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REPORT 1275 

THE PROPER COMBINATION OF LIFT LOADINGS FOR LEAST DRAG 
ON A SUPERSONIC WING1 

By FREDERICK C. GRANT 

SUMMARY 

La,grange’s method of undetermined multipliers is applied to 
the problem o-f properly combining lift loadings for the least 
drag at a given lift on supersonic wings. The method shows 
the interference drag between the optimum loading and any 
loading at the same l<ft coescient to be constant. This is an 
inte(gra1 form of the criterion established by Robert T. Jones fog 
0ptCmum loadings. 

The best combi,nation of four loadi,ngs on a delta wing with 
subsonic leading edges is calculated as a numerical example. 
The loadings con.sidered have jinite pressures everywhere on the 
plan form. Through the sweepback range the optimum com- 
bination of the four nonsingular loadings has about the same 
drag co&cien t as a$at plate with leading-edge thrust. 

INTRODUCTION 

The problem of minimizing the supersonic drag for a given 
lift on a fixed plan form bas been approached in different 
ways. Jones, in references 1 and 2, makes use of rcversc- 
flow tdleorems to derive several simple properties of the 
optimum load distribution and to present as well the optimum 
distribution for clliptic plan forms. Graham, in reference 3, 
shows bow the proper USC of orthogonal loadings can reduce 
the drag at fixecl lift. Orthogonal loadings are loadings of 
zero interference drag. The interference drag between two 
loadings is the total drag of each in the downwash field of the 
other. In reference 4, theorems concerning orthogonality 
and reverse flow are developed, whereas in references 5 and 6 
numerical examples of drag reduction by use of orthogonal 
loadings arc given. For delta wings with conical camber the 
optimum shapes are derived by Ritz’s methocl in reference 7. 

In this report Lagrange’s method of undetermined multi- 
pliers is applied to the problem of properly combining load- 
ings for the least drag at a given lift. By use of this method 
a simply expressed property of the optimum loading is found 
which is an integral form of a property established by Jones 
in reference 1 for reversible flows. Jones’ property of the 
optimum loading is that the downwash on the plan form is 
constant in the combined forward- and reverse-flow fields. 
The best combination of four types of nonsingular loading on 
a delta wing is calculated as a numerical example of the use 
of the method. 

1 Supersedes NACA Technical Note 3533 by Frederick C. Grant, 1055. 

SYMBOLS 

loading strength parameter 
span 
local chorcl 
drag coefficient 
drag coefficient of ith loading 
drag coefficient of interference bctwccn ith and jth 

component loaclings 
lift coefficient 
lift coefkient of ith loading 
lifting pressure coeflicient 
Mach number 
tangent of scmiapex angle 
number of loadings 
sweepback-speed parameter 
fmictions of 19 and 11 (see appcudis) 
wing area 
arbitrary Cartesian coordinates 

loading on an arbitrary line, 
s 

c, dX’ 
7 

integers 
Cartesian coorclinates of lifting surface (see fig. 2) 
local angle of attack of lifting surface - 

p=&f’-l 
e small positive number 

e=zT r 

x Lagrange’s miiltipliel 
7 plan form 
1-p root chorcl of arrow wing 
Subscripts : 

/- 
iii 

ith, jth loading component 
minimum among all loadings 
minimum among N loadings 
arbitrary loading 

ANALYSIS 
THEORY 

Consider a superposition of N loadings of the form 
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where A is the strength parameter and C, is the resultant 
lifting pressure coefficient at a point on the plan form. The 
corresponding local angle of attack may be written as 

a=A,a,+A,c~+A,a,+. . .+A+iv (2) 

The local drag coefficient C,CY is a quadratic in A which 
may be integrated over the plan form T to give the drag 
coefficient of the wing. Thrust-loaded singularities at the 
leading edge are therefore excluded from the drag. This 
exclusion is merely for convenience and is not necessary. A 
formula for the drag coefbcient is 

The average lifting pressure coefficient on the plan form 
is the lift coefficient, which is 

The problem is to find the set of A's which yields the 
minimum value of CD subject to the conclition that CL is 
constant. Because of the quadratic nature of C, and the 
linear form of C,, Lagrange’s method of undetermined mul- 
tipliers is particularly suitable for the solution as it leads to 
a set of linear algebraic equations. 

As shown in reference 8, a function of the A coefficients 
F=C,+K’, is formed, where x is Lagrange’s multiplier. 
The minimum value of F as determined by the N linear 

algebraic equations x =0 plus condition (4) is Lagrange’s 
dAi 

solution. In matrix form these equations are 

'AA,' 

A2 

A3 

. . . . 

. . . . 

. . . . 

CL,, ,N Cb,2N CD,,, . . * 2CD,N &V AN 

A- 

= 

'O- 

0 

0 

0 

c L- 

(5) 

The equations may be written more simply if first the 
interference drag between the optimum loading and the ith 
component of the loading is computed. From equations (1) 
and (2), the following expressions may be written: 

Adding equations (6) and integrating over the plan fern 
gives 

c;b, 0i-i s 
(Cp,oai+~oCp, t)dS=A,CD, Ii+A,Cb. 2i+ T 

A3CD,3t+ . . . +zA,C;b,z+ . . . +-&L’~,N~ 

~8 AjQD,ji (7) 

This expression for CD,Oi is a part of the left-hand side of 
the ith equation of the linear set which is now written as 

cD,o,+xcL,,=o (8) 

A simple property of the optimum load distribution may 
now be derived. First CD,o is rewritt,en by use of equation (7) : 

CD. 01; $ &CD, 02 (9) z 1 

or using equations (8) a.nd (4) 

cD,o= -a xc, 

Substituting equation (10) into equation (8) gives 

(10) 

Co,ot=2 p CL., 01) 
L 

Since equation (11) holds for any number of loadings, let 
the number of components increase without limit to include 
all possible loadings. For an arbitrary loading X and the 
absolute minimum M, equation (11) may be written as 

(12) 
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The meaning of equation (12) may be simply expressed as 
follows: The interference drag between the optimum loading 
and any loading at the same lift coefficient is constant. If 
the reversibility theorem is applicable, equation (12) is an 
integral equivalent of a condition established by Jones in 
reference 1. Jones’ condition states that for the optimum 
loading the downwash on the plan form is constant in the 
combined forward- and reverse-flow fields. Barred variables 
will represent the reverse flow which has the same lift load- 
ing on the plan form but, in general, a different surface 
shape. Then, by reversibility, 

By definition, C,,,,, is 

This is the condition derived by Jones in refcrencc I. Equa- 
t.ion (12) is then an equivalent integral form of this condition. 

Equation (12) shows the orthogonalitp of the optimum 
loading to, and only to, zero lift loadings. This result, 
which was stated by Graham in refcrcncc~ 3, is SCCJI to bc a 
special case of a more gclticral intcrfcrcncc tlrag property 
given by equation (12). 

COMPARISON WITH THE METHOD OF ORTHOGONAL LOADINGS 

If two loadings are to be combined, it may bp shown tbat 
Graham’s method of orthogonal loadings (ref. 3) and the 
present method are equivalent. If the resultant combina- 
tion of two loadings is combinecl by the method of reference 3 
with a third loading, the lift ratio of the first two loadings is 
unchangccl in the best combination of the three. If n>2 
loadings are successively combined in the manner of refer- 
cnce 3, the first n- 1 loaclings are not allowed to adjust their 
relative strengths upon addition of the nth. In the present 
Lagrangian method every loading has equal freedom to 
adjust. For this reason, the Lagrangian method should 
be more rapidly convergent. 

NUMERICAL EXAMPLE 

Tucker in reference 9 presents formulas for the surface 
coordinates of delta and arrow wings which support four 
types of pressure distribution. The formulas are given for 
subsonic leading edges and supersonic trailing edges. In 
the notation of this report (fig. 1) a combination of the four 
loadings may be written: 

G,=A,+A,x+&~+A,~ m m” Of-3 

Formulas for the CD,L1 quantities may be derived from equa- 
tion (16) and the surface formulas given in reference 9, by 
integrations over the plan form. Details are given in the 
appendix. 

The optimum-clrag results are presented in figure 2 along 
with the corresponding drag values for a flat delta wing 
with and without leacling-eclge thrust (ref. 10). The drag 
values for the four component loadings taken alone are also 
shown. In addition, t.he drag of the conically cambered 
optimum delta wing (ref. 7) and Jones’ absolute minimum 
for narrow wings (ref. 1) arc plotted. The optimum A 
values are tabulated in the appendix. 

Noteworthy in figure 2 is the closeness with which all the 
optimum drags agree with each other and with the drag of a 
flat clcl ta wing which has a thrust-loaded leading cdgc. The 
close approach of the present optimum of four loadings to 
Jones’ absolute minimum for narrow wings is also evident. 
Tlic data indicate that the rc‘latively low drag of the Ilat 

FI~VRX 1 .--Arrow plan form. 
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.4 - 

I 
1 

Loadings 
0 Optimum 

- o Linear chordwise 
v Linear spanwise 
D Parabolic spanwise 
0 Uniform 

T 

i 

‘:Jones’ minimum 

6 

.4 .6 .8 I 
Bm 

FIGURE 2.--Comparative drags on a delta plan form. 

.O 

delta wing with leading-edge thrust can be equalled by prop- 
erly combining a few loadings having finite pressures every- 
where on the plan form. A plausible speculation suggested 
by the data is that it is possible to come very close to the 
minimum drag on a delta wing with but a few steps in a series 
approximation. Perhaps, too, a restricted minimum, such as 
the one for conical camber, gives a close approximation to 
the absolute minimum drag if the restriction is not too 
unnatural. 

Since the vortex clrag of a wing at any Mach number 
depends only on the spanwisc loading, a departure from the 
elliptic spanwise loading is a measure of t.he vortex drag in 
excess of the least possible drag. In figure 3 the spanwisc 
loading of the optimum combination is shown at the es- 
tremcs of the sweepback rallgc. There is good agrccmcnt 
with the elliptic loading especially for tlir case of extreme 
sweepback (n =O). Because for extreme swccpback the 
wave drag vanishes, a direct comparison of the vortex drag 
of the optimum combination and the elliptic spanwisc load- 
ing is given by figure 2 at n=O. The elliptic spanwisc load- 

ing has the drag parameter value &. 

It is shown in rcfcrcnce 2 that t,he wave drag due to lift 

depends on all the lift loaclings I( Y’) where I= 
s 

C’, dX’ and 
. 7 

X’ is an arbitrary direction inclined to the free stream at 
more than the J’lach angle. The coordinat8e 1” is pcrpen- 
clicular to X’. A sufficient condition for minimum wave 
drag is shown to be that I(Y) is an ellipse. In figure 4 the 
loading of lines perpendicular to the free stream, or chord- 
wise loading, is shown for the optimum combination with a 
sonic leading edge (n=l). Agreement with the elliptical 
loading is poor. For the case of extreme sweepback (n=O) 
no chordwisp loncling for the optimum combination is shown 
in figure 4 because it is partially arbitrary. (See appendix.) 
The allowable variaLtions of the optimum loading at n=O 
correspond to changes in the oblique loadings that do not 
change the spanwisc loading. This result, emphasizes the 
vanishing of the wave drag with extreme sweepback. 

FIGT‘RE 3.-The loading of lines parallel to the free stream for the 
optimum comhinalion. ?n=cI,=l. 
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The method shows the interference drag between the 
optimum loading and any loading at the same lift coefficient 
to be constant. This is an integral form of the criterion 
established by Robert ,T. Jones for optimum lo.adings. 

The best combination of four loadings on a delta wing 
with subsonic leading edges is calculated as a numerical 
example. The loaclings. considered have finite--pressures 
everywhere on the plan form. At each Mach number the 
optimum combination of these four nonsingular loadings has 
nearly the same drag coefficient as a flat plate with leading- 
edge thrust. Id 

0 .50 
Y' 

FIGIJRE 4.-The loading of liIlcs.perpendicular to the free stream for 
the optimum combination. 7~ = C,,= 1. 

CONCLUDING REMARKS 

Lagrange’s method of undetermined multipliers is applied 
to the problrm of properly combining lift loadings for the 
least drag at a given lift 011 supersonic wings. 

LANGLET AERONAUTICAL LADORATORI., 

NATIONAL ADVISORY COMMITTEE FOR AEROXAUTICS, 

LANGIZY FIELD, VA.. July 27, 1955. 



APPENDIX 

DETAILS OF NUMERICAL EXAMPLE 

INTERFERENCE DRAG FORMULAS 

Inasmuch as the pressure coefficient C, and corresponding 
angle of attack (Y are given by 

then the local drag eoeffieient may be written as 

The required (‘D,ij functions are the averages over the plan 
form (fig. I) of the quantities in parentheses in equat,ion (A2). 
Rather than (Y~ itself, reference 9 gives the surface ordinate 
zi which is the chordwise integrated value of (Y(: 

ei= - o!i cI.r (A:<) 
. 

The values given for zi arc 

(A4) 

The values of Xi are functions of o=& tabulated in referonce 

9 for different values of n. The equations for Xi arc 

R,=i= 
1 

2, 1 -n?P-2 co,&-’ 
1 I 

l- + n9 

vi1 -n*(l +O) cosli-’ -Lk!!? + 
I I n(l SO) 

l-n% 
v’l-n2(1 -e) co~h-~ K(G) 

1 I 1 
(A5s) 

1 
\,1-TL2 

n?(l -e’) 
2 -e+e’] coslilj~~$j} (A5b) 

I?,=- 1 4~ 

(l+U+20 -nW4+-3 cosll-~ 

21 l-n” 

(i-e)2-2(1-2)(8-e’) cosll-~ i-de 
2,‘fqY I --II Q-e) (-45~) 

(lwn2p)“+ 12-10n2 
3(1-d) 3??(1-72) ~2e2tF2$-6e2 ~0~11-1 

I I 
I+ ne 

(e-es)- 

f (i+ey ] COST- 

] cosll-‘~;~~~~~~} (A5d) 

For terms in equation (A2) of the type (~/,vL)“cx*, a spanwisc 
integration of zi gives the follomin g average on the plan 
form : 

For terms of the type .xcri an addit.ional integration bJ- 
part.s in t.he x direction is rcquircd to maintain the ZZi func- 
tions intact under the integral signs. The result for this 
case is 

(i-~L)c+2 ‘I “de) 
t+2 J (1 -pe)l+2 

de 
1 

(AT) 
o 

-- 
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In formulas (A6) and (A7) the value of t for each i is as 
follows : 

t 
_____ 

‘- 

; i 
: : 

By applying formulas (A6) and (A7) to the integration of 
(A2), the following equations for Co,u are derived: 

2?nc,,,=$- 
P 

&(l)-4(l-P)Jo1* de (A84 

mCI D n=&) [H,O+Kml+~~ol~ de- 

2(1 -p)2 
s 

ol& de-2(l-p)‘s ~ l “‘@) de (A8b) 
o o-44 

2 mCD, 13=- 
3(1-p) 

,1~1(1)+12,(1)1-2(1-~)~jy(~~~ de- 

2(1-,y S 01~l~~4 de w3c 1 

mC, D “‘2(11,7 [Rl(1)+R4(l)l-2(1--‘)‘So1 (p$$ de- 

2(1-PL)3 S 1 K(e) o (i-dv de (A84 
2mCD,,=f$-4(1 -,u)31(*5 de+(l-p)3J1$-%4 de 

We) 

mc, D 23=&r, [n,(l)+n3(l)l-2(1-,)3~01 (z$ de- 

2O--PY s 1R3(e) de+: (1 -p)31$$&4 de 
o (i--e)5 (A8f) 

mCh=- & [rz,(l)+n4(1)1-2(1-,)PSo, g+jj de- 

w -d4 S o 
lL!!ck@- de+; (1 +4J01 ads 
(1 -pe)6 

(A&d 

(-@h) 

m CD. 34= q& [n,(l)+R,(1)1-2(1-p)4~ a6 de- 

w -A4 S ’ eR4(e> de 
o (h.8)~ 

(A8i) 

2mC,,,= & %(1)-4(l-~)~~~~ ST de (-A%) 

The required CL,t functions are simple integrals over the 
plan form which yield 

(W 

NUMERICAL CALCULATIONS 

The integrals in equations (A8) were, in general, evaluated 
numerically. However, several of the intcgrands in cqua- 

tions (A8) have the form (112($t and R3(@ ~. (I_ pe)l These 

functions have an infinite discontinuity at e=o. For such 
a discontinuity, numerical methods break clown. Near 
zero the following approximation is integrated analytically: 

.R,@> = R,(t)+& cash-’ -&& cosl1-’ L 
?le 

o<es eel (AIO) 
1 

Rs(e)=R,(c+ cash-’ $+~~cosk’ f 

The integrals for the region 05 06 e can then be ap 
proximatecl : 

I (All) 
S 

c R,(e) 
~ de-f(c) k,(e)-& cash-l A]+$$ o (i-pe>~ 

where 

t(t+l)(t+a) p 
3! 4+. . . 

1 W4 

and 

(A13) 
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The integral in equation (Al3) may be evaluated by 
expanding the denominator by the binomial theorem and 
writing I(E) as an infinite series 

I(e) =a0i0+a,i, +c&+u3i3+ . . . (A14) 
where 

ao=l 

a,==4 /.L 1 

t(t+l) 2 
@?=2! P 

(A15a) 

(A15b) 

(ii 15C) 

aR= 
t(t+l)(t+2) CL” 

3! 
(A15d) 

a, = 
qt-1) . . . (t+s-1) ~Ls 

S! 

>C 
io= 

J 
cash-’ f cte 

0 

(AI 513) 

(A15f) 

.I’ 
c 

i1= e CO&-~ $ do (A15g) 
0 

‘6 
7,2= 
. J 

82 COS~I -1 A de (Al 5h) 
0 

S 
c 

i,= (-4 15i) 
0 

es ~0~11-1 f de 

The i, integrals of equations (Al5) are evaluated by use 

of t.he relation 

s 
es cosh-l$ do=:% cash-I L+ -’ 

es 
ne S+I I’ 

--de (A16) 
t!l- n2e2 

EXACT CALCULATIONS 

At the cstrcmes of the sweepback range, equations (A8) 
may be evaluated exactly. For the case of extreme sweep- 
back (n =O), there results: 

RI=& 
( 

2+log, iB?s,+B loge i-T< 
> 

(A17a) 

R,=-& (i+o log, :-$++P loge 
82 

i -e2 > 
(A17b) 

X3= -& [i+(i +3P) loge B+2e lop, : $1 
\‘i -e2 

(A17c) 

i+4e2+(e+2e3) loge 1--8+38210g, $fe2 
i+e 1 

(A17d) 

locr 2 
2mC,, l=z (A Isa) 

7r 

$+$ log, 2 
mCb. 12=p- 4ir 

(A 18b) 

(A18c) mCD, 13= 

f-$ log, 2 

4r 

4 log, 2-i 
mCD.14=3 4lr 

(Al 8d) 

(A18e) 

4 4 --- 
3 3 log, 2 

mC’,, 23= 4?r 
(Al8f) 

4 5 log, 2-g 
mCyD,24=--- 4s (Al&) 

;-; log, 2 
2mC’,, 3= 4T (A18h) 

+j+; loge 2 
m CD, 34= ____- 4ir 

(A18i) 

41 2 
og, 2-5 

2m(7,. 4=5 41r (Al%) 

Equations (18) provide thcb interference drsg coefficients rc- 
quirrd to calculate the vortex drag due to an>-combination 
of A values. 

In the solution for t.he optimum A values, the parameters 
Al, AZ, and A, are found to be linearly relatctl and one of 
them may thrreforc be chose~l arbitrarilv. c’hoosing A, 
yields : 

(Alga) 

(A19b) 

A3=111- 
3(38u-26u”-11) 

(2-3a)(l +u) 

A.1 _:30(3a--a”-1) 
4 (2--3a)(lSu) 

9 (4n-1)(3-2u)(l-2~) 
( bsO=$g ~-- (2--3a)(l +a) 

(A19c) 

(A19d) 

(A19c) 

where 

u+ (1 -log, 2) 

The spanwise loading may bc written as 

@=[(A~+$)+Y (++~l,)+v’(4 (1 -Y) ?/>o (A201 
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when m =C, = 1. Substitution of the A values given in 
equations (A19) shows that Z(y) is independent of the vari- 
ations in A,, A,, ancl A3. 

For the case of a sonic leading edge (n = 1), 

R,=-&&%2 cash-‘$,) (A21a) 

R2= -$ 
(- 

2 41 -P-20” COS~I-l  jb, 
> 

(A21b) 

zi3= --a (z Ji79 --(I+; e2) codl-1 i] (A21~) 

R,=& [(;+F e2) ,h?--se2 cash-’ ;] (A21d) 

2mCDv,=k (A22a) 

7nPD, 12=! (A22b) 

m(b.13=L+ L Gir 12 (A22c) 

mCD, ,,=$j (A22d) 

(A22c) 

(A22f) 

mC;b, ,,=$j+$- T 

W2g) 

(A22h) 

(A22i) 

CALCULATED VALUES OF A 

The table that follows contains the calculatecl values of A 
for the optimum combination through the sweepback range. 
Four significant figures are given, since the tabulatecl values 
of R have four decimals. Values of CD,” for m = CL = 1 are 
also shown : 

,- 
I, / A, 

.---..-- - 
0 

:: 1.993 
1.977 

:E 1.731 
1.641 

1.0 1.357 

c II .o 

1. Jones, Robert T.: The Minimum Drag of Thin Wings in Friction- 
less Flow. Jour. Aero. Sci., vol. 18, no. 2, Feb. 1951, pp. 75-81. 
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