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THE PROPER COMBINATION OF LIFT LOADINGS FOR LEAST DRAG
ON A SUPERSONIC WING!

By Freperick C. GRANT

SUMMARY SYMBOLS
Lagrange’s method of undetermined multipliers is applied to A loading strength parameter
the problem of properly combining lift loadings for the least b span
drag at a given lift on supersonic wings. The method shows | local chord
the interference drag between the oplimum loading and any Cy drag coefficient
loading at the same lift coefficient to be constant. This is an Ch,: drag coefficient of ith loading
integral form of the criterion established by Robert T'. Jones for Chyis drag coefficient of interfercnce between 7th and jth
optimum loadings. . component loadings
The best combination of four loadings on a delta wing with o, lift coefficient
subsonic leading edges is calculated as a numerical example. Cyys lift, coefficient of ith loading
The loadings considered have finite pressures everywhere on the c, lifting pressure coefficient
plan form. Through the sweepback range the optimum com- | ar Mach number
bination of the four nonsingular loadings has about the same m tangent of semiapex angle
drag coefficient as a flat plate with leading-edge thrust. N number of loadings
INTRODUCTION n=Bm sweepback-speed parameter
The problem of minimizing the supersonic drag for a given k fu.nctlons of 6 and n (sce appendix)
S wing area

lift on a fixed plan form has been approached in different
ways. Jones, in references 1 and 2, makes use of reverse-
flow theorems to derive several simple properties of the | |/ loading on an arbitrary line, f(]p dXx’
optimum load distribution and to present as well the optimum

X', Y arbitrary Cartesian coordinates

distribution for elliptic plan forms. Graham, in reference 3, 5 ¢ 1Cnte;gels linat ¢ it " ﬁu o
shows bow the proper use of orthogonal loadings can reduce Y 2 ) arlesmri co;)l(tltnales fo I f: ?g s1f11 ace (see fig. 2)
the drag at fixed lift. Orthogonal loadings are loadings of a_ /Mzr%ca angle of attack ol itbing suriace
zero interference drag. The interference drag between two B=+M"— Il . ber
loadings is the total drag of each in the downwash field of the € small posiitve number
other. In reference 4, theorems concerning orthogonality 0_;7‘/4 .
and reverse flow are developed, whereas in references 5 and 6 mx , 1.

. . A Lagrange’s multiplier
numerical examples of drag reduction by use of orthogonal lan form
loadings are given. For delta wings with conical camber the Tl_ i) &tl in d of arr o
optimum shapes are derived by Ritz’s method in reference 7. g root chord ol arrow Wing

Subscripts:

In this report Lagrange’s method of undetermined multi-

pliers is applied to the problem of properly combining load- ¥ ith, jth loading component

ings for the least drag at a given lift. By use of this method M minimum among all load.mgs

a simply expressed property of the optimum loading is found 0 minimum among N loadings

which is an integral form of a property established by Jones X arbitrary loading

in reference 1 for reversible flows. Jones’ property of the

optimum loading is that the downwash on the plan form is ANALYSIS

constant in the combined forward- and reverse-flow fields. THEORY

The best combination of four types of nonsingular loading on Consider a superposition of N loadings of the form

a delta wing is calculated as a numerical example of the use

Of the method- Op =A]0p,1+4420p,2+A307,,3+ .. -+ANOIU.V (])

t Supersedes NACA Technical Note 3533 by Frederick C. Grant, 1955,
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where A is the strength parameter and C, is the resultant
lifting pressure coefficient at & point on the plan form. The
corresponding local angle of attack may be written as

e =A1a1+A2a2—!-A3a3—|-. . ~+AN0£N (2)

The local drag coefficient C,a is a quadratic in A which
may be integrated over the plan form r to give the drag
coefficient of the wing. Thrust-loaded singularities at the
leading edge are therefore excluded from the drag. This
exclusion is merely for convenience and is not necessary. A
formula for the drag coefficient is

N
OD—:—_;’J‘ O dS:% >3 FZI Cp,;A:A; (3)

i=1

where

Cp,;=CD, jizé f (O, 10,4 C, 2)dS

The average lifting pressure coefficient on the plan form
is the lift coefficient, which is

.
=3 [ CrdS—23 @

The problem is to find the set of A’s which yields the
minimum value of Cp subject to the condition that (% is
constant. Because of the quadratic nature of Cp and the
linear form of C;, Lagrange’s method of undetermined mul-
tipliers is particularly suitable for the solution as it leads to
a set of linear algebraic equations.

As shown in reference 8, a function of the A coeflicients
F=Cp+2\C, is formed, where N is Lagrange’s multiplier.
The minimum value of ¥ as determined by the N linear

=0 plus condition (4) is Lagrange’s

algebraic equations

i

solution. In matrix form these equations are:
_200, 1 OD, 12 OD, 13 CD, v CL, 1_ _Al T 707
nD, 12 26\'D, 2 CD, 23 OD, 2N OL, 2 AZ 0
(»YD, 13 OD, 23 2(71), 3 OD. 3N OL, 3 A3 O
=l (5)
OD, 1N OD, 2N OD, 3N 26WD, N CL, N AN 0
|ty (e Crs Cry 0 4L 21 LG

The equations may be written more simply if first the
interference drag between the optimum loading and the 4th
component of the loading is computed. From equations (1)
and (2), the following expressions may be written:

Cy,00=A,Cp, 10+ A0, 50+ A3 Cp 500+ . .. -

AiOp,iai+ e +ANOp,Nai
(6)
aOCp,i=A1a10p,i+A2a20p,i+A3a30p.i+ ...+

AiaiOp.i+ cae +AN0‘NCp.t

Adding equations (6) and integrating over the plan form
gives

1
OD,OiZ'S" f (Op, Oai+a00p, i)dS=A1OD,11+AQCD,Qi+
ACp 5t . .. +24:Cp 4+ . .. T+ AnCo, v
N
ZFZB A,Cp, 5 @)

This expression for Cpy; is a part of the left-hand side of
the 7th equation of the linear set which is now written as

OD, Oi+ >\OL, =0 (8)

A simple property of the optimum load distribution may
now be derived. First Cpis rewritten by use of equation (7):

1 X
01),0:‘2‘ Zl AiCD, 0% (9)
or using equations (8) and (4)

Co.o=—5\Cs (10)

Substituting equation (10) into equation (8) gives

D,Oi:—'z%OL,’[ (11)

Since equation (11) holds for any number of loadings, let
the number of components increase without limit to include
all possible loadings. For an arbitrary loading X and the
absolute minimum A4, equation (11) may be written as

OD,MX=2 0%':1 OL.X (12)
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The meaning of equation (12) may be simply expressed as
follows: The interference drag between the optimum loading
and any loading at the same lift coefficient is constant. If
the reversibility theorem is applicable, equation (12) is an
integral equivalent of a condition established by Jones in
reference 1. Jones’ condition states that for the optimum
loading the downwash on the plan form is constant in the
combined forward- and reverse-flow fields. Barred variables
will represent the reverse flow which has the same lift load-
ing on the plan form but, in general, a different surface
shape. Then, by reversibility,

f np,A[aX dS:f (_71:,1y1a_\' (lS:f -C—l_u(yp“\' (ZS (13)

By definition, Oy jx 1s

Cpux=3 f (C p 00 o (7 P \’)(ZS

Therefore, equation (12) may be written as

_ ('
f 0, (ay+ay)dS—2 (2 (; S (14)
T
Since (7, x is arbitrary, ay-a,, must be constant.  Henee,
(YD M
Ut ap=2 “'({ (15)
L
This is the condition derived by Jones in reference 1. Equa-

tion (12) is then an equivalent integral form of this condition.

Equation (12) shows the orthogonality of the optimum
loading to, and only to, zero lift loadings. This result,
which was stated by Graham in reference 3, is seen to be a
special case of a more general mterference drag property
given by oquation (12).

COMPARISON WITH THE METHOD OF ORTHOGONAL LOADINGS

If two loadings are to be combined, it may be shown that
Graham’s method of orthogonal loadings (ref. 3) and the
present method are equivalent. If the resultant combina-
tion of two loadings is combined by the method of reference 3
with a third loading, the lift ratio of the first two loadings is
unchanged in the best combination of the three. If n>2
loadings are successively combined in the manner of refer-
ence 3, the first n—1 loadings are not allowed to adjust their
relative strengths upon addition of the nth. In the present
Lagrangian method every loading has equal freedom to
adjust. For this reason, the Lagrangian method should
be more rapidly convergent.

387642~ -56——2

NUMERICAL EXAMPLE

Tucker in reference 9 presents formulas for the surface
coordinates of delta and arrow wings which support four
types of pressure distribution. The formulas are given for
subsonic leading edges and supersonic trailing edges. In
the notation of this report (fig. 1) a comblnatlon of the four
loadings may be written:

— At At A, Yy a, ¥
c, 1A+ 3m+ “mE (16)

Formulas for the Cp,;; quantities may be derived from equa-
tion (16) and the surface formulas given in reference 9, by
integrations over the plan form. Details are given in the
appendix.

The optimum-drag results are presented in figure 2 along
with the corresponding drag values for a flat delta wing
with and without leading-edge thrust (ref. 10). 'The drag
values for the four component loadings taken alone are also
shown. In addition, the drag of the conically cambered
optimum delta wing (ref. 7) and Jones’ abhsolute minimum
for narrow wings (rvef. 1) are plotted. The optimum A4
values are tabulated in the appendix.

Noteworthy in figure 2 is the closeness with which all the
optimum drags agree with each other and with the drag of a
flat delta wing which has a thrust-loaded leading edge. The
close approach of the present optimum of four loadings to
Jones’ absolute minimum for narrow wings is also evident.
The data indicate that the relatively low drag of the flat

N

LN
e

X

Ficvre 1.—Arrow plan form.
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Loadings
Optimum
Linear chordwise

Linear spanwise
Parabolic spanwise
Uniform

0 adqdo o0

f
|
R
i
|
|
S
|
|

Flat plate--.

| E

Flat plate with L E. thrust

Bm

Figure 2.—Comparative drags on a delta plan form.

delta wing with leading-edge thrust can be equalled by prop-
erly combining a few loadings having finite pressures every-
where on the plan form. A plausible speculation suggested
by the data is that it is possible to come very close to the
minimum drag on a delta wing with but a few steps in a series
approximation. Perhaps, too, a restricted minimum, such as
the one for conical camber, gives a close approximation to
the absolute minimum drag if the restriction is not too
unnatural.

Since the vortex drag of a wing at any Mach number
depends only on the spanwisc loading, a departure from the
elliptic spanwise loading is a measure of the vortex drag in
excess of the least possible drag. In figure 3 the spanwise
loading of the optimum combination is shown at the ex-
tremes of the sweepback range. There is good agreement
with the elliptic loading especially for the casc of extreme
sweepback (n=0). Because for extreme sweepback the
wave drag vanishes, a direct comparison of the vortex drag
of the optimum combination and the elliptic spanwise load-
ing is given by figure 2 at n=0. The elliptic spanwise load-

. 1
ing has the drag parameter value o
It is shown in reference 2 that the wave drag due to lift

depends on all the lift loadings {(Y”) where l=f(’,, dX’ and

X’ is an arbitrary direction inclined to the free stream at
more than the Mach angle. The coordinate ¥’ is perpen-
dicular to X’. A sufficient condition for minimum wave
drag is shown to be that [(Y”) is an ellipse. In figure 4 the
loading of lines perpendicular to the free stream, or chord-
wise loading, is shown for the optimum combination with a
sonic leading edge (n=1). Agreement with the elliptical
loading is poor. For the case of extreme sweepback (n=0)
no chordwise loading for the optimum combination is shown
in figure 4 because it is partially arbitrary. (See appendix.)
The allowable variations of the optimum loading at n=0
correspond to changes in the oblique loadings that do not
change the spanwisc loading. This result emphasizes the
vanishing of the wave drag with extreme sweepback.

1.0 -~ - - - — e ————
-
- \
1.5 - —
Eliipse
n:=0
n=1
0

Ficrre 3.—The loading of lines parallel to the free stream for the
optimum combination. m=Cp,=1.
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Ellipse-~~.

Ll =

/

-

o] .50 |
v

Fiaure 4.—The loading of lines perpendicular to the free stream for
the optimum combination. m=Cp=1.

CONCLUDING REMARKS

Lagrange’s method of undetermined multipliers is applied
to the problem of properly combining lift loadings for the
least drag at a given lift on supersonic wings.

The method shows the interference drag between the
optimum loading and any loading at the same lift coeflicient
to be constant. This is an integral form of the criterion
established by Robert T. Jones for optimum loadings.

The best combination of four loadings on a delta wing
with subsonic leading edges is calculated as a numerical
example. The loadings. considered have finite pressures
everywhere on the plan form. At each Mach number the
optimum combination of these four nonsingular loadings has -
nearly the same drag coefficient as a flat plate with leading-
edge thrust.

LANGLEY AERONAUTICAL [LABORATORY,
NaTtronaL Apvisory COMMITTEE FOR AERONAUTICS,
LancLey Fiewp, Va., July 27, 19565.



APPENDIX

DETAILS OF NUMERICAL EXAMPLE

INTERFERENCE DRAG FORMULAS

Inasmuch as the pressure cocfficient (7, and conospondnm
angle of attack « are given by

| ’
(7],=A1+A21‘—{>—f13 57/L| +A4 %2} (1&1)

a=A,a + Asay - Ao+ Ay

then the local drag coefficient may be written as

(Wpa:Af(al)’*‘A1Az(-m1+az)+A1As (l%l a1+a3>+

Y2 2 |yl
A A, (W al—}—a4>—{—_{12-(ra2)—{—AgA3 (m a2+1'a3>+

oo
AQA4<~ aﬁ—lw >+A2< ) (A2)

The required (' ;; functions are the averages over the plan
form (fig. 1) of the quantities in parentheses in equation (A2).
Rather than «a; itself, reference 9 gives the surface ordinate
2, which is the chordwise integrated value of «;:

A.A,

.2i=—fai dr (A3)
The values given for z; are
N
x o,
Z21—— i
1 ? 1
2
x2
52:— 11)3
m
N e (A4)
2= Ry
m
3
£ >
zy=— Ii
4 m 4
P

The values of 2; are functions of 0———% tabulated in reference

9 for different values of n. The equations for 7, are

1 — 1
1{1:47} [2\ 1—n%*—2 cosh™! nd +
N2 i) 10
v1—n?(14-6) cosh 2(158) +
1P . _ -1 l—n20 ] I
v1—n2(1—6) cosh n(i—0) (A5a)

6

Ry—— {V'l;h202—202 cosh™!
A7

1
ﬁe‘+

! l: 2(1_02)+0+6 :I cosh™!

Wl—nz

1 [n*(l %)

]

2

14-n%0
<1+05’+

"_ n()‘} (A5b)

1
%iel"'

—0+ (92] cosh™!

e

g=— |:2 y 1—n202-—<1—|—302—% n202> cosh™!

1-4+n%

n(1+6)

(1467 +2(1—n?)(6+6%)

2\1 —'nz I_

cosh™!

(1~6) 9(1—77,2)(9 6%)

1_

cosh™!

)] (45¢)

12—10n?
3n2(1—n?)

(1~nr“)02)'3(3
3(1—n?)

1 — ; 1
l J— n2a2 1 202 2 -1
{4_47 n?0%+'1—n%’—66* cosh n_0’+

[M (02_*_(93)_}_,2_23# (§—6%)—

1—722)

14n%

1(1+6) )=

1 } (A5d)

For terms in equation (A2) of the type (y/m)‘a;, a spanwise
integration of z; gives the following average on the plan
form:

5 ) G)eas= 2 n LA -

(1_#)s+l+lfl
0

For terms of the type ze; an additional integration by
parts in the z direction is required to maintain the R; func-
tions intact under the integral signs. 'The result for this
case is

_ 6—9n’+2n?
(1—1—03)](0511 1' '—I— (1—n2)" I:———(

9

2—3n? 4 N _1
-, (6—6)— (1-0) cosh

R, (9)
— ) Fr

da:l (A6)

2 1TRQ)_
Sfra dS=, "~ )

——py [ L i “;),Hd +

A—=p)** (1 __Ru(6)
t+2 JO (1_#0)1-1—2 do] (A7)




\%

THE PROPER COMBINATION OF LIFT LOADINGS FOR LEAST DRAG ON A SUPERSONIC WING 7

In formulas (A6) and (A7) the value of ¢ for each 7 is as
follows:

.
o~

W GO 8D H
O DD D =

By applying formulas (A6) and (A7) to the integration of
(A2), the following equations for Cp,;; are derived:

2m OD’ 1=

2 b R()
e R()—40—p) ﬁ G do (ASa)

mCp, =gy )+ RO+ 20T [ O gy
e f OR (‘2)4 d—2(1—u)? Ol(llfi(/fg)4 8 (ASb)
T )[R L)+ Ry(1)]—2(1— )f("Rlﬁ?ydo—
2(1—p)? (11‘)352)4 dp (A8c)
mCorimgr s R+ RI=20 =) [ F7) g5
(1 4g’g)5da (ASd)
2mCy, 2_32(1) 41— f i 2(93)5 d04(1— ) f i 2%4010
(A8e)
M, sy (Ra()+ B —2(1 =)t [ 2% g5
f q 3(03)5d0+ (1—p)? (1R3(0;)4d0 (ASD)
m 0 =gy LB+ ROl =20 [ 20, g
(A8g)
2m Oy, 3_R3(1) 41— (gRa(Z))5d0 (A8h)

2 of1_ 4 ! 92R4(0)
mCp, 34—5(1—_#) [Ry(D)+ R —2(10—w) o (1—u)® df—
21— (‘;R‘*%B do (AS)
[0 R4(0) .

The required Cy,; functions are simple integrals over the
plan form which yield

OLJ:]. h
2—u

Cor="g"
: (49)
OL. 3=

Wik

OL, =

(o230

J
NUMERICAL CALCULATIONS

The integrals in equations (A8) were, in general, evaluated
numerically. However, several of the integrands in equa-
R\(6) and B4(6)
(=) " A=)
functions have an infinite discontinuity at 6=0. For such
a discontinuity, numerical methods break down. Near

zero the following approximation is integrated analytically:

These

tions (A8) have the form

1(0) R1(€)+ COSh li—%cosh_lé
0<f< ekl (A10)
1{3(‘9)*“1{3(6)—41—7r cosh™! i_*_il; cosh™! niﬁ
The integrals for the region 0=6<e can then be ap
proximated:
R(6) 1 | I(e)
f (1_#0)td9~f(e) [Rl(f)+'2‘7‘r cosh I;L; S
I (A11)
(4
(1_3(Mg)zd0~f(€) [Ra(e)—-——c sh™! ]—}— (¢)
where
Y t t(t+1) Ee
f(e)—ﬁ (1_”0)l——e|:1+1 + =
t+1)(E+2) wed
CENCS L e
and’
cosh™! 10 )
L= f = ¢ (A13)
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The integral in equation (A13) may be evaluated by
expanding the denominator by the binomial thecrem and
writing I{e) as an infinite series

I(E) =a0io+a1i1+a2i2+a3i3—{— ... (A14)
where

=1 (A15a)

=t (A15b)
tt+1) ,

=D (A15¢)

1 2

D), A1sd)
t(t41). .. (¢ —1

Sy s!( e )#s (Al5e)

o= JOS cosh™t L. o (A150)

%1=f (] cosh‘1 (A152)

. 1

ZQ:J 6% cosh 1n0 d (A15h)

A R | :

%—J; 6° cosh poy de (A151)

The 4, integrals of equations (A15) are evaluated by use
of the relation

1 03+1
$ -1 1 _
fe cosh poy df= : cosh n0+s 1 f 20,2 ———

EXACT CALCULATIONS

(A16)

At the cxtremes of the sweepback range, equations (AS8)
may be evaluated exactly. For the case of extreme sweep-
back (n =0), there results:

1 62 16
- <2+10ge [ = g0 loge lq__0> (A17a)
02
Rz_'—‘— <1+0 loge 1_|_0+91 loge _02> (A17b)
2 B:I 7e
R— |:+(1—[—39)10ge , +2010H,]+0 (A17¢)
Re=1 [1+402+(9+203) logs L0 4 392 log, ] (A17d)
Tar|3 & 1+6 S 1—p
om Cp =2 2 (A18a)
§+§ log. 2
M C g . (A18b)
47

%—% log, 2

mOD, 13=T— (AISC)
% log, 2—%

MC’D, 14— - (Al 8d)
1

2m0D,2—4— (A18e)
4 4

., 33 1°°e

MmCp, 5= T 4r (A18f)
% log. 2——2

mC’D 24=~—?_* (Algg')
%-—% log. 2

2mCp, 3= o (A18h)
1
30+ log, 2

m( D, 4= i - (A] 81)
% log. 2-—%

2m(.7D' 4= . (A18])

Equations (18) provide the interference drag coeflicients re-
quired to calculate the vortex drag due to anycombination
of A values.

In the solution for the optimum A values, the parameters
Ay, Ay, and A, are found to be linearly related and one of
them may therefore be chosen arbitrarily. Choosing A4,

yields:
[11:/'11 (A19a>
3(4
A= (ﬂm' —24, (A19b)
_ ( __3(38a—26a’—11) X
113—.[11 (2_3a)(1+a) (Alg()
4 30(Ba—a’—1)
A14—(2H——3a)(1+a) (A19d)
o9 (da—1)(B—2a)(1—2a)
PO T 2= 3a)(1 +a) (A19¢)
where
a=§ (1—loge 2)
3
The spanwise loading may be written as
. 1‘12 Az 2
W)= (Art5 )Fy (G +ds )JFy(Ad) | (1—y) >0 (A20)
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When'm=C’L=1. Substitution ?f 'the A values given in mOD‘23=—1~ +L (A22f)
equations (A19) shows that I(y) is independent of the vari- 67 16
ations in A,, 4., and A,. )
For the case of a sonic leading edge (n =1 7
onie g edge ( ) ’MC'D,24=“—1 0 (A22g)
1 1
R1=4— (2\/1—02—2 cosh™?! 5) (A21a) .
T
1 - 1 4r
Rom— (2 JI—6*—26% cosh~! 5) (A21b)
1 7 .
mCp, sy=—=+=—— A22;
Ry — - (-7- ﬁib?—(ur? 02> cosh-1 L] (A210) >4 0 e
T 4n\2 2 7
11 .
= 22
R—L <2+@ 02> T—8—66% cosh~' 1| (A214) 2 =350 (422D
B IACHERGA 7
CALCULATED VALUES OF 4
1
2mCp1=5 (A22a) The table that follows contains the calculated values of A
for the optimum combination through the sweepback range.
mC 1 (A22b) Four significant figures are given, since the tabulated values
I of R have four decimals. Values of ("p,o for m =y, =1 are
L1 also shown:
mCp ==+ 5 A22 S
D.13 67r+12 ( ©) | ‘
n ‘ 4 | A, Ay Ay I Cho
! = —
mCp=1¢ (A22d) o i | | ik ‘ poE | o
4 1.977 | —2.571 1.590 | 1.244 -1105
-6 1.781 | —2.147 1.472 .9568 .+ .1308
1 G| | | )
2mCp 2=+ 22¢ . . -1 . . - 220¢
D,2 4 (A (‘) - o
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