to depend upon an important single equation, which
we shall obtain by eliminating these constants from
equation (12).

Substitution of (a) and (b) for the coefficients of
equation (12) gives .

1 o 271' .
<0—¢),=;':Z cos mo’b/' ¥(p) sin np de

. 2%
—sin ne’ ‘0/‘ ¥(p) cos ne de

where ¥(¢)=y and (§— ¢)’ represents §—¢ as a func-
tion of ¢’, and where ¢’ is used to distinguish the angle
kept constant while the integrations are performed.
The expression may be readily rewritten as

w 211"
0— o)’ =7lr 1;3 b/'x,b(go) (sin n¢ cos ne’ — cos ne sin ny’')d¢

1 g 2m .
== 2 S ¥() sin n(p—¢”) de
10
But
.
, cos (2n+1) (=)
B . n 1 o— 2
Esmn(¢—¢)=§cot 5~ —
1 2 gin £
2
Then

0= o) =0,

27 ’
1 P
% bfyb(go) cot 7. dqo

1 27 cos(2n+1) Qp;z“ﬁ
—5n 6/‘*!’(90) d

. o— ¢/ 14
N
The first integral is independent of #, while the latter
one becomes identically zero.
Then finally, representing ¢—8 by & single quantity
¢, Viz p—0=e=¢(p), we have

(13)

27 .
(o)== g,  Ho) ot E5Edo

By solving for the coefficients in equation (12) and
substituting these in equation (11) it may be seen that
o similar relation to equation (13) holds for the func-

tion ¥(e).

, 1 271' o— (P’ 1 211' d
()= 5;6/'6(@ cot = de+ Q;b/'t#(so) e (14)

The last term is merely the constant y,, which is, as
has been shown, determined by the condition of mag-
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nification of the z and 2’ fields at infinity. The
27

corresponding int.egrali%_ J e(p) de does not appear in
0

equation (13), being zero as a necessary consequence
of the coincidence of directions at infinity and, in
general, if the region at infinity is rotated, is a constant
different from zero.

Investigation of equation (13).—This equation is
of fundamental importance. - A discussion of some of
its properties is therefore of interest. It should be
first noted that when the function y(y) is considered
known, the equation reduces to a definite integral.
The function ® ¢(p) obtained by this evaluation is the
“conjugate’” function to Y (p), so called because of the
relations existing between the coefficients of the
Fourier expansions as given by equations (11) and (12).
For the existence of the integral it is only necessary
that ¥(p) be piecewise continuous and differentiable,
end may even have infinities which must be below
first order. We shall, however, be interested only in
continuous single-valued functions having a period 2,
of a type which result from continuous closed curves
with a proper choice of origin.

If equation (13) is regarded as a definite integral, it is seen
to be related to the well-known Poisson integral which solves
the following boundary-value problem of the circle. (Reference
3.) Given, say for the z plane a single-valued function u(R,7)
for points on the circumference of & circle w=Refr (center at
origin), then the single-valued continuous potential function

u(r,0) in the external region z=reir of the circle which assumes
the values u (R, 7) on the circumference is given by

) B—Ra
'™ B3 Fr"—2Rr cos (a—f)

1 2
u(r,o) -=§;__(/)' u(R
and similarly for the conjugate function v(r,0)

) r—R3
T R3+r2—2Rr cos (a'—‘r)

1 211'
v(r,o) -=2—ﬂ_.(/)' v(R

These may be written as a single equation

8(r,0) i(r,0) =) =5 & 1) 2 dwo

where the value f(2) at a point of the external region s=re¥ is
expressed in terms of the known values f(w) along the circum-
ference w=Re¥*. In particular, we may note that at the

ir —_
boundary itself, since zci,+:,f = cot (d—zf)-, we have

w(R,0) +io(R,0) =-—2i,{ [w(R,)+io(B, )] eob s,

which is a special form of equations (13) and (14).

The quantity ¥ is immediately given as a function
of 6 when a particular closed curve is preassigned, and
this is our starting point in the direct process of trans-
forming from airfoil to circle. We desire, then, to find
the quantity ¢ as a function of ¢ from equation (13),
and this equation is no longer a definite integral but an

3 This function will be called “conformal angular distortion” function, for reasons
evident later.
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integral equation whose process of solution becomes
more intricate. It would be surprising, indeed, if
anything less than a functional or integral equation
were involved in the solution of the general problem
stated. The evaluation of the solution of equation (13)
is readily accomplished by & powerful method of suc-
cessive approximations. It will be seen that the
nearness of the curve ae¥*# to a circle is very signifi-
cant, and in practice, for airfoil shapes, one or at most
two steps in the process is found to be sufficient for
great accuracy.

The quantities ¥ and e considered as functions of ¢
have been denoted by ¥(p) and e(p), respectively.
When these quantities are thought of as functions of 6
they shall be written as ¥(6) and €(9), respectively.

Then, by definition

¥(8) =¢[0(0)] (15)
and «0) =p(0)]
Since p—f=¢, we have
0(0) =0 — (o)
¢€Z)=g+3(;; } (16)

We are seeking then two functions, ¥(p) and e(p),
conjugate in the sense that their Fourier series expan-
sions are given by (11) and (12), such that ¢[(6)]=
¥(0) where ¥(0) is a known single-valued function of
period 2.

Integrating equation (13) by parts, we have

P9 d'!f(so)d

=1 frog sn 257 (13)

The term log sin 'p;‘a is real only in the range p=¢’ to

e=2r+¢’, but we mﬁy use the interval 0 to 2« for ¢
with the understanding that only the real part of the
logarithm is retained.

Let us write down the following identity:

=log sin 35

(0+=)’

o _ar
logsin“az‘p T

sin (9+31);

00
sin 5

sm(0+ek)—(0+'e,)'

2
e tlog e =
s 2

L 6+8)— @0+7)’
2
N GV )

+log +log

0+ey)’ + an

gin O+ &) —(@+3)’

i OO0+
BTN G G e (ARG

where in the last term wé recall that 6+€(8) = ¢(6); and
where it may be noted that each denominsator is the
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numerator of the preceding term. The symbols &
k=1, 2, ..., n) represent functions of 4, which thus
far are arbitrary.®

Since by equation (15) ¥(6) =y¢{e(0)] we have for
corresponding elements d6 and de

d¥(e) . _d¥(6)
dg:o do= de df

Then multiplying the left side of equation (17) by
L ‘Mfl d snd the right sido by 1 & 49 ang inte-

grating over the period 0 to 2= we obtain

27 o
do@)]=2(") =1 I log sin ¥ ‘l‘g—g’l o+ .

Sin(0+"ék) —(0+e)

1% 2 a7 (6)
+‘1r(‘)/‘ 1"*‘5ﬂi11(e;_+zx,t_l)—2 GFay dp 6+ ...
rr sinlFHO)= @O

1 @O 4,
+76“°g_sm(0+s,);(e+g1)' g 40 (8)

where k=1,2, . . ., n.
We now choose the arbitrary functions .(8’) so that

5 (0)=0
and

27 - _
nol s 0ta)—(0+&1) dY(0)
&) r(‘)/‘ log sin 5 T de (19)
where k=1,2, . . ., n.

Equation (18) may then be written

W)=gtat+ @) ... +EG &)+ (&) (20)
or 3(0’)=)\1+}\2+ D W
where A\:(0')=¢—%_; and is in fact the %k term of
equation (18). The last term we denote by A.

From equation (19) we see that the function &.(8") is
obtained by a knowledge of the preceding function
€-1(0"). For convenience in the evaluation of these
functions, say

2% -y -
Ek+1(0')‘='%_ {log gin (0+et) 2(0+ et) dﬁg@) 4o

we introduce a new variable ¢; defined by

¢t(0)=0+.ék(0) (k='1’ 2: LS n)
Then
e [0(0 r)] = €*111(0s)
_ 21)
LI (o) AUl g ¢
; ‘(/)‘ lOg sm 5 dqo: d‘Pk

From the definition of ¢, as
er(6) =0+5(6)

¢ The aymbo! (6-4-41)’ represants &’-14:(¢”) and I3 used to denote the same function
of & that 0+4:(6) 1sof 6. The variables 6 and & are regarded as Independent of each
other.
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we may also define the symbol e;(¢s) by

6 (¢t) TorT & (m)
where
& (0) =ele:(0)]
It is important to note that the symbols &, e, *
denote the same quantity considered, however, as a
function of 6, ¢x, ¢:-1, Tespectively.

The quantities (;—%-;) in equation (20) rapidly
approach zero for wide classes of initial curves ¥(6),
i. e., ¥[0(er)] very nearly equals ¥[0(pes1)] for even
small #’s. The process of solution of our problem is
then one of obtaining successively the functions ¥(9),
Vl0(e))], ¥10(e)], . . . . ¥[6(¢a)] where ¥[6(¢)] and
2,[0(¢.)] become more and more “conjugate.” The
process of obtaining the successive conjugates in prac-
tice is explained in a later paragraph. We first pause
to state the conditions which the functions ¢, are sub-
ject to, necessary for a one-to-one correspondence of
the boundary points, and for a one-to-one corre-
spondence of points of the external regions, i. e., the
conditions which are necessary in order that the
transformations be conformal.

In order that the correspondence between boundary
points of the circle in the z plane and boundary points
of the contour in the z’ plane be one-to-one, it is
necessary that 8(¢) be a monotonic increasing function
of its argument. This statement requires a word of
explanation. We consider only values of the angles
between 0 and 2x. For a point of the circle boundary,
that is, for one value of ¢ there can be only one value
of 6,1. e., 6(p) 18 always single valued. However, ¢(0),
in general, does not need to be, as for example, by a
poor choice of origin it may be many valued, a radius
vector from the origin intersecting the boundary more
than once; but since we have already postulated that
¥(0) is single valued this case can not occur, and ¢(0)
is also single valued. If we decide on a definite direc~

tion of rotation, then the inequality g_fo = 0 expresses

the statement that as the radius vector from the origin
sweeps over the boundary of the circle C, the radius
vector in the 2’ plane sweeps over the boundary of B
and never retraces its path.
The inequality
de de(e)
To= 17 qp 20
corresponds to
o) <,
Also, the condition
de(9)

de

corresponds to

de(®) . _
a6 =71
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Multiplying -?1% by g—% we get

()

This relation is shown in Figure 5 as a rectangular

de
-
12
/
o . _dE
—_— e — e — P
2 Ao 2 = de
=7
}2

FI1GURE 5.—The quantity ad‘—; as a fanction ol%

hyperbola. We may notice then that the monotonic

behavior of ¢(9) and 6(p) requires that dig remain on

the lower branch ® of the hyperbola, i. e.,
S -
It will be seen later that the limiting values

(22)

o)y o) 0, B )
do 1 7dp Le,g5= @igp= 1

correspond to points of infinite velocity and of zero
velocity, respectively, arising from sharp corners in the
original curve.

The condition for a one-to-one conformal corre-
spondence between points of the external region of the
circle and of the external region of the contour in the
2z’ plane may be given (reference 5, p. 98 and reference
6, Part ITI) as follows: There must be a one-to-one
boundary point correspondence and the derivative of

® Cy
. . E? . .
the analytic function 2’ =ze' ~ given by equation (10)
must not vanish in the region. That is, writing g(z)

for>% weh
01'?2:; we have

g-%,=-e""<l+z d—%—f?) #0 for |z]| >R or since

the integral transcendental function ¢*? does not vanish
in the entire plane, the condition is equivalent to

dg(2) , _
gy 1 for [2| >R

18 The values of the upper branch of the hyperbola arise when the region internal
to the curve ae v+* Is transformed Into the external reglon of a circle, but may also
thore bo avoided by defining em= o0 Instead of ¢—0.

40708—34——13

185
By equation (10’) we have on the boundary of the

circle, g(Re*) =y — yp—1ie, and
dg(z) — Rt W) = u(w
1Rete
_de(p) dal'(qo)
de “de

“the first term on the right-hand side being real and the

last term a pure imaginary. We have already postu-
lated the condition 4
€

—ODS(—l—Sl

as necessary for a one-to-one boundary point corre-

spondence. Now by writing z=§+147 and 25— (z)

(90)

P(tn) +1Q(tn), we note that gives the boundary

values of a harmonic function P(E,n) and therefore this
function assumes its maximum and minimum values
on the boundary of the circle itself. (Reference 3, p.

2@%%2 can never become —1 iIn the

external region, 1. e., g can never vanish in this
region.

At each step in the process of obtaining the succes-
sive conjugates we desire to maintain & one-to-one
correspondence between 6 and ¢, i. e., the functions
0(¢x) and ¢x(f) should be monotonic increasing and are
hence subject to a restriction similar to equation (22),
iz,

223.) Hence

dex
i 3 |
d¢t

The process may be summed up as follows: We con-
gider the function ¥(f) as known, where ¥(0) is the
functional relation between y and 6 defining a closed
curve ae?t®. The conjugate of ¥(§) with respect to 6
is (). We form the variable ¢,=6+%(8) and also
the function ¥[f(¢,)]. The conjugate of ¥[f(e,)] with
respect t0 ¢; 18 e*2(p;) which expressed as a function of
0 is &(f). We form the variable ¢;=04&(6) and the
function ¥[8(es)].- The conjugate of P[0(w:)] is €*5(w2),
which as a function of § is &(f), etc. The graphical
criterion for convergence is, of course, reached when
the function ¥[0(e.)] is no longer altered by the
process. The following figures illustrate the method
and exhibit vividly the rapidity of convergence. The
numerical calculations of the various conjugates are
obtained from formula I of the appendix.

In Figure 6, the ¥(f) curve represents a circle re-
ferred to an origin which bisects a radius (obtained
from an extremely thick Joukowsky airfoil) (seep. 200)
and has numerical values approximately five times
greater than occur for common airfoils. The ()
curve is known independently and is represented by
the dashed curve. The process of going from ¥ () to
Y(p) assuming ¢¥(p) as unknown is as follows: The
function % (f), the conjugate function of ¥(6), is found.

(22')
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The quantity ¥ is then plotted against the new variable | is drawn at P’. This process yields the function #(6).
e1=0+%(0) (. e., each point of ¥(6) is displaced hori- | The quantity ¥ is now plotted against the new variable
zontally a distance &) and yields the curve ¥[0(¢1)]. | v2=0+%(6) (. e., each point of ¥(§) is displaced hori-
(Likewise, &(6) is plotted against ¢; yielding e(p).) | zontally a distance &) giving the function $[0(py)].

I €:(6)

5 %L\ 1) — .——'\:‘\\
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F1GURE 8.—The process of obtalning successive conjugates
This curve is shown with small circles and coincides

with ¢(¢). Further application of the process can
yield no change in this curve. It may be remarked

The function e*;(¢;) is now determined as the conjugate
function of ¥[8(e)]. This function expressed as a
function of 61is e*[¢, ()] =%(6). Itisplotted asfollows:
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FIGURE 7.—Process applied to transforming a square into a cirele
At a point P of e*; (¢1) and Q of ¢ (¢;) corresponding to | here that for nearly all airfoils used in practice one
o definite value of ¢, one finds the value of # which | step in the process is sufficient for very accurate results.
corresponds to ¢; by a horizontal line through Q meet- As another example we shall show how a square
ing () in @'; for this value of 8, the quantity ¢ at P | (origin at center) is transformed into a circle by the
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method. In Figure 7 the §(§) curve is shown, and in
Figure 8 it is reproduced for one octant.’ The value
is ¢(0)=log sec . The function ¥[0(¢)] is shown
dashed; the function ¥[f(es)] is shown with small
crosses; and ¢[f(¢s)] is shown with small circles. The
solution ¥(¢) is represented by the curve with small
triangles and is obtained independently by the known
transformation (reference 3, p. 375) which transforms
the external region of a square into the external region
of the unit circle, as follows:

w(z) = z@dz=z[l +P(%>]

where P(;{) denotes a power series. Comparing this
with equation (10), we find that ¢(p) except for the
constant y, is given as the real part of log [1 +P(£>:|

evaluated for z=e'?, and that e(p) is given as the
negative of the imaginary part. It may be observed
in Figure 8 that the function Y[0(es)] very nearly

.35
30 3';2«”3)’ |z
. T a=0) sl ) /, '7
25 e
' /7 ((6)
%
.20 41y ,/
/Y o)) A
v 4
/5] Vi A
' p 4 v
/ /
.10 4
05 A1 LA
St
0"%/ 2 3 4 5 6 7 7.8
Argument (6,9, s, 5, in radians) E

F1GURE 8.—Process applied to transforming a square into a cirale

equals ¥(¢).
Figure 7 (a); we may note that at ¢=£, which corre-

The ﬁmétions e(¢) and &) are shown in

sponds to a corner of the squar’e,dé—==1 or also,

—= o,

de

11 Becauss of the symmotry involved oaly the fnterval 0 toX need be used. The
integral In the appendix can be treated as 7

e(p)=— 2';6/'\"(19) wt";;—’—dw

w

1
g { V@ leot 200—e)—cot 2p+#)1de

187

It may be remarked that the rapidity of convergence
1s influenced by certain factors. It is noticeably af-
fected by the initial choice of (). The choice
&(0) =0 implies that 8 and ¢ are considered to be very
nearly equal, i. e., that ae¥+¥ repregents a nearly cir-
cular curve. The initial transformation glven by
equation (5) and the choice of axes and origin were
adapted for the purpose of obtaining a nearly circular

P=ae™"
Q= aet™?

p e
570

8 S

(®)

FIGURE 9.—Translation by the distance OM

curve for airfoil shapes. If we should be concerned
with other classes of contours, more appropriate
initial transformations can be developed. If, how-
ever, for & curve ae¥** the quantity e=¢—6 has large
values, either because of a poor initial transformation
or because of an unfavorable choice of origin, it may
occur that the choice g(8)=0 will yield a function

&(p) for which ?1—21- may exceed unity at some points,

thus violating condition (22’). Such slopes can be
replaced by slopes less than unify, the resulting func-
tion chosen as %(f) and the process continued as
before.”® Indeed, the closer the choice of the function
&(0) is to the final solution €(8), the more rapid is the
convergence. The case of the square illustrates that
even the relatively poor choice &(8) =0 does not appre-
ciably defer the convergence.

The translation z—=z+c.—Let us divert our
attention momentarily to another transformation

which will prove useful. We recall that the initial
transformation (eq. (5)) applied to an airfoil in the ¢
plane gives a curve B in the 2’ plane shown schemati-
cally in Figure 9(a). Equation (10) transforms this
curve into a circle ¢ about the origin 0 as center and
yields in fact small values of the quantity ¢—68. We
are, however, in a position to introduce a convenient
transformation, namely, to translate the circle C into
a most favorable position with respect to the curve B
(or vice versa). These qualitative remarks admit of &
mathematical formulation. It is clear that if the
curve B itself happens to be a circle *® the vector by
which the circle C should be translated is exactly the
distance between centers. It is readily shown that

12 The first step In the process Is now to define po=f+-&(6) and form the function
¥[6(¢0)]. The confugate fanction of F[6(ew)] Is *o(y) Which expressed as a funetion
of 6 18 ©1(#), ste.

1 Sea p. 200,
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then equation (10) should contain no const-a.nt term.
We have

@
z5 (10)
2 =z¢
==(1+ﬂ+l-QY+ ) 1+2+ )x
2 z 2!(2 T 2 7
G
(1+23+ . -)etc.
ke K )
=z(1+;+zﬁ----- (10a)
where *
k1‘=01
b=t
2= Cq 2

It is thus apparent that if equation (10) contains no
first harmonic term, i. e., if
) R‘Zr
CI=A1+'LB1==';‘_"./‘¢61¢d§D=O,
0

the transformation is obtained in the so-called normal

form
A

Z=ntHht (23)

This translation can be effected either by substituting
a new variable z;=2z-+¢;, or a new variable 2" =2"—e¢,.

/0 —
% o SN Cucve
=059 ~ ]
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& 0 e
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..

0 5 1015 2025 x35 40 45 50 55 2n
8&8

FIGURE 10.—The ¥(8) and ¥1(6)) curves (for Clark Y airfoil)
This latter substitution will be more convenient at
this time. Writing

2’ =aeWt® ¢ =qem*® and 2/ =qe¥t?

we have
ae‘h"‘wl = ae"‘l'w— ae‘l’"‘a

The variables ¥, and-8;, can be expressed in terms of
¥, 6, v, and 8. Tn Figure 9(b), P is a point on the B

U Theso constants can be obtained In a recursion form. See footnote 16.
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curve, i. e., OP=ae¥, PQ represents the translation
vector ¢y=aert®, 0Q is aet+%, and angle POQ is
denoted by p. Then by the law of cosines

g2%1== g2¥ + g7 — 2¢¥eY cos (§—8) (2)
and by the law of sines

. e7 sin (§—38)

7=V gi —

or 01’=0+#=0+tm—l 12‘87—?1100(50(0?5) (b)
In Figure 10 are shown the ¥(6) and €(6) curves for the
Clark Y airfoil (shown in fig. 4) and the ¥, (6;) and
%(0,) curves which result when the origin is moved
from 0 to M. It may be noted that &(6;) is indeed
considerably smaller than &(§). It is obtained from

1 27 so_s‘,l
(‘P_Bl),‘:‘_% ..6‘\,01(90) cof ——2 dtp

and the constant ¥, iz given 1° by
1 27"
Yo=5- .6' ¥1(p)de

The combined transformations.—It will be useful to
combine the various transformations into one. We
obtain from equations (5) and (10) an expression as
follows:

«@
£=2a cosh <Iog Z+ z Z—Z) 24)
1

or we can also obtain & power series development in z

R L L (25)

O == kx+l +a*hn_y

The constants &, may be obtained in a convenient
recursion form as

where ®

ki=c,
2]1:2 = klcl +2¢;
3k3 = kgcl + 2k102 + 303
4k, =kse, + 2ksca+ 8k +4ey

The constants &, have the same form as %, but with
each c; replaced by —c¢; (and hy=1). It will be re-

1 The constant yo is Invariant to change of origin. (See p. 200.) It should be
remarked that the tranalation by the vector c; I3 only a matter of convenionce and
is especlally usaful for very irregular shapes. For a study of the propertles of alrfof!
shapes wo shall uss only the original «(¢) curve. (Fig.10(a).)

18 By equations (5) and (10) we have

< o
. Z3 o IE
fmze +=e
3
zé
F=
The constant k. Is thus the coefficlent of ,1—_ in the expansion of 1™ and the constant
(-]
1 -z3
B4 the coefficlent of - In the expansion of ¢ 1™, For the recursion form for ks
see Smithsonian Mathematical Formulte and Tables of Elliptic Functions, p. 120,
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celled that the values of ¢, are given by the coefficients
of the Fourier expansion of ¢ (o) as

&n_f¢@wmwmeR=uw
and
1 27
= 2—7r .6‘ 'l/(sO)dsﬂ

The first few terms of equation (25) are then as
follows: .
012 013

9 2 A —

By writing z;=2z+¢;, equation (25) is cast into the
normal form

by

t=at +%

(26)

The constants b, may be evaluated directly in terms
of a, or may be obtained merely by replacing ¢¥(¢) by
Y1 () in the foregoing values for a,.

The series given by equations (25) and (26) may be
inverted and z or z developed as a power series in ¢.
Then

atae  ac’t2a6+ata’

2(?)‘&""1‘%“ fr - I .27
and
@) =¢~ E—?ﬁ—b“;b‘.. (28)

The various transformations have been performed
for the purpose of transforming the flow pattern of a

FI1GURE 11.—Streamlines abont circle with zero cirenlation (shown by the full
lines) Q= -V ginh x 8in ¢=constant

circle into the flow pattern of an airfoil. We are thus

led immediately to the well-known problem of deter-

mining the most general type of irrotational flow

around a circle satisfying certain specified boundary

conditions.

The flow about a circle.—The boundary conditions
to be satisfied are: The circle must be a streamline of
flow and, at infinity, the velocity must have a given
magnitude and direction. ILet us choose the £ axis as
corresponding to the direction of the velocity at
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infinity. Then the problem stated is equivalent to
that of an infinite circular cylinder moving parallel to
the ¢ axis with velocity Vin a fluid at rest at infinity.
The general complex flow potential 7 for a circle of
radius R, and velocity at infinity V parallel to the z

axis is
'w(z)=——V( +B?> o lgR

where T is a real constant parameter, known as the

(29)

FIGURE 12.—Streamlines about cirele for V=0 Qn—%_pneonstant

circulation. It is defined as 3gv,ds along any closed
curve inclosing the cylinder, v, being the velocity
along the tangent at each point.

Writing z=Re**** and w=P +1Q, equation (29) be-
comes

. AN .
w= =V cosh(u+ip) ~ 5 (u+ie) (20")
or P=—V cosh u cos ¢+%<p
. . r
@=—V sinh p sin p—5-4u
For the velocity components, we have
dw
LU = — V(l RI) 5 (30)

In Figures 11 and 12 are shown the streamlines for
the cases I'=0, and V=0, respectively. The cylinder
experiences no resultant force in these cases since all

.streamlines are symmetrical with respect to it.

The stagnation points, that is, points for which «

and v are both zero, are obtained as the roots of ?1—1:=0.
This equation has two roots.

_ir+ /167°R? V2 —
47V
and we may distinguish different types of flow accord-
ing as the discriminant 16#2R*V?—TI* is positive, zero,
or negative. We recall here that a conformal trans-
formation w=f(z) ceases to be conformal at points

where (éi: vanishes, and at a stagnation point the flow

divides and the streamline possesses a singularity.

17 Referencs 4, p. 56 or referencs 5, p. 118. The log term must be added becanss
the region outside the infinito cylinder (the poiat at infinity excluded) Is doubly
connected and therefore we must include the possibllity of cyclic motion.




Y R R T
e At e P e e T R et r it

S

190

The different types of flow that result according
as the parameter P’%lGﬁR’V’ are Tepresented in

Figure 13. In the first case (fig. 13 (a)), which will not
interest us later, the stagnation point occurs as a
double point in the fluid on the 5 axis, and all fluid
within this streamline circulates in closed orbits around
the circle, while the rest of the fluid passes downstream.
In the second case (fig. 13 (b)), the stagnation points
are together at S on the circle Re*? and in the third
case (fig. 13 (c)) they are symmetrically located on the
circle. We have noted then that as I increases from
0 to 4wRV the stagnation points move downward on

the circle Re*? from the £
axis toward the % axis.

Upon further increase in
I' they leave the circle and
are located on the 5 axisin
the fluid.

Conversely, it is clear
that the position of the
stagnation points can de-
termine the circulation T.
This fact will be shown to
be significant for wing-
section theory. At pres-
ent, we note that when
both T'and V30 a marked
dissymmetry exists in the
streamlines with respect to
the circle. They are sym-~
metrical about the 5 axis
but are not symmetrical
about the £ axis. Since
they are closer together on
the upper side of the circle
than on the lower side, a
Frauns 13.—Streamlines about eirele TeSultant force exists per-

[from Lagally—Handbuch der Physik pendicular to the motion.

Bd. VI] Q=Vsinh o stn e~Lp=con-  We shall now combine

stant (8) I > 1601 (b) =16x3R1V2 the transformeation (27)

© Deemy and the flow formula for
the circle equation (29) and obtain the general complex
flow potential giving the 2-dimensionel irrotational flow
about an airfoil shape, and indeed, about any closed
curve for which the Riemann theorem applies.

The flow around the airfoil—In Figure 14 are
given, in a convenient way, the different complex
planes and transformations used thus far. The com-
plex flow potential in the z plane for a circle of radius
R origin at the center has been given as

- BT _ir
w(E)=—V z+E:) Tiog 2

where V, the velocity at infinity, is in the direction of
the negative £ axis. Let us'introduce a parameter to

(29)
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permit of a change in the direction of flow at infinity
by the angle « which will be designated angle of attack
and defined by the direction of flow at infinity with
respect to a fixed axis on the body, in this case the
axis p=0. This flow is obtained simply by writing
ze'= for z in equation (29) and represents a rotation of
Yy § Plane

Equations(25)and(2?)

Equations(26)and(€6)

FIGURE 14.—The collected transformations

the entire flow field about the circle by angle «. We
have ]
w(2) = —V(ze‘“+—e— ;—f_logz (1)
dw
'd—z-lﬂ’llr w
(1B ) AL
= — Vet (1— e ) —5— (82)

Since a conformal transformation maps streamlines
and potential lines into streamlines and potential lines,
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we may obtain the complex flow potentials in the
various planes by substitutions. For the flow about
the circle in the z; plane, z is replaced by z,—¢;

wz)=-V [(zl—cl)e‘“+ %]~%10g(21—01) (31)

dw _ | o BieHa ir
a_Z] - VG‘ I:l . (21—' 01)" —2‘5'(21— 61)

(32°)

For the flow about the B curve in the z’ plane, z is
replaced by z(z’) (the inverse of eq. (10a)) and for the
flow about the airfoil in the { plane z is replaced by
z(¢) from equation (27)

W)= = Vie()ee+ Jye™ —52 log 2)  (33)

AW _T_ v _Rrea\ 4T Tldz(6)
I [ Ve 1~ ) LI 6

The flow fields at infinity for all these transformations
have been made to coincide in magnitude and direction.

At this point attention is directed to two important
facts. First, in the previous analysis the original
closed curve may differ from an sairfoil shape. The
formulas, when convergent, are applicable to any
closed curve satisfying the general requirements of
the Riemann theorem. However, the peculiar ease of
numerical evaluations for streamline shapes is note-
worthy and significant. The second important fact is
that the parameter I' which as yet is completely unde-
termined is readily determined for airfoils and to a
discussion of this statement the next section is devoted.
It will be seen that airfoils may be regarded as fixing
their own circulation.

Kutta-Joukowsky method for fixing the circula-
tion,—All contours used in practice as airfoil profiles
possess the common property of terminating in either
a cusp or sharp corner at the trailing edge (a point of
two tangents). Upon transforming the circle into an
sitfoil by §=7(2), we shall find that | 3| is infinite st
the trailing edge if the tail is perfectly sharp (or very
large if the tail is almost sharp). This implies that

the numerical value of the velocityl%l: “g—;lﬂvl is

(34)

infinite (or extremely large) provided the factorl%
is not zero at the tail. There is but one value of the
circulation that avoids infinite velocities or gradients
of pressure at the tail and this fact gives a practical
basis for fixing the circulation.

The concept of the ideal fluid in irrotational poten-
tial flow implies no dissipation of energy, however large
the velocity at any point. The circulation being a
measure of the energy in a fluid is unaltered and inde
pendent of time. In particular, if the circulation is
zero to begin with, it can never be different from zero.
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However, since all real fluids have viscosity, a better
physical concept of the ideal fluid is to endow the
fluid with infinitesimal viscosity so that there is then
no dissipation of energy for finite velocities and pres-
sure gradients, but for infinite velocities, energy losses
would result. Moreover, by Bernoulli’s principle the
pressure would become infinitely negative, whereas a
real fluid can not sustain absolute negative pressures
and the assumption of incompressibility becomes in-
valid long before this condition is reached. It should
then be postulated that nowhere in the ideal fluid from
the physical concept should the velocity become

infinite. It is clear that the factor l% must then be

zero at the trailing edge in order to avoid infinite
velocities. It is then precisely the sharpness of the
trailing edge which furnishes us the following basis for
fixing the circulation.

It will be recalled that the equation %1—:= 0 deter-

mines two stagnation points symmetrically located on
the circle, the position of which varies with the value
of the circulation and conversely the position of a
stagnation point determines the circulation. In this
peper the z axis of the airfoil has been chosen so that
the negative end (§==) passes through the trailing
edge. From the calculation of e=¢—0 (by eq. (13))
the value of ¢ corresponding to any value of 8 is deter-
mined as ¢=0+ ¢, in particular at 6=, ¢==+ B, where
g is the value of ¢ at the tail and for a given airfoil is a
geometric constant (although numerically it varies
with the choice of axes). This angle B-is of consid-
erable significance and for good reasons is called the
angle of zero lift. The substance of the foregoing
discussion indicates that the point z=Re!™*h = — Re*

is a stagnation point on the circle. Then for this value
of 2, we have by equation (32)
dw 1—R%2\ 4I'
Ef‘Ve"’( 5z =0
or T'=—2xRVie!«td (1— ¢ 3ttt)

Hactf) — g—1(ectB)
—amy(£ )
{3

=47RV sin (a+ ) (35)

This value of the circulation is then sufficient to
make the trailing edge a stagnation point for any value
of . The airfoil may be considered to equip itself
with that amount of circulation which enables the
fluid to flow past the airfoil with a minimum energy
loss, just as electricity flowing in a flat plate will dis-
tribute itself so that the heat loss is & minimum. The
final justification for the Kutta assumption is not only
its plausibility, but also the comparatively good agree-
ment with experimental results. Figure 15 (b) shows
the streamlines around an airfoil for a flow satisfying
the Kutta condition, and Figures 15 (2) and 15 (c) illus-
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trate cases for which the circulation is respectively too
small and too large, the stagnation point being then on
the upper and lower surfaces, re-

——————+ _ spectively. For these latter cases,
—— =@ the complete flow is determinable
- only if, together with the angle of
—_— attack, the circulation or a stag-
& (b) nation point is specified.

jRERE—— Velocity at the surface—The
————>  flow formulas for the entire field
:%:(c) are now uniquely determined by
T " "—== substituting the value of I'in equa-

tions (33) and (34). We are, how-
‘ever, in & position to obtain much
simpler and more convenient re-
lations for the boundary curves
themselves. Indeed, we are chiefly
interested in the velocity at the
surface of the airfoil, which velocity is tangential to
the surface, since the airfoil contour is a streamline of
flow. The numerical value of the velocity at the
surface of the airfoil is

o= oF o =loc—in) = |$- 32 |55 - |5

We shall evaluate each of these factors in turn. From
equations (32 and (35)

2 _ 1B e

At the boundary surface z=Re®, and

FiGURE 15.—(a) Flow with
drealation smaller than for
Kutta condition; (b) flow
satisfying Kutia condition;
(¢) flow with circulation
greater than for XKutta
condltion

_“xRV sin(a+ B)

27z

gi:= ~ Veta(1— e~2tate.) — 2; Vet sin(a+ B)

or
B Vet (ot — e~ 0) £2i sin(at )]
= —2iVe *¢[sin(a+ ¢) +sin(a+ B)]
and :
l‘}rj = 2V[sin(a+ o) +sin(a+ B)] (36)
In general, for arbitrary I we find that
da! . T
bimfv sin (a+ ) +m 36"

To evaluate lg—:;l we start with relation (10)

~ 48
8l

2'=2z¢
At the boundary surface

2/ =ze¥ ¥~ where e=¢—0 and z=qe¥rt%

71 Alyiv)

REPORT NATIONAIL: ADVISORY COMMITTEE FOR ABRONATUTICS

21430 -
dgo de
Z(de~ d0

de Y2 o 'z
+EES.%
l:;z'=e4—+v”<a‘$>

(37
1+
By equation (5)

Then °

de

2
=2 +¢_127 and at the boundary z’=ae**¥, or

{=2a cosh(y¥+16)

20 sinh (y+ig) SE %)

=2 ginh(+16)6~¥+¥),

2
Then 1%’ =4¢~? (sinh®y cos®d+ cosh?y sin?f)
=4¢~%¥ (sinh®*y + sin®9)

|35 |- 2o+ VBT o) (38)
Then finally
o
d«-
_ Visin(a+¢) +sin(at 13)](1 +35 )6 9)

Vet +ain(1+ (5))

In this formula the circulation is given by equation
(35). In general, for an arbitrary value of I' (see
equation (36’)), the equation retains its form and is
given by

V[sin(a+ o)+ ZF—V](l +%"— e

\ﬁsmmw sin)( 1 +( )’) "
For the special case I'=0, we got
 Vsinter A(1+5 e “

\/ (smh’:,(/+sm’0)<1+( %)

Equation (40) is a general result giving the velocity
at any point of the surface of an arbitrary airfoil sec-
tion, with arbitrary circulation for any angle of attack
«. Equation (39) represents the important special
case in which the circulation is specified by the Kutta
condition. The various symbols are functions only of
the coordinates (z, %) of the airfoil boundary and ex-
pressions for them have already been given. In Tables
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I and II are given numerical results for different air-
foils, and explanation is there made of the methods of
calculation and use of the formulas developed.

We have immediately by squation (3) the value of
the pressure p at any point of the surface in terms of
the pressure at infinity as

Py z)’

¢! (V

Some theoretical pressure distribution curves are given
at the end of this report and comparison is there made

with experimental results. These comparisons, it will
be seen, within a large range of angles of attack, are

strikingly good.'®
GENERAL WING-SECTION CHARACTERISTICS

The remainder of this report will be devoted to a
discussion of the parameters of the airfoil shape affect-
ing aerodynamic properties with a view to determining
airfoil shapes satisfying preassigned properties. This
discussion will not only furnish an lluminating sequel

of\/w
-0 -
dx

P

S
2 )
%
Dlof flo

L

/

Py

Py

FIGURE 16.

to the foregoing analysis leading to a number of new
results, but will also unify much of the existing theory
of the airfoil. In the next section we shall obtain
some expressions for the integrated characteristics of
the airfoil. We start with the expressions for total
lift and total moment, first developed by Blasius.

Blasius’ formulas.—Let C in Figure 16 represent a
closed streamline contour in an irrotational fluid field.
Blasiug’ formulas give expressions for the total force
and moment experienced by (' in terms of the complex
velocity potential. They may be obtained in the fol-
lowing simple manner. We have for the total forces
in the = and ¥ directions

Py=— {p,ds= - Jc‘pdy
P,= fpds= [pdz
¢4 [e4
P,—iP,=— {,‘p(dy+idx)

" A paper devoted to more extensive applications to present-day alrfolls is in
progress,
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The pressure at any point is

P=Po _%Pvz
Then,

P,—iP,-=%,£v’(dy+ida:)

ip qduwdw
5 dz dz
where the bar denotes conjugate complex quantities.
Since C is a streamline, v.dy—»,dz=0. Adding the
quantity

'ip.é‘ (vr+'ivz) (vzdy—vrdx) =0

to the last equation, we get. ®

P,—iP,=;—p.£(v,—iv,)’(dx+idy)

y 3
=’_‘2—"‘£(%” dz (42)
The differential of the moment of the resultant
force about the origin is,
dM,=p(x dz+y dy)
=R. P. of plz dz+y dy+i(ydz—zdy)]
=R.P.ofpzdz
where “R. P. of”” denotes the real part of the complex
quantity. We have from the previous results

s 2
d(P,—iP,)= —ip dzsg%") dz
' 2
Then dM,=—R. P. ofg %E'w zdz

d 2
and  My=—R. P. ot 5.S({2) 43)
Let us now for completeness apply these formulas to
the airfoil 4 in the ¢ plane (fig. 14) to derive the Kutta-
Joukowsky classical formula for the lift force. By

equation (32) we have

w ' | R*Ve—1=
AL = =
and by equation (25)
¢ ;@ 2
d =1 22 2B
Then
ww_dw dz
df dz dt
I J G |
= Ve’“—2wz+(R2Ve ta alVe’)22+ ..

1% Of. Blaslus, H: Zs. f. Math. u. Phys. Bd. 58 8. 83 and Bd. 59 8. 43, 1910,
Simlilarly, _
f dw\
PP~ —zﬂ_é‘ (37) a,

a less convenlent relation to use than (42).
Note that when the region about C i3 regular the value of the integral (42) remains
unchanged by Integrating about any other curve enclesing C.



B A

194

A
( byt
where
-AomV’e”"
~iVetel
w
Ay= — 2RV 420, Vi D
472
Then .
b _:p o pfdw
Pmif= 2/ (§
(52
P o s
= —qgle pVT
Therefore )
P.=pVTI ain a}
P,=pVT cos a

and are the components of a force pVT' which is per-
pendicular to the direction of the stream at infinity.
Thus the resultant lift force experienced by the airfoil is

L=pVT (44)

and writing for the circulation T' the value given by
equation (35)
L=4zRpV?* ain (a+ B) 45)

The moment of the resultant lift force about the
origin =0 is obtained as
M,=R. P. of— "f(d"’);dy
- _P pfdwy, dg
B. P. of 2{((1‘, rEa
- _p A4
R. P. of 2{(Ao+z +5+ .>><

<c1+z+31+g—§+ . .)(1—‘%+ : .)dz

=R. P. of - 21n (coeflicient of z7%)
=R. P. of—%21ri (42 +Ascy)

or, M, is the imaginary part of =p(d;+ Ase;). After
putting ® ¢, =me®? and a,=b%*'r we get

My=27pV?p?sin 2(e+v) +pVT m cos (a+8) (46)

The results given by equations (44) and (46) have

physical significance and are invariant to a transforma-

b e 4
It may be recalled that c;-%_g\b(p)ekdqo and al-:a’+%’+c;. (Beo oq. (25).)
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tion of origin as may be readily verified by employing
equations (26) and (32/) and integrating around the 0,
circle in the z; plane. It is indeed a remarkable fact
that the total integrated characteristics, lift and loca-
tion of lift, of the airfoil depend on so few parameters
of the transformation as to be almost independent of
the shape of the contour. The parameters B, B8, a,,
and ¢; involved in these relations will be discussed in a
later paragraph.

‘We shall obtain an interesting result # by taking
moments about the point {=¢, instead of the origin.
(M in fig. 17.) By equation (25) we have,

=gt &
g‘ (] 2+z+zz'1'

and by equat:ion (43)
Mi=R. P. oi~5 /] s c)]’@ o) d

L)X
: .)(1—%+. .>dz

My=270pV?sin 2(a+7)

T EAX s N

~Za (@+3] /
/7

F16URE 17.—Moment arm from M onto the lift vector

=R.P. of——f(Ao+

G, %
(z+z+z,+

=R. P. of —ixpA;
or

O,
TSeng

This result ecould have been obtained directly from
equation (46) by noticing that pVT in the second term
is the resultant lift force L and that Lm cos (a+86)
represents & moment which vanishes at M for all values
of . (In fig. 17 the complex coordinate of M is
¢=me®, the arm OH is m cos («+35).) The perpendic-
ular Ay, from M onto the resultant lift vector is simply
obtained from M= Lk,
as
b? sin 2(a+ v
2R sin (a+ B)

The intersection of the resultant lift vector with the
chord or axis of the sairfoil locates a point which may
be considered the center of pressure. The amount of
travel of the center of pressure with change in angle
of attack is an important characteristic of airfoils,
especially for considerations of stability, and will be
discussed in & later paragraph.

hae= (48)

1 First obtained by R. von Mises. (Reference 8.) The work of von Mises forms
an elegant geometrical study of the airfofl.
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The lift force has been found to be proportional to
sin (a+ B) or writing a+ =

L=4rpRV?sin o, (49)

where o may be termed the absolute angle of attack.
Similarly writing a+y=ay ’

My =27b0*V?s8In 2, (50)

With von Mises (reference 6, Pt. IT) we shall denote
the axes determined by passing lines through M at
angles g and « to the z axis as the first and second axes
of the airfoil, respectively. (Fig. 18.) The directions
of these axes alone are important and these are fixed
with respect to a given airfoil. Then the lift L is
proportioneal to the sine of the angle of attack with
respect to the first axis and the moment about M to
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If this moment is to be independent of «, the coeffi-
cients of sin 2« and cos 2« must vanish.

Then
b cos 2y=Rrcos (8+0)
and
b? sin 2y =Rr sin(8+ o)
Hence,

re Ran o=2y—8
Then if we move the reference point of the moment to

a point F whose radius vector from Af is %e“’""’, the

moment existing at F is for all angles of attack con-
stant, and given by

My=27pb*V? sin 2(y— f)

(51)

\

FI1GURE 18.—Ilustrating the geometrical properties of an afrfoil (axes and lift parabola of the R. A. F, 19 airfoil)

the sine of twice the angle of attack with respect to
the second axig.

From equation (47) we note that the moment at any
point € whose radius vector from M is re,is given by

Mo=27pb?V? sin 2(a+ v) — Lr cos (a+0)

Let us determine whether there exist particular
values of r and o for which M, is independent of the
angle of attack «. Writing for L its value given by
equation (45),

Mo=2mpb*V?sin 2(e + ) — 4xpRrV? sin (e + B) cos (a+0)
And separating this trigonometrically
Mo=2mwpV*[(b? cos 2y— Br cos (8+¢)) sin 2«
+ (8% gin 2y—Rr sin (8+ 7)) cos 2e
—Rr sin (B—0)]

It has thus been shown that with every airfoil pro-
file there is associated a point F for which the moment
is independent of the angle of attack. A change in
lift force resulting from a change in angle of attack
distributes itself so that its moment about F 1is zero.

From equation (47) it may be noted that at zero lift
@. e., @= — B) the airfoil is subject to & moment couple
which is, in fact, equal to Mp. This moment is often
termed ‘“diving moment” or ‘“moment for zero lift.”
If My is zero, the resultant lift force must pass through
F for all angles of attack and we thus have the state-
ment that the airfoil has a constant center of pressure,
if and only if, the moment for zero lift is zero.

The point F, denoted by von Mises as the focus of
the airfoil, will be seen to have other interesting prop-
erties. We note here that its comstruction is very
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2

It lies at a distance % from A/ on a line making

angle 2y — B with respect to the z axis. From Figure
18 we see that the angle between this line and the first
axis is bisected by the second axis.

The arm %r from F onto the resultant lift vector L
(hr is designated FT in Figure 18; note also that FT,
being perpendicular to L, must be parallel to the direc-
tion of flow; the line TV is drawn parallel to the first
axis and therefore angle VI'F= a4 B) is obtained as
4o Me_ b sin 2(8—7)

*=L " 2R sin(a+tB)
2
h=gps sin 2(8—7)

h

hp=— Y CESD) (52)
But ky is parallel to the direction of a, and the relation
h= —hz sin (a+ B) states then that the projection of
hr onto the line through F perpendicular to the first
axis is equal to the constant » (b is designated FV in
the figure) for all angles of attack. In other words,
the pedal points T’ determined by the intersection of
hr and L for all positions of the lift vector L lie on a
straight line. (The line is determined by T and V in
fig. 18.) The parabola is the only curve having the
property that pedal points of the perpendiculars
dropped from its focus onto any tangent lie on a
straight line, that line being the tangent at the vertex.
This may be shown analytically by noting that the
equation of L for a coordinate system having F as
origin and FV as negative z axis is

simple.

or setting

h
sin (a+ B)
By differentiating with respect to a;=a+ 8 and elim-
inating «; we get the equation of the curve which the
lines L envelop as y*=4k(z+hk). From triangle FVS
in Figure 18, it may be seen that the distance

2
MP=Y i bisected at § by the line TV; for, since

Q:Sin C!1+y cos a1'=hp-'—-

. :
FV=h=2b—R sin 2(y— g) and angle FSV=2(8— ), then

2
SF= EbR It has thus been shown that the resultant 1ift

vectors envelop, in general, a parabola whose focus is
at F and whose directrix is the first axis. The second
axis and its perpendicular at M, it may be noted, are
also tangents to the parabola being, by definition, the

resultant lift vectors for = —~ and a=g—7, Tespec-

tively.

If the constant & reduces to zero, the lift vectors
reduce to a pencil of lines through F. Thus a constant
center of pressure is given by A=0 or sin 2(8—~)=0
which is equivalent to stating that the first and second
axes coincide. The lift parabola opens downward
when the first axis is above the second axis (8>>7); it
reduces to a pencil of lines when the two axes are

coincident (8=1) and opens upward when the second
axis is above the first (8<y).

W. Miiller ® introduced a third axis which has some
interesting properties. Defining the complex coordi-
nate ¢, as the centroid of the circulation by

dw
ro o (g )
and using equations (25) and (32) one obtains
So—C1=%o+1o
where
1 . 5 .
%Im [R sin a+1—2~ sin (a+2v)]
(63)
b2
Yo~ 5 g %a+B) [R cos a—p-cos (a+2v)]
The equation of the lift vector lines referred to the
origin at M and z axis drawn through M is
. b? sin (a+
T €08 a—y Sin a=gp—r (Z+B (54)
and it may be seen that the point (s, %) satisfies this
equation. The centroid of the circulation then lies on
the lift vectors. By elimination of « from equation
(53) one finds as the locus of (z, o)

220[R cos B—%cos (B—27)]+2y[R sin 8
" ; (55)
+gzsin (B—27)]=F'~p

which is the equation of a line, the third axis, and
proves to be a tangent to the lift parabola. Geomet-
rically, it is the perpendicular bisector of the line FF”
joining the focus to the point of intersection of the
first axis with the circle. (Fig. 18.)

The conformal centroid of the contour.—It has
already been seen that the point A has special inter-
esting properties. The transformation from the air-
foil to the circle having M as center was expressed in
the normal form and permitted of a very small e(p)
curve. (See p. 188.) It was also shown that the
moment with respect to M is simply proportional to
the sine of twice the angle of attack with respect to
the second axis. We may note, too, that in the pres-
entation of this report the coordinate of M, ¢=¢

27
=§ J ve**do, 1s a function only of the first harmonic
0

of the Y(p) curve.

We shall now obtain a significant property of M
invariant with respect to the transformation from air-
foil to circle. We start with the evaluation of the
integral

dz
S 8|4 as

1 Reference 7, p. 168. Also Zs. flir Ang. Math. u. Mech. Bd. 3 8. 117, 1023,

Afrfoils having the same first, second, and third axes are alike theoretically in
total lift properties and also In travel of the center of pressure, 1. e., they bave the
same lift parabola.
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where A is the airfoil contour, ds the differential of

arc along 4, and |g—§ , as will be recalled, is the magni-

fication factor of the transformation {=f(z) mapping
airfoil into circle; i. e., each element ds of A4 when

gives dS the differential of arc in the
plane of the circle, i. e., |dz|.

magnified by I%’;

Then we have,

{" t(z) |dz| and by equation (25),

=/ cl+z+ L5+ )ldzl

27 a
= .(/; cl+Re‘9’+R‘e“?+ L N .>Rd<p

=2TR C1
me, fdS=c ,/‘Idz ds
1 2 dy

Then
S rl ,ds

£ [gle

The point M of the airfoil is thus the conformal cen-
troid obtained by giving each element of the contour
a weight equal to the magnification of that element,
which results when the airfoil is transformed into a
circle, the region at infinity being unaltered. It lies
within any convex region enclosing the airfoil contour.?

ARBITRARY AIRFOILS AND THEIR RELATION TO
SPECIAL TYPES

The total lift and moment experienced by the air-
foil have been seen to depend on but & few parameters
of the airfoil shape. The resultant lift force is com-
plotely determined for a particular angle of attack by
only the radius R and the angle of zero lift 8. The
moment about the origin depends, in addition, on the
complex constants ¢; and a; or, what is the same, on
the position of the conformal centroid A and the focus
F. The constants ¢, and a, were also shown (see foot-
note 20) to depend only on the first and second har-
monics of the e(p) curve. Before studying these
parameters for the case of the arbitrary airfoil, it will
be instructive to begin with special airfoils and treat
these from the point of view of the “conformal angular
distortion” [e(p)] curve.

Flow about the straight line or flat plate—As a
first approximation to the theory of actual airfoils,
there is the one which considers the airfoil section to
be a straight line. It has been seen that the line of
length 4a is obtained by transforming a circle of radius

(56)

2
a, center at the origin, by §'=z+g . The region ex-

8 Of. P, Frank and K. Lowner, Math, Zs. Bd. 3, S. 78, 1019. Also reference 5,
p. 1486,
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ternal to the line 4¢ in the { plane maps uniquely into
the region external to the circle |z|=a. A point Q of
the line corresponding to a point P at ae? is obtained
by simply adding the vectors a(e®+¢~%) or completing
the parallelogram OPQP’.

For ¥=0, we have from equation (6)
2=2a cosh ¢ cos §=2a cos §
y=2a sinh ¢ sin §=0
Then the parameters for this case are R=a, 8=0,
a=a* (i. e., b=a, v=0), and M is at the origin O.
Taking the Kutta assumption for determining the
circulation we have,
the circulation, T=4zaV sin «
the 1ift, L=4zapV?sin «

moment about M, My =27a*0V?sin 2« (57)

2
position of Fis at 2z =¢; +% P =g

Since =1+, we know that the travel of the center of
pressure vanishes and that the center of pressure is at

£ a 2a

FIGURE 189.

F or at one-fourth the length of the line from the lead-
ing edge. The complex flow potential for this case is

W)=~ VE@)e+ 25 e+ log 26)  (58)

—
where z(_()=g‘ i\/ <£ —a?is the inverse of equation

(6). Since Y¥(p)=e(p)=0 for this case, equation (39)
giving the velocity at the surface reduc% to

sm<§+ oz)
r=7| —~ 2
sin§

and by equation (41) v= V(s%uf_'_—a) for T'=0.

for T'=4maV sin q,

Flow about the elliptic cylinder.—If equatlon (5)
is applied to a circle with center at the origin and
radius ae¥, the ellipse (fig. 19)

S SN s =1
(2a coshy)?’ (2¢ sinhy)?

is obtained in the { plane and the region external to
this ellipse is mapped uniquely into the region external
to the circle. The same transformation also trans-
forms this external region into the region internal to
the inverse circle, radius ae~¥. We note that a point




e e d o - - o
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Q of the ellipse corresponding to P at ae¥t? is
obtained by simply completing the parallelogram
OPQP’ (fig. 19) where P’ now terminates on the circle
ae~¥. The parameters are obtained as B=as?¥, §=0,
a1 =as, M is at the origin O. Then, assuming the rear
stagnation point at the end of the major axis,

I=47rae*V sin
L=4zpae*V? din «
M;r=2762pV? sin 2«

Since B=1, the point F is the center of pressure for all
angles of attack and is located at zr=ae™¥ from O or a
distance ae? from the leading edge. The quantity

EF _ ae¥
EE " 2a(e+e %)

represents the ratio of the distance of F* from the
leading edge to the major diameter of the ellipse.

The complex flow potential is identical with that
given by equation (58) for the flat plate, except that
the quantity a? in the numerator of the second term is
replaced by the constant a’*. Since ¥ () =constant,
() =0 and equation (39) giving the velocity at each
pomt of the surface for a stagnation pomt at end of
major axis becomes

_cosh ¢+ sinh ¢_1
Zcosh ¢ (1+ta.nh:,l/)

V[sm (¢o+ @) +sin aje? (59)
+/sinh *y+sin?p
and for zero circulation by equation (41)
pe= 7 S0(o T a)e? (597

2+ sin?p
Circular arc sections.—It has been shown that
2
the transformation §‘=z+% applied to a circle with

center at 2z=0 and radius a gives a straight line in the
¢ plane, and when applied to & circle with center z=0
and radius different from a gives an ellipse in the ¢
plane. We now show that if it is used to transform a
circle with center at z=1s (s being & real number) and
radius +/a®+ &3, a circular arc results. The coordinates
of the transform of the circle ' in the { plane are given
by equation (6) as
2=2a cosh ¥ cos §
=2¢ ginh ¢ sin 8

A relation between ¥ and 6 can be readily obtained.
In right triangle OMD (fig. 20), OA =3, angle OMD =34,
and recalling that the product of segments of any
chord through O is equal to @®, OD=% (OP—0P;)=

(e¥—e¥) . . .
a——5——>=@gsinh . Then ssin §=a sinh ¢, and from

2
the equation for ¢, y=2¢sin%. Eliminatingboth #and

¥ in equation (6) we get

#+((%5)) -(5)

(60)
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the equation of a circle; but since y can have only
positive values, we are limited to a circular arc. In
fact, as the point P in Figure 20 moves from A4’ to 4
on the circle, the point @ traverses the arc 4,” 4, and
as P completes the circuit A4’ the arc is traversed in
the opposite direction. As in the previous cases, we
note that the point @ corresponding to either P or to
the inverse and reflected point P’ is obtained by com-
pleting the parallelogram OPQP’. We may also note

y B Curve ae¥+i®

FIGURE 20.—The circular are airfoll

that had the arc A4;4; been preassigned with the
requirement of transforming it into the circle, the most
convenient choice of origin of coordinates would be
the midpoint of the line, length 4a, joining the end
points. The curve B then resulting from using trans-
formation (5) would be a circle in the 2’ plane, center
at 2/ =1s, and the theory developed in the report could
be directly applied to this continuous closed B curve.

F1GURE 21.—Discontinuous B curve

Had another axis and origin been chosen, e. g., as in
Figure 21, the B curve resulting would have finite
discontinuities at A and A’, although the arc 4,4,’ is
still obtained by completing the parallelogram OPQP’.

The parameters of the arc A,4,’ of chord length 4a,

and maximum height 28 are then, R=-/a+s%,
B==tan"~2- The focus F may be constructed by
erecting a perpendicular to the chord at A’ of length ¢
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and projecting its extremity on 34A4’. The center M’
of the arc also lies on this line.

The infinite shest having the circular arc as cross
section contains as a special case the flat plate, and
thus permits of a better approximation to the mean
camber line of actual airfoils. The complex flow poten-
tial and the formulas for the velocity at the surface
for the circular arc aré of the same form as those
given in the next section for the Joukowsky airfoil,
where also a simple geometric interpretation of the
parameters ¢ and ¢ are given.

Joukowsky airfoils.—If equation (5) is applied to
a circle with center at z=s, s being a real number, and
with radius R=a+s8, & symmetrical Joukowsky air-
foil (or strut form) is obtained. The general Joukow-
sky airfoil is obtained when the transformation

2
;‘=z+g'z- is applied to a circle C passing through the

point z=—a and containing z=a (near the circum-
ference ususally), and whose center M is not limited to
either the z or y axes, but may be on a line O3f inclined
to the axes. (Fig. 22.) The parametric equations of
the shape are as before

z=2a cosh ¢ cos § ©

9/=2a sinh ¢ sin § )
Geometrically a point @ of the airfoil is obtained by
adding the vectors ae¥t% and ae¥~% or by completing
the parallelogram OPQP’ as before, but now P’ lies on
another circle B’ defined as z=ae¢ ¥~%, the inverse
and reflected circle of B with respect to the circle of
radius a at the origin (obtained by the transformation
of reciprocal radii and subsequent reflection in the z
axis). Thus OP-Q0P’=a? for all positions of P, and
OP’ is readily constructed. The center Af; of the
circle B’ may be located on the line AN by drawing
OM; symmetrically to OM with respect to the y axis.
Let the coordinate of AL be z=1is-+de®, where d, s,
and B are real quantities. The circle of radius e, with
center M, at z=4s, is transformed into & circular arc
through A4;4,’ which may be considered the mean
camber line of the airfojl. At the tail the Joukowsky
airfoil has a cusp and the upper and lower surfaces
include a zero angle. The lift parameters are

B=.d+s+d, ﬂ=-ta.n”‘(—i» Gy =a*=p%" or b=a and

v=0. Since y=0, the second axis has the direction of
the = axis. The focus F is determined by laying off

3
the segment MF=% on the line MA’. This quantity,

it may be noted, is obtained easily by the following
construction. In triangle MD(’, MD=R, M’ and
MCQ are made equal to g, then CF drawn parallel to

2
D(’ determines MFn%- The lift parabola may be

now determined uniquely since its directrix AM and
focus F' are known.
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It may be observed that if it is desired to transform
a preassigned Joukowsky profile into & circle, there
exists & choice of axis and origin for the airfoil such
that the inverse of fransformation (5) will map the
airfoil directly into a circle. This axis is very approx-
imately given by designating the tail as (—2a, 0) and
the point midway between the leading edge and the
center of curvature of the leading edge as (4 2a, 0) the
origin then bisecting the line joining these points.

FI1GURE 22.—The Joukowsky alrfofl

The complex potential flow function for the Jou-
kowsky airfoil is

w(©) == V] gO)ete+

where

?;ga ]+§—ilogg(s“)

By equation (39) we have for the velocity at the
surface

(61)

Visin(a-+g)+sin(et §))(1+35 ) e

- —\/(sinh ’¢+sin’0)(1 +<§_§>,>

This formula was obtained by transforming the flow
around Cinto that around B and then into that around
A. Since we know that B is itself a circle for this
case, we can simply use the latter two transformations
alone.

We get

_ Visin (a+¢) +sin (a+B)]e*

’ Jeinh '+ sm%

(62}

That these formulas are equivalent is immediately
evident since the quantity

e\‘“‘*<1+g-g

is unity being the ratio of the magnification of each
arc element of C to that of B. (Ses eq. (37).)



200

A very simple geometrical picture of the parameters
¢ and ¢, exists for the cases discussed. In Figure
23 the value of € or p—8 at the point P is simply

FIGURE 23.—(eometrical representation of « and ¢
for Joukowsky alrfoils

angle OPM, i. e., the angle subtended at P by the
origin O and the center M. The angle of zero lift is
the value of ¢ for 6=7; i. 6, exan=F=0TM. In
particular, we may note that e=0 at S and S; which
are on the straight line OM. Consider the triangle
OMP, where OP=ae¥, MP=R=ae*, %':p, angle
OPM=¢; also, MOX=5§, MOP=0—5, OMP=x—
(¢—358). Then by the law of cosines, we have’
e¥—¥0=1+42p cos(p—8) +p°
or .

V—vomj log (1+2p cos(o—8) +47  (63)

=3 (=11 s nled) .
z(=1) P
and by the law of sines"

___psin(e—39)
(1+2p cos(p—3) +p°)"

sin e=
or

-1 P Si(p—d)
e(e) = tan lfl-p coq;(qo—ﬁ)

— 5 (_ l)u—lmn n(ﬂp_a)pu (64)
1 n

We see that, as required, the expressions for the “radial

distortion” ¥(p) and the ‘‘angular distortion” e(p)

are conjugate Fourier series and may be expressed as

a single complex quantity

(¥~ o) '"7:5'=?
=log [1+ pe~t*—2]

It is evident also that the coefficient for n=1 or the
“first harmonic term”’ is simply pe® and a translation
by this quantity brings the circle ¢ into coincidence
with B as was pointed out on page 187.

(_ 1 n—-1
n

pﬂe—ﬁ(p—ﬂ)
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’ 2%
The constant ,= 2% S Yde is readily shown to be
0

invariant to the choice of origin 0, as long as O is
within B. We have

1211' 127"1

2—T6/‘¢dqo-=§;rbf§ log (1+2p cos (¢—38) +p7)6*¥de

2% ©
1 _ {\n=1€08 n(p—8) , _
=2—r(’)f<%+? (—1) 1—-——,” p)dqp Yo

M’]M 7

FIGURE 24.—The Joukowsky airfoll p=0.10, §=45°

Figure 24 shows the Joukowsky airfoil defined by
p=0.10 and §=45° and Figure 25 shows the ¥(0),
¥(o), 2(0), and e(p) curves for this airfoil.

.2 _l_l l
&), | |emw
.1 » v
ad
0 A "\\
- / by
-/ N%‘ ez
.20
.15p - =
.10 St 2
(9)-P,~1-¥(p) A
.05 Ay ¥4
0 T
-05
=% g2 - 3 2n
2 2

FI1GURE 25.—The i(9) and ¥(6) curves for the alrfoil in Figure 24

Arbitrary sections.—In order to obtain the lift
parameters of an arbitrary airfoil, & convenient choice
of coordinate axes is first made as indicated for the
Jonkowsky airfoil and as stated previously. (Page 181.)
The curve resulting from the use of transformation ()
will yield an arbitrary curve ae¥*? which will, in
general, differ very littla from a circle. The inverse
and reflected curve ae~¥—* will also be almost circular.
The transition from the curve ae¥*? to a circle is
reached by obtaining the solution e(¢) of equation
(13). The method of obtaining this solution as
already given converges with extreme rapidity for
nearly circular curves.
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The geometrical picture is analogous to that given
for the special cases. In Figure 26 it may be seen that
a point @ on the airfoill (N. A. C. A. -M86) corre-

FIGURE 26.—The N. A. C. A. —MS8 alrfoil

sponding to P on the B curve (or P’ on the B’ curve)
is obtained by constructing parallelogram OPQP’.
The ¢(0) and €(¢) curves are shown in Figure 27 for
this airfoil. The complex velocity potential and the
expression for velocity at the surface are given respec-
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The method used for arbitrary airfoils is readily
applied to arbitrary thin arcs or to broken lines such
as the sections of tail surfaces form approximately. In
Figure 26 the part of the airfoil boundary above the «
axis transforms by equation (5) into the two discon-
tinuous arcs shown by full lines, while the lower
boundary transforms into the arcs shown by dashed
lines. If the upper boundary surface is alone given
(thin airfoil) we may obtain & closed curve ae¥+# only
by joining the end points by a chord of length 4a and
choosing the origin at its midpoint.?® The resulting
curve has two double points for which the first deriva-
tive is not uniquely defined and, in general, it may be
seen that infinite velocities correspond to such points.

At a point of the ¥(6) curve corresponding to a
mathematically sharp corner, there exist two tangents,

that is, the slope é% is finitely discontinuous. The

N :
_ / \\
€ P
// g(9) Cur‘ve}\\
0 - e
\
// —l
\\-—/
=/ s
s~ i . !
g ™~ ‘/
\\/—1,7{8) Curve /
N
//
g 5 / 1.5 2 2.5 3 3.5 4 45 5 55 6 2
Nose Upper surface Tail Lower surface Mose
8

FIGURE 27.—The ¥(6) and ¢(f) curves for the N. A. C. A. —1MI6 airfoll

tively by equations (83) and (39).
eters are

The lift param-

T
B=ae¥y, B=erua (a80=), Mis atz=c,= 2 /" y(p)eede
0

and Fis at z=cl+% where a, is given in equation (25%).

The first and second axes for the N. A. C. A. -M6
airfoil are found to coincide and this airfoil has then a
constant center of pressure at F. Figures 28 (a) to
28 (1) give the pressure distribution (along the z axis)
for a series of angles of attack as calculated by this
theory and as obtained by experiment.”* Table I
contains the essential numerical data for this airfoil.

# The experimental results are taken from test No. 323 of the N. A. O. A. variable-
density wind tunnel. 'The anglé of attack « substitnted in equation (39) has been
modified arbitrarily to take account of the effects of finite span, tummel-wall inter-
ference, and viscosity, by choosing it 8o that the theoretical 1ift is about 10 per cent
more than the corresponding experimental value. The actual values of the lift
coefliclents are given In the figures.

40768—34———14

curve &) must have an infinite slope at such & point
for according to a theorem in the theory of Fourier
series, at a point of discontinuity of a F. S., the con-
jugate F. S. is properly divergent. This manifests
itself in the velocity-formula equation (39) in the fac-

tor (1 +%§> which is infinite at these sharp corners.

For practical purposes, however, a rounding of the
sharp edge, however small, considerably alters the slope

de(0) 4 this point.

de

Ideal angle of attack.—A thin airfoil, represented
by a line arc, has both a sharp leading edge and a
sharp trailing edge. The Kutta assumption for fixing
the circulation places a stagnation point at the tail for
all angles of attack. At the leading edge, however,

3 Nots that g(6+x) = —§(8) for this case.
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FIGURES 28 a to e—Theoretical and experimental pressure distribution for the M6 alrfoil at varlous angles of attack
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the velocity is infinite at all angles of attack except
one, namely, that angle for which the other stagnation
point is at the leading edge. It is natural to expect
that for this angle of attack in actual cases the fric-
tional losses are at or near & minimum and thus arises
the concept of “ideal’” angle of attack introduced by
Theodorsen (reference 8) and which has also been
designated ‘“angle of best streamlining.”” The defini-
tion for the ideal angle may be extended to thick
airfoils, as that angle for which a stagnation point
occurs directly at the foremost point of the mean
camber line.

The lift at the leading edge vanishes and the change
from velocity to pressure along the sirfoil surface is
usually more gradual than at any other angle of attack.

Theoretical

(Average R N. =3 x/0¢)

ar= /5°
G =105

v
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of this function, one can determine airfoil shapes of
definite properties. The e(p) function, which we have
designated conformal angular distortion funetion, will
be seen to determine not only the shape but also to
give easily all the theoretical aerodynamic character-
istics of the airfoil.

An arbitrary e(p) curve is chosen, single valued, of

period 2w, of zero area, and such that — « =< %q—i =1.

These limiting values of g—; are far beyond values

yielding airfoil shapes.® The ¥ (e) function, except for
the constant ¥, is given by the conjugate of the
Fourier expansion of e(¢) or, what is the samse, by
evaluating equation (14) as a definite integral. The

Experimental

o Upper siurfoce
x Lower surface
{Average R.N. =3x=109

Theorefical

a =/8°
G =226

20+

FI1GURES 28 k to L—Theoretical and experimental pressure dlstr{bution_m for the M6 alrfoil at various angles of attack

The minimum profile drag of airfoils actually occurs
very close to this angle. At the ideal angle, which we
denote by «r, the factor [sin (¢+¢)+sin (a+g)] in
equation (39) is zero not only for 8=x ore=er=8 but
also for 6=0 or e=e¢y. Wo geot
artey=—(arter) or
- (€N+ GT)
‘)

<

(65)

ar

CREATION OF FAMILIES OF- WING SECTIONS

The process of transforming a circle into an airfoil is
inherently less difficult then the inverse process of
transforming an airfoil into a circle. By a direct appli-
cation of previous results we can derive & powerful and
flexible method for the creation of general families of
airfoils. Instead of assuming that the ¢ () curve is
preassigned (that is, instead of a given airfoil), we
assume an arbifrary ¥(e) or e(p) curve ® as given.
This is equivalent to assuming as known a boundary-
value function along a circle and, by the proper choice

8 Bubject to some general restrictions given in the next paragraph.

constant ¥, is an important arbitrary # parasmeter
which permits of changes in the shape and for a certain
range of values may determine the sharpness of the
trailing edge.

'We first obtain the variable 8 as 6 (¢) =¢—€ (p), 80
that the quantity ¥ considered as a function of 4 is
¥ @) =v¢[e )]. The coordinates of the airfoil surface

are then
z=2a cosh ¢ cos §
. . (6)
y=2a sinh ¢ sin 6.

" 1 For common alrfofls, with a proper cholee of orlgin, lg—;l <<0.30.

1 For common alrfolls ¥y I3 usually between 0.05 and 0.15. The constant yo is
not, however, completely arbitrary. e have sasn that the condition givon by
equation (22) is suficient to yleld a contour freo from double points in the 2 plane.
e may also state the criterlon that the inverse of equation (5) appled to this
contour shsll yisld & contour In the { plane free from double points. Consider the
fanction ¥ (8 for 8 varying from 0 to » oaly. The negative of each value of ¥(6) In
this range is considered associated with —8. 1. e., x=<6=2x. Designate the function
thus formed from =0 to 2r by ¥(6)*. Then ¥(¢)* represents a lne arc in tho
plans, L. e., the upper surface of a contour. [3es footnote 25.] Then for the ontiro
contour to be free from double polnts it i3 necessary that the lower surface should not
cross the upper, that s, the originat ¥(8) curve for 6 varylng from » to 2x must not
cross below ¥(6)".
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The velocity at the surface is
[sin (@+ ¢) +sin (a+ )] e¥

\/(smh %+ sin? ) [(1—— +(g )]

and is obtained by using equation (37’) instead of (37)
in deriving (39). The angle of zero lift 8 is given by
o (@)=0+%() for 6=x,i. 0., o (w) =7+ 8.

The following figures and examples will make the
process clear. We may first note that the most natural
method of specifying the € (¢) function is by a Fourier
series expansion. In this sense then the elementary
types of e(p) functions are the individual terms of
this expansion.

(39
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29(h) to 29(t). In particular, the second harmonic
term may yield S shapes, and by a proper combina-
tion of first and second harmonic terms, i. e., by a
proper choice of the constants 4;, A;, 8, and & in the
relation

€(p) =4 sin (p—8))+ 4; sin (20—8)

it is possible to fix the focus F of the lift parabola as
the center of pressure for all angles of attack.® The
equation
e(p) =0.1 sin (¢—60°)+0.05 cos 2¢
represents such an airfoil and is shown in Figure 29(u).
The general process will yield infinite varieties of
contours by superposition of sine functions; in fact, if

;[f!a(}/ sing ;éjijz%gﬁ Sinfp-459) ?ijcz;(}/ sin 3p
= +— —> B—— ; —-
%srgac}/ sinfp-157 ;Lso_/a%smfp-ﬁ 7 ;ﬁao/./ sinf3p-459
=0,/ sinfp-309 =0./ sinfp-45% =0./ sil 0%,
?‘,p-ja// sinfp ‘ 7 ?,(ﬂ}a/ A Slnf? 7 %{/ py sinf3p-90°)
c) , M—\ @
L _— T J +
- j 9 =0./5 sinfp-45° =0.075 sin(4
;‘[ﬂa 0/./ sinfp-457 %%/5 sinfp-459 ?i?:{ oy sin(4g)
IR S—— —_—
€ p};O/./ sinfp-609 24 /-0/ sinép c(¢/-0075 sinf4p-459)
?é) : \ : 3 & >_|._<.< B_ zﬁ") ; —
il g5y oo S5 <
2 — e :
k/’;rﬁ \ ! C

,Lgv}-O . sinf2p-80°9

0./ sinfp-90° '

97/5(3./ Sinfp-607-.05 sinf2p-907)

, A

N

me 29.—Alfrfofls created by varying e(p)

Consider first the effect of the first harmonic term
¢ (p) =4, 8n (p—8;), Yo=c

In Figures 29(a) to 29(g) may be seen the shapes
resulting by displacing §; successively by intervals of
15° and keeping the constants .4,=0.10 and ¥,=0.10.
The first harmonic term is of chief influence in detéer-
mining the airfoil shape. The case e(p)=0.1 sin
(¢ —45°) is given detailed in Table II. (This airfoil
is remarkably similar to the commonly used Clark Y
airfoil.) The entire calculations are characterized by
their simplicity and, as may be noted, are completely
free from the necessity of any graphmal evaluations or
constructions.

The effect of the second and higher harmonics as
well as the constant ¥, may be observed in Rigures

the process is thought of as a boundary-value problem
of the circle, it is seen that it is sufficiently general to
yield every closed curve for which Riemann’s theorem
applies.

Lanerey MBEMORIAL AERONAUTICAL LABORATORY,
NarroNan Apvisory COMMITTEE FOR AERONAUTICS,
Lawerey Fiewp, VA., November 4, 1932.

8 Thizisaccomplished asfollows: Wessek to determine the constants Ay, A3, &, and
& %0 that 8=, where « Is obtained from equation (25) as a;:-b’c"'n:-a!+c2f—'+c; and

we may note that a?v"o_A‘d" and EﬁWB-A"“" These relations are transcenden-

tal; however, with but a few practice trials, solutions can be obtained at will. Addi-
tion of higher harmonics will yield further shapes having the same center of pressure
Droperties If 8 is kept unchanged.



[ L WU PR

APPENDIX

I. EVALUATION OF THE INTEGRAL.

2w "
o)== g5 f ¥le) cobE5E do a3)
27 ’
_ 172 dy(e) p—¢
= ,6’ do log 5 de (13%)

The function ¥ (p) is of period 2x and is considered
known. (Note that the variables ¢ and ¢’ are re-
placed by 6 and 6’, ¢ and ¢/, ¢ and ¢, etc., in
equation (21) and that the following formula is
applicable for all these cases.)

A 20-point method for evaluating equation (13) as
a definite integral gives

() — 1[%d”’(¢)+al(¢l V) + G — o)
o U=V o @®

where
Y=value of Y(p) at p=¢'+ — 10

v.=value of ¥(o) at p=¢ 1+ 22 10
(m=1,—-1,2,—2,....9 —0).

and the constants a, are as follows: ao=116=0.3142;

a;=1.091; a;=0.494; a;=0.313; a,=0.217; a;=0.158;

as=0.115; a;=0.0884; as=0.0511; and a,=0.0251.
This formula may be derived directly from the

definition of the definite integral The 20 intervals!

’ fp+ to tp+3 » ete.

chosen are ¢ — 35 T to (p+ 50

20
It is only necessary to note that by expanding ¢(p) in
a Taylor series around ¢= ¢’ we get

3 f Wl cob B dome—26 [ (¢>]
o =8 o=¢

where the interval qo —g& to ¢'+s is small. And, in
general,

[ Y 4
3 J ¥(e) cot 90—29—9— de
o1
is very nearly
sin [
— ¥ log qpf
sin £5%

1Reference 2, p. 11, gives a 10-point method result.
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where the range ¢3— ¢ is small and ¢, is the average
value of ¥(p) in this range. The constants a, for the
20 divisions chosen above are actually

sm_ﬂ_Zn +1| -
40
1‘_271,— 1

40

As an example of the calculation of €(f) we may refer
to Table I and Figures 26 and 27 for the N. A. C. A.
—MG6 airfoil. From the () curve (fig. 27) we obtain

the 20 values of ¢ a.nd 4 for 20 equal intervals of 6.

a,=log . +9)

For the airfoil (fig. 26) we get the following values:

Sy 4 B oemey v @
0 (mose) 0.192  0.000 L= 0.040 —0.002
x 185 . 027 L .07  .0B0
2= .12 .000 Bx .07 . 030
3 L1890 —.030 Y 077 .01l
= 174  —.084 1{’—6’ .079 . 000
b .146 —. 095 = .082  .016
> 110 —114 L .00 039
= .077  —.086 B .m Lo;
i .052  —.066 o= 150 . 154
> .041 . 025 2x (nose) .102 . 000
= (tai) .055 . 000

The value of ¢ at the tail (i. e., the angle of zero lift)
is, for example, using formula I

1l =
e=— ;[1—0 X0

+1.091(.049—.041)
+.494(.057—.052)
+.313(.071—.077)
+.217(.077—.110)
+.158(.079 —.146)
4.115(.082—.174)
+.0884(.090—.189)
+.0511(.111—.192)
4.0251(.150—.185)] =.0105
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The value of e for 0-=%» for example, is obtained by

a cyclic rearrangement. Thus,

1l =
e==—;|:m (—.030)

+1.091(.174—.192)
+.494(.146—.185)
+.313(.110—.192) .
+.217(.077—.150)
+.158(.052—.111)
+.115(.041—.090)
+.0884(.055 —.082)
+.0511(.049—.079)
+.0251(.057 —.077)] =.0347

The 20 values obtained in this way form the & (6)
curve, which for all practical purposes for the airfoil
considered, is actually identical with the final ()
curve.

II. NOTES ON THE TRANSFORMATION.

s=f@ =tz 2+ 5+ . L. @)

There exist a number of theorems giving general
limiting values for the coefficients of the transforma-
tion equation (4), which are interesting and to some
extent useful. If {=jf(z) transforms the external
region of the circle C of radius R in the z plane, into
the external region of a contour A in the ¢ plane in a
one-to-one conformal mantier and the origin =0 lies
within the contour A (and f/(«)=1) then the area S
inclosed by A4 is given by the Faber-Bieberbach
theorem as ?

S
S=R27r"nlem

Since all members of the above series term are positive,
it is observed that the area of C is greater than that
inclosed by any contour A in the ¢ plane (or, at most,
equal to the area inclosed by A if A is & circle).

This theorem leads to the following results

lay < R? (2)
le< 2R (b)

Lot us designate the circle of radius B about the
conformal centroid A4 as center as O (i. e., the center
is at {=¢,; this circle has been called the “Grund-
kreis”’ or ‘“basic” circle by von Mises). Then since

l% represents the distance of the focus F from M, the

relation (a) states that the focus is always within C,.
In fact, a further extension shows that if 7, is the radius
of the largest circle that can be inclosed within A4, then

2
F is removed from C, by at least%-

% For detalls of this and following statements see reference 5, p. 100 and p. 147, and
also reference 8, Part IT.
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From relation (b) may be derived the statement that
if any circle within A is concentrically doubled in radius
it is contained entirely within a circle about M as
center of radius 2R. Also, if we designate by ¢ the
largest diameter of A (this is usually the “chord” of
the airfoil) then the following limits can be derived:

These inequalities lead to interesting limits for the
lift coefficient. Writing the lift coefficient as

C.e L
LT KoV
where by equation (45) the lift force is given by

L=4xRpV?gin (a+p)
we have

2rsin (-t B)S Cu=2 sin (a+ §) S drsin (a-+§) (II)

The flat plate is the only case where the lower
limit is reached, while the upper limit is attained for
the circular cylinder only. We may observe that a
curved thin plate has a lift coefficient which exceeds
27 sin (e+B) by a very small amount. In general, the
thickness has a much greater effect on the value of
the lift coefficient than the camber. For common
airfoils the lift coefficient is but slightly greater than
the lower limit and is approximately 1.1X2r sin
(a+B).

Another theorem, similar to the Faber-Bieberbach
area theorem, states that if the equation {=f(z) trans-
forms the internal region of a circle in the z plane into
the internal region of a contour B in the { plane in a
one-to-one conformal manner and f/(0) =1 (the origins
are within the contours) then the area of the circle is
less than that contained by any contour B. This
theorem, extended by Bieberbach, has been used in an
attempt to solve the arbitrary airfoil® The process
used is one in which the area theorem is a criterion as
to the direction in which the convergence proceeds.
Although theoretically sound, the process is, when
applied, extremely laborious and very slowly con-
vergent. It can not be said to have yielded as yet
really satisfactory results.

HI. LOCATION OF THE CENTER OF PRESSURE FOR AN
ARBITRARY AIRFOIL

It is of some interest to know the exact location of
the center of pressure on the z axis as a function of the
angle of attack. In Figure 30, O is the origin, A the
conformal centroid, L the line of action of the lift
force for angle of attack «. Let us designate the

3 Miller, W., Zs. {. angew. Math. u. Mech. Bd. 5 8. 397, 1925.
Hdhndorf, F., Zs. . angew. Math. u. Mech. Bd. 6 8. 265, 1926.
Also references 5, p. 185,
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intersection of L with the z axis of the airfoil as the
center of pressure P.

In the right AONAM we have,
OM=c,=me®=A,+1B,
ON=m cos 6=4,
MN=m sin §=B,

MJ  hy
and in right AJKM, B'l\l=-=gﬁ—-a=-sm .

Then KN - - —~B,

NP=KN tan a==h;, sec «—B; tan «
By equation (48)

and

Mu b? sm2(a+ )
“L T2R mn(a+ﬂ’;

Then the distance from the origin to the center of
pressure P is

OP=0ON+NP=A,—B, tan «
b sin 2 (atq)

TR cos « sin (a+h ()
Liff vector
M
LY
/ - J
()
L— - - x Axis
7] N P \%
LY %) \
SN
I>
()
K )e’c/o,y

FI1GURE 30.—Center of pressure location on the x axis
EXPLANATION OF THE TABLES

Table I gives the essential data for the transforma-
tion of the N. A. C. A. -M6 airfoil (shown in fig. 26)
into a circle, and yields readily the complete theoretical
aerodynamical characteristics. Columns (1) and (2)
define the airfoil surface in per cent chord; (3) and (4)
are the coordinates after choosing a convenient origin
(p. 181); (5) and (6) are obtained from equations (7)
and (8) of the report; (9) is the evaluation of equation
(13) (see Appendix); (10) and (11) are the slopes, ob-

REPORT NATIONAL ADVISORY COMMITTEE FOR AERONATUTICS

tained graphically, of the ¥ against 6, and e against
6 curves, respectively; (12) is given by

<1_|__d_E avo

\/(smh 2¢+m’0)(1+(d"))

where z,bo———— J' ¥ (¢) de and may be obtained graphi-

cally or numencale, column (13) gives ¢p=0+¢. The
velocity v, for any angle of attack, is by equation (39)
»=Vk [sin (a+ ¢) +sin {a+ 6)]

and the pressure is given by equation (3). The angle
of zero lift Bis the value of ¢ at the tail; i. e., the value
of e for ==

Table IT gives numerical data for the inverse process
to that given in Table I; viz, the transformation of a
circle into an airfoil. (See fig. 29.) The function
e(p)=0.1 sin (p¢—45°) and constant ¥=0.10 are
chosen for this case. Then Y(p)y=0.1 cos (p—45°)
-+0.10. It may be observed that columns (11) and
(12) giving the coordinates of the airfoil surface are
obtained from equaftions (6) of the report. Column
(13) is given by

e¥o

e | (BT )]

and the velocity at the surface is by equation (39")
v="VEk [sin (a+¢)+sin (e+ )]
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TABLE I
N. A. C. A—MS6
UPPER SURFAOCE
a@ di
Pt Tamte | = v | smw femhy || v . @ | @ | B | emoke
o I
0 0 2. 037 Q. 000 0. 000 0. 0373 0. 000 0.162 —0. 0457 0. 000 0.085 - 6.280 -2 87
L25 .97 1.088 . 0708 . 0485 L0341 217 184 —. 0276 —. 010 . 080 4.249 10 52
2.50 2,81 1.938 .1135 0041 . 0342 .312 .184 —. 0205 .009 .080 3.368 18 41
80 4.03 1. 836 .163 . 187 . 0354 . 447 .187 - . 022 .080 2.557 25 4
7.5 4.04 L 734 +200 <275 . 0363 . 561 . 189 —. 0015 .022 .080 2.163 31 31
10 571 1633 <231 . 367 . 0373 . 640 .192 . 0063 .020 085 1929 37 38
15 6.82 1.431 276 507 . 0375 . 702 193 . 0188 ~. 008 095 1660 46 27
2) 756 L1229 .305 . 638 . 0366 923 190 . 0310 —.031 .100 1.408 54 38
30 822 .825 .332 .85 . 0330 L 153 .181 . 0549 —. 066 .107 1324 69 11
40 8.03 .421 325 . 957 . 0276 1.361 .185 .0n7 - .088 1.220 82 7
50 7.26 .017 <203 1. 000 . 216 L& . 146 . 0356 —.100 .080 1.168 M 55
60 6.03 - 244 . 063 . 0154 1764 124 . 0932 —.100 025 1152 106 25
70 4.58 —. 791 185 . 845 .0101 1976 .100 . 0020 —.100 —. 020 1.167 118 28
80 3.08 —L 195 124 . 645 . 0059 2,209 077 . 0628 - —. 056 L302 131 19
20 1.55 —L 5689 . 063 .363 . 0027 2.495 .052 . 06817 —_ —.085 1. 687 146 30
95 .88 —1.801 .38 191 . 0018 2. 630 040 . 0410 - —. 030 2.340 156 28
100 .26 —2.003 . 000 . 000 . 3.142 .05 . 0106 . 000 ~—. 027 10.83 180 38
LOWER SURFACE
0 0 2037 0. 000 0. 000 0.0873 8.283 0.192 —0. 0457 0. 000 0.085 6.280 -2 37
126 L76 1688 | —.071 L0425 0297 6. 076 172 —. 0781 133 120 4.0615 -—16 21
2.50 2.20 1.938 | —. 039 L0844 L0234 5.980 .162 —. 0860 .160 .050 3.5256 —21 43
5.0 2.73 L85 | —. 110 173 . 0176 5. 856 132 - .133 —.010 2.510 —29 36
7.6 3.03 L7344 | —122 259 . 0144 5. 749 .120 - 109 —. 045 2,025 —35 28
10 3.24 L6333 | —. 131 342 .0125 5. 859 .12 -. 0811 . 030 —. 057 L764 —40 24
15 3.47 1.431 | —.140 LA . 0099 5. 503 . 099 —. 0723 . 069 —. 067 1.468 —48 44
20 3.62 1229 | —.148 .628 . 0085 5.371 092 - 057 - 1L.307 —~56 54
30 37 .825 | —.153 . 831 . 0070 5.136 . 084 —. 0518 025 - 1158 —68 39
40 3.90 .421 | —. 158 . 858 . 0085 4.924 .081 —. 0421 . 008 - 1.008 —80 17
50 3.4 L017 | —.159 L 000 . 0063 4. 712 .079 —. (0350 . 000 -, 029 1.081 —91 59
60 a.82 -. —. 164 . 983 . 0062 4,518 . 0785 —. 0310 .010 —. 013 1120 —102 53
70 3.48 ~. 781 | —. 141 846 . 0058 4.307 .078 - .019 . 000 L.311 —114 55
80 2.83 —L105 | —.114 . 045 . 0050 4.074 .071 _ .038 —. 011 1.370 —128 14
80 L77 —L5609 | —.072 .363 . 0035 3.788 . 059 - 044 —. 040 L769 ~—144 18
a5 L.08 —L801 | —. .101 . 0025 3.504 . 050 —. 0140 . 020 —. 067 2 368 —1564 &0
100 .26 —2.003 . 000 . 000 . 0030 3.142 . 056 . 0105 . 000 —. 027 19.83 —179 24
TABLE II
e(p)=0.18In (p—45°) ¢0o=0.10 Pmid(x)=0.0357=3° 47
UPPER SURFACE
i § d ap
« v ge cosh ¢ | sinhy cos 0 sné z £ E
Degrees| Radlans Radians | Degrees de dg 2 2
(-l
0 0.0000 | —0.0707 Q. 0707 43 Q. 1707 0. 0707 Q. 0707 1.0148 0.1715 0. 9975 1.0121 0. 0121 6. 3041
1] . 0873 - . 1516 8 41 .1768 . 0768 . 0643 10156 1776 . 9885 .1510 1. 0039 . 0258 5.1216
10 . 1745 —. 0574 . 2319 13 17 . 1819 .0819 . 0574 1.0166 .1828 97383 . 2288 . L0420 4. 0960
15 . 2618 - .3118 17 52 . 1866 . 0866 . 0500 1.0175 . 1877 . 9518 . 3088 . 0685 .0576 3.3602
20 . 3491 —_ . 3914 2228 . 1608 . 0908 .43 1.0182 .1618 L9243 . 3816 JB411 .0732 2.8421
25 . —_ . 4705 28 57 L1840 . 0940 . 0342 1. 0189 . 1852 . 8914 .4532 . 9082 . 0385 2.4704
30 . —. 02560 . 5405 31 29 .1988 . 0866 . 0259 1.0194 . 1979 . 8528 . 5223 . 8693 L1034 21892
35 . 6109 —. 0174 . 6283 380 . 1985 . 0986 . 0174 1.0198 .1998 . 8090 . 5878 . §250 L1174 1.9746
45 . 7854 . 0000 . 7854 450 . 2000 . 1000 . 1. 0201 2013 L7071 L7071 L7213 1423 1. 6680
55 . 9589 .0174 . 9425 540 .1985 . 0986 —. 0174 1.0188 i . 5878 . 8090 . 5004 . 1616 1. 4709
70 L2217 0423 1174 67 36 . 1008 . 0906 —. 0423 1.0182 .1018 .3813 L9244 . 3882 1773 12359
80 3963 . 0574 1.3389 76 43 .1819 . (819 —. 0574 1, 0166 . 1824 . 2208 . 9733 . 2336 177 1.2133
90 L 5708 . 0707 1. 5001 85 57 L1707 . 0707 —. 0707 1. 0148 . 1716 . 0708 . 9975 .0718 .1711 11717
100 17463 .0819 1. 6634 95 18 L1574 .0674 —. 0819 1.0124 . 1581 —_ . 9957 - . 1574 1.1588
110 19190 . 0908 1.8293 104 49 . 1423 .0423 —. 0006 1.0101 .1428 —. 2567 .9368 - . 1381 1. 1756
125 2.1817 . 0985 2.0832 119 22 .1174 . 0174 - 1. 0009 177 - 8715 - .10268 1.2727
135 2. 3562 . 1000 2.2562 129 16 . 1000 . —. 1000 1. 0050 .1002 —_ T2 - L0776 1. 4088
150 2, 6180 . 0966 2. 5214 144 28 0741 | —. - 1. 0028 L0742 —. 8138 . 5812 —. 8161 L0431 1. 8306
160 2.7025 . 0900 2.7019 164 48 0577 | —. -— 1.0017 . 0577 —. 9048 . 4258 - . 0246 2.4584
170 2, 9671 . 0819 2. 8852 165 19 L0428 | —. 0574 —. 0819 1. 0009 . 0428 —. 9673 . 2538 —-. .0108 4.0498
180 3,1416 . 0707 3.0708 | -~ 176 67 0203 | —.0707 - 1. 0004 . 0233 —. 9976 . 0703 - . 0021 13.4411
LOWER SURFACE
1} 0.0000 | —Q.0707 0. 0707 43 0. 1707 0.0707 . 0707 1. 0146 0.1715 0.6975 0.0703 1.0121 0.0121 6. 3041
—=b —. 0373 -, 0766 —. 0107 -0 37 . 1643 . .0768 1.0135 . 1650 . —. 0103 1.0134 —. 0018 7.1236
=10 —. 1745 —. 0819 —. 0928 —5 18 L1574 . 0574 . 0819 10134 . 1581 . 9957 —. 0921 1. 0030 —. 0148 6. 3827
—156 —. 2818 - —. 1752 -10 32 . 1500 . 0300 . 0886 10113 . 1508 . G847 —.1742 . 9358 - 5.0333
—20 —. 3401 - - —14 49 . 1423 L0423 . 0808 1.0101 . 1428 . 9868 —. 25657 .9768 —. 0385 3.9225
—25 —.4363 - -_ —19 37 1342 .0342 . 0840 1. 0080 . 1348 . 9420 - . 9505 —. 0452 3.1489
—30 —, 5236 — - —21 23 . 1259 . 0259 . 0080 1. 0070 . . 9102 —. 4142 L0174 —. 0523 2 6077
—35 —, 6103 — —. 5124 -~29 21 1174 .0174 . 0985 1. 0069 177 .8716 —. 4901 8776 —_— 2203
—45 —, 7854 —. 1000 —, 6854 —39 16 . 1000 . . 1000 1. 0050 . 1002 . T742 —. 6329 . 7781 - 1.7161
—b5 —, 9599 - —. £614 —49 21 L0826 | —.0174 . 0985 1. 0034 . 0827 . 8514 —. 7687 . 6536 - 14168
=70 | —-L217 - —1.1311 —64 0677 | —. 043 . 0806 1. 0017 . 0577 . 42358 —_— .4235 —. 0522 1.1650
—80 | —L3863 —. 0810 | —L3144 —75 19 L0426 | —. 0574 . (819 1. 0009 .0428 +2535 —. 9673 . 2537 - 1.0763
—00 | —L1 5703 —.0707 | —L&001 —85 57 0293 | —.0707 . 0707 1. 0004 . 0293 . 0708 —. 99756 . 0706 - 1.2
—100 | —1.7453 —. 0574 | —~L —98 L0181 | —.0819 . 0574 1. 0002 . 0181 —. 1170 —. 9931 —=. 1170 —. 0180 1. 0270
—110 | —1.9190 —~. 0423 | —L8776 —107 3 . - . 0423 1. 0000 . —. 3021 _ —. 3031 —. 0090 1.0818
—125 | —2. 1817 —. 0174 | —2.1643 —124 1 L0015 | —.0985 . 0174 1. 0000 . 0015 —. 5594 —. 8289 —. 5504 —. 0012 1.2138
—135 | —2.3562 L0000 | —2.3562 —135 0 .0000 | —.1000 . 0000 1 0000 . 0000 - —. 7071 —. 7071 . 0000 1.4209
—150 | —2.6180 L0250 | —2.6439 —151 29 L0034 | —, —. 0359 1. 0000 . 0034 - —, 4774 —_ —. 0018 2.1108
=160 | —2.7925 L0423 | —2.8348 —162 25 0084 | —. —. 0423 1. 0000 . 0094 —. 9533 —. 3021 - —. 0028 3.3501
=170 | —2.8671 L0574 | —8.0246 ~173 18 .0181 | —.0819 —. 0574 1. 0002 . 0181 - —. 1167 —. 0034 —. 0021 8 6641
—180 | —3.1416 0707 | —3.2123 —184 3 . - - 1. 0004 . 0203 —. 9975 . —. 9979 -+. 0021 13.4411




