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INTEGRALS AND INTEGRAL EQUATIONS IN LINEARIZED WING THEORY'

By Harvarp Loaax, Max. A. Heastwr, and Fraxsryx B. FuLier

SUMMARY

The formulas of subsonic and supersonic wing theory for
source, doublet, and vortex distributions are reviewed, and &
systematic presentation is provided which relates these distri-
butions to the pressure and to the vertical induced velocity in the
plane of the wing. It is shown that care must be used in treat-
ing the singularities involved in the analysts and that the order
of integration s not always reversible. Concepts suggested by
the irreversibility of order of integration are shown to be useful
in the inversion of singular infegral equations when operational
techniques are used. A number of examples are given fo
illustrate the methods presented, atfention being directed fo
supersonic flight speeds.

INTRODUCTION

One of the most fundamental approaches to the analytical
investigation of linearized wing theory, throughout the sub-
gonic and supersonic ranges, stems from the use of certain
elementary mathematical expressions that are identified
with the physical properties of sources, doublets, and ele-
mentary horseshoe vortices. By means of these expressions
boundary-value problems involving wings with thickness,
camber, and angle of attack can be solved. These problems
naturally fall into two categories: one, involving bodies
with symmetrieal thickness and no lift, is analyzed by means
of source distributions; and the other, involving lifting plates
without thickness, is &nalyzed by means of doublet and
vortex distributions.

ANl thesp distributions require the treatment of singu-
larities in the mathematical analysis. Thus, for subsonic
Mach numbers, the concept of the generalized principal part
plays an important role in the calculation of the induced
velocities in the plane of & vortex sheet. In supersonie wing
theory, the generalized principal part is again used in the
analysis of vortex distributions, and it has further applica-
tion in the treatment of conical-flow problems. However,
the existence in supersonic flow of pressure discontinuities
{due to Mach, or linearized shock, waves) brings about another
type of singularity the mathematical analysis of which leads
to the introduction of the finite-part concept. The integrals
in both subsonic and supersonic wing theory thus require
careful attention to the discontinuities in the integrand and,
as an illustration, indiseriminate use of such standard devices
as inversion of the order of integration can lead to incorreet
results.

‘When direct problems are involved, that is, when prescribed

functions are to be integrated (as in the problem of finding

the pressure on & wing with symmetrical thickness), a guide
to the proper method of caleulation is often furnished by
physical intuition. However, when inverse problems arise,
that is, when integral equations are to be inverted (as for
the flat plate of arbitrary plan form), the mathematical
methods are more abstract. Nevertheless, the solutions to

several types of inverse aerodynamic problems have been

obtained by reasoning that required an understanding of
the physical nature of the flow field. This method of solu-
tion may be sufficient for the particular problem involved
but it is difficult to generalize. By using the aerodynamic
date to construct mathematical boundary-value problems
requiring the inversion of singular integral equations and by
obtaining these inversions from a purely mathematical
(operational) basis, & technique evolves whereby the existing

solutions for two-dimensional subsonie, and three-dimen-

sional supersonic wing problems (e. g., thin airfoil, conical

flow, and Evvard solutions) are synthesized. Furthermore,
the solution to the general supersonic wing problem is
suggested.

The purpose of the present report is: First, to review the
formulas of linearized wing theory in which source, doublet,
and elementary horseshoe vortex distributions are introduced

and to relate these distributions to the pressure and vertical

induced velocity in the plane of the wing; second, to present
an operational technique that can be used to invert the sin-

gular integral equations appearing in the application of the

above formules; and finally, to present certain special
examples which will illustrate the basie concepts.

LIST OF IMPORTANT SYMBOLS

Bu' 'kl_ni (En_knngn)
¢ chord of a wing
Co drag coefficient fd_r_a_g__
'?: Po V-agS
C, pressure coefficient <-——2%€—)
E complete elliptic integral of second kind, modulus &
K complete elliptic integral of first kind, modulus &

K., E, complete elliptic integrals of first and-second kinds,

respectively, with moduli &,

kE k, moduli of elliptic integrals

19-50: Supersedes NACA TN 2252, “Formulas for Source, Doublet, and Vortex Distributions fn Supersogic Wing Theory” by Harvard Lomax Max. A. Heaslet. 2nd FrankIyn B. Foiller.
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k', k&, Complementary moduli (v1—Fk21—k.2)
L lift
M, Mach number in free stream
m slope of wing leading edge
m; cotangent of angle between the n and x axes
My cotangent of angle between the £ and z axes
ap loading coefficient (pressure on the lower surface
g minus pressure on the upper surface, divided by
free-stream dynamic pressure) -
r, 8, 2 characteristic coordinates
Te { @—z)+(1—M [y—y)*+2}2
o ((e—2)+(1—2) (?/ yz)’zl”2
S wing area '
t maximum thickness of a wing
u, v, w perturbation velocities in z, y, 2z directions, respec-
tively
V, free-stream velocity
r,y, 2 Cartesian coordinates
a angle of attack of wing (——
8 '\/“-_'A’I 02|
A jump in value of the quantity considered across the
z=0 plane
A streamwise slope of surface (—)
m Vitms? _
Kg m
1+mg
& —mB
T—I
& G—p 2
£ 1,2 oblique coordinates
Po density of free stream
T area of integration
@ perturbation velocity potential
T—x;

e _IT=% .
BVly—y.)+2
SUBSCRIPTS
[ value of 2 quantity on the lower surface of a wing (2=0
plane)
u  value of a quantity on the upper surface of a wing (2=0
plane)

PART I—-THE THREE FUNDAMENTAL FORMULAS
SOME BASIC MATHEMATICAL FORMULAS ~
FIELD EQUATION FOR SUBSONIC FLOW
The basic linearized partial differential equation governing
a subsonic flow field is derived under the assumption that
perturbation velocity components are small relative to_the

free-stream velocity V,. Written'in terms of the perturba-
tion velocity potential ¢(z, v, 2) the equation is

(1 "‘Maz)("u"l”("w"l‘ﬂau:o (1)

where M, is the free-stream Mach number and the z axis is
parallel to the free-stream direction. Equation (1) is, in its

"REPORT 1054—NATIONAL AJjVISORY'CGMMiTTEE FOR AERONAUTICS

normalized form, Laplace’s-equation in three dimensions. If
a sufficiently thin wing at a small angle of attack is situated
on or in the immediate vicinity of the zy plane, the bound-
ary conditions in the resulting linearized theory may be as-
sumed specified at 2=0 and, by means of Green's theorem
(see, e. g., reference 1), a solution to equation (1) can be
written in the form

3 « 2
o(z,y, Z):—‘—z—%f_ﬂf_m [A‘W(In?/l) _?].._c—A‘P(Ihyl) Er_cf_ dx,dy,
(2
where .. -
gr=1—Af;2
and

re={ (—2)*+ (1= [(y—y)*+#])

Equation (2) relates the perturbation velocity potential at a
point (%, ¥, 2) in space to the discontinuities in the potential
and vertical induced velocity at the “plane of (he wing.”
Thus, Ap=¢, —v; and Aw=1w, —w;, where the subscripts ¥ and
l denote conditions on the upper and lower side of the ay
plane.

In a later section, equation (2) will be used to obtain ex-
pressions for source, vortex, and doublet distributions in
subsonie flow.

FIELD EQUATION FOR SUPERSONIC FLOW

The form of the basic linearized partial differential equa-
tion governing supersonic flow fields can be written in terms
of the perturbation velocity potential as

(ﬂf,2—1)¢u—qa,y—cp,,=0 - (3)

Since M, is now greater than one, equation (3) is, in its nor-
malized form, the wave equation. A solution to equation
(8) that relates the potentiz! in space to its jump Agp and the
jump of the vertical velocity Aw across the z=0 plane has
also been derived by means of Green’s theorem. A form of
such a solution, due to Volterra (reference 2), can be written

‘_‘_ r— I
e(x,y,2)=— f f{Aw(xl,yl) arc cosh /@_.___._—;-1)-;_'—:2-;
Ap(zy,y) El%lz)g]—a}dxtd% (4)
where __. . )
_ : B’=M,’——1
and

re={(z—2)'— (M2—D[(y—y) 2]}

The area = is that part of the z=0 plane contained within
the Mach forecone from the point (z, y, 2); that is, the
area bounded by the line z;=— o and the hyperbola
(@—x)*— B (y—y)—F*2=0. ’

Obviously equations (2) and (4} are not similar altliough
the basic equations to which they apply are. A formal
similarity can be obtained, however, through the intro-
duction of an integral operator, originated by Hadamard
(reference 3), and referred to as the “finite part.”” The
use of the finite part and certain other techniques necessary
to reduce equation (4) to a form similar to equation (2)
requires some attention and a discussion of the mathematical
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difficulties involved will be given in the following section.
Then an application of these techniques in subsequent
sections will make it possible to obtain expressions for
‘source, vortex, and doublet distributions in supersonic flow.

THE FINITE PART OF AN INTEGRAL

In the study of linearized supersonic flow problems, one
is continually confronted with expressions of the form

K2 f(x f@ydy

The integrals are of this form in the sense that the integrand
is infinite at one (or both) of the limits end this limit is a
function of the varisble by- which the partial derivative
is to be taken. Such an expression is annoying because
the derivative cannot be ‘“moved” through the integral
sign according to the usual rule, namely,

% Lx Fz,y) dy=F(, )+ | oF émx ) gy ©

. Direct application of equation (6) to equation (5) obviously
yields an unacceptable indeterminate form since the term
corresponding to F{z, z) is Infinite. Omne way of avoiding
the difficulty is to integrate equation (5) by parts so that
the radical appears in the numerator of the integral and
then to apply equation (6) to the resulting expression.
Such a procedure can be carried out without the intro-
duction of any new mathematical symbol or concept.
However, this invelves unnecessary restrictions on the
integrand and often leads to unwieldy forms since the
derivative of the funtion f(z, ¥) with respect to ¥ can be
cumbersome.

Definition.—A more direct way of teking the derivative
through the integral sign in equation (5) is accomplished by
using the integral operator known as the finite part. Con-
sider the simple equality

0 = dy 1

oz, Ji—y +Jr—a
The finite-part sign can be introduced by the definition

3 d o (™ d
_,_y_ ri )

a oz vIE—Y ox ey E—Y

from which it follows
JC 2
_ e Ve ®
The natural extension of this idea is to consider
T 24w » [ Ay o
J a ox vE— ox a -\II v

where A(y) is continuous at x=y and is integrable elsewhere
in the range of integration. The evaluation of  can be re-
duced to a form that requires only the definition introduced
by equation (7). Thus, by adding and subtracting the
same term, J can be written
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Aly)— A4)
T=alf e [ 2

and it follows that

Ady -
a (z_-y)sl2 a

* Ar)— AQ)
@—y)"*

The final generalization of the definitions given by equa-

dy+A@ L = ),,2 (10)

tions (7) and (9) is accomplished by considering the »* de-

rivative of the integrals and, furthermore, by allowing a
functional dependence on z of the integrand A. First con-
sider the definition

Jc(am)uA(yid;/ —(—1)" 1- ....(2n I)JC (z_y;ffm

The second integral can be expressed in the form

> A@dy > Ay)—B(=,y) Bz, y)dy
£ @—yrt? (x—y)=tY2 d +]C (z— !:’)"W2 12)
where
Bz, y)=A@)—A'@)—y+ ..
—1 u—lA(n—l)
(- )(n_l)! (.":) (x__y)u—l
and
_Ca dy (—1)2t
Jo @—y)* 1. 3----(21—1) b::

(2'5—1)(.1: @)t~

Finally replacing A(y) by A(z, ), equation (11) again defines
uniquely a finite-part integral provided that

i [ 175 () 0

Methods of evaluation.—If expressions of the type pre-
sented in equation (5) appear in an analytical development,
it is now possible, by using the finite-part symbol, to take

~ the partial.derivative operation through the integral sign.

Such a process needs no further amplification. In applying
the results of such an analysis to the solution of some spe-
cific problem, however, one is confronted with the inverse
operation, that is, the problem of evaluating the finite-part
integrals. 'This can always be done, of course, by means of
the definitions elready given. Often, though, such evalua-
tions can be simplified by using one of the two foIlowmg

‘processes.

The first process is readily outlined. Rewrite equations
(8) and (10) in the form

JC‘J‘(D: N AY__ fef(fc;'y) —f(z, “’)d _2/@,2)
@—yP? e (x—y)** vz—a

and set the indefinite integral of

f(z, ) dy
@—y*

-
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equal to F (x, )+ C. It follows that

fHEDNY (P 040 (13)
where - -
0= hm[zf (2, 9) F(x,y)] (19
\1‘ Yy

The second technique avoids the necessity of evaluating
the constant C. It depends on the use of the complex vari-
able and is valid only when f(z, ¥) is real in the interval
a<y<b where b is some number greater than ». Again set
the indefinite integral of

f,i(z,y)dy

(x—y)**

equal to F (x, ¥) +C. Now if r. p. stands for the real part
of a function, the evaluation of the finite-part integral is
provided by the equality

(15)

As an example of the second technique, consider the

integral _
2dy
’f@*ﬁm Pf@=mw-'

where z<b. TFrom the relation

y*dy y .Y
f(z’ ,,)m /_7—-arcsm5

together with equation (15), it follows that

I=r.p. —arc sin )———-

J_—F

A simple extension of this result yields L

de & ﬂd
Rl e

An application.—The above methods can be applied to give
the following simple but useful result. Let Y=a-by+ey’=
(Aa—12) (y—N) (—¢) and g=4ac—b?, then

j;*=(ca+cly)dy J“ (ca+c1y)dy

[eo(2¢t+ b)—ei(bE+-2a)] (16)

q w/a+bt+ ct?
Included in this result is the equality
f“"";f;y dy=0 a7
which contains the very important identity
- dy [ dy
v ——=0 (18
:El Ra—yP2vy—M Jxl =M N—y (18)
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" The case of multiple integrals,—When applied to the
analysis of single integrals, the above defintions of the finite
part caincide with, or are a re-expression of, those given
originally by Hadamard (reference 3). Hence,

f‘f(x, wdy__ (* 1z, ydy
N (x_y)zlz JG (x_y)su
was the symbol used by Hadamard to denotle eval-
When applied to double

where [
uation by finite-part methods.

integrals, however, the signs [ and f are no longer equiv-

alent. Hadamard, as well as A. Robinson (reference 4},
maintains the convention that the order of integration in the
operation [ is reversible; that is?

|[4v [ 2z s, 0=| [0z [y 7@,

Such a convention requires that all singularities for which the
order of integration is irreversible must be excluded from the
ares of integration. These singular regions are then tloatvcl_
separately. This convention has the disadvantage that, in
evaluating multiple integrals, the value of a given integml is

not independent of succeeding integrals. The operator -,C

avoids difficulties of this kind and cach definite integmltis
independent of succeeding operations. For example,

jc(i—n)“” _f ?Ee(é—n)”’

but, according to reference 3,

f t_dy g
o (E—nPily

whereas, according to the same reference,

Ef (E—n)”' Ty

makes each integration

Although the use of the symbol ]C
independent of subsequent integrations, the order of inte-
gration for operations involving the sign cannot be re-

versed. Hence,

[y f dz 12,97 [ a2 f @y 52,0

For example, the relation

X EJC(E— T

holds while the same integral taken over the same arca but
in reversed order is

28ince the order of Integration plays sn important role In the tonowlnz dcvclopmont inte
gration first ' with respect tor and then with respect to ¥ will be denofed /S dy S d2 f(z, ¥) while
integration first with respect to ¥ and then with respect toz will be denoted S dr S/ dp f (x, #).
‘When the notation S S f (z, ¥) dydr Is used, the order of integration is Immaterinl.
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jc E— ),,, G o

The operation defined by the symbgl jc will be used con-

sistently throughout the present report. Hence attention
must always be paid to the order but not to the multiplicity
of integrations. It can be seen that the finite part of a con-

ventional-type integral coincides with the value found by

standard methods.

THE GENERALIZED PRINCIPAL PART OF AN INTEGRAL

Another type of important operation appearing in the
development of both subsonic and supersonic wing theory
appears implicity in the expression

I=tin [13 [0

where f(y, 2) and its derivatives are bounded and continucus
in the interval a<y<5. In the attempt to simplify 7, by
letting z approach zero before performing the integration, &
second special integral operator will be introduced.

(19)

To simplify Iy, first integrate by parts

—f(b z) are tany 5—{-
*d

f‘ féz;:z) arc tan LY y; dy‘:l

Then since

I,= hm I:f (e¢,2) arc tan ¥

lim * Of (y1,2)

¥—=% 4, — _
Im | 0 arc tan . dy,=7f(y,0)

5 [fe@,0)+£3,0)

I; becomes

_JT®,0)_ f(a,0)
y—b y—a ).

fl!]_(yho) y;_
¥—un

+Tfi (y: 0) (20)

Deflnition of the generalized principal part.—The expres-
sion of I; given in equation (20) contains the integral of the
function f”(y1)/(y—¥1). Such an integration is not, in general,
convergent; however, when the integral is so written without
further qualification it is generally accepted that the singu-
larity occurring in the integrand is to be treated using
Cauchy’s principal part. Evaluation by such & method is

often indicated by the symbol ¢ and is defined by the equa-
tion
§ADy i, [ [ AW [* 4GB g
a Jyte yl_y

or, a.lterna.tively,

o

- aay f ’A(yl)zn]yl—y[dm (22)

To assure the convergence of the right-hand side of equations
(21) and (22) it is sufficient but not necessary to assume
thet A(y,) is differentiable at the point 3,=v and that
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elsewhere within the region of integration .A(y;) is either
continuous or possesses integrable singularities. The con-
cept of the Cauchy principal part is so well known that the

symbol on this integral is often omitted, as shall be done ..

here.

The differential operator in equation (22) lends itself
readily to & generalization of the principal-part concept.
Thus, for the next higher order, the definition (see also,
in this connection, reference §) -

L0 Ayody_
I —yr

5A(le)d’yx
oyt. Yi—y
(23)

22 [
ayzj; Ay Inly—yldy

applies and, in general,

5 A d bﬂ'l-l L
1% (y(y%)gix‘ ayu+1f Aly) Inly—yudy:=

* Alyndy
oyt Yi—Y

24)

The generalized principal part can also be expressed in
the form

A(y:)dyl A(zh) —By, ¥y L By, y)dy:
d?h"i‘

)n+1 —v T (. —apyREL I (o —y a+1
where
ch,yo=A<y)+A'f”) N
and
N ind dyl dyl —
T. i)™ 4t (by)f ni—y

—1 1 1 .

7 lo=mamt 1=
The first n derivatives of A(y;) are assumed to exist and be
single valued at y,=y while elsewhere in the range of inte-
gration A(y;) may possess integrable singularities. This
definition is in & form that involves no extension beyond
the concept of Cauchy’s principal part.

It is possible to extend the definition contained in equation
(24) to include & functional dependency on ¥ in. the numerator
of the mtegrands Thus, replacing A(y:) by Ay, ),
equation (24) again defines uniquely a principal-part inte-
gral provided the first n derivatives of A(y, y;) with respect
to ¢ and ¥, exist at y,=y.

Method of evaluation.—Operations involving the symbol

j— can always be performed by means of the definitions

]ust given. However, another method can be used, which
is often simpler to apply. If the indefinite mtegral of

A@) [ —y)*1! exists such that
Alyddy, _
o L G(’.‘le Nn+C (25)

then the value of the generalized principal part can be found
by following the conventional rules for substitution of .
limits; thus
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! Al dy,

. (yl""y r+1
The proof of this result can be obtained by mathematical
induection.

An application.—Returning to equation (20), since an in-
tegration by parts yields the relation

O, —Ca, ), y*a, b 26)

L fy, 0)dy,_ f(b, o) f(a o) ffy,(yl,O)dyl
Jo o=y y— Y=

the limiting process symbo]ized by I, can be expressed as
an integral that contains only the function evaluated at
2=0 and not its derivative. Thus, finally

zf(yh Z) ilb f(yl, 0)dy1 T
.-.oj. be[zﬁ(y T R M e 2 0)(27)

THE OBLIQUE COORDINATE SYSTEM

Equations (1) through (4) gave the basic partial differen-
tial equations of wing theory, together with their solutions,
in terms of the usual Cartesian coordinate system, the z
axis extending in the direction of the undisturbed flow and
the ¥ and 2z axes oriented normal to this direction in such a
way that boundary conditions for the wing can be specified
in the z=0 plane. In the study of supersonic flow fields
it is at times mathematically convenient to introduce in
the 2=0 plane new coordinate axes making arbitrary angles
with the z and y exes.

The general cage. Consider the £, 4, 2 coordinate system
(fig. 1) such that the z axis is normal to the plane supporting

y

E&=-m,y

Zxmyy

r
xz

Fiavre 1.—Coordinate systems.

the boundary conditions while ¢ and # are normal to z and
coincident with the lines 2= —mJy and a=myy. If

pr=~/1+ms?, #2=1e‘1.‘f‘7n? 28)
the equations relating the two systems of coordinates are
nmy , EMms _E—my)
‘ B + Ha ’ £ Myt My
y=T £ ; __m@+may) (29)
Bro Mz my+ms

2=z, 2=z -
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while the relation between the differcntial arcas, as deter-
mined from the Jacobian of the transformations, is

dfld%:Mdfldm (30)
HiMta

¢ The val’ue of r., as defined under equation (4), becomes

(’) m)’(ml ~8% , 2(n— ﬂl)(f—fl)(mlmrl'ﬁ’)
+ Kikts T

(E_El)z(mﬂ —BY e o |?
#22 B 22:|

where.ﬁz=ﬂfo’— 1,

(31a)

If the variable », is introduced such that

pm EEL
T ly—y)it+e

it follows that in the transformed coordinates this variable
becomes

(31b)

B WIS AL
(n—n9 o TG El)”

P — F (31le)
[(ﬂ—m) '#—1—(5—&) ;’J +z
Finally, the differential operator 93fdz trans{orms to
o 1 o 0 .
S mitm \M2oE T bﬂ) B1d)

The area = over which the integration of equation (4) is to

be taken is still, of course, bounded by the hyperbola r2=0

and the line #,=— «. The asymptotes to the hyperbola

become, however,

17—m="——‘ (t—&) m,-|—g

(32)

nN—m=— m, + ﬁ
Figure 2 shows how the area = in the 2y plane transforms to
the &7 plane.

(Alth(_)ugl'l the ¢ and 7 axes are oblique with respect to the
original axial system, no inconsistency results if the ecquations
in the transformed variables are plotted relative to orthogonal
axes.) In case both m; and mj are less than 8 (the case for
which the sketch was drawn), the asymptloles are straight
lines with positive slopes, and the area is hounded in both the
£ and 7 directions by the maximum points &, g, and &, s,
respectively. These maximum points are shown in the figure
and their analytical expressions are

L=t Zug 32“‘7"12) fe= zu(mums+ 89

T mekmg T et ma VB 33)
b Zpmmit ) zuofFm
’ (my+mg) VBi—m,? e my+me

. If the oblique coordinate system is chosen such that m, is
less than and ms is greater than 8, one of the asymplotes in
equation (32) has a slope of opposite sign and the arca r is
unbounded in the n; direction although £,n, is still the point
which determines the farthest extent of = in the # direction.
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| Y R p=o(x_g,
| ), o e—50)

. 1 M, . 34
V=Ig (s—1), §=5g (z+By) @9
z=2z, z=—z2

Yo
4
’/’ \‘\‘ Yy
z“"/sy '“\‘ ’a” ")\“"F ‘_w'ﬁy
’(': ’,' “\‘
. “~-Mach lines -+ .

s
L}
- &

L Y
-‘ra |‘ . &£

3 F1auRE 3.—Characteristic coordinste system.
\ ,~~Trace of forecons

o n &, 17 plane When z is set equal to zero, the equation for 7. and the
\ - form of the area r become especially simple. Thus
h - 28
—=p=at S —p Y5 —
L (r“)‘-ﬂ_ro_ﬂfo Y (1' Tl)(s 31) (35)
"'_(§b= 771,) . R .
\ and the area r, shown in figure 4, is bounded by the sfraight
5 lines ry=r, $,=s¢ and r=8=—. s
T¥EN) .
: \?
Y
(_bfi ’/——si =5
(8) 21, 11 plane. - [
(b) &, m: Dlane.

2y

FraUrE 2.—Ares of integration r. \\\\

On the other hand, if m, is less than and m; is greater than
B, = extends infinitely in the & direction and &,n, represents

its upper bound in terms of %. Finally, if both m, and m, r
are greater than B, the area 7 is not bounded for either \
negative or positive & or . \\ &
The characteristic coordinate system.—Another special ry=r-- ' (r, §)

case of the £,1,zsystem (thez, ¥, 2z system s, of course, a special
case obtained when m;=0 and m;— «) that is important
enough to receive a particular notation is the one obtained
when the £ and n axes are parallel to the Mach lines (i. e., the

traces of the characteristic cones) in the z=0 plane. These Y
axes are shown in figure 3, will be designated r and s, and are o
given by equations (29) when m;=my;=§ and gy =pa=121,;thus | FmUee 4.—Integration area in characterfstic svstem for zed.

213637—53——S81
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THE THREE FUNDAMENTAL FORMULAS IN SUBSONIC FLOW

The parallelism between the basic formulas in subsonic and
supersonic wing theory is so obvious that it is advantageous
to present first the somewhat more classical results applying
to the purely subsonic regime. The immediate objective is
therefore to present as briefly as possible the expressions for
the perturbation velocity potential due.to a. distribution of
sources, doublets, or elementary horseshoe vortices and then,
by means of these expressions, to relate the pressure and
vertical induced velocity in the z=0 plane to the weight of
these distributions.

THE PERTURBATION POTENTIAL AT A POINT IN SPACE

The linearized form of the perturbation velocity potential
due to 2 unit source, elementary horseshoe vortex, or dou-
blet situated in a free stream moving at a uniform subsonic
velocity 1, is given as follows: '

Unit souree . o ______ e p=—1f47P,

Unit elementary horseshoe vortex. o= —zv /drr,

Unit doublet. ool o= —zp4xr}
where », is defined in equation (31b) and §2=1—A2

It is well known that a distribution of sources in the 2=0
plane splits the streamlines and forms a field symmetrical in
%, v, and ¢ above and below the source plane. Hence, the
strength of the sources is related to the term Aw (which, in
turn, is related to the gradient of thickness of the simulated
body) while the variables %, v, and ¢ are continuous. On the
other hand, a distribution of elementary vortices or doublets
causes a discontinuvity in the streamwise induced velocity
(or, what amounts to the same thing, the perturbation
potential) across the reference plane but, at the same time,
causes no division of the streamlines. The strengths of the
vortices and doublets are thercfore related to the terms Au and
Ag, respectively, (which, in turn, are related to the wing
loading), and produce no discontinuities in w. The exact
analytical form of these distributions can be obtained readily
from equation (2). :

The source distribution.—The velocity potential induced
by a distribution of sources over the z=0 plane follows im-
mediately from equation (2) since, by symmetry, Ap must
be zero. In practice, the area over which the sources are
distributed i is limited to the area S defined by the plan form

Hence,
oo,y )= f f A e dyy 36)

The elementary-vortex distribution.—Equation (1) was
written in terms of the perturbation potential . It could,
however, after differentiation have been expressed in terms
of any one of the induced velocity components and the so-
lution in equetion (2) would then also be expressed in terms
of the particular velocity component chosen. Consider such
a case, taking for the dependent variable the streamwise

perturbation velocmy instead of ¢. Equa,tlon (2) then be-

comes

u(zx,y, 2)=—— 47rf_..f

bAu 1
Dz 1.

52 )dzl diy,
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If the Feld is to be without sources, both Aw and daw/d«
vanish. But for an irrotational field the equality dAw/dz=

" 9Au/dz holds and the first term in the integrand of the above

equation is zero. By definition

f_ u(z1, Y, 2) dxl=§°($: v, 2)

from which it follows that if the operator f dx is applied

to both sides of the resulting equation, the relation

w2, 9, 2)= 4vr fJ [(;(xyn)fif’tlr drldy.l

follows where the area of mtegmtlon is limited to the wing
plan form. This result expresses the perturbation velocily
potential due to a distribution of elementary horseshoe
vortices. over g wing plan form in the z=0 plane.

The doublet distribution.—The solution for a doublet dis-
tribution, just as in the case of the sources, follows im-
mediately from equation (2). Since the streamlines are not
divided by the doublets the term containing Aw vanishes.
The doublet distribution exists, however, not only over the
wing area but also over the vortex wake streaming down-
stream behind the wing since the discontinuity in the po-
tential persists in this region. Designating the wake area
by W, the final expression for the perturbation potentinl
associated with the doublet sheet becomes

o,y =22 f f dz, dy (38)

(37)

REDUCTION TO THE PLANE OF THE WING

The aerodynamicist is usually interested in the forces on
the suxface of the wing itself and, as a consequence, il is
pertinent to consider each of the above formulas in the
limiting .case as 2z approaches zero. An explicit expression
of these results is given below.,

The source distribution.—The limiting value of equation
(36) as z approaches zero is obtained immediately by simply
setting z equal to zero. The resulting expression is

so(x,y,O)—-— ff- ~dzydy, (39)

where

ro=[E—2)*+ 8%y —y)7

Practical interest is usually concentrated on the relafion
between the pressure on the wing surface and the wing shape.
Since in linearized theory pressure coefficient C, and wing
slope A, of the upper surface are known to be

—2y w, 1 Aw .
Cp V X Xu T/0 2 T—,u" (40)

it follows, after differentiation of equation (39) with respect
to z, that pressure coeflicient is

0,__

Ay
i 'ax ff dxl dy[

(41)
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The elementary-vortex distribution.—When the strength
of the elementary horseshoe vortices is known over & wing
plan form, there is no difficulty in finding the potential in the
z=0 plane since it follows from a direct integration of the

vortex strength. The pertinent question is, rather, to -

determine the vertical induced velocity in the plane of the
wing from the given vortex strength. If load coefficient is
defined in the usual way
Ap  2Au_ 4duy,
P 1A =T" (42)
the answer to this question requires the evaluation of the
following limiting process:

;i sfffa —

If, as in equation (27), the generalized principal part is
introduced, the required expression becomes

w_—1LCL (x—zp) Ap
Vo 8t TT(y —y)’re ¢

4(1‘ IL)

—y* +2ar. P dxidy,

dz dy, (43)

. The doublet distribution.—In the case of doublet distribu-
tions, the relevant problem requires the expfession of vertical
induced velocity in the plane of the wing as a function of the
doublet strength Ap. If equation (38) is differentinted
with respect to z and z is then set equal to zero, one finds
without difficulty the final formula

w_ B [fae
170—411' .['70 ff 'rga drl dyl

S+

(44)

THE THREE FUNDAMENTAL FORMULAS IN SUPERSONIC
. FLOW

The purpose of this section is to repeat for supersonic wing
theory the developments presented in the preceding section
for subsonic theory. In order to maintain the formal analogy,
it is necessary to introduce the concept of the finite part.
This latter concept, in turn, introduces into the analysis
integral expressions containing certain inherent singularities.
Such singularities are, by definition, points across which the
order of integration cannot be reversed.? The study of these
singularities and their effect on the fundamental formulas
suggests the introduction of an oblique coordinate system
defined in the first section of this report. Hence, the follow-
ing anelysis will be presented in the § %, z system, while
transformation to the Cartesian and characteristic systems,
it will be remembered, can be made by considering the special

cases
For Let
LY, 2 my=0, My= } (4:5)
r, 8z my=m,=_

Following the development of the basic formulas, & summary
of results will be given in terms of the r, ¥ and r, & coordinates.

3 More precisely, if an Inherent singnlsrity exists in the area over which & doable Integrel Is
to be evalusted, the difference between the values of the integration made In one onler and
then over the same area but with reversed order Is not zero.
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THE PERTURBATION POTENTIAL AT A POINT IN SPACE

The velocity potential due to a unit source, a unit elemen-
tary horseshoe vortes, and a unit doublet is given as follows:

Unit SOUPCe - o oo e=—12xr,

Unit elementary horseshoe ' (46)
vortex. _ - o= —1zv (277,

Unit doublet___. . _________ o=28*2xr?

where r; and v, are defined in equations (31) and f2=Af2—1.
In this notation, the only difference between these expres-
sions and the corresponding ones for subsonic flow is the
factor 2. A much more Important difference exists, how-
ever,in the effect of the change of sign of 1—2A34® on r. and »..

The first task is the expression of the perturbation ve-
locity potential at a point in space in .terms of distributions
of the elementary solutions and this can be accomplished by
an appropriate analysis of equation (4). Just as in the

subsonic case, the source strength is given by Aw, the vortex

strength by Au, and the doublet strength by Ae.

The source’ distribution.—The potential induced by a
source distribution eanbe obtained from equation (4) by setting
the term containing A equal to zero (i. e., by removing all
the circulation from the flow field). By means of the nota-
tion

r—2, _ %(ﬂ—ﬂx)‘i‘f—:(f_ft)
B ly—y)+2* R 22
ﬁ\/[ul(n m—L—8) [+2

The remaining expression can he.written in the £ 7, z co-
ordinate system simply as

(Pza E—I—m 3 )_”Aw(&, n0 arc cosh w.dfdn,
(48)

(47)

e =

—1
o(& 1, 2)= e

It is possible to “move’” the partial derivative operations
through the integral signs if the equality

I e

a(z)
= [ s dv=renge
s

is used. Obviously, if the operation indicated by equation
(49) is to be applied to equation (48}, the order of integration
and the limits on the latter equation must be specified.
Consider the case when the £ and 5 ayes are chosen so
that both m, and m, are less than 8. 'The area 7 is then the
one shown in figure 2. Further consider the case when the
first integration is made with respect to 7. Then, equation
(48) becomes

‘r‘(Er LT ")

—1
2rpaa\[ 2O +#Ian)

f_‘; & J; " dmiw(, n) are cosh e (50)

where \; and A; are roots of the quadratic expression. 72(y;) =0
and &, 7. are defined in equation (33). It can be shown
that when §=¢,, the equality M=>, applies, and, further,
that the integrand of equation (50} does not vanish. Hence,
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the two partial derivatives can be moved through the first
integral sign without the appearance of the additional term
involving the derivative of the upper limit. It is also not
difficult to show the value of w, ac #; equal to either A, or
A is just 1. Hence, the two partial derivatives can also be
moved through the second integral sign without the appear-
ance of additional terms. Finally, since

1 0 o] d 1
M(“’a—g_l'“‘ b_n) arc cosh w.=s—arc cosh W=7

the velocity potential at a point (£, %, 2) due to a distribution
of sources in the z=0 plane can be written

ol n, e TS (800 gy g0 o

The elementary-vortex distribution.—The potential in-
duced by a distribution of elementary horseshoe vortices
can be derived in & manner analogous to the derivation for
the subsonic case. Thus, the solution given by equation
(4) is written for the induced velocity u rather than the
velocity potential4 Since the flow field contains no sources,
0Aufdz is zero (by the same argument presented for the
subsonic derivation) and the solution can be expressed in

the form
- f 22 au ey, y) desdy,

However, by definition

o= f ude .
so the relation becomes : - '

<P—_[f7, Ay (zy, Yy dady

Finally, in terms of the £, 9, z coordinate system the equa-
tion for the velocity potential due.to a distribution of
elementary horseshoe vortices in the z=0 plane can be
written :
=(m,+m,)z

2wpaphe

f % Au (6, 1) b d, (52)
T

The doublet distribution.—The potential induced by =
sheet of doublets can be obtained from equation (4) by
setting the term involving Aw equal to zero (i. e., by re-
moving all sources from the flow field). Expressing the
result in the £, 5, 2z coordinates, one has

1 a ag)waAso(Enm)d&dm (53)

‘P__ 0,,- nzan B

Again it is necessary to carry the partial derivative opera-
tions through the two integral signs. And again, just as
was the case for the sources, this requires that the order
of integration and the llmlts on the integrals be specified.
’l—lml‘a.ct—that: equatlon (4) can be written for u as well as ¢ does not follow immediately
In the cass of supersonic flow because of the presence of the discontinuities in u along Mach

waves emsnsating from supersonic edges. Proof of the valldity for cases of Interest herein
i3 given in reference 8.
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Qnce more consider the case when m; and ms are both
less than g, the area 7 is the same as that shown in figure
2, and the first integration is made with respect to 7. Then
equation (53) becomes

(ot an) [ [ a2 Aeun) (59

More caution is necessary in movmg the derivatives through
the mtegrals than was required in the study of the source
case, since at £=4%, the 5, integral is indeterminate. It is
true that the interval of integration X; )\ is zero, but it is
also true that the integrand is infinite. The value of such
an indeterminate form must be obtained by some process
such as the following.

The upper limit to the £ integral, &, is a function of the Lwo
variables 2z and £ (see equation (33)); that is, in functional
notation £,==£.(% 2). Replace 2z in & by Vz’-l-e’ then when
eis zeroa £ has not changed. Butif £(¢, 2) is replaced by £.(¢,
V22 +€) in equation (54) and the limit taken as « approaches
zero, the indeterminate form mentioned above can be eval-
uated. Hence, consider

19,12
27r s On 'y OF

a (e, o)
f L dslﬁl ffm:—: Ai’(fn 171) (55)

(&=

By applying the operation described by equation (49) and
letting & primed function symbolize its value at &=4&(¢,
JZ+&), the expression

M’ Ve’ ’
v dm —;A‘P (& m)+

Mz aﬂ & aE>f d"h A‘P (&, m)
(56)

.z
e(&n,2= 191_1.33'2?“

z eﬂ
5z e
is obtained.

The first term in equation (56) can be greatly simplified by
use of the mean value theorem. In the limit as e goes to zero
both A and A\’ approach the common value of 5,. Thus,
for ¢ very small the variation of Ap’ and »/ in the range
N <m<A' i3 slight. The same cannot, of course, be said of
1/rs, since N, and A’ are the roots of r/=0. Using the

functional notation »,/=»(n) and applying the mean value
theorem, one can write for the first term in equation (56)

hm

, 2’ d
w00 (0 [ <o (6
Now Irdm the definition of r, given by equation (31a)
d T

Me! d’h f
ﬂ‘ re! ﬁg‘ml M ‘\‘(7\2 —ﬂx)(ﬂt'—)\) \W

which is independent of e. Hence, the expression given in
equation (57) reduces to

3 A0 (1o
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Moving the partial derivatives through the second integral

sign in the last term of equation (56) can be accomplished
by introducing the ﬁmte-pa_rt sign defined previously.
Since
1 0,10 -—Bz

a"T 231 aE l" c- rs

Hilte
my+ma \

it follows thé.t-

12

pzaﬂ mbsf dm-—Aqa(Ex,m)—

_jﬁ"z Ap (&, 10dm m1+m,)

A rd Bila

By means of these equalities, equation (54) can finally be
written in the form

(61, )= ol 1 L™ (4 f 4, BeEyn)

(58)

If the area of integration is not changed but if the order of
integration is reversed, it can be shown by a process identical
to the one just described that

zp (m1‘|‘m2)fd :FdE A‘P(Ex;‘ﬂl)

¢(E,n,2)=%A¢'(&,m) "
(59)

The area 7 used in equations (58) and (59) has been defined
as that shown in figure 2, the axes £ and  both chosen so as
to lie outside the Mach cone from the origin of the Cartesian
system. As the ¢ end y axes approach the Mach lines in the
x,y pl&ne, that is, as m, and m, approach g, the residual terms
in equations (58) and (59) approach (%) Ae¢(&, —«) and
(B Ap(— e, m), respectwely, which represent the jump in
potential infinitely far ahead of and to one side of the pomt
(£, n, 2) at which the potential is being measured. Hence, in
serodynamic applications, the (¥)A¢(E, —=) and (¥)Ae
(—, u,) can be taken as zero. Thus, when the £ 7 axes
lie along the Mach lines, thereby becoming the r, s axes of
equations (34), the expressions for ¢ are without the res-
idue terms and the order of integration is immaterial.
When m, and m, sre greater than g the same is true (i. e., the
terms (%) Ap(&s, 12) and (%) Ap(&, 1s) are missing from equations
(58) and (59) ,respectively) so that the effect of a distribution
of doublets on the velocity potential can be summarized as
follows:

For 0 <m, <8, 0<m,<8

1 B*m,+ (' Ag
¢=35 Ag (&) 10— %ﬂzﬂ J jt:clm _qa(_Es_@ (608)
%Acp(&, »— % £ -dy chaA“’(El’"‘) (60b)
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For 0<m;<B, <M< =

o= o (10—t L g1, f g, 20 Go00)
___2Bmi+my Aqo(&,m) i
o 27 pps :Fd JCd& (60d)
For 8<m;<=, 02m,<B .
o=t g,y —2E M L g, L gy Seliumd - 0q)
Zﬂ mi4-ma) C A(a(fh 11
2rpypg fd& dm 60D
For p<m < =,8<m<
__2p(mitmy) ((Ae(l,m)
= 27 pipe ff T dedn 60

There exists an interesting corollary obtained by sub-.

tracting equation (60a) from (60b); namely, that the differ-
ence between an integration of supersonie doublets made
first in one order and then in the reverse order is equal to the
difference in the magnitude of the distribution at two points
in the plane. .

REDGCTION TO THE PLANE OF THE WING

The next problem is to consider the above formulas in the
limiting case as z approaches zero.

The source distribution.—The potential in the pla.ne of the~

disturbing source sheets follows immediately from equation
(51) by simply setting z equel to zero; in this way

—(mu+my) ff Aw (g, )
£ dm
Ty b

e(&n,0) (61)

Pt 13Y:)

In order to relate the pressure coefficient C, to the slope
A of the upper surface of the wing (where both €, and \, are
defined in equation (40}) the operator

29 Zmps (10,12
Voeoz Vo(m+m2) \p1 OF * pa 07

musf be a.pplied to both sides of equation (61).

G _2 DE noan) .” . (Eh 2 dhdn

The task of moving the partial derivatives through the
two integral signs presents & problem identical to the one
studied in reducing equation (53) to equations (80). Two
inherent singularities in the area occur at the points &, 7.
and &, 7, and form, just as in equations (60), certain resid-
uals there. In the present discussion, interest is confined to
the case when z=0. Equation (33) shows immediately

Hence,

(62)
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that the values of &, 9, and &, 9, for 2z equal to zeTo’ can be

written
(EDemo=(Ep)emo=E } 63)
(ﬂ¢)3-0= (nb)z-0= 7

It can be shown, therefore (the details being omitted since
they are precisely the same as those described in the reduec-
tion of equation (53)), that the following relations hold:

For 0 <m;<{B,0<m,<B

ree 2 —
Cp_‘\’ﬂl—i A (8 m
2L — ) +22 (6~ &)
2 (my+mg B2
TRk JCdf J‘d'ﬂ 1o M(&EGTZ))
a,
2
== Au P P
Vo 67
9 (mrl'mz) 711)+'_— (E__ 51_)
THika fdﬂ fd& e M (EE;;:}:)
For 0<m;<B, B<my<
, 2 |
Cp=—ﬁrml;7\u(t-, n— . T L
7n1
2(m +mz) . 711)+ (E El)
—-W—{d&-ﬁdm > 3 MulE1ym1)
(64¢c)
% = )+ (E &)
2(my+my) Y e
- ‘rl[.tlllz j:dr; fd& P 3 Nty ﬂl)d)
(64
For p<m,< &, 0 <m,<p
9 . .
=2 N ) — =
C, Wy &
1n1
—(n— m)-l- (E— &) :
2(m,+my .
—m—fdﬂ fdsl g ﬂ(slrﬂl)
(64¢)
2(my+my) m)+——(f &)
_ r:n#z fdf :,Cdn 3 Nu(E, m0)
(64D

For g<m; < o, f<m,< @

2 (g~ m)+—-(£ &)
0’=_2(m1+m2) ff Nk, ﬂl)d’::ldfll

TUH1L2
(64g)

The elementary-vortex distribution.—The reduction of
equation (52), the formula expressing the potential due to a
sheet of elementary horseshoe vortices, to the plane of the
wing is of little interest since if Au is known ¢..o can be

£
obtained by the simple relation (0:..—0=?)]: f Au dz. However,
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if the derivative with respect to z is determined on both
sides of equation (52) and the limit is found as z approaches
zero, the vertical induced velocity in the plane of the wing
will be related to the vortex strength there. In a more
physical sense, this will relate the slope of the lifting surface
to the load distribution it supports. Such an equation is of
basic importance.
The mathematical expression to be studied is

b (m1+mg)T7 rfzyc AP Ehﬂl)
w 121:301 0z E2 N d&dn (65)

The evaluation of w can be divided into two steps: First,
the procedure necessary in order to carry the derivalive
through the first integral and, second, the calculation of 7
where

(mi+m) V4 Zye A?’ (&1, 71)
I= hm 4rpps szf g hdm (66)

Again the order of integration is important. As in the
preceding discussion of the doublet sheet (equations (53}
through (60)) and the source sheet (equations (61) through
(64)), assume first that the area of integration is the one
given in figure 2. Thus, m, is less than 8 and the 5, integra-
tion is performed first.

If ¢ is introduced in order to evaluate the indeterminate
form, equation (65) is expressible in the form

(m1+m9)V o

w_
w0 Awpps 02z,
0

& (¢, VAT E) A
T f i 282 )

"I q

where the terms A; and A; are the roots of the quadratic
r&#=0 and where the limiting process for e must be performed
before that for z. As before, the primed expression denotes
values for the particular case &—E«(En”"i- &), and equation
(67) reduces to

dxpgps A

By means of the mean value theorem, the first term on (he
right-hand side of the equation can be simplified. The pro-
cedure involved in such an analysis was outlined in the
derivation of equation (57). The process used here is iden-
tical and equation (68) becomes

B Ap () |

7 7 (69)

== w=

The term I, defined by equation (66), can be expressed in
& simple form by introducing the notation for the general-
ized principal part (see equation (27)). This term becomes

<m1+m2)I U_EdE _Ed VO AP(EI: "Tl)

drmuy J 07 q (70)

If the integration of the above expressions had been taken
in the opposite order or if the range of m; and ms had heen
different, the residual term would change. This phenomena
has been presented in connection with both doublet and
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source distributions and is by now familiar. Finally, there-
fore, expressions relating the slope of the wing surface to its
loading cen be written:

For 0 <m, <8, 0<m<B

W VB —mpr(E,n)Lml-l-mz_c 5—Ed VoA'P(El;m)

Vo 4 q drmps ) LT q
(71e)
N, BP—ms® Ap(§,m) , mit ma_ﬁ ¥ Ap(&, 1)
o 4 q drpip, jgd& g
(71b)

For 0 Sm1<B, B<my<

w ;ﬂ '_777'12 AP(E: ”)"—ml-[_m"ﬁd&jr' Yo AP(EIJ "71)

To 4 q drpps J q
(7T1c)
mLTmz _C VOAP(&! 1“-) (71d)
T Lwpmps ?‘o

For f<m < =, 0<m<B

w '\Bz"—ml AP(E)’ ) m1+m2_cd fd&VOAP(EIJ 771)

Ve 4 q ' drpips J q
(71e)
_Mat ’mz_ﬂ ) AP(EL, 10
T dmpips J Eljgd (719)
For p<m<o,B<m;< =
W __Mi+m, L4} AP(EI, 71
Vo 4mmpe IJC' 3C d&dm (71

The doublet distribution.—The pertinent problem in this
case is to find the vertical induced velocity in the plane of
the wing as a function of the jump in potential across the
plane.

Consider equations (60) and take the partial derivative of
both sides with respect to z; then find the limit of the resulting
expression as z approaches zero. If equation (60a) is used,
for example, there results for the first term

01 _1/0A¢\ 0%, 1 (000 14
bm = 2A‘°(’3¢* =5\ 3L, ).ey 92 T2 \ 012 /s 02
which becomes
—1

2 (my+my) P —mi?

[ w:l6—md) 2 Al s mamat 57 = e, ,,)]
72)

The second term can be writien -

i 2 Bt [ L g Do)

20 OZ  2miips

and this reduces to

'—ﬁ (mitmy) .. [, AelE,1)_
Tom J RN

2mwpipe
B tmg, O J‘d JC Av(ﬁ,m) -
R — E+dm (73)

2w z

Since, by equation (17),

JC" dm
 [Ca—n) (i— A2

the second term in expression (73) venishes. Finally, there-

fore, the vertical induced velocity in the plane of the wing
becomes: ]

For 0 <m,<B,0<m.<8

- 1 o
R T Rl

B1 (mlmz'l‘ﬁz) 'Ja_A‘P & ﬂ)]—
g (mx'l'mz) fd&jcd Ap(h, 1) (51: 71)

T 2mmns (742)

Ty T [#z(’mlmz-[-ﬁ’)a FAelE M)+

8 — m) e Aol n)] Em ) Lan fda“"“"’“’
(r4b)

For 0 <m<B,p<m< =

— 1 2 . O
w= 2(my+ m3) 1@_—”‘12[#209 mi)s £ Ap(t, 7))+

pa(mamat-89 %A«a(s, n)]—'

B2my+my) Ap(&, 1) .
- 27 fdﬁfdm 7o* l (740)
___Bmitm) Asa(&,'fh) S
T 2xpips fd jcd& (74d)
For g<m; < »,0<mp<B
' 1 d
Ty ﬁz_mzz[ﬂz(m1mz+ﬁz) s delt M+
(8D - Aoe,m) |-
BXmi+my) A«’(El, 70 -
2appe -ch fdé (Tde)
__ fmatmy Aty 1)
o 2xpine fdﬁjcrdm 7'03 (74f)
| For g<mi<»,f<m<= '
_ fAmitmy) A&a(-f ,m) -
w== 271#1#2 JCJC 1 d&dn (lég)
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SUMMARY OF RESULTS FOR ¢. C;, AND, w IN THE PLANE OF THE WING;
CARTESIAN-COORDINATE SYSTEM

The special forms of equations (64), (71), and (74) when
the &7 axes become the Cartesian axes are given in the
following sections. In these cases, £—>r, 7Y, m—0, and
Mmg—> @, . .

Potential in terms of vertical velocity, nonlifting case.—

-1 Wu(Z1, Y1)
olz, y)= Tﬁf’\/(x—x])z—ﬂz(y—yl)’dxldyl (75)

Pressure coefficient in terms of surface slope, noulifting
case.—

=3 20, L _(@—z)M (21, ) _
G et )= bt e

(76a)
__2 (z—z)Nu(Z1, Y0
Crm Tty fda Tl

Vertical velocity in terms of loading coeflicient, lifting
case.—

(76b)

%=__§Ap_(;, ) l
( —7 ) AP(-’fz,yx)

g «
_=Fdx1'fdy1 (y—y ) a—z)— By —y)? (773)
(x—2 ) A_’p(:t], yl)

F=if vl g e o

Vertical veloelty in terms of surface potential, lifting
case,—

(7'7b)

] _Bs { eu{Zyyy)
e y) ?.{dz’.l,dy‘ (=2 —By—y )"

(78a)
3 = _Bz . (p.,(r ] yl) .
Y= _r—.fdy’{dx’ [(1'—3«'1)2—52(?1—’.111)2]8/2

SUMMARY OF RESULTS FOR ¢, Cz, AND 1w IN THE PLANE OF THE WING;
CHARACTERISTIC COORDINATE SYSTEM

- (78b)

The special forms of equations (64), (71), and (74) when
the £, % axes become the characterlstxc axes are given in
the following sections. In these cases, £—r, n—8, m;—8,
and m;—8.

Potential in terms of verticel velocity, nonlifting case. —

Wu(rs, 81)

= wMof f Jr—r)E—s)

Pressure coefﬁclent in terms of surface slope, nonlifting
case,—

d?‘[ds; (79)

=725 -J E:_:g(t(ssofé?g Mulr, s drids,  (80)

| -velocity potential.
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Vertical veIoclty in terms of loadmg coefﬁcient 11ftmg
case.——- <o

w, (r—r)+(s—sy) Ap(r, 87)
v ‘H;Ks—sl) RN o s SS dnf;)

Vertical velocity in ferms of surfaee potential, lifting
case.— -

A{ u(rl, 81)
= o.fJ [(T‘ —f'])(s —8 )]an drl du?]_ (82)

PART II—THE DIRECT PROBLEM

DISCUSSION
The term “direct problem’’ shall be defined herein as a prob-

" lem requiring for its solution the evaluation of integrals with

known integrands. The three fundamental formulas pre-
sented in part I, equations (64), (71), and (74), apply, respec~
tively, to source, vortex, and doublet distributions, and a
consideration of them shows that there are essentially only
two different boundary-value problems of wing theory that
lead to the direct classification. In the first of these problems
(see equation (64)), the pressure coefficient is given by an
integral involving the shape of a wing having thickness, but
no angle of attack, twist, or camber. The other direct prob-
lem is represented by equations (71) and .(74), where the
angle of attack, twist, or camber of a wing having no thickness
is given in terms of an integration involving, respeetively, the
wing loading or its streamwise integral, the discontinuity in
The circumstances of the particular prob-
Iem will determine which of the two alternative formulas is
to be used.

THE AERODYNAMIC PROBLEM

The statement of the two problems can be given from a
physical viewpoint as follows.

The thickness case.—The thickness of a wing that is sym-
metrical above and below a horizontal plane is given and the
pressure distribution over the wing is to be determined. Such
problems are of special interest in the study of wings in a
supersonic flow since their evaluation is necessary for the
calculation of the wave drag.

The lifting case.—The load distribution on & lifting plane,
2 surface without thickness, is given and the slope of the
surface that will support such a loading is to be determined.

THE MATHEMATICAL PROBLEM

The mathematical statement of the two problems can be
made by referring to the equations expressing the three fun-
damental formulas in the plane of the wing. For the thick-
ness case, equations (41) or (64) apply, A\, is given over the
wing plan form and () is to be determined. Tor the lifting
case, equations (43), (44), (71) or (74) apply, Apfg or Ag is
given over the wing plan form and w, is to be determined.

The solution of problems in the direct classification depends
only on the analyst's facility in evaluating integrals. Although

~ the integrations may be quite difficult to perform, this never-

theless must be regarded as a question of technique and, in
a mathematical sense, a direct problem is solved.
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PART IITI—THE INVERSE PROBLEM
INTRODUCTION

The term “inverse problem’ shall be defined herein as a
problem requiring for its solution the inversion of an integral
equgtion. In application to the study of problems in aero-
dynamic wing theory, two different boundary-value prob-
lems appear in the inverse classification. These are provided,
~ as was discussed in the presentation of the direct problem,
by the two basic relationships that exist in the three funda-
mentel formulas. In those equations the two basic relation-
ships are: First, the pressure is given in terms of an integra-
tion involving the shape of & wing having thickness but with
po angle of attack, twist, or camber; second, the angle of
attack, twist, and camber of a wing having no thickness is
given in terms of an integration involving either the wing
loading or the discontinuity in the velocity potential.

THE AERODYNAMIC PROBLEM

The physical interpretation of the two types of inverse
boundary-value problems is made as follows.

The thickness case.—The pressure distribufion over a
wing that is symmetrical above and below a horizontal plane
is given and the shape of the wing is to be determined. To
this bare statement of the problem, however, must be added
certain auxilisry considerations. For example, it is physi-
cally evident that solutions yielding wings with negative
volumes must be excluded. Consideration must also be
given to the question of wing closure. It is apparent that
these two conditions will serve to restrict the arbitrariness
of the pressure distributions which can be prescribed. Fi-
nally, the question of the uniqueness of the wing shape arises.

For example, it is known that the thin-airfoil-theory solution

in the two-dimensional case is unique, provided the presecribed
pressure distribution is one leading to a real and closed wing
section. In the supersonic three-dimensional case, however,
these conditions are no longer sufficient to guarantee a unique
shape from g given pressure distribution (although the re-
verse is always true, 1. e., & given shape produces & unique
pressure).
connection with quasi-conical fow problems.

The Lifting case.—The slope of 2 lifting plate, a surface
without thickness, is given and the resulting load distribution
is to be determined. To insure uniqueness in problems of
this type it is sometimes necessary to impose an additional
condition. For example, it is necessary to assume that the
Kutta condition applies to all trailing edges for which the
normal component of the free-stream velocity is subsonie.

THE MATHEMATICAL PROBLEM

The mathematical statement of the two problems can be
made at once. Thus, for the thickness case, equations (41)
or (64) apply, C, is given over the area occupied by the wing
plan form and A, is to be determined. For the lifting case,
equations (43), (44), (71), or (74) apply, w, is given over the
wing plan form and Ap/g is to be determined. -

Of course, by definition, the solutions of both of these
problems require the inversion of an integral equation.
Further, these particular equations are known as singular

21368T—658—— 82 :

This fact will be llustrated later (Part IV) in-

_ plied by one-fourth the ares of the square.
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integral equations. Complete inversions to &ll the cases _

considered have not as yet been obtained. Some progress
has been made, however, and the following section outlines

one method by means of which certain singular mtegra.l;:

equations can be inverted. .

ON THE INYERSION OF SINGULAR INTEGRAL EQUATIONS
DEFINITIONS

An jintegral eqﬁaﬁon.;Consider the eQuation
[0 K@ 1)ds=ut) (33)

If w(y) and K(z, ¥} are given functions and g(z) is unknown,
equation (83) is known as integral equation, and more

specifically as en integral equation of the first kind. The

path of integration Z; lies along the z axis (in this report only

-real variables are considered although the methods and .

results can be generalized to include complex variables) and,
in general, can depend on 3. The term K(z, ¥) is known as
the kernel of the integral equation.

A singular integral equation.—An integral equation is
referred to as singuler either when the path of integration, 7,,

has infinite extent, or when the kernel, K(z, %), is infinite at

points of the interval £;. In other words, equation (83) is a
singular integral equation if K(z, ¢) is unbounded somewhere
on LI. i ’

An integral transform.—Agsain consider equation (83). If
both sides of this equation are multiplied by the function
H(», y) and integrated with respect to y along the interval

L, (which is, of course, independent of y but can be & function
of \), the equation is said to have been transformed snd

the operator

fzz HQ\, y)dy

is referred to as an integral transform. The resulting
expression '

[, [, dso HO. K@= [, w@HO, 2 ©5)

is obviously a funetion only of A, boﬁh z and y being dummy
variables of integration.

INHERENT SINGULARITIES

An inherent singularity can be defined first in terms of & . .

(84) |

function of two variables. Consider the function f(x, %) and

let the point a, & lie somewhere in the z, ¥ plane. )
inherent singularity will be said {o exist at the point g, b if

lim €*f(ef+a, en4-b) #0
o .

where -

r—a=¢f, yY—b=ey

In other words, a square of width 2¢ is first placed on the z, ¢

Then an

plane with ¢, b at its center, the function f(z, ¥) is then eval- -

uated at any point on the boundary of the square and muiti-
Finsally, in the
limit as the width of the square vanishes, if this product is not
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zero, the function f(z, ) contains an fherent singularity at
the point a, b.

Such a concept can vamusly be generahzed to mclude
functions of three and more variables. For example, the
funetion f(z,, %2, ..., 2,) contains an inherent singularity at the
point @y, @, ..., @, if

I.i_’n(} e"flehita,ehtas, ..., ekt an) =0

where
ri—a;=cef;

RESIDUALS
Consider a double integration with respect to z and y of the
function f(z,y) over the area S in the z, y plane. Perform the
integration of the same function over the same area but with
the order of integrations reversed. The difference between
the results of these two operations will be defined as the
residual. Thus '

REfdydef(m,y)-—fdo:fsdyf(r,y) (86)

Ordinarily the residual R is zero, since the order of inte-

gration for a double integral is usually immaterial. In the
manipulation of singular integrals and singular integral
transforms, however, & nonvanishing residual often exists.
The evaluation of the residual can be accomplished in the
following manner. Let the pointa,, b; be an inherent singu-
larity in the area S. Then the residual from such a point is

R1=hm|:f dyf dz flx,y)— f lﬂdrf dyf(x,y)]

Setting et+a,=2 and en-+b,=y, one can write
R,= dqf dElim & f(et+ay, en+0y) — -
J=1 -1 e

[ ae f " dn lim € flet+ay, en by @7
=1 -1 «—0

Hence the necessary condition for the existence of a residusl
is the occurrence of an inherent singularity in the area of
integration over which the double integration is performed.
The total residual is the sum of the residuals from each inher-
ent singularity in the area involved.

THE NULL TRANSFORM

Definition.—The integral operatorf H(\, y) dy is said

to be a null transform of order n to t.he funetion K(x, y) in
the interval L if

(H)“.Lsﬂo‘:V)K(r,y)dy=0

where z, » and, of course, y are on ;.
Examples.—The operator

__dy
]CLsHQ’y)dy__JE (A—y)¥*-

(88)
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is & null transform of order zero to the funetion
K@, 9)=1y—=z

in the interval r<y <M. . Thus, (sce equation (18)},

’ A dy
Uz 1(y—2) (?\—y)’
The opcrntor

Juosnv=[[ =t JA=Py—n y)(y y

is a null transform of order zero to the [unetion K(r, y)=
1/(y—=z) in the interval A<y <1. Thus

dy
y—o)NA—p (=)

Finelly, it can be shown from equation (90) that

" (89)

=0, A <z<1 (90)

[ Eo, pay= YOS

where @ and b are constants, is & null transform of order one
to the function K(z, y)=1/(y—2') in the interval a<ly<b.

Thus
f‘(" PG=a ;. _o {a<r<b}
y—2)(Z—y) a<a<b

THE INVERSION OF SINGULAR INTEGRAL EQUATIONS BY
MEANS OF NULL TRANSFORMS

(9N

Consider an integral equation of the first kind

wiy)= f ¢ K (2,9)dx 92)

. such t,hat the kernel K(.r ) tends to infinity as z approaches

y and let the point z=y lie in L,. Equation (92) i3, by
definition, & singular integral equation of the first kind.
Apply to both sides of this equation the integral transform

f H(\, 1) dy so that

[, waE0, pay= de Qg0 YK (e, vy (93)

Suppose that the area L;+ZIL, of the double integral is
bounded by a simple closed curve having the property that
any line parallel to the x or y axis crosses its boundary at
most twice. For such an area, it is always possible to wrile
the reversed form of the double integral in equation (33) as

|, 2 [ dve@ o, @) 94)
. 4 .. 3

where L, can be a function of z and X, and L, can be a function

only of x.

Subtracting expression (94) from the double integral in
equation (93), one finds
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f deyf ler gHM, NK, y)=

fute[ s pEE DERY  09)

where R()\) is, by definition, the residual. Hence, equation
" {93) can be rewritten in the form

[ paEn, pay—

[,z [, dve@HO YEG+HRY)  98)

One can now show that if H(A, y)K(x, y) contains an
inherent singularity at the point z=y=AX, equation (96) is
the inversion to equation (92} when H(), ¥) is a null trans-
form of order one or zero to the kernel K (x, ) in the interval

Fu'st it is necessary to relate R(\) to g(A). By the deﬁm-
tion given as equation (87), R(\) can be written

1 L .
RN = Roo\)-[‘f_ldﬂ f _ldslﬁgg(ee-i- WE(eb+ N en+-NHQ, en--N—
1
f d f " dnlimg(e+NE(k+), erFNHQ, et (97
—~1 -1 0

where Ry(\) is the sum of the-rema.in'ing residuals (if th‘ere
are any) from the other inherent singularities that might
exist in the area L;+L,. This reduces to

. RO)=Ro(\)+g)R*(N) 98)
where
L 3
o= [ dn [ delim K(een, et NHQ, er+3)—
f tax f " dnlim K(et4, er b NHQ, e b)) (99)
-1 -1 0

If mherent singularities other than the one at x=y=X\ exist
in L;+4 L, they must be at a point on the line z=y. The
residual at such a point say r=y=a, would be the product
of g(a) end R,*(a), the difference between the two appro-
priate double integrals. Hence, Ry(\) cannot contain g(h).

Now, if fLaH (\, ¥} dy is a null transform of zero order,

equation (96) becomes

[ P@EO, dy=Ro®)+eWR*)
or

=g [ ~Ro+ [, w0) HO,w)dy | 00)

which is an inversion of equation (92). Further, if

[, B0y

ie a null transform of the first order, so that

[, B0, B pay=coy

equation (96) becomes

[} 2@HE; ay=CO [, edz+ R+ R (10D

If L, is independent of \ this already is an inversion of equa-
tion (92). However, if L; contains M then, after dividing
through by C(») -and taking the derivative with respect to
A, a first-order differential equation in g(3) results This is
conmdered to be an inversion.

THE INVERSION OF SOME PARTICULAR SINGULAR
INTEGRAL EQUATIONS

ABEL’S INCEGRAL EQUATION
Consider the special form of Abel’s integral equation

wiy)= fg(x)dx <y

It has been shown (see equation (89)) that
| L__dy
J. 00—y

is a null transform of order zero to the kernal 1/yy—z in
the interval z<y <\. Hence, applying the transform

(102)

Lo
« (A—y)* o

to both sides of equation (102), reversing the order of inte-
gration, and noting that

JC dyf drx'y Ig g)—y)”'_'

f e arf ay —t—o - ROI=RO)

. (103)
leads one to the result

M wydy —R)

. =g (109

The only inherent singularity that appears in the area of
integration occurs at the point z=y=\. The residusal is
obtained by integrating over the shaded area in figure 5 and
finding the limit as e goes to zero.

Ly
-,
A
e| ——
g e A . 4;

FIGURE §.—Region of integration for equailon (105a).
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Thus

g ()
R(\N= hml:f dy d Tz 0—p"

A_Ig’(ﬂi) dl‘. :‘E d‘y m:l (1058.)

and, since the second double integral is zero, the transfor-
mations ef=A—=z and ey =x—y reduce this to

—ef+A)
\/— 72

Finally, in the limit as ¢ goes to zero,

RO=0 f, dn [ HEem—ame 03

R(N=lim - dq f de ==

Substitute equation (105b) into equa,tion (104) and the
inversion of the integral equation (102) can be written

*wdy
(x y)sn

By applying the definition of the finite part, one can rewrite
equation (106) in the alternative form

‘w@dy
o YA—Y

s=1 L (107)

which is the form of t.he inversion usually presented..

THE AIRFOIL EQUATION

The study of the singular integral equation known as the
airfoil equation is closely associated with the study of bound-
ary-value problems related to Laplace’s equation in two
dimensions. These. boundary conditions are sometimes
given along e straight line as is the case, for example, in the
linearized study of two-dimensional subsonic wings. If the
boundary conditions are given along a suitably prescribed
curve, the curve can, by application of complex wvariable
concepts, be mapped onto 2 straight line. For example, the
Joukowski transformation maps a circle in one plane onto
a straight line in another and in both planes the governing
formula is the two-dimensional form of Laplace’s equation.
The solution to such boundary-value problems can be reduced
to the inversion of the following singular integral equation:

o= [ HD%, y<h

where ¢ and b are constants.
It has been shown (see equation (91)) that

[ b—-y)(y— ) 4y

(108)

is & null transform of order one to the kernel 1/(y—z) in the
interval a<y <b. Applying this transform to equation
(108), and using the definition of the residual, one obtams

fbw(yw b—yy—a) | '_"

dy— e

[

VE—y)y—0) y)(y a) '
Jrowas [ G o By
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which réduces to the form

fﬂw(yw——m dy== f oz +RY) (0D

Again the only inherent singularity in the area of in-
tegration is at the point z=y=Xx. Evaluating the residual
according to equation (87), one finds

R(x)—g(R)\m[I d"fm(& —1)

f at f_m({’: )

U dp =1, 1—¢
.[-m(f—n) F T

and since

tl;is becomes

ROV=26 OVB—N0—a) [ D n 11—
~7%(\) _\m (110)

By the combination of equation (110) with (109), the inver-

sion to the airfoil integral equation (108) thus becomes

gM=
w’«f(b—m_a)[ fg(x)dx f w(v)x(b y)(y—ady]
(111)

It is apparent that the inversion to equation (108) provided
by equation (111) is not unique (because of the existence of

the termf g(z)dz which can be thought of as an arbitrary

constant). Hence, in the application of equation (108) to
physical boundary-value problems it is not sufficient to
specify the value of w along the y axis; some additional con-
dition must also be supplied. Examples of such additional
conditions in the study of aerodynamic problems are the
specification of closure in the study of two-dimensional sec-
tions and the assumption of the Kutta condition along the
trailing edge of two-dimensionel lifting surfaces.

THE SUPERSONIC DOUBLET EQUATION

The general concepts of the method just applied to the
solution of single-integral equations with a singular kernel
can also be used to invert double-integral equations with
singular kernels. Success in solving these more complicated
forms depends again on the discovery of an appropriate
integral transform—in this case a double integral transform-—
and the usefulness of these operators depends, in turn, on
both the structure of their integrand and, what is just ar
important, the space (now four-dimensional) of integration.
As it turns out, however, inversions can be obtained in many
cases that are of importance in the study of supersonic
aerodynamic problems.

Case 1—Supersonic leading edge.—Consider the equation
that gives the vertical induced velocity in the plane of the
wing in terms of the perturbation velocity potential on the
upper surface of a lifting surface in a supersonic free stream,
equation (82),
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_-’1_[0 qa"(rl-: 81) d"1 ds;
R =

Wy (s, S2) =:Z—
TU, 82)

The aree (rs8;) represents the area within the forecone
from the point 7,8, at which the vertical induced velocity
is being measured. The details of the solution to equation
(112) will now be presented for two different types of bound-
aries to the area 7(r,s,), that is, from an aerodynamic
standpoint, for two different types of wing plan forms.

First consider the case when 7= is an area such as the
one shown in figure 6. The two lines r;=r, and & =s,, which
represent the traces of the Mach forecones from the point
13, &, form two bounds of the area while the third is given
by the wing leading edge, the equation for which may be
written as either s,=f,(r) or ri=f*(8:).

8; =fo(ry)
ry=fo™(sy) b

@) 1, i1 plane.
(b} r1, 51 plane.

FIGURE 6.—Region of integration for wihg with supersonfc leading edge.

In the present ease, it is assumed, furthermore, that s;=#,(r;)
is a continuous monotonic function with a negative slope, or,
physically, that the wing has a supersonic type leading
edge.®

The kernel of equation (112) is formed by the product of
two functions, one independent of »; and 7, and the other
independent of & and ;. It follows, therefore, that if an
integral operator is used that contains the product of two
linear functions of s; and =, to the —1/2 power, there exists
the possibility of obtaining & null trensform of order zero
according to the equality given as equation (18). Omne can
show, in fact, that the operator

* Eupersonic and subsonie edges have the property that the normel component of the free-
stream veloclty f9 supersonic and subsonie, respectively..
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d?‘g d82

M, f f oIy 8372, 82)

Tolr, 8}

dTg ds Py 113
ff‘/(r—r,)(s—sz) (113)
is a null transform of order zero to the right-hand side of
equation (112) where r,(r, 8) is the same area that appears
m the infegral equa.tion

If the transform given by equatlon (113) is applied o
equation (112) the resulting expression is

wud'rgd‘?g

T, 8)

:Ef eu(rys)drids,
= My fdrgdng J To(r; 8379, 8T (2, 82; 71, &)

TulT, 8) T2 3

(114)

Consider next the right-hend side of this equation but
with the ry, &, integrals taken first. Then by definition of

the residual
¢u(‘r1, 81) drl d81

.'_253
= Mg ffdrquz fjc Po(T, 8319, 8Te3 (e, S5 71, 81)

Tolr, 8} To(re, 82)
dryds,

J‘¢u(rlj 81) dry dsl f{ f'u(r,s;TZp Sg)ro (r2) 82371, slj

[7e(r, $)+To(r2. 82)]

—280 f
M2,
R(r,s)

When the integration is made first with respect to r, and

8, the area of integration for these two variables can be _-

visualized with the aid of figure 7. In such & case the
poiuts ry, & and r, s are fixed and the area is simply the

one which lies in the forecone from the point 7, ¢ and in

the aftercone from .the point r,, 8. This is represented
by the shaded erea in the figure. It is apparent from a
study of figure 7 that, when the edge s;=f,;(r2) is & mono-
tonic function as previously defined, the ry and s, integrals
are always taken between the Limits r, and r and & and s,
respectively. Hence, according to equation (18) the inte-

%&) .

F1aURE 7.—Ares of Integration for fixed ry, 81, r, &; equmtion (115).

(115) '
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gral term on the right-hand side of equation (115) vanishes
and equation (114) becomes

Wydrsdss
To

=R(r,s) (116)

nlr, 8)

The complete inversion of the integral equation can now
be realized if an expression for R(r,s) can be obtained in
terms of o (r, 8). The ecvaluation of this residual term
follows along lines quite similar to those used in calculat-
ing the residual for the special form of Abel’s integral equa-
tion given previously. Now, however, there is no longer
a single inherent singularity; rather, the lines r,=r,=r and
si=8;=¢ are densely covered with them. First consider
an integration made over the region close to the line &=
8s==s (i. e., the sum of the areas e and b shown in fig. 8).

/

Se=folrs) -
3y =fo(ry)

—- 34, 32

S

|
1<$$33$$$§\§$$?§in:*SSSSSSSSSSQ\ / ':
Y
(ry, rs)

FIGURE 8.—Reglon of integration for ovaluation of residual, equstlon (118).

Make the substitutions $,=s— es; and s;=$— eo; and take
the limit as e goes to zero. There results for the portion
of the residual due to the inherent singularities oy s(r, 9)
along the line s;=g8;=2¢ the equation ®

lzﬂ'f D(l ? 8)
\F
fO (‘) j .,0 (® :j I

— My
81r}3
?u(rl, 8) .
(01— 8)¥(ro—r1)* Yoo r—rs)

This becomes, after integrating with respect to ¢, and o
(which can be done immediately since the limits of the »
integral do not now contain o, and, further, since the r, o
plane contains no inherent smgu]amt))

:(1175

¢ The first term on the rtzht hand side of equauon (115) contributes nothing to the residual

since it always contalns an Integral equivalent te that in equeation (18) snd, therefore, is
identlcally zero. This same phenomenon also appeared in the study of the residual appear-

ing in the inversion of Abel’s integral equation. (See the development of equation (105).)
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pu(ry "f)

(g
l )‘ _7'1)3‘,2'\"7'—'7'1 ( }

Mt
Rer,y=58 [ anf
It is now proposed to reverse the order of intugralion of
the double integral in equation (118). But the »,, r; plane
contains an inherent singularity at the point r,=r,=r. By
definition of the residual from this singularity as 12/(r,s), il
follows that

. Il} dl'a
Raralr, )=T5" | 1 AT 05(3,9) n(r;:;_)"’_’r_—;:

Ri(r,e)=R'(r,$)

since the integral term is zero by the equality that has been
used repeatedly. The evaluation of R/(r,s) follows the iden-
tical ling of argument used in obtaining equation (105b) from
(105a). Hence, setting ro=r—eps and r,=r—ep,, and lotting
€ go to zero, one finds

Ra-{-b(rr 3)=R’(r: 3)=
Mg f‘“ _F‘2 dp —xl
48 eulr, 8). ' dp2. , (p|—-pg)"’\/; 28 eulr, %)
(119)

The part of the residual in equation (116) contributed by
the inherent singularities in the areas e and b in figure 8 is,

— a2 . . .
—;-—ﬂ—“- e.(r, 8). Asimilarcaleulationshows that the
singularitiesin the arease+ b give the same result; and, finally,

therefore,

a calculation for the arca b itself also yields :g—[l eu(r, 9).

The value of R in equatioﬁ (116) is obtaincd by combining

the results for the various areas. Hence,
— 2
R=Ruprt Rure—Re="331% o,(r,5)  (120)

Combining the result expressed by the last equation with
cquation (116), one can finally write for the inversion of the
integral equation (112), when r=17,, the expression

Wadryds,

-1 ¢y
eu(r, §)= xal, ’:tl(;]s)‘\:‘(r—:r—z)'(s—‘——_s:)

(121)

Case 2—Combined subsonic and supersonic leading
edges.—Consider the equation
ﬂ.[o C cp.,(r,, 6'])(11"1([31

We=—g—

J [(7'2'—7'1)(83—3,)]3/2 (122)

TI (rsa,

where 7,(rs, 8,) is the more complicated area shown in figure 9.
Again the lines ry=r; and s,=s,;, which are the traces of the
forecone from the point ry, 8, form two bounds of the area.
The remaining two boundaries are formed by the curves
&y=f,(ry) (or in the inverse semse ri=f,*(s)) and &=f{r;)
(or ri=£,*(s;)) where f, has the same definition it had in the
study of Case 1, that is, a monotonic curve with a negative
slope. The curve s,=fi(r) is also a monotonic¢ function, but
with a positive slope. For convenience the origin is placed
at the point of intersection of the f, and f; curves. )
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Iy a.fﬂ(ri)‘-'\\

~-8y =f; (ry)

(b)
(a) I1, 31 plane.
(b) (r1, & plane.

Fi;TRE 8.—~Reglon of Integretion for wing with combined subsonic aini supersonic edges.

A physical interpretation of the area r; with regard to prob-
lems in supersonic wing theory is simple. The lines ri=r,
and $;=28,, as has been mentioned, are the traces of the Mach
forecone from the point ry, 8;- The f, and f; curves are the
edges of the wing plan form, the line §=£,{r;) representing a
supersonic leading edge'and the line s, =#(r) representing a
subsonic leading edge.

Proceeding exactly as in Case 1, consider the operator

f f + (i r—d;:)d(s.;—sz)

ni(r8)

and find whether or not it is a null transform of zero order to
the kernel of equation (122), that is, whether or not the
equality

dr.dss

I B e e
(123)

is satisfied. A study of figure (10) shows that it is not, since
for & point ry, & located above the line r=£;* (s), a portion of
the &, integral becomes

_Cf;(fz) d-?z
Ju ($2a—8)¥%\ s —8,

1287

— S

222 Y(8) (3
\\

S2=fiTe)

_

(r,s)
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g

FIGURE 10.—Area of Integration for fixed ri, &, 1, ¥; equation (123).
which is not zero unless f;(ry) is identically equal to s. For

the same reason, portions of the r; integral will not vanish for
the point ry, 8; so located.

However, the construction of & null transform of zero order |

can be accomplished by studying the above failure. Thus,

if the s, integration were carried between the limits s, and &,
for every location of the points r;, & end r, ¢, the operator
S h(r, 8, r)drs S (8—83) ~*ds; would be a null transform of zero
order regardless of the choice of z. The area of integration’
producing such a transform is simply the one shown in figure
11(a), an area bounded by the lines s,=s¢, ro=r, 8;=f,(r;) and
r:=%*(8) where 7o=7,*(¢) is any line such that f,*(s) >f,*{s).
This area shall be designated &s r,(r,3). ¥hen such a trans-
form is applied and the ¢, integration performed first, it is
apparent from figure 11(b) that the limits of the s, integral

12 =1(8) l‘,f-ra =F*(s)
AN
NN \\
|
o
4Ty, 51) o
A \\
1§
()

{a) Area of integraution for transform.
(b) Area of Integration for fixed r, & 7, 2.

FioGRE 1L.—Integration regions for equations (124).
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are always ¢, and s, even when the point ry, 8, is located above
the line r,=1;*(8). Hence, if the residual R(r, s) is defined by
the relation

_M (e : dsy eulry, 8) drids;
in f h(l‘, 8, Tz)drzf \ _VI——‘S_ 82;,5!;!): [(rz—rl)(sz._sl)]sf'z }

THr,

_'ZI'_I_O [ u(rlz 81) dry d.sl f& dsz =R

ir h(?‘, 8, Tg) df'gfjc (7.2_1.1)3/2 ‘1'\,”__8—82(8:-—-81)”2 —R(r; 8)
[ra(r 83102, 2] (1248)

the second term on the left-hand side is zero, and equation
(122} transforms into

T : wﬂ(rm 82) —
f o s, f o o2 da=RG,0)  (12¢0)

The evaluation of the residual in equation (124b) follows
the same pattern used in Case 1. Thus, after isolating the
line of inherent singularities, R(r, 8) is given by the expression

Rir,s)=

_M f " hd f ' ﬂf’z JC"’ eulrs, $)
4, .)"z*(l)hdr2 s—¢+/8—83 f1*('x)d81 a—edr! [re—r) (@ —e)]**

which becomes (after setting 8,—s—eos, and s;=g—er, and
letting ¢ go to zero)

_ﬂ_’[a r T3 ‘pu (7‘1, 8)
'_Tf f2%() hdrzjcfl*(s) (ra—r )2 dry (125)

It is now apparent that after setting f2*(s)=f*(s) and
h=1/\7—r,, equation (125) can be evaluated exactly as
equation (118) was evaluated, so that for these values of
f-*and &, R (r, s)=—Mmwpu(r,8). Substituting into equation
(124b), one finds for the inversion 6f equation (122) the result

_ _—1 Wy (3, 82) drads,
: ﬁu (”s)—wMof o065 (126)

T3(r,8)

where 73 is the shaded ares in figure 12.

Case 3—Mixed boundary condifions.—Another very im-
portent kind of integral equation which can be solved directly
by the proper choice of & in equation (125) is the “mixed”
type problem, the boundery values of which are fllustrated
ih figure 13. In this particular problem w, is known over the
portion:of the r, ¢ plane bounded by the curves s=f;(r) and
e=F(r) (the curve s=f;(r) is & monotonic function with a
positive slope just like s=f#,(r)), while over another portion,
bounded by the curves s=f(r) and s=fi(r) the quantity
Mu e}
28 \or
aerodynamic applications to the specification of the vertical
induced velocity over the former region and the loading over
the latter.) It is also assumed that u.(r, 8) Is continvous
across the line s=#(r) and that ¢(r, s) vanishes along the
line 8=f10’), that is, Qa(fl*(s): §)=0.

Talking for the value of % the expression

U, (r,8)= —[—% ou(r, 8) is given. '(This corresponds in

h=

1 <a i
'\":')'—7'2 ar,'bs

ot/

"
2,
L

To-

%

xg

(a)
N
Se=fo(Ts)~ /é%% _ .

(. 5)

> 5

r-8g=f1(T2)

|
(b)

(a) 22, y2Dlane.
(D} ra,82 plane.

FravREe 12.—Integration aree 73 (equation (1261,

(D)

(a) z, y Plane.
(b} r, ¢ plane.

FtaCRE 13.—Mixed boundary conditions.
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"and for the area of integration the region r,(r, ) shown in
figure 11(a), one finds from equation (125) that the residual

can be written
ﬂfof )]C Pu (7'1: 8 dr;
Fa4G) 1% a—r )

The pa.rtial derivative can be taken through the second
mtegral sign (first integrating by parts. in the case of 9/dr)
since o(f1*(s), 8)=0, so thaf

drg

_r,, ara

d , d
s o ED)ees
2 fa¥(a) Jf;*(!) ke _\_-]'_7-2(7-2__7-1)3.’2

Part of the boundary condition is that w,(r, 8} is given
over the region indicated in figure 13. Hence, the residuval
can be written

fako) Uy(ry, 8
R= B _£ CZT‘;, _u( 1y )
fe*le ) J fi*@ NP —ryrg—r)?

r 2 Uu(ry, 8)
Bf 12%() ars ffg*m ar, NP —rory—r )2
The latter of these two terms is agam just like the one given
in equation (118) so its evaluation is immediate. The first
term may be simplified by reversing the order of integration.
(There is no residual since the point r=r;=r, is not included
in the area of integration.) Finally, R becomes

fa¥ () Uy(ry, 8)dr,
R=2 — 2 —2xBu.r,s
BVPTT® [y T A 2eB,9)
and the inversion of this mixed type problem can be written
sl )= _Ar— f, (8) (" 2*@  a,(r), 8)dr;

v Jaw g—r)RE—T
1 J" o drs (a ) J‘ T wu(ry, s,)dsz
2ﬁﬂ’ fa%(s) -‘.'I'—I'g ar2 fo(ra) -\S 8g

An equation which does not impose the condition that
uu(r, 8} be continuous across the line s=£s(r} can readily be
developed by using the operator h=1/yr—rs. This leads
directly to the result
NT—F22(8) (2 o, (ry, 8 dr, .

T nx@ r—r) ' ®—n
Wy (2, S2)

1 r [
P e
*M, J;,*(s) "2 fo(ra} sf\'(s—sz) (r—r2)

THE SUPERSONIC SOURCE EQUATION

(127)

o(r, §=1—"2~"

(128)

The null transforms to the supersonic doublet equation
were constructed by applying an integral operator having
an integrand which, when combined with the kernel, would
produce the integral

de
(x—0)*3a—zx

and having an area which, when combined with that of the

integral equation and traversed in reverse order, would pro-
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duce the limits ¢ and & on the integral.
the supersonic source equation (gee equation (79))

—1s j‘
M,

it is apparent that the null transform will differ from the
transform used for the supersonic doublet equation only in
the exponent of the intregrand. Thus, for the area 74{r,, 85
(see fig. 6) the operator

Wy (Th 8]) drldsl

(ra—ry) (82—81)

@u (e 82) (129)

-!z)“

DC dri.dss
J [or—rd 6 —s]

Ts r,

is & null transform of order zero to equation (129), and its
application yields the solution

U,, JC DC eulrs, 82) drzdsz
[r—r) s—s
For the area r,(r;, 3.} (see fig. 9), the operator

_r dr gdSz
Jﬂ(pf T—rd G~

'wu(r 8) : (1 30)

is & null transform of order zero. Its application, under

(126), yields the inversion

ﬂ.[g (. qa,,(l"g, Sz)drzdc?g
J [(r—rs) (s—sI]*2

Ta(r, 3}

Wy, 8= (131)

Equation (130} gives vertical velocity in terms of a prescribed
surface potential for a wing with & supersonic leading edge,
while equation (131) does the same for a wing with 2 leading
edge which is partly subsonic and partly supersonic. The
transform with the area 7, (see fig. 12) can also be used to
obtain inversions to equation (129) under conditions such as

If one now considers .

" conditions like those specified in the development of equation

those imposed in the development of equations (127)

and (128).

DISCUSSION OF INVERSION OF SUPERSONIC SOURCE AND DOUBLET
EQUATIONS FROM A PHYSICAL BASIS
BEach of the above examples used to illustrate the applica-
tion of the null transform method to the inversion of double
integral equations represents the solution of a class of super-
sonic problems. However, most of these solutions are well

. known and were originally obtained by reasoning that was

suggested by knowledge of the physical structure of the
problem. For example, the reciprocal relation between the

source and doublet integral equations
vi—rd(s—e).

—1
11’M'o f
_£ @y (TI_, 81) drldsl
w J [r—7) (s—s)I*?2

when considered with respect to the area ), has a simple
physical meaning. By definition r is an area bounded by
the Mach forecone and a supersonic leading edge. From a

qp(rs M

(132)

Wy (r,8)= 47‘_
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physical standpoint it is clear that the flow field at a point,
affected only by a supersonic edge, on. the upper surface of a
wing cannot be influenced by the shape of any part of the
lower surface of the wing. In other words, the upper and
lower surfaces are noninteracting. Hence, the upper surface
of a wing does not “know’’ whether it is the upper surface of
a lifting plate that is supporting loading and has no thickness,
or the upper surface of & wing section that is symmetrical
above and below the z=0 plane. Thus the source equation
must be the inversion to the doublet equation and vice versa,
and from a physical point of view the reciprocal relation
given by equation (132) is obvious.

The solution to wing problems involving one supersonic
and one subsonic edge, giving an area of integration for the
integral equations corresponding to the area r, in the pre-
vious discussion, was originally obtained by Evvard (see
reference 7). It should be noted here that the inversions to
the source and doublet equations (equations (126) and (131))
considered with respect to the area 71, DO longer form rec1p-
rocal relations.

Finally, the examples presenteiheltein__wit-h regard to the
mixed type of problem have also been derived (see references
8 and 9) using more or less physical arguments. The solu-
tions to these mixed type problems form the basis of a lift
cancellation technique that provides a very useful extensmn
of Evvard’s original discovery.

ITERATIVE METHODS OF SOLUTION

Other types of plan forms.—The question that naturally
arises from a practical viewpoint is how the source and
doublet equations can be inverted when the area 7, is not of
the two special kinds discussed, or, in other words, when the
wing plan forms are complicated by having more than one
monotonic (in the r, & plane) subsonic edge. The answer
must be that, unless null transforms with respect to these
new integration areas can be discovered, the methods dis-
cussed here will not give the direct inversion to the problem.
Several possibilities remain, however, so that even when the
null transform cannot be found the concepts of the residual,
inherent singularity, etc., can be used to simplify, if not
solve, the supersonic source and doublet integral equations.

With respect to the lift cancellation techniques already
mentioned, references 8 and 9 outline these methods in
considerable detail and show how they can be applied to find
the loading on wings in regions affected by two or more
subsonic edges.

Regions influenced by multiple reflections of Mach
waves.—A more direct example of how some of the concepts
presented heretofore can be applied, even when the null
transform is not available, is given by considering the fol-
lowing problem: Find the loading at the point (z, y¥) -on the
flat wing tip shown in figure 14. If the r, s coordinate sys-
tem is used and the operator

f ¢ _drs ( ) f dss
f2*(8) \fr—p, ar, fiJs—sy - -

(where the ares of integration is region 4 in fig. 14 (b)) is
applied to the doublet equation {(equation (82)), two results
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FinvrE 14.—Tip of swept forward wing and reglons of integration,

can be anticipated: One, since the loading off the wing is
zero, the residual will be—2xBu,(r,8) ; and the other, the trans-
formed integral with the & (in the notation of cquation
(124a)) integration performed first, is zero for all points r,8
lying in regions 2 and 4 in figure 14. These results follow
directly from the discussion presented above in case 3 of
the similar integral transform applied to the doublet equation
(equation (122)) with the r, area. Without proceeding
further, therefore, it is apparent that the original integral
equation has been reduced to: (1), an integral of the known
function w. over region 4 in figure 14; and (2), an integral of
the unknown function ¢, over the regions 1 and 3 in figure 14.
(It can be shown that the integration over region 3 will also
vanish.) But regions 1 and 3 are ahead of the Mach forecone
from (r,8). Hence, by repeating the above process for regions
fartber and farther up (toward the origin) the wing, the
problem must eventually be reduced to one of finding the
solution for an area such as =,; in other words, to a problem
involving only two edges, one subsonic and one supersonic.
Since the latter problem is solved, the one considered in this .
section ig also (theoretically at least) solved.

Triangular plan form with subsonic leading edges.—As a
final exemplification of the preceding concepts, consider the
problem of finding the loading on a flat triangular wing fly-
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ing at a supersonic speed but with both leading edges sub-
sonic (see fig. 15). To the supersonic doublet equation
(equation (82)) apply the integral transform

__1 f" d'l'g : ds. __1_
Tj'fﬂ i rin --\ r——Tg) (S'—s!)

where the area of integration is region 4 in figure 15(b).
There results

T Wy (I‘g, 87) —_
Tuof dr,f e e 33 A —r) (53—s)

), d‘”JCTF

where 7,(r,, 8,) is the original area of integration as shown in
figure 15(a). Since w, is a constant equal to — Ve, the left-
hand side of equation (133) becomes

o, (r, 8) drids;
'(r—rz) (8—s89) [(ro—r) (52—81)]¥?
©(133)

FE V-2 ()
r—2)(s—= 134
=31, (134)
Vo
£
T .
e
hyl) ~Yy=otxe
(Z1,9:)
Y )
(2}
N\
Sz
.:I-nrzﬁ'
1-mp o ~Tms/p
I 4
: s ;
4 :
8,_'1‘/#‘ . :
: fr,s)
1‘:'#35"/
{ 72
(b}
(8) 11, y1 Plune.

(b} ra, 82 plane,
FIoTRE 15.—Integration aress for triangular wing.
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where p=(1+mpB)/(1—mpB), m being the slope of the leading

edge in the z,y plane. Inverting the order of integration
and evaluating the residual, one finds that equation (133)

can be written
(=) G-5)
r—}{ s—=—
I3 B/

eulr, s A,

(’"%22 (s_f) f f

@y (11, 8) drids,

PRSP curyT

(135)

where 75 is the area shown as region 1 in figure 15(b).
Equation (135) is not, of course, the inversion of the super-
sonic doublet equation for the triangular flat plate. In fact,
it simply represents the transformation of the doublet equa-
tion, which is a singular integral equation of the first kind,
to a singular integral equation of the second kind. How-
ever, this latter form has the advantage that it is readily
susceptible to the process of iteration. Thus, in the par-
ticular case of equation (135), it is possible to take as a first

aL-)proximation to ¢, the value

V-5 (-D)
and, as the second, the value
62

,,iz [f V=3 (5-3) ar,
Y r—r) (s—e) \/G—s;) (%—rl)

Voa

e (r, )= {(136)

VuC!

e (1, 8)—

the double integral in the equation for v, can be evaluated.
Thus, after some manipulation, one finds?

-\[(1‘1 ) (sl—ﬁ)dndsl
S ey o

=228, — (1 —kHK]—x* (139)

where K; and E, are complete elliptic integrals of the first
and second kinds, respectively, with moduli k,=1/x. Using
the identity

T Notfce that the area of integration, i. e., the ares rs, fs bounded by the lnes which represent

the fourrcoots to the radfeals fo the integrand. Notice also that the calue of this double integral

iz independent of r and & and depends only on the parameter x, the slope of the Jeading edges
in the r,¢ plane,

(137)
. and so on. By means of the substitutions i
- =S+r;_1.pl-|-8cr,_
T T et 138)
- us =‘T'+7'P1+3F-0'1 ’
s 14p,+0;
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2F
1 +m6

where E has the modulus k=+1—m?28% end returning to
the Cartesian coordinate system, one finds for the values

of ¢; and o, v
. ok miri—
AR A

2E,—(1— lz)Kl R (140)

(141)

4 Vo z
o= gy VW= | 2— <1+ma)] 142)

The process of iteration could be continued, and ¢, would
be expressed as an infinite series of terms containing the
parameter mf. However, since the terms in the series
expansion are all independent of z and y, or, in the character-
istic system, of r and s, it is more efficient to write ¢ in the

form
GGt

and determine the magnitude of A by substituting this
expression into equation (135). There results the equality

4 V(]Of A ( 4:11'E )
ﬂ’ﬂlc 1 + mﬂ

from which it can be shown that

_ Vod

v (143)

A=a7 (1+mB) (144)
Finally, therefore, the velocity potential on the upper
surface of a triangular wing with subsonic leading edges
can be written

ool 9) =T Ty (145)
and the familiar expression for the loading coefficient (see,
e. g., reference 10) follows immediately

Ap _ 4am’z
¢ E+mPr*—y?

. ---(146)

The purpose of examining this particular problem was
not, of course, to obtain the solution presented as equation
(145) or (146), since that solution is by now quite well
known. Rather, the purpose was to show how the super-
sonic doublet equation could be transformed to a singular-
integral equation of the second kind and how this equation
could, in turn, be solved by applying an iteration process.
Such a method has far more general applications than are
given here and is by no means limited to problems in which
the flow is conical or quasi-conical.

PART IV—APPLICATIONS
DIRECT PROBLEMS

The following three examples will serve to illustrate how
the formulas derivéd in Part I can be used to solve the direct
problems outlined in Part II. The applications will be
limited to supersonic flow problems.
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" RECTANGULAR WING WITH BICONVEX SECTION

Consider a rectangular, nonlifting wing with a chordwise
gection given everywhere by the cquation

2t .

Nz, §)=1 (c—22) (147)

where A, is the slope of the upper swface, ¢ is the chord, and

¢ is the maximum thickness. The equation for the pressure

on the surface of such a wing will change form in each of the

four regions indicated in figure 16. In region 1 the pressure

is the same as for a two-dimensional wing with the same sec-

tion, and the remaining regions contain the three-dimensional

or tip effects. '
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FIGTRE 16.—Rectangular nonlifting wing with biconvex seetion.

The equation for pressure coefficient on the wing can be
determined from either equation (76s) or (76b). Equalion
(76a), for example, becomes for region 1

-1

" F+T -
C,=§§,(c—2x)—:—;ﬁ (e—2x)(x—2)dx; an
¥

r—ry Pgs
J-]

From the result given as equation (17), it is apparent that
the integral term is zero and the pressure coefficient in region
1 of figure 16 is simply

Cy= g (0—23) (148)
One can easily show that equation (76b) yields the same
result.

The evaluation of pressure coeflicient in regions 2, 3, and 4
can be carried out in & similar fashion. A slightly different
approach can be used, however, that is useful in obtaining
results in this and similar problems. Cousider a wing with
regions as shown in figure 17. Regions a, b, and ¢ include
all the area shead of the line #,=2. It is obvious that rg is
a pure real number for all z,, y; inside region b (1. e., insido
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the forecone from z, ¥) and & pure imaginary number for all
%;, 1 inside regions a and ¢.  Further, it is clear from physical
considerations that \; is always reel on the wing plan form.
Hence, if the symbol 7, is introduced to represent the com-
bined area in regions a, b, and ¢, the area r in equations (76)

can be replaced by the area r; and the real part of the result
will be the correct answer for the pressure coefficient.®

By means of this concept, pressure coefficient for all
points on the wing can be written in the form

C,(z, y)—ﬁz(c —2-2 R Pfd:c

1293-

du (c— 23:;‘)03(:1:— Ty

(148)

or, &Iterna.t-lvely,

—4i

OP(Z) ’.ll) = — dyl

. (0—2:12&:1:—1'1) (150)

where the letters R. P. indicate that the real part of the inte-
gral is to be taken. Evaluating, for example, the former
equa.tion one finds

Cr_ Se (c—2 z) + c’R .P. I:—- T arc cos ﬁ(s;y)_’_
z
2(y—s) are cosh =
c—2zx Bty z
— g recos —z——z(y+s) are cosh m]
(151)

The real and imaginary parts of the are cosine and are cosh
terms in this equation are given in the following table for
all real values of the argument.

€ The sreas d and e could also be included in the definltfon of r; since ré¥ Is imaginary within
these regions also.. However, reglon f mnst not be Included since there the ferm nt i3 again
real. The definition of r; adopted Is usually the most convenlent.

Range of —1i>z —1<zLL 1<z
are cosh z= dt iw=-are cosh (—z) t &TC COS = are cosh =
| i
1 dt - . .
arc cos :z:=L = x—1% are cosh (—z) aro €os & fare cosh z -
are sin ::;=J‘ri ~Z+1i arc cosh (—=z) are sin z .| =—iarc cosh »
01— 2 2

Equation (151) contains, at once, the entire solution to the
wing shown in figure 16. Thus, in region 1 none of the
terms in the braces hes a real'part. Hence, equation (148)
follows immediately. In region 3 the solution can be

written
C,= éiz{(c 2z) | w-arc cos 6(?!:—8)]—
2ﬁ(y—i-s) are cosh ﬁ(y—[—s)}

The solution in region 2 follows from the one given in region
3 by symmetry; and, finally, the expression for the pressure
coefficient in region 4 is given by equatien (151) wherein
every term is real.

DRAG REVERSIBILITY THEOREM

The well-known theorem that the drag of a symmetricel
sharp-edged, nonlifting body is the same in forward and

reversed flight at the same speed (see references 11 and 12}

can be derived in another way using the methods described
in the above sections.
By definition, drag coefficient is

Co—3 L (@0 G pdzdy 152

where S is the area of the wing. Using the real part concept
outlined in the discussion of the preceding example, one can
write

OD=—'—ff «2, ) dxdy R. PJ‘ dy a’.a: (x_M

0

(153)

The equation for the drag coefficient in reversed flight can be
obtained by:
1. Replacing the area r; by 7;; where r,+-r==8

*®
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2, Rotating the axial system in the.zy plane through 1807
3 Reversing the sighs of 7\“(2: 1) and A, (2, 11)
There results

ffm@m&@RPfdmjh

Subtracting equation (154} from (153) gives
RPJd’yfda:fdy ch’-’ zA (xhyl)x (93 '.l/) |_

S
4q xlku(xuyl)ku(a:, ()
s .P.fdyj;d:cfdyljl-sdx, Py
(155)

:C) )\u<xb yl)

(154)

Cp—Cp.=

Since the symbols 2, ¥, #, ¥ are dummy variables of integra-
tion, the last term in equation (155) can be written

sRP f dzhf drxf a4y £ -dz 2hu(Z, Yhul2, Y1)

ro®

But rev e'rsing the operators fdy, S dz; and fdy S dz (always
preservmg the same mder within the operation) and sub-
tracting gives

fdylfd:c,fdy C gz A (2, U)M(xl, 2)_

fa’yfdzfdylfdz 2Aa(2, y))\ (@1, ¥

since the residual is zero. Hence, the second term in equation
(155) is the same expression as the first except for the sign and

OD _ Opr= 0
or
Cp=C D, (1 56) :
ag was to be shown.
LIFT ON WINGS WITH SUPERSONIC EDGES
The lift on any wing can be written
(167)

q P q o

TE.Ap dorm
J‘L.E. q e o

Moreover,

where T. E. and L. E. denote the trailing and leading edges,
respectively, and ¢ g is the value of the velocity poten-
tial on the upper surface of the wing at the trailing edge.
Consider now a wing with all edges supersonic and s
straight trailing edge not necessarily at right angles to the
free-stream direction (see fig, 18). Let the wing be a plate
baving arbitrary twist and camber. Then, for a point on
the wing, the velocity potential can be written in the =z, ¥
coordinate system on the basis of equation (121) as

—1 Wul2, Y dT.dy
==ire [ [
o f VE—z)y— By —g)°

-(158)
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F16URE 18.—Wing with supersonic edges.

where r;, as in the previous examples, is the area on the
wing ahead of the line x;=xz. If the equation of the trailing
edgeis

n=a-+y, tan A
where ¢.is somé constant, the value of the polential at the
trailing edge can be written

1 We (21, ¥y d2, dyy
_ ,=—R.P.ﬂ : 159
e BT JJ ety tan A—z )= y—y (59)

where the area of integration is the whole wing plan form
since the trailing edge of the wing is supersonic and the
aftercone from the point at which ¢, g is being evaluated
cannot intersect the wing. The total lift L on the wing ean,
therefore, be written in the form

£ w,(z,,yddzdyl
—-TFR Pf d?/ ff "(G'I‘y tun A— 1’1)’ (y_ﬂ!
(160}

The area S does not depend on ¥, so the ¥ integration can
be made first and, since the edges are all supersonic, the
interval s, <y <s; must always contain the roots h; and Az

of the expressmn under the radical. Henece
R.P. ("~ dy -
Ju (B2 —tan?s) (M —

Y (y—2Ng)

et
M8 —tan®A) (i —y) (Y—2)

and since

fk’ ——'—'_'—*(.?g.'.'. - - -
S A=) 7 —N)

f wu(xl,yl)dz dy,

then

(161
Q \ﬁ’—-tanA (161)

Defining the average angle of attack a by the expression

__1 J‘f—wu(xl,yl)dl‘nd./x _
S

(162)
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" one can write equation (161) in the alternative form

. da
Ce A/BP—tan? A
It is interesting to notice that the lift coefficient for the
wing just studied is the same as that for a two-dimensional
flat plate flying at an angle of attack z into a free stream,
the speed of which is given by the component of velomty
pormal to the trailing edge of the three-dimensional wing.
This result has been derived previously in reference 13.

(163)

INVERSE PROBLEMS
LOW-ASPECT-RATIO RECTANGULAR WING

It will be noted in the summary of results for the funda-
mental formulas applicable to supersonic flow (equations
(75) through (82)) that the results are presented for both
orders of integration in the z, ¥ coordinate system. While
the analysis of direct problems can be carried out in all
cases if, say, the z; integration is always performed first, it
may sometimes be more convenient to perform the g inte-
- -gration first. In.the analysis of inverse.problems; however,
1t is much more important that freedom exists in the choice
of the first variable of integration. A good exemple of this
is provided by the following approximate derivation -of the
loading on a slender (in the streamwise sense) rectangular
flat plate.

By considering the special case when the wing chord is
long compared to the span, one can obtain an approximate
solution for the slender flat plate by assuming the Ioading
coefficient has the form

P=sas(Ph1-(Y)

where ¢ is the semispan (see fig. 19) and f(z/s) is an unknown
function. The function f is to be determined by the con-
dition that w, is constant along the center line of the wing.
If the solution to such a problem is to be determined by use
of the doublet or vortex equation, it is obviously important
that the first integration be made with respect to ¥; since
the variation of Ap/¢ with ¥, is known.

Since Apfg is given, let the vortex equation be used and
let equation (164) be placed into (77a). For y=0 (and for
added simplicity for §==1) the area r is shown by the shaded

area in figure 19 a.nd the resulting equation can be written
for z>¢

_=_af( )+—f (z— :mf( )dxl

%y:fé(% a2 (" @—ef (Z)da,

(164)

rz—:l ‘\1 (?IL/S) J'y
—enp Y —zP—yd
for 0<xr<s

o (e (5o
L 1@/t
J- e ¥ =2 —y2
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s

Y

=y

FI1sGrE 19.—Integration ares for slender rectanguiar wing.
'

Introduce the notation

rr g
61. s"9 s“{l 60— 61

’ Lg—a 0]_
and these equations become,® since a=—u,f17, B
for 0<6<1 '

1=7@+2 | kBof@) d0; (1650)

for 1<48 )
1=7@O+2 [ kBif@do+2[ " Efeide wesh)

Equations (165) are integral equations of the second kind
(more specifically, Volterra’s integral equations of the second
kind) and the kernels are regular and bounded everywhere
in the interval of integration. Hence, their solution can be
determined readily by numerical processes. This has been
done and the result in terms of the loading coefficient on

. {Ap . L fAD z
the center lin (-) (f tion (164 <—— —4 <—))
e center line za), rom equation (164) 70/, f p

is shown in figure 20.

For the purpose of comparison, the exact linearized value
also is shown in the interval where it is known, together °*
with another approximate solution obtained by Stewartson
(veference 14) using a different approach. Near the leading
edge, where the comparison with the exaet results can be
made, the agreement between the exact and approximate
solutions obtained herein will be poorest because in this
region the spanwise variation deviates most radically from
the value assumed in the construction of the integral equation.

* The symbols B and E indfeate elliptic integrals, See the table of symbols,
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o0 Exact PoT
—-— Stewartson [(ffeference 14) |
""" Equation {165)
40—

0 | N\ _ /,;W
R-1 \.,,5_4_4:‘.—4"
205 / P 3 4 5 6

x/s
F1aure 20.—Load coeflelent for unlt angle of attack along center lins of rectangular wing.

CONICAL AND QUASI-CONICAL FLOW

Equation (108) and its solution, equation (111), occur
repeatedly in the study of aerodynamics. In fact, equation
(108) is often referred to as the airfoil equation since it
plays a dominant role in the development of linearized,
two-dimensional, subsonic wing theory. It appears also in
the study of slender wings (reference 15) or wings flying at
near sonic speeds (reference 16) since the boundary condi-
tions lead again to the required inversion of the same type
of integral relationship. In the present section, problems
arising in supersonic conical or quasi-conical flow fields will
be reduced also to this basic equation.

Several methods exist whereby the solution to conical flow
problems can be determined. The one to be studied here is
based on the construction of conical elements extending
radially from the apex of the field and inclined at an angle
arc tan m to the z axis (see fig. 21(a)). In order to obtain
such an element it is sufficient to subtract two plan forms
of prescribed loading or thickness, each plan form having one
side directed along the z axis while the other sides are inclined
at angles that differ only infinitesimally.

Consider first the construction of a quasi-conical,® radial,
lifting element that carries a load given by the expression

=Cy* (168)

q
where C is a constant. The upwash field of a triangular
plan form such as the one shown in figure 21(b) can be found
by integrating elementary horseshoe vortices over the appro-
priate aree . Thus, using equation (77b), performing an
integration, and making the substitutions

=mg, =Py, m=Bylz (167)

one finds the result

(&) %= 4Tj'l+a(:1‘d,fj=\/( — LY (1, 0<0, 1 <0
(1684)

o B st [ e i
. (168b)

10 A conical fleld I3 defined as one in which the induced velocities are constant along rays
through & point. In thesubsequent anslyals this corresponds to the case when Km0, Quasf-
conical fields are those in which & ia greater then zero.

:

e

~~Element on which

| Ap
— c K
q v

(2)

(b)

(a) Litting element.
(b) Triangular wing.

Fieure 21.—Construction of eonleal clament,
Equations (168) can be written in the functional notation
wﬂ =f(6; ‘ﬂ)

It follows that if the analysis were i'epeated for a wing with
8 slightly larger apex angle, there would have resulted

wu=f(8+A46, 4)

Subtracting these two expressions for w, gives the increment
in vertical induced velocity due to a quasi-conical element

. fO-+A8,n)—F@,) ., Of
dwu=}‘¥£% Af M—-ag da

(169)

Cearrying out the operation indicated by equation (169),
making the substitution
n—t

_ —_a1—M
ﬂl—-a'_'e_t) = 6 — 0—-1}1



INTEGRALS AND INTEGRAL EQUATIONS IN LINEARIZED WING THEORY

and distributiﬁg these elements between 6; and 6, with
weight ((6), one can finally show that the equation

=AG+1) J; “eC@) HO,Hde  (170)

. (g) %’%_ pp

applies where

H(g, )= f(l(gf)g—iztidt 8, <8<y

—)*4/ 1 —¢
_ _1% dt, 1<0<8,

The function H(6, ) has a simple pole at #=45 and the
integral expression for Wy is therefore evaluated as a Cauchy
principal part.

The boundary condition to be satisfied by equation (i70)
is that far.fz= T is a given polynomial of degree « in the
variable ». Hence, équation (170) is a singular integral
equation with a pole of the same order as that in the airfoil
equation. In its present form the equation sppears some-
what formidable, but it can be simplified considerably by a
simple operation. Since S, fa17 is a polynomial of degree
k, it follows that the (x+1)* derivative of the right-hand
member of equaetion (170) must vanish. Thus, using the
concept of the generalized principal part, one has

A 1 _,7 _C"u C (0) dd
J 51 (5—"7)‘-l-z

which, by definition, can be put in the form

NN

The function 6<C (6) is therefore to be found through the
inversion of the integral equation

0= (171)

g0 (B)do_ &,
J;L 6—n —Eam

Buf equation (172) is precisely the airfoil equation and its
solution is given by equation (111}. Hence,

(172)

X ‘ f— [
o w0 3301\ o) 1= }
Y o = [A—Ln b—n o
173
so that, finally, a78)
Ap_ I3 :-[-1

whers the coefficients b, are functions of the constants 6, and
6; but not of 6. These coefficients must be determined from
known conditions about the surface geometry.

Consider the unyawed (. e., 6;=—6,). triangular wing
shown in figure 22. If the loading is to be determined on a
flat plate with such g plan form S<w. 2V, becomes —ea,
and equation (174) reduces fo
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AR >~y
, ~
" \‘ -
-~ S ~= x‘ﬁy
< N e
L7 v ~y=ma
”, ’ .
4 r ~
1 -
S
~
Y
~
-
ﬂg=m,@
8=8y|=x
Y=
(®)
wy[Vo=-a
----- wy[Vg=-a=x

_-—wulvaz-ayeﬁl

o

(b)

(8) Wing plan form.
(b) Load distribation at z=1.

FI1GGRE 22.—Load disirfbution on tdangular wings with specified twist.

Ap_ botbif

¢ o (175)

By symmetry, the coefficient b, in equation (175) must be
zero and b, can be evaluated by placing equation (175) into
(170) and integrating. There results the solution for the
pressure coefficient shown in figure 22 where e=¢ and already
presented as equation (146).

One can go on to show that if, as for a wing pitching about
the apex at a rate ¢), (see reference 18),

s, D e V‘SGQ, =1 (176)
then 0
Ap 4z
g VB0 —6 902K ye= 260 :I {7
: R

where the complete elliptic mtegra.]s K and E'have a modulus

=+1—6% Further, if

equal to k=

213"wn
Sl

k=2

=hy 2:_
then

4w

{ [202K—(1+ 6D EI+H[—(3— 302)K+(4—2902)E]32 Jl
[—50:K2 486,21 + 6D K E -+ (46, —1962+4) E* /67 —6
(179)

178)
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where k=+1—6," (=+/1—m?§?) is the modulus of the com-
plete elliptic integrals - These solutions are all shown in

figure 22, where in one case e=@/{17 and in the other a=.

—h/B

If the function B4w./z*V; is discontinuous but, 2 polynomial
in each interval of continuity, the solution given as equation
(173) still applies. For example, considér the cese when
k=0 and w,/V; is a constant that changes sign in cross-
ing the z axis. (Seefig.23.) Forsimplicity let 6= — 6, then
by equation (173)

Wy Ui
— = =0 180
Voo Ul " (180)
4 W
=
N
gV,
-8, ¢
- G
8, T
II%
q
8y -g
_Ba
FI1GURE 23.—Loading on differentfally deflected triangulur plate.
Again, as in the development of equation (175),
AP b0+ b; ]
2= : - (181
N “sn

Now, however, the solution must exhibit odd symmetry and
the constant by is zero. The constant b, can be evaluated by
substituting equation (181) into equation (170). There
results, finally,

Ap 8868

g  wB+62—6

This solution is shown graphically in figure 23.

The methods described above can also be applied to prob-
lems involving wings with thickness and withoutlift. In these
cases one constructs a radial element. emanating from the
origin and possessing & quasi-conical thickness distribution

. (182)
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T Tdzy

e (183)

=N, =Cy*

The derivation of the induced pressure field associated with
the element follows closely the analysis in the lifting case.
First a triangular plan form is considered with one side hav-
ing the slope m and the other parallel to the free-stream
direction. The thickness is assumed to have the form given
by equation {183) so that the pressure coefficient can be
obtained from the equation

—2 ) (35 z,) dz,
f }‘“dyjcl(:c — oy — B ly—y )"

Make the same notational changes as in the analysis of the
lifting case; construct the element by taking the partial de-
rivative with respect to 8; and, finally, distribute weighted
elements over the wing plan form by making C a function of
6 and integrating with respect to ¢ between the limits 6,
and 6. _ There results

@

tn—
H@, 7= f W;Tr?t,! 6, <6<

_[ tp—t)=dt
-1 (8—f)=t21—F

(184)

—=2etd) f FCOH @0, d0  (185)

where

A

The boundary conditions require (8fx)<C, to be a poly-
nomial of degree xin 5. If the (x+1)* derivative of equa-
tion (185) is set equal to zero, the relatio_n

gL 600 _ ) % 6<C(6)d9
~ Jo, (=) (bn (K-I-l)l o 6—g

results. The function C(6) satisfies the same integral equea-
tion that arose in the lifting case, and the solution can there-
fore be written immediately in the form

] b6
M=y 0@)= (3) & V06—

Again the coefficients b; must be determined from known
conditions about the surface geometry.

Consider first the case when the pressure is constant over
an unyawed triangular plan form as in figure 24. Thus

(186)

(187

C,=0C,, k=0 (188)
and (b, being zero by symmetry) .
WL - (189)

dz ‘302__ %
Evsluating the constant &, by substituting equation (189)
into (185), it can be shown that the surface ordinate 15
i L g—
= 2m’(K E') ym Y

where the modulus of K and E is k=+I1—6,. This result;
which is the equation of an elliptical section, is shown in
figure 24.

(190)



INTEGRALS AND INTEGRAL EQUATIONS IN LINEARIZED WING THEORY

Vo
B, N~ Y
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~m -~ S~ ~—y=mx
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0% ~, xRy
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,//////////////////,, 3
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(a} Triangular wing with subsonic edges.
(b) Seetion A A for Cyconstant,
(c) Seotion AA for Cp varying llnearly with z.

FIGTRE 2L —Symmetrical triangular wing with specified pressure distributions,
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Finslly, consider an unyawed triangular wing for which
the pressure varies linearly in the x direction. For such a
case

Co=(Co)z,  x=1 (191)
and (b; again being zero by symmetry) -
dZu T bg+ bgeg -
A= 192
- dr B -\'302—92 ( )
from which it immediately follows by integration
zu=2ggfnz Vmizi—yi - 232 5 (Bo+28°m2b,) arc cosh —=
| (193)

Placing equation (192) into (185) and integrating, one can
eventually show

2z 4 2 .
Cpo=m {B[2K—EB—060]+ ba[(05*+ 0K —26.2E] }

(1949

It is immediately apparent that the wing shape required to
support a linear pressure gradient in the z direction is not
unique, that there are, in fact, an infinite number. of shapes
that will induce the same pressure distribution. (The con-
verse, however, is not true. That is, a given shape has only
one possible distribution of pressure.)

Squire (reference 17) considered the thickness distribution

" that is obtained by neglecting the arc hyperbolic function in

equation (193). His result corresponds to the case when 3,
is —28?m®b. and can be written specifically

2=y zg; AT (1958)
b
Ovo=z§2(1—faﬁ [(B—6D)K—E@4—269]  (195b)

where 5/82 can be related to the thickness chord ratio of the
wing and the apex angle. Figure 24 shows how equation
(194) can be used to obtain several triangular wing shapes
all having the same linear pressure distribution. (It is
interesting to note that no combination of &, and 3, exists
that will give a real wing shape with zero pressure coefficient
since the resulting negative ordinates would require the
surface to cross itself.)

AxrEs AERONAUTICAL LABORATORY,
Natrovar Apvisory COMMITTEE FOR AERONAUTICS,
Morrert Fiewp, Canr., Oct. 16, 1950.
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