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FORIIULAS FOR ~HE SUPERSONIC LOADING, IJFT’, AND DRAG OF FIAT SWEPT-BACK

WITH LEADING EDGES BEHIND

By Dmns Co=

THE 1A(IACHLINES

SUMMARY

The method of superposition oj linearized conical$owe hag
been appltid to the cakddon of the aerodynamicpropertim, in
~uper~onicjlight, of thin $at, swept-back wing~ at an angle of
attack. The wing~ are assumed to hare rectilinear plan forms,
m’th tips parallel to tie stream, and to taper in the conventional
sen8e. Tle int’estimationcorers the moderatelyeu~ersonk speed
range where the Mach linesfrom the leading-edgeapex lie ahead
of the wing. The trailing edge may lie ahead of or behind the
.Mzoh lina from its apex. The cage in which the Mach cone
from one tip intersects tlw other tip i-snot treated:

Fo~wlas are obtainedfor the load distrilmtion.,.thetotal lifi,
and the drag due to lift. For the cases +nwiich. the trailing edge
is outside theMach conefrom its apex (wpersonic trailiw edge),
theformulas are complete. For the uing m“ih both leading and
trailing edges behind their respectiw Mach lines, a degree of
approti@ion ie necessary. It has beenfound pomible to give
practical formulas which permit the totaLlift and drag to be
cakulated to within B or 3 percent of the.accurate lineatized-
theory valwe. The local Jifi can be determined accurately orer
qost of the wing, but the trailing-edge-tip reg-”anis treated only
approximately.

Chark of ~ome of thefinctimzg dwir~d are i-neludedtofacili-
tate computing, and gereralezamples are worked out in outline.

INTRODUCTION

It is customsry, in supersonic wing theory, to describe
any straight segment of the boun~ of a wing pkn form as
supersonic or subsonic accordingI~ as the segment Iies ou~
side or is cent ained tit,hin its foremost Mach oone; that is,
as the component of the @t -relocit~ nornd to the edge is
greater than or less than the speed of sound. These two
circumstances result in fundmnentalIy Merent t~es of flow
over the surface. It is apparent. that the real reference is
not to a property of the -wing plFanform, but to a combination
of plan-form geomefry and the ~elocity of the wing rekh~e
to the speed of sound. Thus (see fig. 1) e~ery swept-back
wing, on entering the supermnic regime, has subsonic l@ng
and, inmost mass, subsonic hailing edges. At a higher Mwh
number, the same pIan form ma-j have subsonic leacling edges
and supersonic trdng edges. FinaIIFj if the Mach number is
inere=ed suflicientl~, both leading and trsiling edges will
become supersonic.

WIN(X3

.Merference eflects aIso depend on the flight Mach number,
since the etient of the various disturbance &kls is determin~
by the angle between the Mach lines. Thus,. no singje ,
concise formmk or method of treatment has w yet been
deveIoped to predict, even approximatel~, the aerodpwnic
chsracteristks of an arbitrary wing pkn form through the
supersonic speed range.

The present report is concerned with the loading, lift, and -
drag, according to linearized theory, of thin, flat, svrept-
baok wings with rectilinetw boundaries and conventional ‘-~
taper. ~arious methods are avaiIable fm the calculation .
of these properties when the led.ing edge is supersonic.
Of these, the method of reference 1 is perhaps the most
convenkt. Formulas obtained by this method for the
loading and lift-curve slope of wings viith supersonic lead-
ing and trailing edges are prewnted in reference 2. h the
following, therefore, the emphasis -wiUbe on the aolutioi of
the problems arising from t-heinteraction of the flOW fiel~ . . .
in the” presence of subsonic leading edges (figs. 1 (b}, (c),
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FIIWEE I.—A imid tapered .mwt:hekwing at sixswersodcMad HW=, dmfig
the >M lines from the ledns- md trefM-edgew-= md ~m tie~PS-
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and (d)). The case (fig. 1 (a)) in vrhich ,the Mach number
and aspect ratio are so low that interaction takes place —
betmeen the tip flow fields will not be treated. An approxi- —
mate solution to this probkn may be found in referenoe 3. -

Whaa a wing with a subsonic leading edge is to be studied,
considerable simplification of the probkm may be achieved “-
by making” use of the solutions, a~aiIable in refermw 4
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and other sources, for the infinite triangular wing.1 From
these solutions the aerodynamic characteristics of a variety
of swept-back plan forms can be calculated by the use of
the superposition principle ‘of linearized theory to cancel
any lift,beyond the.specified wing boundaries. Two methods
of cmcellat ion have been developed:”on-e,presented in refer-
ence 5, uses supersonic doublets and is general enough to
apply to curved boundaries; the other, originally due to
Busemann (reference 6), canceIs by means of the super-
position of conical flow fields. In the present report the
ccnical-ffow method is used, since it appeaxs to offer some
advantages for the straight-sided plan forms under
consicleration,particularly in determining the integrated lift.

The material prwented in this report is largely drawn
from references 7, 8, and 9, with some simplifications sug-
gested by practical experience. In particular, the formulas
for the total lift have been reworked tQ substitute, with
no increase in computational labor, a combined ‘iprimary”
and “secondary” correction for each .of the ‘tprimary” cor-
rections in reference 7. Also, the formulas containing elliptic
integrals have beeu rewritten to tie full advantage of
available tables. As in the preceding papers, the final for-
mulas W be derived for unyawed wings with tips parallel
to the stream, but the application of the general method
and the basic SOIUtione to other plan forms and problems
will be appnrent. Some numerical examples will be included
in order to show the magnitude of the effects discussed and
to summarize the. method. .A table summarizing the
formulas is also included.

I—METHOD OF THE SUPERPOSITION OF CONICAL
FLows _

A couical flow field is oue in which the velocity components
u, ~,,and win ~heStreamjcro~-gt.r~amand vertic~ directions,
respect.ively, are constant in magnitude along any ray from
the foremost point, or apex, of the field. Such flows are
found as solutions of the linearized potential equation for
sup&sonic flow. A detailed discussion”of their derivation
and use is contained in reference 4. In. the cardlation-of-
lift procedure, only solutions of the so-called “mixed” type
described in section V of reference 4 are required, except for
the basic solution (for the infinite triangular wing) which is
itself of conical form.

SYSTEM OF NOTATION FOR CONICAL FLOWS

Tho Cartesian coordinate system is placed so that the
origin coincides vri~,hthe projection of the leading-edge apex
on the horizont,al phme, the positive x axis extending down-
stream from the origin ancl they axis extending perpendicular
to the .Eaxis in the horizontal plane. (See fig. 2.) For the
conical flow fields, it is further convenient to define a variable
to designate n particular ray in the w plane, since the flow
velocities are constant along such a ray. If the apex of the
field is specified, then the ray is most readily described by its
slope, measured from tho downstream direction. The
conical solutio m of the supe~sonic flow equation are, how-

1Theprewnt report corers in detail only unyrvwed Mu’& However, yawed Mm@ may
lx trested simllsrly, starting with the yewed trkr@ar-wing solutions. ThIe problem
1s the Subjwt cd u ~per, NACATAT2MZ1950,by L&mpert, prepared COIMUHWMY Wkh
the preeent report.

(

Z,u,
-v

Fmrm 2.-Coordionte syetmrL con[cal vnriables, and other symbols,

ever, functions of the ratio cf the slope of the ray to t.hr

slope ~ of the Mnch lines, where 13is ~~ and M is fic
/9 .

free-stream ][ach number. For the triangular-wing flow
with its origin at the apex of the wing, t.hmrforc, the conical
variable will be chosen as

(1)

At tho Mach lines from the leading-edgp upcx, a equals &1.

The ray from O, the wing apex, making the anglo ttin-l ~

with the stream will hereinafter be referred to as tho ray a,
and the subscript a will iuclicate wsociat iou with a ccnstm~t-
load sector (h be introduced later) of which such a ri+y is
one of the boundaries.

For each of the conical fiekla t.o be supwposwl al the edges
of the wing plan form, a new coordinate sj%t,em is seL up wilh
its ori&u at the apex of the field. In couformiLy with tlw
notation of reference 4, the ccnicd variable relative Lu h’
displaced origin is callccl t, ~ith subscripts to denote lhr
location of the origin, Thuaj if Xa,yais the point of inleraco-
tion of the ray a with the plan-form boundnr,yand is Lvserve
as the apex of a c.aucelingconical field,

(2)
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is the ratio of the slope of the ray t=of that field to the slope
of the Mach lines.

If the ratio of the slope of the Iemlingedge to the slope of
the Mach Linesis

m=fl cot A (3)

where A is the angle of sweepback, then at the leadiug edge
a=m, and a ray from the ledhg-edge tip is designated by
t=. If s is the vring sernispan, the leading-edge tip has the

fk
coordinates;) s and any point x,y has the conical coordinate

(4)
x—-

‘m

/9s
in the field with apex at ~ 8.

Other symbols referring to”angular locations &ll be defined
in the same ray as needed. A summary of the symbols
will be found in appendix .A.

BOUNDARY CONDITIONS FOR CATSCELLATTONOF LD?T

The general problem of cleri~ the flow o-rer a“&g of
finite dimensions from the know-n flow over an inbite v@
is the prob~em of determining the induction effects due to
the edges. These effects may be thought. of as associated
with the cancellation of the lifting pressure at the boundaries
of the finite wing. . b the %earized Efting+urface theory,
they may be evaluated by the superposition of flow fields
with negative lifting pressure over the portion of the Hte
wing outside the boundaries of the tite plan form, provided
the other boundary conditions are not disturbed. h the
case of a flat w~~ at an angIe of attack the latter provision
niesms that the canceling field must- (1) induce no dowmrmh
tithhi the boundaries of the tite wing and (2) introduce no
new lifting pressure outside those boundaries.

In accordance nith thin-airfoil theory, the boundary con-
ditions vriUbe satisfied in the horizont al plane rather than on
the surface of the wing. h, by thin-airfoil theory, the
conditions on the lifting pressure are convertecl. to conditions
on the -docity field through the relation -

In the simplest case, the lift to be canceled W be dis-
tributed uniforndy over a setiinbite region bounded by
two straight.lines. The boundal~ conditions of the probIem
may then be said to be conical with respect,to the intersection
of the two Lines,which become “rays” of the canceling conical
field. The boundary conditions on the canceling velocity
field in this case maybe summarized as follows: .

(1) The streamm%eveIocity u must approach values equal
in magnitude and opposite in cIirectionon the upper and lower
surfaces of the horizontal plane.

(2] IU the horizontal pIane, u must be constant over the
Mmite sector in which lift is to be canceled.

(3) The vertical ~elocity w must be zero in the portion
of the 2= O plane occupied by the projection of the finite

-.

(4) From equation (5), u must equal zero in the portion
of the horizontal pke not covered by conditions (2) or (3). “

(5) In supersonic flow there exists the acMitionaIcondition
that au the velocities mnst go to zero on the Mach cone from
the apex of the field.

CANCELLATION OF NONUNIFORM LIFT .—
The foregoing are the generrd conditlona for ~ U~Ol~J-

loaded canceling flow field. L’nder the proper conditions, a
nonuniform distribution of Iift may be canceled by the super-
position of a minber of such fields. This procedure is best
esphitid by a concrete example.

Conaider the problem of a swept-back wing ff.ting at a
high liach number such thwt, as ia age 1, (e], the lktch
Iines’ from the leding-edge apex intersect the tips of the
wing. The method of deri-iiug the s-wept-back W@ from
an infinite triangular wing in that case is indicated in figure

.-

3. It may be noted at the start that, according to Iinear
theory, the lift behind the supersonic trailing edge may be -”
canceled in any may without aflecting the ~elocities on the __
wing. l%ns it remains only to consicler the effect of can- .._
ceLing”the lift outboard of the tips.

FICXBE S-—Method of mncellstfca of Mft beyond the tip when thl
IfJ.wintersects the sfde edge of the uing.

adfng-edge Mseh

.—
An itinite triangular wing with supe~ouic leading edgm-

has a Ioid distribution which is co~tant o~er the Portio~
of the wing between the leading edge and the Mach Iines
from the leading-edge apex (see fig. 4). This comtanh ~oad

-——
.——

may be canceIed outbo-ard of each of the tips of the swept- ,
back -wing by a single negatively loaded triangle of iufinite__
extent, one side coinciding -with the side edge of the -w~~
and,a second tide mincidi~~ with the extension of the Ieadi% __=-
edge. However, the area to be remo~ed (region BAC,. fig.
3) includes also a region o~er which the pressure varies, and ——
is COnicaI with respect to O. Since the bonntirie~ of tie
region are conicaI with respect to & no one conical solution
can satisfy the requirements of the problem. The problem

.-:—

is brought within the limitations of the conical solutiom by
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considering the lift to be made up of an infinite number of
constantly loaded, overlapping sectcms of infihite extent,
(See iig. 3.) These sectors are bounded on one side by the
wing tip; the second side is-the extension of a ray from apm
O of the wing. Between the leading edge (a=m) and the
leading-edge filach line (a= 1), no division of the field is
nece=ary since the lift density is constant in that region,

If a sector with apex at A and angle tan-’ ~ is used to cancel

this unifomn lift, then the remaining superposed fields must
be used where a< 1 (see fig. 4) to restore the difference
between that lift and the loading on the triangular wing.

If UI is the streamwise component of the perturbation
velocity mm-esponding to the ccmstrmtloadiug ahead of the
leading-edge Mach lines, and uA(a) is. the same velocity in
the region between the Mach lines, then the magnitude oi
the u component of the velocity in the initial canceling
sector will be —ul, and on the remaining sectors (see fig. 3)
minus the imwementin UI—tiAcorresponding to an increment
~ ~ or *A (la

7 da “ (Note that this last quantity k positive, as

required). To determine the total effect of canceling the
loading outboard of the tip, the velocities induced by the
latter infinitesimally loaded elements are integrated and
added to the negative effect of the initird constant-load
sector.

11—LOADING ON WING WITH SUBSONIC LEADING
EDGE

LOAD DISTRIBUTION OVER TRIANGULAR WING

In the notation of this paper, the velocity distribution
over a flat. lifting triangIe with leading edge behind the hfach
lines may be written

‘A=*- ““(6)

where
m T“a

‘O=pE’(m)
(7)

is the (constant] -relocity along te center lino a= O. In tho
expression for uo, E’(m) is the complete elliptic integral of
the second kind, of modulus ~=. The load &stribution
is obtairjed from the velocity distribution by equation (~.

SWEPT-BACK WING WITH SUPERSONIC TRAILING EDGE .
(TIP CORRECTION) ‘

lf the problem is now to find the loading on a swept-back
wing v@h subsonic leading edges, but supersonic trailing
edges, only the tip effects will modify the tritmgular-wmg
chatribution. The calculation of the tip eflcct on n y~ng
with subsonic leading edge (m< 1) is somewhat complicated
by the fact that the pressure becomes infinite a~ the k’nding
edge, but otherwise follows the procedure outlined in the
preceding section.

It will first be ncwssary to present the expression for W
previously clescribec.1conical fiehi ~vithuniformly loadd sec-
tor. to be used as the elemen~in cane.cling the lifL outboard
of the tip.,

ELEMRWTAEYSOLUTION FOE A STREA.MWISE TIP

Ifs is the semispan of the wing, the apex of any element a
(see the section on Notation) is at

and, from equation (2),

(8)

(9)

Then, if u= is the constant per~urhution-veiocity componcn~
to be canceled over the region between the lip and the extan-
sion of the ray a, the previously listed boundary conclitiws
for each of the required canceling fields mtiy bo WfiL~L’11 as

follom (see fig. 5):
(1) and (2) When O<f.~a, u= +U= (constant for the firld)
(3) When t=<O, w=O
(4) ‘When fo>a, u=O
(5) When ]t=[a 1, u=u=w=O.
The solution of the e.upelsonicflow equation satisfying the

above boundary conditions has been derived in refrrencc 4.3
In”the W ~lane, tl~estreamwise component of the velocity is

u= kr,p. : cos-
, a+t~+2af~— ..-.

t=—a
(10]

The sig@i refer to the upper and lower surfaces, respectivcly.
In fimi.re 5, the eswmtial features of the solution arc

shown. - At the top is a detail view of the wing sido cdgo and
shows the boundary conditions. In tho center is a typical
plot of the argument of the inywee cosine in equation (10),
against ta. mere this quantity is less thtin —1 (i. e.,
O<t= gq), the real part of the inverse cosine is T. TVhem s
the argument is great.rr t~mn + 1 (ta>tz and t.<— 1), th! --

: Approxhnote formulas, ro.fld wheu m Is doss to 1, hare lwen prrwn tcd for thfa caso tn
RJ2ronw 10.

~Tho corresponding solutions for mkti-fnor rakwl+ut tips nmy rdso tn. found [n n.[rrcnm 4,
or deduced from later sections [n the prtwnt report.
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real part of the inverse cosine is zero. On the wing
(–1 <ta<O), the argument goes from +1 to –1 and the
inverse cosine is real. Thus in emceIingj or subtracting,
the veIocity “u=behvem t==O and t==a, the increment in
-relocity

.

u= -, a+&+2at=u.(z, y, a)=—; cos h–a
(11)

is induced on the -ring upper surface.

TII?-LNDUCZD COEB130TIO?S TO TEE LOADfXG

Following the procedure outlined ti Part 1, we proceed to
determine the effect of canceling the lift outboard of the
wing tip. Since the due “af u= for the initial canceIing
field –u.(m) and the value for the &st incremental field
du~
~ da are both tite When the leading edge is subsonic,

it is tit necessary to write the induced velocity at a point
Z,g as

[
‘uA(a)

(Au),i,=gy$my Cos-’ a+t=+2at=+
t=—a.,

f
I a du~ cos_L a+ L+2ata da—
r. a, x ~;—a 1

(12)

where the limit a. is the value of a corresponding to the
rearmost sector including t-he point r,y in its Mach “cone.
The value of a. is foun{ by =-tting ti-(equation (9)) equaI :‘-
to —1. Thus, for the tip correction,

/9s
ao=z+/s@”-s) (13)

This parameter -rriI.lbe additionally usefuI “as the due of a -...
at which the yelocity correction given by equation (11)
goes to zeio and its derivative has-a singularity.

Before performing the integration of equation (12), t= ‘
must be replaced b~ its expression in terms of z, y, mid a.
Then integration of the second term by parts results in a
term -which, at the upper Iimit, exactly cancels the first
term, ,tmd at the other limit is zero, lea-ring, after substitution –
for u&

s—m(z+fly)uom .(Acht,= ~’ao(.s—y) da.
T-J%. co (a=fM (m.z-a~ (1+a) (a—aJ ‘~~

(14]

This integd is fl.nite and can be evaluated in terms of
elliptic integds as follows:

‘A”’t’’=%[mKo-aO(k’15)
where

A.O=KOE(*,P)–(go–mq+, k’) (16)

and K. and ~ am 2/r timw the complete elliptic integrals
K and E of modulus

‘=J%2R
In equation (16), F (~,k’) and 1? (##) are the incomplete
integrals with the complement.ary modilus k’= ~~1—kg and
armunent

$=--’J%Z7 -——

The functions Koi lZ and AOare tabulated in reference 11 ~or” .
may -be computed from the tabks of reference 12. ~ plot
of &is given in figure 6.

Value at the side edge,—~t the tip, y ia equal tos and the
first term in equation (15) vanishes. In the second term, #
becomes r/2 and 12 (*J’) and E (t,k’) reduce to the complete
integrtds l?’=~(k’) and Z?=K(A’), respectively. Then,
since, by Legendre’s relation,

K’E–K’K+KE;= 7r/2
—

--

b reduces to 1. The induced velocity correction is seen to
be exactly equal to ‘?& bringing the lift to zero at the
wing tip.

Drop in lift across tip Mach Iine,-An interesting effect
shows itself at the other limit.of the tip region, that is, at the
Mach be from the tip of the leading edge. Along this l~!
OIJY the influence of the leading-edge pressure is felt, so that

{ The Quantity .Ki Sscalled i% in refaecce lL

. .
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kt,;UEE 6.–Th? duPtiC function Ao(+,k)-KtE(##)-(KPEo)F(W).
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ao=m. Then k=O, ii’= 1, K=T/2, E($,k’) reduces to

$8
or, since along the tip Jlach line .6(s-Y) =r—x~

.&&*=
—uQlm&3

~“2(l+m)(mx-psj

This result indicates a finite drop in pressure across the
Mach line from the tip, an effect -irhichis associated -iviththe
cancellation of inEnite preemre at the leadirg e~meancl con-
sequently does not appear as long M the leacLingedge is
aheaclof the Mach lines. The ratio of the clrop k lift QCmS
the tip lfach line to the uncorrected Liftmm b&mitten

M* ~(l+a)(m+a)
.?i~—=–1 2m(l+m)

fi. ratio is plotted et (z}m in flgu.re i and shows the
percentage loss of lift at tho tip to be ~ery large. In fact,
for any but the lowest-aspect-ratio vcingg. the lift remaining
in that region is almost negligible. This effect, ~rhichshouIcl
be of considerable practical interest, tins tit indicated in
the resdts of reference 13 for the Iimiting case of m=0.

. .
{ CL/m &

FIGCBE7.—Pemeut drop fn Ifft across Sach line from tip.

SWEPT-BACK WING WITH SUBSONIC TRAILING EDGE

The. tip-effect correction just derived applies equally to
-wings with supersonic or subsonic trai& edges. The effect
of a subsonic trail@ edge is calculated separately, ancl is
primarily due to canceling the triangular-wing loading in
the wake region. If, however, the trianggar-w@ loading

?1368?—59—T4

has been modified by the introduction of side edges.,then this ___
moditlcatioh must also be taken into account when cancelirg
tJpelift behind the hailing idge. h the conicrd-flow method,
the various component HOWfields must be canceled individu-
ally. The sectiou “immediatelyfollowing rill discuss the can-
cellation of the triangrdar-wingload@; cancellation of the tip-
induced components of -ielocity rrill be considered under the
heading “Secondary Corrections.”

PEIM&Y TRAKESG-EOGE-COEEECTIOXS
. .

Procedure for cancetig lift in the wake region ,—The
basic procedure is again to consider the load to be canceled
to be buiIt up by the superposition of uniformly loaded .
sectors, bounded on one side ,(see Q S) by the rays a, and
on the other by the traiIiqg edge”of the wirg. It is con- .
~enieqt at this point to introduce the parameter

m,=19X cot (angle of sweep of tra~~ eclge)

/

L
\+

,

-1 0 a -m: f.
Ca

FIOCBE 8.—OblIqne constrmt-Uft eIement (sfMe@ for mncelhulcm of lfft at mbsonfc
_ e@% end fnduced reklrr discribur[on.

.-

The boundary conditions to be satisfied by the u compo-
nent of the elementary canceling ~elocity fielcl are indicated
for the right span in figure 8; each field must ha~e constant
velocity u=-irhena St. <m~ and zero streamwise m40city over
the w-ake region, —1 <t.<a. The concomitant vertical
velocity must be zwo on the wing surface. However, when
a is small, the region —1 <t.<a will include a portion of the
left-hand wing panel Since in th~ region the u component”
of velocity has already been specfied, the Tertictd -m.locity
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will not, in general, be zero. Nor is it possible to modify
the field to satkfy the boundary condition on the far wing,
since the area involved is not conical with respect to the apex
of the field.

The error involved in the foregoing procedure is minimized
by the use of a symmetrical flow field to cancel the initial
load UOat a=O, where a single conical field can be made to
satisfy the boundary conditions exactly on both wing panels.
This flow fieM (see fig. 9) would have its origin at the apex
CO,Oof the trailing edge, and the constant-load region wouId
extend over the entire wake region. Between the trailing
edge of the wing and the Mach lines from ~,0 the induced
ciownwaeh would be ze~~in the plane of the wing, while the
pressure would vary as required tQ satisfy the fundamental
flow equations.

In figure 9, a typica~ curve of u~ is shown, from which it
can be seen that the load to be canceled is very nearly
constant over a considers.ble fraction of the wake region.
Cancellation of the velocity UOby the sjmmetrical field will
consequently leave onIy a smalI variation in u to be canceled
by the obLique fields described earlier in the section. The
resulting violation of the flat-plate condition maybe expected
to be small,h and will take pla.ce ody over a small region
near the tip of the trailing edge.

I
.

u

%---.,~ %

-1 -mt o mt 1
t.

FIGuRE iL—SymmetrImd flekl for cancalk+tlon of w at subsonfc. tralllng edge.
..—.

I Cakwlstiona made tG oheck tbls sbdement have shown the induced downwmh angles tG
be less than 0.6 permnt of the angle of attack, even fn the mott nnfsvomble oircumWonces.

Symmetrical solution.—l?or tho symmetrical solution wc
define the conical variable

&=& ~ (I ij—

which is zero along the centerline of the wing and equals + m~
at either trailing edge. Then the boundary conditions to bc
satisfied in the xy plane may be summmizcd as follows:

—ml Sfos+ml ‘u= *UO

?nj<\&l<l W=o

The required solution is given in referenco 14. The u com-
ponent in the zy plane is

k% F(~, 1-)
‘. ‘. K’(m,)

where h“(m J is the complet.e elliptic integral of the first kind

of modulus ~~z and ~(~, ~) is the corresponding
incomple@ integral of argument

r

l–t#~=sin-l —
1 —nllz

The form of the induced velocity on the wing (SCCfig. 9) is
very similar to the inverse cosine curves of the tip schtions.

On the wing, d is real and the symbols r. p. may be ornittcd.
The velocity induced on the upper surface by cancellation of
w behind the trailing edge is therefore

(Au),= –a F(4, ~~ (20)

Oblique solutions for the wake region.—The symbol
t.wW be used as before to indicate a ray of the flow field
with apax at X=,ya,the point of intersection of the ray a with
the wing bo?mdary-in this case the trailing edge. Along
the trailing edge,

V==; (x=–co)

Since a=fl (y.JqJ, we may solve for r. and V=as functions
of a and the constants mI and CO:

x~= :~-a (21)

.

I?v=== -- (22)

Then “
~a=PY(~t —a.)—mlcoa

z(ml—a)—mlco,
- (23]

The boundary conditions t.obe satisfied by t.hoelementary.
solution iwe (for a>O)

a<t=<m, %= &ua

ml<ta<+l I&=o .J

–l<&<(z U=o
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The solution satisfying these conditions may be obtained
from the tip solutions by an oblique transformation. (See
reference 4.) In the xy plane, the resuhing expression for
the u component is . .

(1 –a)(tti-m,)–(m,–a)(l–tJ
T.P.&: Cos-= . (1 –m,)(t=–a)

Then the velocity- induced a-t any poi& z,y on the upper
surface of the wing by the ca.nceIIation of the infinit.esimd
increment of perturbation velocity u. orer the sector bounded
by the ray a and the traibg edge is

d~u
~ da = (Au)==,= cos-’

(1–a.) (ta’–mJ–(mt–a) (1 –+)
(1 – m,) (t=–a)

Correction of
mine the lift et
wing, it is fit
canceling sector

(24)

loading nesr the trailing edge.—To deter-
any point x,y near the traiLing edge of the
necessary to determine the most rearward
~ that w-ill influence that point. Setting -t.

(equation (23)) equal to 1, we sol~e for

z—/9y-co
ao=mt

x—fly-mtco
(25)

Then the total correction to the triangular--wing velocity UA
obtained as a resdt of cancehig that ~elocity behind the
trail@ edge is—

@w)T.E. (z, Y)=(Au)o+
J
~’”~ da

The integral in the foregoing expression has been evaluated
in terms of an incomplete elliptic integral of the third kind,
which may be computed -withthe aid of the tables of refer-
ences 11 and 15. Because it fl be ne.cessmyto detinesevard
new functions it was thought better to present the results in
an appendix (appendix B). For practiod use, graphicrd or
numerical integration may be preferred, in which case a
convenient, form is obtained by rewriting u= as (du@a) da,
or du& in equation (24). Thus equation (26a) becomes

(Au)~-E.(z, y)=(Au]o–

1
J.

u~(a”) (I –a) (ta–nz,)-(m,–(z) (1‘~.r) ~uA (5i(3~
— COS–L
T u“ (1 –m,) (t=–a)

where t=and UA must be evaluated for selected values of a
between zero and %. The irdegrsnd, of comae, goes to zero
at ~.&(aO).At points tdong the leading edge (ii cases in which
the leading edge extends into the zone of influence of the
trailing edge), the integral takes on a somewhat simpler form,
tith the result that the entire tmding-edge correction at
such points can be -written

(Auh~d, in the ]tIStwhere the first term inside “the braces is —.Uo
term. ‘

‘=J%2F7
SECOX~ARY COREEOTIOSS

The term “seconcky corrections” is used here to designate
the effect of camcehhgthe lift introduced outside the bound-
aries of the fig hi the process of canceling the original tri-
sngular-~ loading beyond the tips and behind the trailing
edge. As previously mentioned, cancellation of Iift at the
tip introduces new (negative) components of Iift to be cam
celed at the trding edgk. The original cancellation of lift
behind the trading edge, on the other hand, miIIintroduce=
negative incrementedpressuresoutboard of the tip and, under
certain circumstances (see &s. 1 (a) and (b)), ahead of the
leading edge. The distribution of lift. to be canceled in each
case ia no longer part of a single conictd field, but is composed
of an infinite number of superposed conical Iields originating
at various points along the trailing edge or tip. In order to
canceI these pressurw accurately, it would be necessary to
set up, for each of the orighd canceling elements, sn in.dnity
of positively loaded eleumnts at the opposite boundary.
Thus, each secondary correction vrouId require a double
integration for each point, and would obvioudy be quite
tedious. The procedure is described ii det-ad in references
7 and 8. The more recent work of M3rels (reference 5) offers
an alternati~e method which, whileno less tedious at the com-
putational state, is somewhat easier to setup for comput ing.
h’evertheleas, t-heexact calculation of the secondtwy correc-
tions, and of the succeeding corrections arising as the second-
ary corrections are in turn canceIed at the opposite edges,
appears feasible only with the aid of high-speed comput~m
machinery.

These corrections may be thought of as a converging
series, since.in each case (except in the neighborhood of the
leading edge) the induced eEect is smder than the canceled
Mt. Over most of the wing, the secohdary correction ~ of
the mine order of magnitude as Lhetolerable error. Formuhis
for obtaining a major part of the secondary corrections ctmbe
given rather simply and shcndd stice to give results of
practical accuracy in problema (Q. 1(c)) not iurol-iing lead-
ing-edge corrections. Problems of the type shown in @ure
1(b) vzill’be discussed in a later section.

Secondsxy corrections at the trailing edge.—The press&e-
differences induced by the tip are in the main due to can-
cellation of the irdnite pre~ure at the leading edge- It..
should therefore be permissib~e, for the secondary corrections,
to app~oximate the tip-correction field by a single cohical
field from the leading-edge tip. The lift associated with this

-field may then be canceled behind the wing (see fig. 10) by a
aingle iniinity of superposedfklds, as was the original triangu-
lar-wing loading. If the values of (Au) tin calculated for
points x,,y, along the tiding edge are assumed to apply all
along the corresponding rays t~(z~,yJ from the tip, then the

—

.-. _

. —
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kki(.IIE10,-13kctchfor fipplvxlnlate mncellatlon of eyj~m”s I[ft lfii~u~ b~h[nd
tire )radhw edge by the tlp wrreetIon.

lifting pressurewill be extictl~canceled along the t,railingedge
anti the remaining variation of pressure in the wake will have
very little effect on the flow over the wing.

The cancellation fields are of the previously used ohlique
type, with a replaced by

~M =f@b-s)

J- ““

(27)

trL

IA:[.[ht?part.iwdarpoint at which the line t~= – 1 intersects

t.lw t rdiug edge be dosiguatecl by Z*,V* and other symbols
r: fcrring to that point be similarly staked. Then the
velocity induced at tiny point X,Von the wing by removal of
(Au),,P along the trtii.hn.gedge will ba (from equation (24))

—Au* ~os., 2(t*–mJ-on’+1)(1 –t*)_
n- (l–mt)(t”+l)

1
-\

‘tni@OtflOJd(Au)liP ~os-, (l–t~)(tb–m,)–(~, –t~)(l–t,)dt~
u. -~ dt~ “(1 –m,)(f,–tm)

(28}

whwc Au.* is given by equtition (17), t*and t~are cUlcul~tedby

p=B(H*)
X—X*

(29)

and
~,=l%y-yb)

x— Xb
(30)

respectively, rmd Zo,y. is Lhc point. of inhvsecl iou of llNI 1 [tich
foreconi from x, y with th(’ trtiiling edge.

The dwivativc # (Au) ,~Pwould htiw to lw dclrrmind
m

numerically or graphically from a plol of the cnlmdalw~
values of {Au) ~tPagainst. t~. Iu order h tivoid this proccdurc,
it is preferable to N?write expwssicm (28) m

—Au* ~os_, 2&-?nJ –(m,+l) (1–fq
T (1–??z,)(t.*+1) 7

1

J

(Au) t ;P (JO,Ftj (1 –tm) (fb–~,)–(???,-t~) (1 ‘fb) ~(AIL),t,
— (’0s- )
T Au* (l–?nl)(f,–tm)

(31)

in which
~b=fw-s)

Z—xb
(33)

XOis the Vah? Of ~b Whkh makes tb= — 1, fIIM] (~’U)yT.E, kI

calculated for x=xh, y=s by cquat.ion (26b).

.- NUMERICAL EXAMPLE

Before proceeding to consider the problem of int.crmtkm
between the leading and tr@ing cdgmj whkh introduces
some radically clitTwentCffcctsj the results so far obthinwl
will be illustrated by u numerical example, TIN lortdi]]g
over an untapercd wing, with P cob A= 0.6 WN1rcduccd
aspect ratio f?xl= 1.92, has beeu calculated at four spfinwise
strdions: 25-, 50-, 75-, and 95-percenL scmkpn n. The wing
plan form and section lift.distributions are SLOWUiu llgurc 11.
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The results of the calculations are presented in the form of
values of P(Ap/ga) (equation (5)).

The various components of lift are presented separately as
ca.lmdated. In figures 11 (a) and (b), the ,discontinuities in
slopo show the eflect of the cancellation of the finite velocity
w at the traihg-edge apex. The integrated partt of the
trailing-edge correction (component 2) has zero slope at the
Mach line. The two outboard sections (figs. 11 (c) and (d))
are intersected by the Mach cone from the tip, as indicated
by the finite drop in the load curves. Cancellation of the
finite tip effect at the trailing edge (component 4 in both
figures) resuhs in a sharp discontinuity in pressure gradient
along the reflected Mach line, at 91-percent chord at
y/s=o.75 and ah 78-percent chord when y/8=0.95. The
cancellation of the trdng-edge corrections at the tip, which
affects only the.last section shown, rwuhs in another break
in the load curve at 49-pmcent chord. Further corrections
enter at the rear of the section as a result of successive can-
cellations of the superposed pressures at the tip and trailing
edge. TJeir effect has been only estimated.

SwEPT-JIACKIVINGS~lTll INTERACTINGTRAILING
AND LEADINGEDGES

11’hen, as in figure 1 (b), the ~Machcone from the trailing-
cdge apex includm a region ahead of the leading edge, the
previously calculated trailing+dge corrections to u must. be
canceled in that region, since they represent a discontinuity
in pressure which cannot be supported in the free stream.
Thus there must be calculated a leading-edge correction,
which is one of the previously deiined,seccmdiirycorrections.
However, the location of the disturbed field ahead of the
wing causes its influence on the wing to be so much more
widespread than that of the other secondary corrections as
to require more carefuI consideration. A new type of flow
field is also required, as discussed in the following paragraphs.

LEADING-EDGE CORRECTIONS

Elementary solution for the region ahead of the leading
edge.—In general, the elementary solution required for the
cancellation of prwure in the plane of the wing ahead of the
leading edge is one that:

1. Provides constant streamwise velocity over an infinite
sector bounded on one side by the leading edge of the wing
(extended) and on the other by an arbitrary ray extending
outward into the stream from some point z~,~bon the Ieading
edge. (See fig. 12.)

2, Induces no vertical velocity, or dowmfash, on the wing.
3. Induces no lift except on the w“mgand withb the sector

described in condition 1.
At first ghmcc these conditions would appear to be satisfied

by the oblique solutions used at the trailing edge, if properly
oriented with respect to the wing, and the same form of solu-
tion might be ~~pecte.dto apply. In reference 4, however, it
has been pointed out that the downwash connected with the
latter solution remains constant over the wing onIy if the
wing area does not include the line y= constant extending
downstream from the apex of the element. In the case of
the Ieading-edge element this condition @ violated (fig. 12)
and a.nadditiond term is needed to bring the downwash to
zero throughouttthe area of the wing affected by the element.

r1

A~
#
1

L9ding e~e

i

K
c

-1
R

G

FIGCEE 12–hd[ng.edge element and Induced-rrhelty funetIon.

The solution applicable to this case has bccu given ifi refer-
ence 4. The u component of the vdocity in the plane of the
wing is as follows:

-where uIJis the constant Streamwiso perturhat,ion l“e]ocity
over the elemenL, and fb refers as before ta a“ray from its
apex. The ray bounding the element originates a~ a point
on the hailing edge and has been designsted, from equation
(24), as tw When the correction is being made for tho sym-
metrical trailing-edge elcnwnt, $=is rcplaccd in cqua(ion (34)
by h.

For brevity, thti two parts of the correction function will
be referred to M

(ta–rn) (1 +f,)–(m–fJ (I+Q
c(tJ=r. p. cos-~ – (1 +m) (tb–t~ . (35)

and

–2m ~
;4

l+f*
W.J=r.P” (~+m)~=l (tc–~) (1 +kJ m—tb (36)

The variation with t, of these functions and tho induced
velocity (equation (34) ) are illustrated in figuro 12.
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leading-edge correction to the loading-The single conical
field of (A@O will be considered fiat. (See fig. 13.) The
velocity field to be superposed ahead of the leading edge to
canceI the whcity (Au). induced in the plahe of the @g
by the symmetrical solution (equation (20)) can be built up,
as shown ii figure 13, of overlapping consttmt-veIocity sec-

.

It.
I

,,
FIGGBE 13-CanceIIatfon of the premure field Mrodmed ahmd of the IeodIug edge fn the

conrseotmncanga behbdthebngmedge.

tors having one edge along the kding edge of the -w@ and
one along the extended ray to $rorn the apex of the trailing
edge. The magnitude of the constant velocity on each ek-

ment is * d~ or, from equation (20),

Urodo
K’(m,)#(l —foq(t;–m,q (37)

Applying equation (34) to the candation of the sym-
me.t.rical-correction velocities (Au) o ahead of the ~m results
in the fo~owing induced velocity increment at any point
(z, y) on the@:

J
(A,u)o=; ~ ~1 1 ‘(Au)O [c(tJ+@j] ck, (38)

where Tois that value of tofor which tn= —1, and designates
the most rem-ward leading-edge &lement cont~~ the
point x, y within its Mach cone. h terms of x and y,

?n(z+py) .
“=(z+f?y)–(l+?n)co (39)

--

‘(AU)O C(tO)&ois not feasible by elementaryInte&ation of ~

me-. For graphical integration it is advisable to rewrite _

‘(AU)” dtoas d(AU)o to avoid the_i@hite va.he of the derivative .
&

&t %=1.
The second term of the product in equation (38) can be

integrated in closed form as follows:

-sL@@ol?(to)dto=–4rn3/2u.JZ(k)
r ““”’--

Z+pw .q#, ~) (40}
~ dk mt(l+m)K(?nt) ?nZ-/3y

where

‘=IEXZJ , ~““”
and

E(k)=
Z(*, k)=E(#, k)m (*, k) (41)

The function Z(#, k) is tabulated in reference 16; a plot of

Sroildy, for each oblique traiIing-edge ekment a (see
fig. 15), a canceling field can be built up ahead of the leading ~
edge by the superposition of sectors bounded by the leading
edge and by rays t. born the apex z., y. of t-he element a,
end having a constsnt velocity of the magnitude

W@. it a (1–cz)(t&T?3,)-(7nt-c2)(l -fJ ~ta

at= .=—: ?&~ Cos-1 (1–--7nJ(a)a)
(42)

(horn equation (24)}. If the spbol Au.=. is used to
designate the total leading-edge correction to the u com-
ponent of velocity at any petit, then the part due to cancehg
the fieId of a single obIique trailing-edge elemmt a is

dAuL~
-ZW=W%%’J+R(’J ‘k

(43)

where
nl(m,-(z)(z+py) —?ntccl(l+?7L)CJ

“’= (m,–a)(z+fly)-m, co(l+m)
(44)

is the value of t= for which t k= —1 and the leading-edge
correction function vanishes.

b(Aw)= ~ sub
‘i’hen the expression (equation (42)) for ~ -

m
stituted in equation (43), it is again impractical ~o attempt
to write a closed @reasion for the integral of the fist term “

a(Au)ue(tJ of the product. The integd of the - second _ .“
&=

term is ..—

J
1a(Au)aB(Q&=
i-=af=

(?n,-a)(l –m)(x+~g)–?n,c,(l +?n)(l-ax
~l+m)z (1–m,)(%az-py)

2(+., k.) Z(f/o, kJ
JK(kU)[=a k=sin y=– = kc sin# (45)

.
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where ‘.

~== pm=a
\ (1–?7LJ(I+TJ “

(m,–a) (1+Tj*==shpJ=t)

,

.

FIGLm.EIE-CaneeIIatIon Of the presmre deId Eatmdum?dahmd ofthe Ieridtng edge b~ a
sb.gle obIique lraflhg-edge demerit.

Then the tohd leading-edge correction to the velocity u at
any point x, y is

J
‘O:d(f@L. E. da

(+u)L. LY.=(.421do+
o da.

(46)

where (AZU)Ois obtained -from equations (38) and (40),

‘(AU}L-’- ~om ~quatiom (43) md (45), ~d
da

(1+m)c,–(1 –m) (Z+fly)
a~=(l +m)m’co–(1 –m) (x+B#’

(47)

is the value of a at which rdr, y, a) (equation (44)) is equ~
to 1.

The last term in equation (46) wilI se~dom be found to
contribute any signitlcant amount to the loading, but- will be
needed in calculating the ler@ng-edge thrust.

-. FUETESR coRIuwrIoxs

- Omitting for the moment any specification of tip locatio~
it is in any case necessary, as seen in iigure 12, to consider
the effect of a further cancellation necessitated by the excess

Iift introduced bebind the traiLing edge by the leading-edge
c~celIation field. To mmpute this ef%ct by’ the conieql -----
flow method wouId be feasible ordy vrith the aid of high-speed ‘--
computing machinery. The pretioudy mentioned cancella- “-“”
tion method of reference 5, being more direct, would be some- ._
what easier to use in this connection, but the calculations ~.
would stilI be mry len@hy. It will be sho~ by numerical
em.mple that the effect of the first cancellation at the trail~
edge of the leadhg-edge correction, which is initially quite
small, may be estimated with adequate accuracy when the
section loading is considered asa whole, protided the fraction
of the chord affected is not. too large.

If the product B cot A is low or the aspect ratio high, still
further caucella.tions rrill be required (see fig. 16) at both
ledng and trailing edges; It is clear that ctdctiatiop of the ~.,
effect of these further cancellations by the conical-flow
method is all but impossible. The doublet-distribution ‘-—
method of reference 5 does not appear to offer any consider-
able ad~ant age in this application since, in canceling lift
ahead of a subsonic leadiig edge,’ it is necessary to find not
on.1~ the pressure distribution to be cancekd, but the asso- “:
ciated sidemsh distribution as well.

It ia apparent that--an akmat-i~e method must be sought
for describing the flom in the outboard regions of a high-
aspect-ratio wing or a wing the sweep of which is large com-
pared to the sweep of the Mach line. H tho wing could be

FIGUEE 16.LPfan tier of central Portton of hig&as~+a$fo wfng, showing meim d
Mm?hlines arfsfngat IssdiugandtmiIing @&s.

●

.-



1162 REPORT 105~NATIONAL ADVISORI”CO.W1fiE FOR AERONAUTICS

extended incIefiniteIy,it is known that the flow must even-
tually approach the twodimensional subsonic flow, in accord-
ance with simple sweep theory. The question then arises,
can the flow at a distance of the order of a semispan tim
the apw of the swep&back wing be related to the two-
dimensional asymptotic flow? While the flow field appeara
to be too complex to obtain an answer to this question on
analytical grounds, numerical values, presented in the
following par~graph, suggest a practical approach.

NUMEIUCAL K4ESULTS (WITHOUT TIP EFFECT)

Load distributions have been calculated by the conical-
ffow method for three combinations of taper, sweep, and
Mach number as follows:

Untapwad 2YPE!2
m= 0.2 0.4 0.4

. mi= 0.2 0.4 0.6

These vahws of m and m, represent, b.v virtue of the Prandtl-
G1auert transfomnation,‘a ~ariety of-sweep angIes at hfach
numbers between 1 and 2; as for example, 0.2 would be the
value of m for a wing with 63° sweep of the leading edge at
a Mach number of 1.075, or 75° sweep at a .Mach number of

Final loading -.>’

Leoding-edge con-ecfion - Y
\

v

Oblique troiling-edge correc?im -

Symme fric fraifing-edge comecffon - J

(a)

20 40 60 80 100
Disfance from leading edge, percenf cho~d

(a]%tion A-A f3u&0-O.807

1.25. %dar]y, ?n=O.4 would ccrreepcmd to 45° of SWCCP

at ill= 1.08, 60° at M= 1.22, or 76° at M= 1.80. The
trailing-edge sweep anglw at these latter hfach numbers,
if “m,=O.6, are 34013’, 49°, and 68°, respectidy,

Figure 17 presents the lift distributions at two stations
of the tapered wing. Each component is plotted independ-
ently in order to show the magnitudes at the Ieading edge.
Section A-A contains the intersection of the trailing-edge
Mach line with the Ieading edge, sc that the VRIUOof tho
leading-edge correction is zero at the leading edge of this
section. At points farther back along tho leading edge, as
at &IlCo=0.8, the correction ‘is minus infinity.” However, i& ,
is seen to increase ta a small positivo value within a fractiou
of the chord length at this station.

At both stations it is necessary to estimate the effect of
cancellation of the leading-edge correction at the trailing
edge tQsa@sfy the Kut ta condition. Cancellation would be
carri@ out by means of oblique elemente of the type used
previously (equation (24)) in canceling lift at the trailing
edge. The pressure to be ekmceled is initially (i. c., rd.
%vz (%!. 16)) Zew Then the lift induced on the wing
by this cancellation may be presumed to have the same
gened shape as the oblique traiIing-edge correction of figure

--- Con-em% for
Ku+ fa cond!t!on
~estimo ted]

--- Triongwfor - winq loading

,Final loading-~’

.

●

L coding-edqe correcfiim -w, \\ 1—--- _ ---+

Oblique trailing-edge ccrrecfion -

Symmefric f~aitinq-edge correction - ~

(b]W.ction B-B ISJ&C.SOO

FmuRE 17.—I.@ddfetribuths eaJeulated by the oonicd-flows method fw two strearnwlae seetfous of e tapered swept-back wing; m-O.4; ?ni.0,6,
.
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B’#
Find foadinq -~f

Leading-edge correction - Y%

~’

~ymmefric fraiing-edge correc%-r ---

1 I 1 I 1
20 40 “80 80 100

Disfunce fmm Ieudinq edie. percenf chord

(a) Seetfm A-A BIIjcFO.60i

5

4

3

2

B%

I

c

-I

-2

—-- Cor~ecfion for
Kuf fa condition

\ (estimo+ed)

\fA~ - Triongulor-winq loading
/’

Finulfoodng -~“

Leading-edge correchim -~,
\

OMique fraihnq-edqe cwreciion-2’
.

Symmefric fraiiing-edge correcfhn --”

r r I 1 [
20 40 80 m 1-00 ~.

Disf ante from leading edge, percenf chord .

(b)*dIon B-B Pr[a-OJW
FICmEE IS.—Lond dfstribntfons c.ahdated by the aInk8LEowK zm?thd for two streemwfse sm!thns of m mrknpered Z m-O.L .

11, fsdhg aIong a mowed inverse cosine curve from the
due of the error at the trailing edge to ZWO, w-M zero
sIope, at the boundary of the region afEected. Vilth tbie
boundary (the llach line from the point x2,y2), it is possible
to draw a. satisfactory estimate (dotted curve) of the correc-
tion needixl to brirg the pressure once more to zero at the
trailing edge.

The untapered wing -with the same sweep (m=O.4) rehit.ive
to the Xheh lines is show in iigure 18, with the load dis-
tributions cslcukted at the same stations.

Four section lift distributions are pre;ented (fig. 19] for

?n=o.% Ak ~=0.15 only the rear 60 percent is influenced
co

by the subsonic trailing edge. The reflection of this infhence
at- the leadiug edge alters the pressure over the rear 40 per-
cent of the sectiom At section B-B, the leading- and
trailing-edge interaction afEecta the entire section. A further
reflection of this effect at the trailing edge must be estimated.

At section C!-C the iufhmnce of cancellation of the leading-
edge correction at the trail@g edge extends over the -ivhole
of the chord and any estimate of its magnitude Todd be
neceasariIy arbitrary. AIao, B ~cond pair of reflections
must be taken into account. The final pressure dktribution
has therefore been dravrn as a band within which the true

curve may be shown to lie. Its height is the error introduced
at the trailing edge by the firstt leading-edge correction,
except very near the leading edge,.where an infinite negative “-
correction is ?mowu to be introduced by the second lea&n& ‘“-
edge correction. The mlculat,ionawere also carried out for .-~
flyJ%=O.45. The margin of nnoertainty was fonnd not to
have increased by any appreciable arnonnt. (See~. 19 (d).)

APPtXCATiOh- OF TiVO-DIME&IOh”AL FORMULAS TO Cbl,CULATION OF
LOAD DISTRtB~ON

Correlation of two-dimensional and swept-back-wing
loadings.-It is apparent. fiwm the cdcdated resuks that,,
whenever the plan form and the hlach nnniber are such that
the trahg-edge Nkh liue intersects the leading edge, the
load distribution behind the Xkh lines from the point of
intersection resembles in shape the theoretical load distribu-
tion over an itinitely long fiat plate in incompnwible flow.
However, as the results have been plotted, the quantitative
agreement is not good, particulady in the ease of the tapered
wing. On the other hand, if the load distributions in - –
cross sections normal to the stream me examined, a near
proportiondit-y of the curves is observed. In order to ‘--
determine the fa:tor of proportiomdity, it is only nec~ary
to find the ratio of the strengths of the singularities at the ___

●
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20
I

. .40 60 80 /00=.
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(b) Eect[on B-B j7uk3-025

(c) %tfon C-O pJk4=0.S5

(d) Seetion D-D pr/c@O.46

FICNJRE19.—L6addistributions calmfatod by the oonicsl-fiows method for four s&mwfw sect!ons of an tmlaprrod WIOXm-0,2,
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kwding edge. men an approximate expression for the
lorK@ on the outer portions of a high-aspect-ratio W@
cau be obtained by adj~tiug the two-dimensional loading
by that factor.

Both the swept-back-wing and the subsonic t vro-dimen-
sional loadingg approach infinity as the reciprocal of the
square root of the distance to the leadi~~ edge. In sections
normtd to the stream, the distunce from any point. x,y to the

leading edge may be -written~ (me–fly). The due at, the

baling edge of the coefficient of (zh.c-~y) ‘~fa w-illbe referred
to as the stren#h of the leadi~c-edge singularity.

The subsonic two-dimensional perturbation veloc.ity has
the form ,— . .

(48)

where q is the distance to the leadi~~ edge; expressed as a
fraction of the chord. and B is a constant. If the section of
the swept-back wi~~ is taken perpendicuhw to the stream
(’r constant), the chord le@h is

; [Jnz-?nt(x-c,)] (49)

Illld
mx-fly

~=mr-7nt(r-cJ

.Substit utiot.1 for q in equation (48) gives

(51)

.

Then the strength of the leading-edge sin=gularityin u is

‘IIe letding-edge singukwity in the loadirg on the a-iiept-
back wing is initially @gion I, fig. 16) that in the triangnlar-
vring loading. -Introduction of the lead@e&~e corrections
to the load, in region 11, reclnces the strength of the sing&r-
ity there througghthe terms R(tJ and I?(LJ. (The in-rersk-
cosine function is id-ways finite.) The coefficient of
(nu—py)-’f’ in ULis. from equation (6),

(53)

ut the leading edge.
From equations (40) ancl (45), decrements to this -coeffi-

cient muy be deri~ed for the portion of the leading edge just
behind the intersection z,,Y, wit-h the tid&eclge 31ach
line, as foIIovrs:

(54)

and, for each value cf a.from Oto that value ao’ which mrtkes
7=eqnd to one, ._

[

_ z(#=,kJ— Z(#o,kJ
l’1+~ jja& $= 1‘ltl —a k=s~ & (55)

where To(equation (39)) and r= (equation (44)) reduce to :..

?nX
~o=—

x—co :.

and
(m,-a)mx-m,coa

‘a= (L’1,-a)r-m,co .—.— -.—.. L-
and the arguments and moduli of the elliptic integrals
foLIovras for equations (40) and (45). .

’116 coefficient. of (mc—f?y)‘~~ at, the Ienc& edge is, -“’””
therefore, in region II, figure 16,

-withao’ redticing to

Equating the two coefficients, expressions (56)
gives for any one section

.

—.

1 ,
1?= [~A+(@O+~o”O ~c daI m7—7nJx—cJ

For convenience, a nondimensiomd coefficient

1
@)+-

l“aq~ [
‘CL+(AQO+

J
‘O’$# da

o 1

is clefined, so that
CT(z)~Eo

13=1’Ct >,mx_mt(z_cJ

(56)

.-

(57)

and (52), -

(58)

(59)

.—
-.._

By substituting for B in equation (51), the loading on the ‘-”-
outer portions of a s-wept-back W@ is obtained as

.,

Numerical results.-The closeness with vdich the fore-
going procedure predicts the theoretical Ioading over svrept-
back mings is indicated by figures 20, 2!1, and 22, where the” --
pretiously ca.lculat ed load distributions are compared with
those calculated by equution (60). Even in the case of the ._
hi@lF tapered -i-ring, the aggeement is seen to be good.__”.
At the most inboarcl section of the m=O.2 w~~ (~. 19 (a]) j=
there is, of course, no agreement over that portion, forward
of the 60-percent~hord point, -where the flo-w is essentidl~; .
conical. .$t station B-B, howe~er, the agreement is +ery
goocl. At sections C–c and D–D, rhere the exact theoretical

.
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‘ld’zz’dfE’--”’’\-\
I(8) I 1 1 1 )
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OiStunce from ldi~ @m, percent chord

\“
r -- Correc fed fm-

!--Conicol-flowstrefkd

Simplesweep fheory--~“

b) , 1 ,
100

Disto%e from f~inq.edp~”~ent %od -

(a) Seetion A-A
(b) Section B-B

FIfiuRE W-bad distributions on the tap?rd wing aa mlculetwl by the
conical-tires method, eom~ed with the twc-dhensionfd apprcmfnmtion.

loading had not beeu determined, the two-dimensional-typo
loading lies within the band prescribed by the ccmicrd-flow
calculations. Since the discrepancy between the corrected
two-dimensional loading and the exact theoretical distribu-
tion is already, at section B-B (fig. 22 (b)), less than the width
of the bands in figures 22 (c) and (d) and must diminish to
zero at infinity, it may be supposed that the correctcd two-
dimensional curve is at least as satisfactory an approximation
to the correct curves at sections C-C and outbotird as
at section B-B. lt is probably more satisfactory thtin can
be obtained by a limited application of tho conirxd-flow
method.

The load distributions derived by simple sweep theory
are included in the last part of each figure to show the mrqyli-
tude of the plan-form effect and also, in the case of the un-
tapered wings, the curves that the load distributions musL

5r ‘
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~
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: C2mkaf-fbwsmethal ,~ I~,,
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~(a) .
I I I 1

0. 20 40 60 80 fm ““
Distonce fnnn koding edge, percen(_chord

/!g

,.

;-.%mpk sweep fheory

. -Slender-wing Mew-y (reif3’

r-Conicot-flO* m&%Od
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dimens”anoltheq...’”

(?3 ~ , I 1
40 W’ 80 100

L)istorwefm Ieodingedge, pcent chord

(a) Swtlon A-A
(b) Scetlon B-B

FIGCEE 21,–LGad dle.tributkms on the rmta~red w’[ng,rn=O.4, w mlculated
by the mnkd-flows methoi, cmmpared with tbe twodlmensfonal spIH’oxi.
matkm.
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(a) section A-A
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(0) Section C-O
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FInuEI! ~—-d dktrhrtfons on the untapered wing, m-014 as cakmkted by the mtdsd-fhws methc& compsred w’tt.hths two-dttnenskmal approximation

approach as the distance from the plane of symmetry is
increased. h figures 21 (b) and 22 (b), comparison ia aIso
made mith results of the sJender-wi@ theory of reference 3.

Discussion of the c funotiom-k the calculation of the
pressure coefllcient at points toward the rear of most of the
sections considered in @ures 20, 21, and .22,it was nec=ary
to fmd a(?) for vahws of z greater than % (fig. 16). In
deriving u(z), it was mentioned that expre40n (56] applied
to region II. Ii region III, the strength of the leading-edge

singukrity is tiected by further modi6cations of the flow
taking p~ace in region Ill, so that additional terms in r(ti) _
should be considered when x is greater than %. Evaluation
of these terms by presently known methods would require,
as suggested edier, the aid of h~h-peed computing ma-
chinery. However, the successive terms are all initially
zero and enter with zero slope at xs, zero slope and curvature
at X5,and so on, so that the three-tmn expression for r given ___
by equation (59) may be U@ with aatisfacto~ accuracy.—.“

b
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for some distanm beyond the last value of z for which it is
strictly valid. In practice, the”third term in equation (58)
may also be neglected for values of x ody slightly greater
than .rI,

(’=)”
Charts have been prepared (fig, 23) giving ~

ns a‘ function of ~ for several values of th~ ratio m/m,.

This last prwametcr is the ratio of the tangents of the semi-
apm angles of the Ieading and trailing edges and is constant

through the Mach number range
value of xl is readily determined:

for nny onc wing. Tlw

co

‘l=i=E (G1)

Tlm &rves were cornpu[WI using oqua[ioll (.5uj and arc
therefore exac~ only up to Z=xt (shown by a vwtind mark
on eactiu.me). Cross marks are drawn at ihr points X=Z8
to indicate a more practical limit to whirh usc of tlw cwrvcs

ac-XL

co
(a) mlmr=l. O .

b

(b) m[mr.O.6’

FIGURE 23.-C3mrW for demrmhlog e, the strength of the lesdlng+dge sIngnlmItY.
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may be estendec[. (These points are off the scale for m,=O.8
and 0.9 in figure 23 (a.).} Tf’hen the tinge are untapered
Cm/m,= 1.0), rlsyrl+ptotes

/
pa(m) l–m

.— Y\ y=+

derived from sirnple sweep theory, may be dra-rm.
The cwrves. for the most part, are regular enough to permit

interpcktiort within intervaIs of 0.2 in m~. Hovre~er. at
m ~= 1.0 the lines ckninish to a point on the vertical axis; a
curve for m~=O.9 was therefore inserted in the charts for
values of m}m ~ equal to or greater than 0.5. T1’hen m[m.tis
Iese than 0.5, m=O.9 represents, if the Ieacling edge extends
beyond z,,w, such extreme taper that the successive reflection
of the 31ach lines (at z%,X6, . . .) take place vrithin a ~er.~
smaUfraction of a chord Iength and no useful curve can be
dram. l-o curves are drawn for values of m, smalIer than
0.2! because o’f the tip-interference limitation mentioned in
the introduction.

Calculation of tip effect.-The foregoing assumption of
two-dimensional flow can be extended to give fakly simple

.6.8
.—

&) 7nh71t-o.4

.

appr@mat e fokmulas for the tip eflect on a high-aspect-
ratio-m-@r. It is a~umed that he velocity distiTbnti& to
be canceIed in the stream outboard of the tip is cylindrical;
thut is, is rm extension of the -reIocity distribution calculated
for the tip section aIong Jines parallel to the leading edge-
For this purpose the apprcmimate Ioad distribution “gi-ren
by equation (60) is used, still further aimplifled by assuming
r to remain constant at-its mdue at the Ieading edge of the
tip section. (Where the wing is tapering to a point and u
is changing very rapidly, the tip region is so small t-hatthe
entire cahxlation of tip effects could probably be omitted.)

The assumption of constant c results in a failure to cancel
exactly the lift along the tip. The assumption of cylindr ca
flom, while reasonable for the untapered wing (compare ifig
21 (a) tith &. 21 (b), for exmup~e)vronId appear to be too
drastic for the tapered ~, where neither the chord nor
the loading remains constant. However, as has been men-
tioned earlier, the major part of the tip effect results from
the cancellation of the infinite pressure along the leadhg
edge, and this part d be accurately calculated. The
effect of the residual lift. on the rearward portion of the tip
section and in the stream should be smtdl.
.

—.

.—
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The distribution of perturbation velocity at the tip station
y=8, with the simplification of constant a, is, from equation
(60), approximately

d ~s–m, (ZC–CJ] CO -”
u (xc,s)= ff,vcc

[mz.–m, (z.–cJ] (mz.–ps) ’62)

where ze,~ are the coordinates of a point on the tip and V8
is the value of u at the leading edge of the tip section.

This expression may be more conveniently written in
terms of the parameter

(63)

and the varialie
~c OS——

&=+ ..—. (64)

which is che distance of Xc,gfrom the leading edge (see fig.
24) expressed as @fraction of the tip chord c,. Since

equation (62) may be written

U*VCXd l–&
u (g.,s)=—

6X (1–P&)#c ,
(65)

where A is the taper ratio CIICO.
If the velocity dishibution u is as&med to i% constant

beyond V=S along lines parallel to the leading edge, it !yay
be. canceled by the superposition of conical flow fields of
which the constant-velocity regions have one edge along the
tip and the other p-arallelto the leading edge, with apexes
displaced along the tip by increments in &.- The velocity
induced at a point X,V by each such element would be
(equation (11))

_, m+tc+2mt6: Cos t.—?n

where

(66)

(67)

and u. is the veIocit.v on each sector,
Fo~owing the pr~cedure used iR deriving equation (14),

the corresponding equation may be written for the pres-
sures induced by canceling the cylindrical flow

()Au ‘
T% ,jp=

where Zo,s is the intersection of the Mach forecone from X,V
with the tip,

FIrIcnx 24.-Sketch for dertvatlon of approximate :Ip wredlon to lmdlng at :,r.

If the distances of z,y and ZO,Sback of the leading edgr,
measured as fractions of the tip chord, are

and

‘=:(’”-!3
it can be shown that

(I+m) (x–xJ=mc, (&–&)

from which equation (68) can bc written (with
tution for u(2,,8) from equation (05))

(G9)

(7o)

(71)

Lhosub.Sti-

In integrating equation (72), three cases must be clistin-
guished: (1) $<1 (alwa~ true for the unt~pmcd wing},

(2) 1<~< ~ (when the point XIVlies mcm than ~ tip-

chord Iength behind the Ieading edge), Rnd (3) ~> ~
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(a possible cundition for some points near the traihng edge

of a highly swept- or tapered wing).

ln the fit* (<l)

(aip=ai%J%J’+
JiE#’’(*~k)l (73a)

where

and & is the function (equation (16)) plotted in figure 6.

In the second case (1 <:<:)

(73b)

where

and Z is the function (equation (41)) plotted in figure 14.

()
In the third case ~~ I

where

(73C)

Along the Mach line from the leading-edge tip all three
equations reduce to the value

Au* — U*

Tz=~[ (74)

. By the procedure just describe~ approximate cancellation
of W pressure differences outbcmrd of the tip has been
effected, but the pressures induced by such cancellation
now tiolate the condition of zero Iift in the wake. Approxi-
mate cancellation of the induced press~e difbrenocs in the
wake region can be accomplished, as before, by maI@ use
of the known value of the tip-induced velocity at the trailing
edge of the wing, but assuming the entire error ta originate
at the lea&ng edge of the tip. . Equation (31) is directly
applicable, with Au* given by equation (74) and (Au)tiPby

equation (73). On the trailii edge of an untaperecl wing,
$=1 and

(75)

There is no corresponding simpMoation for the tapered wing.
Numerical examples, tip eEect.—Equations (73) and (31)

have been used to calculate the tip tiect in two ca~, namely:
‘nz=’nz~=0.4, f18=0.94CO; and 7n=0.4, 7n:=0.6, fls=0.86c0. ‘.
The tip effect has been cahdatcd for each wing at 13y=0.8c0,
where the loading wu. prewioudy calculated (@s. (17b) and
(18b)) assuming the wing to extend indefinitely. The tip
locations were seIected so that in each case only one reflection ‘“. ~
of the primary tip effeck @ected the s@ion at 13y= 0.8e0.

F~ureh5 shows the rssults of the calculations. The heavy
did curve in each case was calculated entirely by the
corrected two-dimensional t.hecrg-th@ is, by equations
(60), (73), and (31). As a oheck on the accuracy of the _
cylindrical-flow approximation for the flow outboard of the
tip. Iocation, the accurate theoretical loac@ was calculated

l?umm ZS.-Loacl clktrilmtfomowr sttenmwke section near tip as dcukted by lwe+llmen-
sfenel hrmuks. com~ with mm ecmmte theomtfml ralues. -

.

—

. .--

—

..:.

-.-. —

—.

.

.
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for one point within the region”of influence of the tip in each
case. ‘he procedure employed for the exact caldation was
as foIlows:

The accurate Ioadings with no side-edge effects had already
been caIculated, as has been noted, by the conical-flow
method. A primary tip correction was cakulat ed for each
case by equation (15), This correction is the cffect of ctincel-
ing the unmodified triangular-wing loading off the tip sta-
tion. The remaining pressnre dscwences to be canceled
consisted of those int.roclucedby the leading-edge and trail-
ing-edge corrections. These pressures Were computed tJy

means of equations (26) and (46) of the present report. and
canceled b.y the method of reference 5.

The r~uhs arc designated by the circled points on rmh
figure. At the point at, which the seclion cntms the tip l[arh
cone in each casej a second circled point. indica tea the acrllra( t!
theoretical loading. The vtdue cliflers from ‘Lhut cdcuhlt Ml
by the appiosinate formulas only as the two lottdin@ willwu [
tip effect~%flcr. ““ ““

It may%e pointed otit in concluding this ‘@ion 011lo@’
calculatic@ that, while t.hp formulas have bum dovelopcI(l for”
plan foti with streamwise tips, tho procedure rnrty IXJ
ada~ted ~-”obvioti” nieans to raked tips as WC1l. lliiWm;;Ir~
in- eveiy Fikk the deviqtio~ in the tip regions-of thti physiwl
flow frofi~ie assumed potential flow mus~ bc I.wrnc in mind,

.-. . III-LIFT E.-
Gfi*ERAL PROCEDUREFOR CONICAL FJ,OWS

.

The total lift for any Iting is, of course, the inlqywl of Lh(~
loa@rg o~erthe wiw area.. Iu gc%cr~l,l!oyw~r, it i+~li~rul(
to ohtaiyan analytic expression for thr M b~ ti dirwt” ““””
integrati& of t.hc lift distribution. In k conicrd-flow _
method, ~a~lvantage may be takeu of [lw simp]ici~y of (hi”
componefi-t”fields b~’ integrating thr ]ifL msocintrd with rar~j—
one and ~~en combi~iif~ tlw rcsuhs in tlw stimu wuj- m”[ ~u~
pressure fiel&

Conical elements of area me mnploywl for the inh’gr’rtlious.
These are infinitesimal trianglw bqundw~ by two tidjflcrnL “
rays o’f the conical field and the inieroephul’boundary of t1](I
wing plan form. Over each of the infinitmifnol Lrinnglcs thI’
velocity u of the conical ficlrl will IN ronst-an L Thus it
remains ordy to perform a single integmt iotl, with rwqwd 10
the conical vr-rriable of the fiuld, to ob[ aiu tho to~tll 1if[
associated “with that field,

GENERALFORMULA FOR THE LfFT INDUCEI} BY A SINGLE TIP ELE31 f2ST

The lift (AL)= inducwl on the }ring hy n single canwliug
tip element is obtained first. ~th(JUgh Ih(’ notaLion of 1]11’.
solution (equation (11)) used to cancel the triangular-wing
loading iii employed, the derivation will hold geumally for auy
canceling element bounded on one side by the tip of tt swrp[-
back” wing, since no use is made of the fact that llw otlwr
boundary of the element paws through the origin of (Iw
x,y UXes. - we write

s(AL)a=2P V ‘0 (Au)=~~ (/ta
-1

(7G)

where (Au)i (equatiou (1})) is the streamwiw inc.rcmmL of
ds

velocity induced by the mnceling field r-tnd~~ dt. (fig. Xl) is

the elemcrit of wing area S for intcgrfttion. Flr simplicity it
wilI be specified that the. 31uch cone from the rLprx of lhr
element dots not include the apex of tlw frailing wlgc nor any
part.of the opposite tip. Then (am fig. 26]

*
(77)

.
@Itmay ba noted Urat, as a rasoft of the raveralbillty IIropcrty (rcfmnea 17),.the furmu.hu

for the llft g!ven herein for swept-back wlnga am cquelly ar@lcahle to the swupk(orward
wfnga having the same plan forma but reversedInIrkdhg.
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A

Trailingedgej
/gy*mt(=.&J ------

ta--l
/

FIaUKE M.-Sketch for the deowmhmtm- n of Uft fndueed by aslngk tip element.

Substituting from equations (11) and (77) and integrat~hg
by parts, we obtain

(m)==+- l&(zt–2#g((z) (78)

where

g(a.)=--& [J%7%:l (79)

and xt—~=is the distance of the ap~~of the element from the
trailing-edge tip.

GEWMLLL FOBBfULA FOR LIFT lNDU~ BY OBLIQUE TRAYLINGBDGE
BLEME’NT

TT3ththe notation of equation (24) for the veIocity field of
an obfique lzaihg+dge element, and on the assumption that
the Nach lines from the apex of the element do not cross the
Ieading edge, t-heform@ for the elementary area of integra-
tion with apex on the trailing edge (fig. 27) is written

(80)

where s—y= is the spanwise distance from the apex of the
ekment to the wing tip. Then the lift associated with the
element is

f
(AL)a=2p v : :, COS-’(1 –a) (t=–m,)– (mt–a)(l–&) dS

. (i –WLt)(t=-a) ~dk

(81j
Integration of equation (81) gives

-.

(u)a=p T“(s–y=)’ft?: [l/=F-w] ’82)

‘ ds
--d~= dt=

-fs=?nt

- FIGCEE Zi.-Skmh for the deteqnhatfon of Uft Ind&d by a traUIng-edge eIement.

WING TITH SUBSONICLEADiNGEDGE

UNCORRECTED LIFT

First, the uncorrected triangular-wing loading (equation
(6)) iS tite~ted over the vring plan form. The element of
area is a @mgle formed by two rays from the leading-edge
apex a and a+da md either (1) the trdi.ng edge of the wing
or (2) the wing tip, accor@gly as a is less than or greater
than a,, the due of a corresponding to the ray through the
tip of the trail@ edge. . (See & 2.] In the iirst case the
di&rential of area is

—

‘m’~co~
2/9(m/—a)* da .-

and in the second
fis’
~, da.

.

so that the tutal uncorrected. lift is -

From the geometry of the wing, the relation

(84)

may be deduced. With this substitution, and the substitu-
tion for WA from equation (6), eqnat.ion (83) may be integ-
rated to obtain

& 482 @u. m2(m,–aJ2

‘–- .,_.’ [,’(cos-1:;;3:j-~—maiz Va {

(85a)
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When m,=ml this reduces to . . _

L,
It should be noted, that, for a. given plan form, — variesqci
with llach number. only as %.

WINGWITHSUPl?RSOmCTIMILIKGEDGE(TIPCOJ212ECTIOY)

Proceeding to the calculation of the tip correction to the
lift, we integrate the. change in lift (AL). (equation (7S))
induced by each element a over the range at Sa <m .l’he
quantity’ uA(m) is substituted for u= of the initial canceling
~ement and .dUA

~ da for U. for the rem@ing ones. As in

calculating the tip-induced pressure correction, the difficulty
is encountered that ~A(?n) is irdlnite, and therefore the t’otal
lift correction must be written in term of Iimiting values.
Following the substitution

(86)

in equation (78), it is convenient. to &fiDe the fuDciion

G(a)=k&g(a)

Then the total induced lift may be written

[
fiL=2pv??j2 /%ah +.h(a)(?(a)+ s~ ~ Q(a)da] (87)

a-m
,

Integrating by parts results in cancellation of the first
term ineide the brackets. Since G(a,) is zero, equation (87)
reduces to ,

where

[( )(Y(a)== ~+~ g(a)——
a—a:

Z@l—a)l/(m’+mJ~ (a+a“$1

is the derivative of G(a).

Equation (88a) has been integrated (appendix C) in
terms of an incomplete elliptic integral of the third kind.
If the necessary tables are not available, it may be prefer-
able to integrate numerically.7 In that case it is notcci that

d- sin-l ~& ‘a
and UA da is rewritten as

-’4sk-’a
Equation (88a) then becomw

In tl@ way infinite values in the iutegrand arc a-roidcd.

WING WITH SUBSONIC TRAILING EDGE

The &pressions (equations (85)) for the uncorrcct.cd.lift
apply regardless of whether the trailing edge is subsonic-or ~”
supersonic. The formulas for the tip correction may serve
as a fit approximation when the trailing edge is subsonic
if &e accuracy of a second correction is noL required. For
that purpose the special value for the untaprrcd wing will
be of interest:

If the wing is untapered the elliptic inl,egralsin cquatiou
(88a) (see appendix C) reduce to the first and second kind
and.the primary induced lift may bc written in the following
closed form:

~. .:-.: .1.

where

$=~-’mandk=e‘ ‘-
The primary tip correction, however, iBusua~y quite l~ge.

It may therefore be d~able to t~e ~t~ acm~t the sec-
ondary correction resulting from its cancellation at the sub-
sonic trailing edge. Rather than compute a single secondary
correction to the lift, as an additional item, it is again found
advantageous to treat each superposed field individually, that
is, to cancel each conical tip field at the trailing edge and
find the net effect on the lift, then intmgrat e over all the
tip elements for a combined primary and secondary tip
correction.

~Orw referem10formapproximateformulavdld whenm is doss ta one.

(WC]

~p correction with subsonic trailing edge.—For Lhe can-
cellation at the trailing e-dgeof a pressure.field originating
at a pobt x., s oh the wing tip, equation (82) is applied,
with the parameter a, which defines one boundary of the
oblique canceling field, replaced by h,
Z=,s. The velocity u=is the gradient

dAu
Xd”

referring to a r~y from

of the field (equahion (11)) to be ca,ncclcd. The distance
horn the apex of the canceling field to the wing~tip is exprc..s-
ible as

z~—z. ?nt&.——
/9 na,-ta

—
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Then the effect on the lift of cancehng the single field from
3+ is

r–pv?n?(z,–q?)’ t=
(Az&= . ~

dAuX
–1(?nt-a)~ z

dAu
which may be integrated, after substitution for —di$‘

(s9)

to gke

*=~., / ~L–~
1 7?2,(1-(2)

If the foregoing reanh is added to the Mt. associated
with the origimd tip eIement, given by equations (78) and
(79), it is found that the latter Iift is exactly canc~ed by the
@gebr~c terms ~ the reflm~ed ~t, ~ea~

(AL)a=p Vrnt’u-a$-:::,
[J

a U+, k)Q(1+a) EO__ -
?nt(l+?nt) m~ Smr 1

(91)

for the lift induced by one tip eknent and its cancellation
at the t-raihg edge. It ti generally be found that further
steps in the cancellation process are unnecessary for engineer-
ing accuracy.

For the total tip-induced correction fo the lift, it. is neces-—
sary to write as before

[ J
edUA

(u),,,= 2p Vm?ps’ Jim –u-A(a)J(a)+ —
a+m 1~, da ,J(a)da

where J(a) is

(a–at)’ 1 [d(2(1+~) ‘o_— -

1
~A&,k)

a~2a: 7nt-a- ?n’(1+ m’) ‘m~ sln#

h integration by parts reduces equation (92) to

J
(AL),,P=–2P V?n?1982~~WA(a)J’(U)da

With

J’(a)== &
{[(

mt—”a’
):+— –nh—a .

a-a’(’--)llEEzEJk)-2(1+(2) a ?n#-a

E%cE%k)-
a [( ret-at—
mt )

:+—
m~—a +K%K%w%H

(92)

(93)

(94)

II the wing is nntapered, J’(a) becomes indeterminate when _
a=m. The limiting value is

%i%%-’)l’o(”+
w%+i=%a=)l’”o

Further integration must be performed numerically. In
order to avoid infinite dues in the integra-nd,note again that.

d
ud(a)= mu. — sin–~g

da m
(95)

so that equation (93) may be revrriti%n

. . . .

Trailing-edge corrections.-In deriving thd trailing-edge
corrections to the total lift, primary” and secondary effects
-wilI again be combined. Further corrections wilI be ~
omitted.

For the symmetrical wake correction, the element of area
is obtained from equation (80) by setting y= equal to zero,
and substituting i%for t.. Then the decrement in lift in-
duced by the application of the symmetrical canceling ele-
ment. at the traiIing edge is, from equation (20),

or

where

(A1~)O —4#f?u, ~_ 1_ =— —
m; va [ K,’ (m,)1

. (98)
qa

The effect of canceling the pressure field induced by the
spmetrimI wake correction at the wing tips k obtained
with the aid of the previously derived formula (equation
(78)) for the lift associated -with a single tip eIement. The
psrameter defining the boundary of the canceIiug tip ele-
rnent is now tOinstead of a, and the veIocity on the canceIing
sector is

...-

d‘:t:)o.dtO=K’(m,) &$ (h’—-m~ (99)

The distance from the apex of the mncehg sector to the
trailing edge may be expre=ed as

)11.
‘8 (m, to

——— (1 00)
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so that the seconda~
correction becomes

effect of the syrmnetxical trailing-dge
-.

(101)

or

[

(AJjo 4s2 pull ~ 1
1

2s/2 ~. (k)–lzo (@ (102)
—= —— -.

qa ml Va ‘K{ (m,)– ~~, K{ (m/)

——

Addition of this secondary correction to the primar~
effect given in cquatioh (98) results in the sirq#ecorrection

By ~ similar procedure, the effect of canceling one of the
oblique trailing-edge fields at the tip is readily obtained and
addeci to the primary effect given by equation (82) to yield

ret—a

— J~&(% k)]~’l+?nt
(104)

J
—— .-
I–mg

J

(1+m,) a
witfl Ii= —and t=sin-l

l+m,
as the combined

mt (1 +a)

primary aud secondary correction to the lift due to a single
oblique trailing-edge cancellation.

For the total correction to the lift due to cancellation of
the gradien~ of the triangular-wing Ioading in the wake,
equation (104) is integrated graphically m numerically
across the span as follows:

NumericaI examples to be presented

~’(mt—a)(1—a)—

(105)

will show this com-
ponent of the lift to be very small, in general.

WING WITH INTERACTING LEADING ANDTRAILINGEDGES

In computing the load distribution it was feud t~at,
when interaction takes place between the flow fields of the
leading and bailing edges, the wing plan fo~ .appea~ to
comprise two principal regions separated (see fig. 16) by the
Mach line arising at the point of intersection xl,yl of the
trailing-edge Mach line and the leading edge, Ahead of
this line (region 1) the flow is most readily described in
terms of conical fields. Behind this .lim the flow is more
nearly two-dimensional. On this basis, the total lift wilI
be found in two parts, using for region I the conical-flow

expressions for the loading, and for the rcmaimlw of tlw
wing the quasi-twodimensioxial approximation.

I LIFT ON INBOARD PORTION OF WING

The’. uncorrected triangulm-~ving ~omiing ~{ill first be
integrated over region I, shown shaded in figurr 28. For

o

““l
1

\ ‘1
xl

‘FIGrRE Z8.-Intwrd portion (r@gIon1] of hIglwspwt-M 10wing.

this purpose the region is considered in two pnrts, separated
by the ray a~ from the wing apex to tbo point z2,B2. WIUH1

a is less than ag, the element of mea is as before

When a>al, the element of area is

(1+ m)’c$ da
219(1—m)~l + a)*

Thus, the uncorrected lift ill the entire shndcd region is

[sLo–2p.~:“ m,a f
(1.+m)’

o (mf —a)
~UAd(l+

. lK’ m)’(1 + a)~‘Ada 1
(106)

.
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or .

with
2m m,

h= l+?n+m’—m?nt

When m,=m (untapered wing), the second par.

(107)

(108)

of equation
(107] becomes indeterminate: In this case,

The trailing-edgo corrections to the loading are to be
integrated over the ptwt of the shaded region behind the
trailing-edge 31ach Iines. Integration of the symnletaical
wake correction (equation (20)) yiehle

(AL). —16m2cQ2

{ [
~ E“’(m,)

- l–~ –—
~=13(1 +mt)(l –m)’ Va 1—??%, K{(m,) 1}(110)

For each oblique elernent, the reduction in lift is gi-ien by

(11 1)

(112)

The total lift- in region I is then given by

L
()

‘2@ da (113)_LO+~+_ZJo . da
~ ~—<a

()
The quantity --& ~ ~is plotted against m~in figure 29 for

several values of the ratio m~mf.

LLFT OX OUTER POETIONS OF W12\-G

k order to find the tat-al lift- (=cept for. tip 10WRS)on the
remainder of the wing (@. 30), a double integration with
respect to z and y is performed on” equation (60). ~ first
integration, with respect to y, yields for the indefinite

- integral

(114)

The values of py to be substituted as limits in eqtiation
(114) are indicated in figure 30. Along the leading edge,
the. right-hand member of equation (114) reduces to zero; ‘“-
along the traiIing edge it.becomes

r r(z) ,- -
—-—

TCOvmtcO-(mt-m)x -
.-——

219

Then the toteJ lift on the outboard region (both wing
halves), except for’ tip loses, is

.
(11 5)

where

f~=-l!m,co–(m,–m)z

f3= do+m) (%-z) - f6= Wm=a “
The indicated integrations may be performed numerically
or graphically, using values of a(z) taken horn the charts of
Ilgure 23. /

.
TIP-INDUCED00RRECT20X!rOTHEI.lFr

In deriring a tip correction to the lift, the same simpl.i@g
assumption of completely @indricaI flow will be adopted
concerning the pressure field to be ca.neeled as vras used iU .= _.
obtaining a tip correction to the loading. A in the preceding
section, a combined primary and seconcla~ tip correction
ti be derived. AII further corrections -will be omitted.

lf the notation of equa~on (63) is used the distance from
the apex ZC,Sof a cancebg element to the @ailing-edge tip is
CJI —&J, and the lift induced by the element and its cance~a- . ‘~
tion at the trailing edge is, from equation (91),

(AL)e=pVm:tLc ,tmt_m)[,m.o(a-#-A*]ct*(l—fy

(11 6)

where

since the outer boundary of each element now has the dope
m—.
P

It is seen that only u= and (1–.I%)’ in tie coefEcient of
equation (116) very with the element. For the fit eletient

($-0), tie ~e~ocity UCiS tie ~ti~ V~Ue Of tie ~mrrected “~
docity along the tip section given in equation (65), and, for
the other elements, the ditlerentid of that velocity. Then

—
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o .2 .4 .6
m~

.8 40

FIGUEE!29-Chart for the computation of Ilft In region L

o
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FIOFBE 33.-Boundarfes of outbosrd rezionof MgMwect=atfawin&fok me as ffmfts of
htegnifon fn eqnatfm (114).

the combined primary and secondary tip correction cm both
winghalves is -

AL 4mt2ct2u,
—=–p (m’-?n) -Xqa [mEJk)-

:*q&J1-,=YJ=,+

S:(’-’’’iw=])”.] (117)

Integration by parts gives, My,

(118a)

H the wing is @tapered, equation (118a) takes on the value
.

—
AL
‘qa

= —P~~~#T a=[2m~(k) + (1—3m)l?O(k)l (118b)

lkcept for the occurrence of u,,ct and h in the coefficients, the
tip correction obtained in the foregoing way is a function of”m
and m ~ od,i-, independent of the tip location. VaIues of

()~fiu have beenplotted in figure 31 & a form simikw
C,C’* ga tip

()
;a =(@. 29).to t-hechart of —

—

.—

—

FIGmE 31.—Ch8rt for theeorrectfonof the lLftfor tip ef&ct, nsfng two-dfmem.foti
formukks.

APPLICATION OF LIFT FORMULAS

. CASES coMPIJTm

The J&curve slope CL=has been calcdated for two fmdies “’=
of uhtapered wings with varying aspect ratios as folIorvs: -

t
m-02 m=-O.4

r 1 1. —
.-

—

and for two tnpered viings: -

Fi?=i=l-
I IL:

I I
.34.. H % I

I I I I

It shouId be noted that the untapered-tig cases (except for
the lasli one under m=o.4) represent three wings of fied
geometry at two diflerent Mach ntmibers such that 13is _-
doubled in going bm the fit to the stiond. No calcula-
tion was made for m=O.2 to correspond ta the Iast case ““ -
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under m=tl.4 because at the lower Jlach number it was not
possibIe to calculate satisfactory values of a out to the wing
tip, The tapered wings were chosen to show, by comparison
with the first two of the untapered m= 0.4 wings, the effect
of taper with the span held constant and, by comparison
with the second and third untapered m=0.4 wings, the
effect of taper with a given aspect ratio.

SUMMARY OF COMPUTATIONS

With m=O.4 and I%IcO=O.6,the trailing&ige Mach lineE
do riot intersect the leading edge, and the values of CL=were

obtained entirely by means of the conical-flow formulas, M
foIIows: -. :.=

Tapered whg, p.+= 1.6 Untufm?d, L?.4-1.2
Component of ltft ‘!%’””

.

flLfQat,* % total pL/@c# % total

, —. --—

Uneorreeted triangular wing. . . . . . .
TlpelTect. -–__ . . . ..–-_.._.._ $$ 2Z %: 2% %
Symmetrical traflfngdge omre*

tion...- —- . . . .-. —--- -.—-
Obliqne traibg-edge correction . . . [%) & 1:; :::: -:: ~

1 I I
Totale_____________________ L 72J lW. o L 814 MM,o

flc~m+~gas, pa radon. . . . . . . ..-_. ----- 1.WI 1.ti12 -.

The calculations for the remaining values of&4 are summarized in the following table: ~ .:., -.. .;.. ..._...- ..... . . . . -,_. , .. .. . .-=7,. .=.— 1
~ 1

CM8pered wlnge

Componentof Hft Obtained frem m -02
T md WIIM –

m-o.4 Tm= .4; mrO.@

i“””” “.

p#-o.8; IYA=d

P.’bo,q

Lfft m htid~kn . . ..- . . . . . . --------

#9A-o.8 ‘Ltl=lz &b+L6 PA-2.4 $A=3.2

Ffg. Zloreqrration (118). . . . . . . ..-- . . . ..- 0.208
Lfft on outbcar Wt[on ------------------ Equstlon (115)..- . . . ..–---— --------

a289 2.l!2a

-i% :Ei

z 1% z lx 1.X1
Tip Man----------------------------- Fig. 81or WurMon (118). . . . . . . . . . . . . . . -: %’

. 8i9 X598 4.459
-.333 -.392 -.416 -:%

1 I 1 I I

‘J

~~~ ~@#m.-.---m-... - . . ..---... -..-_ --.. ---G --------------------
.461

ffCL.=PW , per radiarr- . . . .._.-.—
er12 1:O&s

.17.

::4 pJa
..—

fi~n am”
.-- .--— .G - . . ..- . ..-. --------- .77 :s3 Z!m

. —

DISCUSSION OF RESULTS

‘1’he results of the calculations are plotted against the
reduced aspect ratio I%Ain @re 32. The curves for the
untapered wings may be seen to be approaching, at the
upper end, the value 2mnld= given by simple sweep
theory.

At. the lower end, the curves should approach the origin

along the h? CL=’~ A given by low-aspect-ratio themy

(reference 13). The two points on the m= 0.2 curve for
&t<I are not entirely accurate because no account was
taken of the interference between the flow fields from the
tips. The points are included, however,. because, with so
much sweep, the wing areas affected me small and the inter-
ference effects” should be negligible. The resulting curve
appeam consistent with the corresponding curve calculated

/.%.

m
FIGURE s2.—VarfatIon of lfft-mrme elow with asp?et ratio.

by the slender-wing theory of reference 3, although a dis-
parity in plan form lessensthc significance of the compa risen.

The slender-wing-theory dues are alsoplottwl form =0.4. -_

In that case, however, the assumption of rstremc slenderness
is no Ionger justified tmd introduces an Rpprcciable error.
(It should be mentioned [hat. the asympototc for the slwdcr-
wing-theory curves is below the value giyen .~); si.ulploSWCCP
theory by the factor ~l–mz.)

An e&mate of the accuracy of the lift formulas of t.l}c
prescmtreport., compared with results which would t~l{o into
account all the successive reflections at the tips and trailing
edge, may be made from the following observations:

The values obtained (in the first table) from equatiol~”
(96) and”- (103), which combine primary and secondary
corrections, differ from T-aluesobtainable for the prinmry
corrections alone by only 1 percent of the total lift in the case
of the tapered wing, ancl 4 percent of the total lift for tho
untapered wing. Third-order corrections would bc only a
fraction of those small corrections ancl would, in turll, h
partly canceled out by a fourth-order correction.

The results in the second table, incorporating the two-
dimensional appro.timations, agree within 2 or 3 purccw~
with values calculatid entiroly by the conical-flow method.

- IV—DRAG DUE TO LIFT

The drag due to Mt. of a wing with superso~c lcwling
edge is s@ply the lift times the angle of attack, When thu
leading q@e is su&cmic, t!le clrag is reduced by a suction
force due to the upwash around the leading edge. In the
Linearized theory this force appears as the limit of the
product of an infinite velocity across an infinitesimal fmn (uI
area.

The formula for the suction force on a subsonic lending
edge has been derived (see, e. g., Hayes, referenca 18) by
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assuming the flow near the leading edge to be essentially
two-dimensional and applying the results of two-dimensional
potential theory. The simple remdt. obtained in that
manner has been verified for the swept-back wing of finite
span by application of t-hesomewhat diilerent approach of
reference 19.

By the two-dimensional approach, the suction force is
found to be proportional tu the square of the strength of
the 1eading4ge singtdarity in the. perturbation +eloci@ U.
The latter is the quantity discussed earlier in cormiction
with the adjust-meritof the two-dimensional lotiding to the
loading on the swept-back wing. Vlth the use of the pr~
~ioua terminology it is possible to write for the longitudinal
component of the suction force per unit streurmise length
of leading edge,

(119)

vrheri CA (equatiog (53)) is the value, at the lead@g edge,
of the Coefkient of (W —By)‘M in ‘UA.

Then, if the trailing-edge Nlach fine does not intersect the
leading edge, t-hethrust is merely

~~a 7

The total drag due to Iift is obtained by subtracting the
thrust from the product of the lift and the angle of attack,
or, in coefHcient-form,

C%= CYC=-C. (121)

where C= is.the thrust coefficient T/@Y. Thus, in the fore
going case,

““=:[:-+OW’-l “22)
Vi’hen a portion of the leading edge is influenced by the

trailing edge, the Ieading-edge singulari~. takes on, for that
portion, the value given by expression (56), which then
replaces Cd iU equation (119) for the tbst. The tot~
thrust is

where

locates the intersection of the tmiling+dge Mach line with
the leading edge. Integrat~hg the first term and reducing
so coefficient form gives

so that

In @e 33, ~ times the drag-rise factor & is plotted

against the reduced aspect ratio DA for two combinations of
sweep and lIach number, m= 0.2 and m=o.4, for untapered
wings. Comparison iEmade with a theoretical minimum for _
slender wimggin supersonic flight obtained by-R. T. Jones
in an unpublished amdysis. .I.king a method similar to Hayes
(reference 18) and assuming the -wingto be narrow compared
with the Mach cone, Jones has derived a minimym -wave-drag
coefficient

(1 26)

where 4 is the aspect mt.io defined in the streamwise,
instead of the spanwise, direction; that is, if 1 (munericalIy
equal to Xt) is the over-all length of the wing in the stream
direction,

A.=1’@ (127)

lG——
flci’

FmuwiS8.-T%rfstIonofdrawisefsetorwfthwest IMOformtfm~ IF&.

The wave drag is to be added to the vortex drag, which is
the induced drag of subsofic flow, calc~ted from the
span-wise loading. Using the minimum induced drag ob-
tained from lifting-line theory gives as the minimum super-
sonic drag-rise factor 8

(128)

It may be seen that the drag rise of ~ constant-chord
swept-back wings is fairly close to this mmnnum, especially
ht ti lower vidu~ of m for which equation (128) yas
derived.

V—SUMlMA13Y OF FORIWUIAS

The formulas for the loading, lift, and drag coefficients are
summarized in the following table, in which the equations
are identified by number.

~Tbls resultha Sh2EbeenpubIfsbed in The Journel d the AemIsuW SeleR@S.vol.
W no. 2,Feb.1961,PP.7&8L
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I I

Case
I
~

— — Mach Iines ,

I

I

.-

.

1-.

2
3
4.
5“
6
7

l“.,
2
3.”

4 ---
5

6

~.

Equations fo~ u

(6)
(6) + (15)”

.“

;.. -

. ..’. ;
:,. = ... . .

.= . -“

i.’

(6) ,.
(6) + (15)’
(6) +(26b)
(6) + (15)’+ (26b)
(6)+ (15)a+(26b) +(31)
(6)+ (15)C+ (26b)+ (32)
(6)+ (15)’+ (26b)+ (31)+ (i~

~.j
.

. ;.
~
,..
.-

,“. .
7,

(6j “-
(6) +(26b)
(60)’
(60)’+ (73)”.’’”
(60)’+ (73)””’”+ (3i) ~- “““
Not evaluated

- -.

(85) +(88)

.

(85)+(96) + (103)+
(105)’

(113)’+ (115)’+
(118)”6

-..

~,

Equa. No.
.-

(122)

(122)

. .. .
.’.

. .

(125)’

J

c ln evaluating, use fig. 6.
bIn evaluating, use fig. 23. .
~lU evaluating, use fig. 14.
‘.or see fig. 29. —
‘or see fig. 31. .-,: .“.— -

-

AMES ~EROXAUTICALLABORATORY,
NATIOXAL iiDVISORY COMMITTEEFOR AERONAUTICS,

hiOFFETT FIELD, CALIF., Mar. 1/5,1.960.
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APPENDIX A “

SYMBOLS

v
M

B
U,o, w”

P

!Z

Ap

:
T

0.

c.=

c?.

0= ,:::

6
c1
8
s
1
A

h

:

x, y

% ‘i/U

x~jyb

xc,8

% Yo

% YI

% %

x*, y*

Xt,8

..
C+ESEEkL

free-stream wloaty
free-stream 31ach number
Wm=i
perturbation velocities in stie~wise, croesiatream,

and verticaI directions, r~ectiwly
density of air

dynamic pressure
(. )

; J3v’
pressure @iilerence between :upper and lower

surfaces, or Iocal lift
angle of attack, radians .
lift
leading-edge thrust, or component of leading-edge

suction force in flight direction

()Iift coefficient 4
@S

dGL
( ).

Iift-cur-re slope ~

()
drag’”coefEcienk $ . .

—

()t.bhstmeftlcier.it z “.’“:’
qs

WISG DIMENSIONS

root chord
tip chord
semispan
wing area
over-all length in the steamwise direction
angle of sweep of the leadi~medge
tsper ratio (c,fcJ
aspect ratio (4#~S’)
st.resmwiseaspect ratio (P~&’)

“RECTANGULAR COOBDEVATES -

Cartesian coordinates in the stream direction and
across the stream, in the plane of the wing

coordinates -of apex of coticaI field used to canceI
hian&dar-wing loading (Equation (8) at tip,
equations (21] and (22] at trailing edge)

coordinates of aprzxof conical held used in second-
ary cancellations

coordinates of point on tip; apex of conical field
used to cancel assumed cylindrical load

coordinates of inte~ection of Mach forecone from
z,y with edge at which correction is being made

coordinates of intersection of tmil.ing~dge Mach
cone with leading edge (zL given by equation
(61))

coordinates of intersection of Mach Iine horn Zl,yl
with traihng edge (Q given by ~uat,ion (112))

coordinates ‘of intersection of tip Mach Iine with
tmiling edge

coordinates of intemection of tip and trailing edge

E streanmise distance of x,y back from leading edge,
as a fraction of the tip chord (eqmition (69))’

“.% “ distmce of Xo,sbehind leading-edge tip, as a.frao-
tion of the tip chord (equation (70))

& distance of xc,a behind Ieading-edge tip, & a frao-
tion of the tip chord (equation (64))

—.
CONICAL COORDINATES . —

k the follo-iviug, d slopes are measured counterol-e. ____
from a line extending downstream from the apex of the wing
or of the pertinent cxmcding sector:

..—

‘m

-m~

a

(30

-.

ao’

az
ag

-la

tb

“L

t=

t*

To

1-=

uA

%
Au

u.=

ub

UC

slope of leadihg edge=p ~t ~ .
slope of lfac.h ljnes .-

slo~e of @aiEng idge - ““’”
dope. of “Macli k&j” [f-: ,.-

skp.s of Xay from tie.ori@”-” - ‘ ‘“-:“’
slope of Mach lines -.

=P: , ‘-“—

the -raiueof a corresponding to a primary oanceling
element of which the apex lies on the Mach fore-
cone of the point at. which the load is being
c~culated (equation (13) for tip corrections,
equation (25) for trailing-edge corrections)

limiting value of a for leading-edge correction
~(equation (47))

. .

a(q, y2) (equation (108))
a(zl, s)
slope of ray from apex of element a Y—Y.

slope of Mach Iines =P= -—-.
slope of ra~ from Zh,y&=Py—y&

sIope of Mach lines x—x~
slope of ray fkom xc,8FP y—8

.

slope of Mach lines .x—z=
slop; of ray from leading-efige tip

slope of Nfaoh lines
=~z_Y;8;m1’

slope of ray from z*, fjr*
slope of Mach Ikes ’19~

%.&g -due of fa for leading-edge correction
(equation (39))

Iimiting value of t= for leading-edge” correction ~
(equzdion (44))

COMPOX-EIITS OF STREAiiE PERTUEEATION VELOCITY

basic (uncorrected) perturbation velocity as given
by solution for tiaagular wing (equation (6)
for subsonic leading edge)

.-

value of U3 at a=O (equation (7))
oorreotion to U4 induced by cancelktion of pressure

differences outside the wing plan form
constant perturbation velocity on sector used in _

cance@g trianguhm-wing loading
constant perturbation veIocity on sector used in ‘

secondary cancellation
const,wt perturbation velocity on sector used out-

board of tip in cmceIing assumed cy@lrimI
field
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(Au,)O

(A,u),

(Au)e

Au*

(’~

(AO}o

dAC
z-da

u

U*

P

9
c

R

r. P.
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s~ehid t~~ihg+dge correction to uA (equa-
tion (20))

correction induced by canceling (Au). at. leading
edge (equation (W))

correction to uA due to single oblique traihg-
edge eIement (equation (24))

value of tip correction to ub at the point x*, y*

AItBITRARY MATHEMATICAL SYMBOIS

value of coefficient of
&

in tiAat the lead-

ing edge (equation (63)) “ I
decrement ti CAdue to reflection of (Au), at lead-

ing edge (equation (54))

decrement in CAdue to reffect.ionof (Au)a at leac]-
ing edge (equation (55))

Non-dimensional expression for strength of the
leading-edge singularity (equation (59))

[“(91
value of a at leading-edge tip a

‘aperpa’amekr(%3

function defied by equation (79)
inverse-cosine term of leading-edge correction

function (equation (35))
radical term of leading-edge

(equation (36))
real part

correction function

ELLIPTIC INTEGRALS AND FUNCTIONS

k modulus of elliptic integral, {lcfimxi whwx’ Ilscd
(also with subscripts)

k’ complimentary modulus ( ~~)
@or# mgument of elliptic integrals, defined whcr(i USC(I

(also with subscripts)
F(4, kj incomplete elliptic integral of thu first kind of

modulus k and argument @
K, K(k) complete elliptic integral of the first kin~i; thtit is,

E(o, k) incomplete elliptic integral of the srcond kind of
modulus k and argument @

~, ~(k) Completeelliptic integra~of the second kimi; that is,

()E=E ;,k

KO : ‘K

E. :E

K’ ‘- K(k’)
E’. E(k’)
z zeta funrtion (equation (41))
ho function used in evaluation of elliptic integral of

the third kind, circular case (equation (16))

I L? function used in evaluation of elliptic integral of
the third kind, circular case (equation (B] 1))

APPENDIX B

EVALUATION OF THE INTEGRAL IN EQUATION (26)

It is fit nccesary to recrdIthat tais a function (equation
(23)) of z, y, and a’. After substitution for t=in equation
(26), we may integrate by parts to obtain

JUo
COS-I (1‘~) (~a–@-(W-U) (1 –~ dUA (a) “

(1 –7n,) (t.–a)
~ da=

o

[

(l+m’)/3y-2?nt(z -cJ_– ‘uo Cos-1
(l–?n, )py

(X–py) 4~V–mt(x–cJ ‘– ,- “ “- .

2-&j-m,co x

J

no da.

““1 @l)
o @y-czz) J(I –a) (aO–a) (m–a) (m+a) .

The integral term on the right-hand side of equation (Bl)
is an Wiptic integral of the third kind which may be eval-
uated through the substitution of

d..2m(ao–a) ““
a=sn-’ (m+a~ (m–a) “’=-

If the value of w at the lower limit is designated by q, this
subst.itution gives

f

no da
.0 (&–ax) IJ(l–a) (aO–a) (m–a) (m+a)= ““

_.,

where ,_
~=(m+aJ (m-fly)

27n (f?y-aox) (?33)

or

where
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is the nornd form of the elliptic integral of the third kind.
It is fit noted that n>O. For this case it can be show-n

that the substitution .

IIz(u,,k, ?t)=cdoC712(,,kq+
[

sn (v,k’) C?l(v,k’) co.
dn (v, k’) ~ &(~, ‘#)+Q

1
@36)

where

@i)

is the amplitude of the elIiptic function v, A is the function
defined in equation (16), and Q is an angular function of k,p
and W.which wilI be discussed later.

If

and dn(~,k~=
e

maybe found, so @t equation (B6)

may be rewritten without recourse to the Jacobian elliptic ““~.
functions as

Ha(wo, k, n)=-&@, k)+

This expreaeion is to be substituted in equation (B4) and
the result- used in equation @l). h previously mentioned,
the functions m and AOare tabulated in reference 1L“and Aa
is plotted in figure 6. The function Q is given by S

(tabulated in reference 15).

~TIIe symbolsIneqnaicm (BLL)Issbmdard notati fcwthe nom of the Jwmbfan thtn
hmctIoUmdis notreIatedtothed- p~ e of the text.

APPENDIX c

INTEGRATION FOR LOSS OF LIFT AT THE TIP OF WING WITH SUBSONIC LEADING EDGE

From equations (88a) and (6) .-

where

(C2)

The terms in G’(a) are of two types; namely, those that
contain ~~ and those that do not. The former combine
with the radical ~’rd—az in equation (Cl) to form elliptic
integrals of the first-, second, and third kinds. The latter
give rise to terms in equation. (Cl) which are integrable by
elementary means. It is convenient, therefore, to consider
the integral in two parts, writing

-where 11 is that part. of the integrtd not requiring elliptic
integrals.
Then

s a—i2~
1,= .: ~t2mta(mt_a) (:+=) ‘a

,J.m2_a?

1

“J

(m,–a,)z ~os_, m,a,–m’ ___—
a;%ng(mtz-?n ?Im ~z—mz m(mt —aJ

mtat—m2

.
The remaining terms, involving J- and

are integrated by means of the substitutio~

‘“W’G “k=l=
The result is

(C3)

.—

(C4)

1,=
1

{[=(R%:)-at%nt~2~~t(l +?nt)

at(m—at)

n-b’ ] F(A k)++[(l+%) E(A k)+, “

( ?n~-a~ NTn+a:
at——

i% 1
~sin# —

(1 +?n)(?nt-(zt)’ ~ ~ m ; ?n,-m =8(WJ,,, ~,)+
(m,–m)’ K ?n~ 1+???’ )

21?K13748-76 . .
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~=?n(l+fm) (C6)
m~-m

From equation C(4), -

~=sin-’
d

m—a; “
?n(l+al)

(C7)

The elliptic integral

J

w!
rr~(u~,k, n)=

du
0 li-nsn% ‘-

is evahmted in equation 0310). Its derivative with respect
to the parameter n may be obtained for this case (n> O) in
the form

---- .

E(#, k)-
nsnqcnwtdnut

1+n tvrw 1}
(C?8)

where #and Q are the angles defined in equatiom (B7) and
(B1l) and the elliptic functions CTZW,and dna,, obtained
from equation (C4), have the vahes

cnq = 4a,(l +m)
?n(l + a;) ‘n”,=m -(cg)

REFERENCES

1. Evvard, Jolih C.:- Use of Sour&”” ~iatributione for kvaluating
Theoretical Aerodynamioe of Thin Finite Wings at Supereonio
Speeds. NACA Rep. 951, 1950.

2. Harmon, Sidney M., and JeffreYs, Isabdls: Theoretical Ltit and
Damping in Roll of Thin Wings With Arbitrary Sweep and
Taper at Supersonic Speeds. NACA TN 2114, 1950.

3. Lornax, Harvard, and Heaslct, Max. A.: Lincarizwi Lifting-
Surface Theory for Swept-Back N’ings with Slrl~A’r Pla]t “
Forms. A7ACATX 1992, 1949.

4. Lagerstrom, P. A.: Lincm%ed Supersonic Theory of C’olliral
wing8. NACA TN 1685, 1948.

5. Mirele, HamId: Lift-Cancellation Tcchniqw in Lilwarfmd Sulw-
sonic Wing Theory. NACA TN 2145, 1950.

6. Busememn, Adolf: Infinitesimal Conical Supcrscmic Flow. XACA
TM 1100, 1947.

7. Cohen, Doris: The Theoretical Lift of Fiat Swwt-l~acli Wings at
Supersonic Spseds. NACA TN 1555, 1948.

8. Cohen, Doris: Theoretical Loading at Supersonic SPIWIS of Flat
Swept-Back Wings with Interacting Trailing and Lcmiing
Edges. XACA TX 1991, 1949.

9.. Cohen, Doris: Formulas and” Charts for the Supmonlc I.ift. and
Drag of Flat Swept-Back W’ings U’ith Interacting I$ading and
Trailing Edgee. IiACA TX 2093, 1950.

10. Malvcstuto, Frank S. Jr., Mmgolie, Kenneth, aud Ribrmr, I~rrbwt
S.: Theoretical T.ift and Damping in Roll of Thin %vrpt-llack
Wings of Arbitraw Taper and Swcp at Supersonic Spwds. Sub-
sonic Leading Edges and Supersonic Trailing I?dgcs. A-’ACA
Rep. 970, 1949.

1I. Hcmnsm, Carl: Tables of ,Completc IHiiptic Integrals. Jour. of
Math. and Physics, V. 19-20, 1940-41, pp. 127-206.

~~1%.,Legendre, Adrien Marie: Tables of the CompW and Inconaplcte
Elliptic Integrafs. 13iomctrika OffLco, Univrmity (%llcge;
Cambridge t’uiversity Pr-, Cambridge, England, 1!334.

13. Jones, R. T.: Properties of I,ow-@ect-Ilat io Pointed JVIWS a~
Speeds Below and Above” the Spcmi of Sound. X.4CA Hcp.
835, 1946.

14. Ribner, Herbert S.: Some Conical and Quwi-Ckmical IWws in
Linearized Supersonic Wing Theory. NACA T!’i 2147, 1950.

1~._Spenccle~, G. W., and SPmlcelcy, R. M.: Smithsonian I?lliI)tlC
Functions Tables. Smitheqnian Institution, N’ashingtori, D.
c!., 1947.

16. Adarns, Edwin P., and Hippislcy, R. 1..: Smithwnian Mathe-
matical Formulae and Tables of ELliptic Functions. Snlith-
sonian Institution, N’aWngkm, D. C., 1939.

17. Brown, Clinton E.: The Reversibility Thcorcru for Thin Airfuils
in Subsonic and Supersonic Flow. NACA TN 1W4, 1949.

18. Hayes, W. D.: .Linearize$ Supersonic Flow. h’orth Amwican
“Avia~ion, inc., Rep. AL-222, Jui]e 18, 1947.

19. Jones, R. T.: Leading-Edgo Singularities in Thin-Airf;~ Theory
Jour. Aero. Sci., vol. 17, no. 5, May, 1950, pp. 307-310.


