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FORMULAS FOR THE SUPERSONIC LOADING, LIFT, AND DRAG OF FLAT SWEPT-BACK WINGS
WITH LEADING EDGES BEHIND THE MACH LINES

By Doris Coren

SUMMARY

The method of superposition of linearized conical flows has
been applied to the calculation of the aerodynamic properties, in
supersonic flight, of thin flat, swept-back wings at an angle of
attack. The wings are assumed to hare rectilinear plan forms,
with tips parallel to the stream, and fo taper in the conventional
sense. The investigation covers the moderately supersonic speed
range where the dach lines from the leading-edge apex lie ahead
of the wing. The trailing edge may lie ahead of or behind the
Mach lines from its apex. The case in which the Afach cone
from one tip intersecis the other tip is not treated.

Formulas are obtained for the load distribution, the total lift,
and the drag due to lift. For the cases in which the trailing edge
18 outside the Mach cone from its apex (supersonic trailing edge),
the formulas are complete. For the wing witk both leading and
trailing edges bekind their respective llach lines, & degree of
approrimation is necessary. It has been found possible to give
practical formulas which permit the total lift and drag to be
ealculated to within 2 or 8 percent of the accurate linearized-
theory value. The local lift can be determined accurately over
most of the wing, but the trailing-edge-tip region is treated only
apprommately

Charts of some of the functions derived are included to facili-
tate computing, and several examples are worked out in outline.

INTRODUCTION

It is customary, in supersonic wing theory, to describe
any straight segment of the boundary of a wing plan form as
supersonic or subsonic accordingly as the segment lies out-
side or is contained within its foremost Mach cone; that is,
as the component of the flight velocity normel to the edge is
greater than or less than the speed of sound. These two
circumstances result in fundamentally different types of flow
over the surface. It is apparent that the real reference is
not to & property of the wing plan form, but to & combination
of plan-form geometry and the velocity of the wing relative
to the speed of sound. Thus (see ﬁg 1) every swept-back
wing, on entering the supersonic regime, has subsonic leading
and, in most cases, subsonic trailing edges. At & higher Mach
number the seme plan form may have subsonic leading edges
and supersonic trailing edges. Finally, if the Mach number is
increased su.ﬁimentlv, both leading and trailing edges will
become supersonic.

JInterference effects also depend on the flight Mach number,
since the extent of the various disturbance fields is determined
by the angle between the Mach lines. Thus, no single
concise formula or method of treatment bas as yet been
developed to prediet, even approximately, the aerodynamic
characteristics of an arbitrary wing plan form through the
supersonic speed range.

The present report is concerned with the loading, lift, end
drag, accord.mg to linearized fheory, of thin, flat, swept-
back wings with rectilinear boundaries and conventional
taper. Various methods are available for the calculation
of these properties when the leading edge is supersonic.
Of these, the method of reference 1 is perhaps the most
convenient. Formulas obtained by this method for the
loadjng and lift-curve slope of Wings with supersonic lead-
ing and trailing edges are presented in reference 2. In the
following, therefore, the emphasis will be on the solution of
the problems arising from the interaction of the flow fields _
in the presence of subsonic leading edges (figs. 1 (b}, (¢),

@ M=7s Y ‘o) Mezia

FIourE 1.—A fypleal tapered swept-back wing at six supersonte Mach numbers, showing . B

the Mach lines from the leading- and trafling-edge apexes end from che tips.

and (d)). The case (ﬁg 1 (2)) ;n which the Mach number
and espect ratio are so low that interaction takes place
between the tip flow fields will not be treated. An approxi-
mate solution to this problem may be found in reference 3.

hen & wing with a subsonic leading edge is to be studied,
considerable simplification of the problem may be achieved
by msking use of the solutions, evailable in reference 4
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and other sources, for the infinite triangular wing.! From

these solutions the aerodynamic characteristics of a variety
of swept-back plan forms can be calculated by the use of
the superposition principle "of linearized theory to cancel
any lift beyond the specified wing boundaries. Two methods
of cancellation have been developed: one, presented in refer-
ence 5, uses supersonic doublets and is general enough to
apply to curved boundaries; the other, originally due to
Busemann (reference 6), cancels by means of the super-
position of conical flow ficlds. In the present report the
conical-flow method is used, since it appears to offer some
advantages for the straight-sided plan forms under
consideration, particularly in determining the integrated lift.

The material presented in this report is largely drawn
from references 7, 8, and 9, with some simplifications sug-
gested by practical experience. In particular, the formulas
for the total lift have been reworked to substitute, with
no increase in computational labor, a combined ‘“primary”
and “‘secondary’’ correction for each of the “primary’’ cor-
rections in reference 7. Also, the formulas containing elliptic
integrals have been rewritten to take full advantage of
available tables. As in the preceding papers, the final for-
mulas will be derived for unyawed wings with tips parallel
to the stream, but the application of the general method
and the basic solutions to other plan forms and problems
will be apparent. Some numerical examples will be included
in order to show the magnitude of the effects discussed and
to summarize the method. A table summarizing the
formulas is also included. '

I—METHOD OF THE SUPERPOSITION OF CONICAL
FLOWS _

A couical flow field is one in which the velocity components
u, v, and w in the stream, cross-stream aund vertical directions,
respectively, are counstant in magnitude along any ray from
the foremost point, or apex, of the field. Such flows are
found as solutions of the linearized potential equation for
supersonic flow. A detailed discussion” of their derivation
and use is contained in reference 4. .In.the cancellation-of-
lift procedure, only solutions of the so-called ‘“‘mixed” type
described in section V of reference 4 are required, except for
the basic solution (for the infinite triangular wing) which is
itself of couical form.

SYSTEM OF NOTATION FOR CONICAL FLOWS

The Cartesian coordinate system is placed so that the
origin coincides with the projection of the leading-edge apex
on the horizontal plane, the positive # axis extending down-
stream from the origin and the y axis extending perpendicular
to the » axis in the horizontal plane. (See fig. 2.) For the
conical flow fields, it is further convenient to define & variable
to designate a particular ray in the xy plave, since the flow
velocities are constant along such a ray. If the apex of the
field is specified, theu the ray is most readily described by its
slope, measured from the downstream direction. The
conical solutions of the supersonic flow equatioun are, how-

} The present report covers {n detail only unyawed wings, However, yawed wings may
be treated similarly, starting with the yawed trisngular-wing solutions. This problem

fa the sublect of & paper, NACA TN 2262, 1050, by Lampert, prepared conourrently with
the present report.

REPORT 1050—NATIONAL ADVISQRY COMMITTEE FOR AERONATUTICS

yv

.tt,S

z,u,

FigURE 2,~Coordinate system, conical variables, and other symbols,

ever, fuuctions of the ratio of the slope of the ray to the

slope % of the Mach lines, where 8 is vA?—1 and M is the

free-stream Mach number. For the triangular-wing flow
with its origin at the apex of the wing, therefore, the conical
variable will be chosen as

a=3% - 6Y)

At the Mach lines from the leading-edge apex, ¢ equals 1.
The ray from 0, the wing apex, making the angle tan“%

with the stream will hereinafter be referred to as the ray q,
and the subscript a will indicate associatiou with a constant-
load sector (to be introduced later) of which such a ray is
one of the boundaries.

For each of the conical fields to be superposed at the edges
of the wing plaa form, a new coordinate system is set up with
its origin at the apex of the field. In conformity with the
notation of reference 4, the conical variable relative to the
displaced origin is called ¢, with subscripts to denote the
location of the origin, Thus, if z,,y, is the point of intersec-
tion of the raya with the plan-form boundary and is to serve
as the apex of a canceling conical field, '

e



FORMULAS FOR THE SUPERSONIC LOADING OF FLAT SWEPT-BACK WINGS WITH LEADING EDGES BEHIND MACH LINES 1149 =

is the ratio of the slope of the ray #; of that field to the slope
of the Mach lines.

If the ratio of the slope of the leading edge to the slope of
the Mach lines is

m=g cot A (3)

where A is the angle of sweepback, then at the Jeading edge
a=m, and a ray from the leading-edge tip is designated by
. If ¢ is the wing semispan, the leading-edge tip has the

coordinates %?,- s aud any poiat r,y has the conical coordinate

—g 44—
fm—ﬁr—ﬁ 4
m

i the field with apex at %’3, 6.

-Other symbols referring to.angular locations will be defined
“in the same way as needed. A summary of the symbols
will be found in appendix A.

BOUNDARY CONDITIONS FOR CANCELLATION OF LIFT

The general problem of deriving the flow over a wing of
finite dimensions from the known flow over an infinite wing
is the problem of determining the induction effects due to
the edges. These effects may be thought of as associated
with the cancellation of the lifting pressure at the boundaries
of the finite wing. - In the linearized lifting-surface theory,
they may be evaluated by the superposition of flow fields
with negative lifting pressure over the portion of the infinite
wing outside the boundaries of the finite plan form, provided
the other boundary conditions are not disturbed. In the
case of a flat wing at an angle of attack, the latter provision
nieans that the canceling field must (1) induce no downwash
within the boundaries of the finite wing and (2) introduce no
new lifting pressure outside those boundaries.

In accordance with thin-airfoil theory, the boundary con-
ditions will be satisfied in the horizontal plane rather then on
the surface of the wing. Also, by thin-airfoil theory, the
conditions on the lifting pressure are converted to conditions
on the velocity field through the relation -

=4 (0.0 ®

In the simplest case, the lift to be canceled will be dis-
tributed uniformly over a semi-infinite region bounded by
two straight lines. The boundary conditions of the problem

may then be said to be conical with respeet to the intersection

of the two lines, which become “rays” of the canceling conieal
field. The boundary conditions on the canceling velocity
field in this case may be summaerized as follows:

(1) The streamwise velocity « must approach values equal
in magnitude and opposite in direction on the upper and lower
surfaces of the horizontal plane.

(2) In the horizontal plane, ¥ must be constant over the
infinite sector in which lift is to be canceled.

(8) The vertical velocity w must be zero in the portion
of the z=0 plane occupied by the projection of the finite

wing.

‘is conical with respect to 0.

(4) From equation (5), % must equal zero in the portion

of the horizontal plane not covered by conditions (2) or (3). *

(5) In supersonic flow there exists the additional condition
that all the velocities must go to zero on the Mach cone from
the apex of the field.

CANCELLATION OF NONUNIFORM LIFT

The foregoing are the general couditions for a uniformly .
loaded canceling flow field. Tuder the proper conditions, a
nonuniform distribution of lift may be canceled by the super-
position of & number of such fields. This procedure is best
explained by a concrete example.

Counsider the problem of a swept-back wing fiving at a
high Mach number such that, as in figure 1 (e), the Mach
lines’ from the leading-edge apex intersect the tips of the
wing. The method of deriving the swept-back wing from
an infinite triangular wing in that case is indicated in figure
3. It may be noted at the start that, according to linear
theory, the lift behind the supersonic trailing edge may be

canceled in any way without affecting the velocities on the '

wing. Thus it remains only to cousider the effect of cau-
celing the lift outboard of the tips.

pe——— U —
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FiecRE 3.—Method of cancellation of Iift beyond the up when the lendf.ng-edge Mack
Iine Intersects the side edge of the wing.

An infinite triangular wing with supersounic leading edges
has a Ioiid distribution which is coustant over the portions
from the Ieadmg-edge apex (see fig. 4). This constant IBEEI_
may be caunceled outboard of each of the tips of the swept-

back wing by a single negatn"elv loaded triangle of infinite

extent, oue side coinciding with the side edge of the wing
and a secoud side coiuciding with the extension of the leading
edge. However, the area to be removed (region BAC, fig.
3) includes also & region over which the pressure varies, and
Since the boundaries of the
region are conical with respect to A, no one conical solution

can satisfy the requirements of the probIem The problem

is brought within the limitations of the conical solutions by
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Prah view

NN\ region of uniform foading
FioURE +.—Lift distribution on a triengular wing with supersonic leading edges.
considering the lift to be made up of an infinite number of
constantly loaded, overlepping sectors of infihite extent.
(See fig. 3.) These sectors are bounded on one side by the

wing tip; the second side is_the extension of a ray from apex -

0 of the wing. Between the leading edge (z=m) and the
leading-edge Mach line (¢=1), no division of the field is
necessary since the lift density is constant in that region.

If a sector with apex at A and angle tan“% is used to cancel

this uniform lift, then the remaining superposed fields must
be used where a<{1 (see fig. 4) to restore the difference
between that lift and the loading on the triangular wing.

If u, is the streamwise component of the perturbation

velocity carresponding to the coustant loading ahead of the
leading-edge Mach lines, and ua(a) is the same velocity in
the region between the Mach lines, then the magnitude of
the u component of the velocity in the initial canceling
sector will be —u,, and on the remaining sectors (see fig. 3)
minus the imerement in u;—#a corresponding to an increment

in a, or cf{—%:: da. (Note that this last quantity i§ positive, as

required). To determine the total effect of canceling the
loading outboard of the fip, the velo¢ities induced by the
latter infinitesimally loaded elements are integrated and
added to the megative effect of the initial constant-load
sector.

II—LOADING ON WING WITH SUBSONIC LEADING
EDGE
LOAD DISTRIBUTION OVER TRIANGULAR WING
In the notation of this paper, the velocity distribution

over a flat lifting triangle with leading edge behind the Mach

lines may be written

. MU . (8
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where
mVe

BT m w

is the (constant) velocity along te center line ¢=0. In the
expression for u,, £’(m) is the complete clliptic integral of
the second kind, of modulus y/1—mZ%. The load distribution
is obtained from the velocity distribution by equation (5).

SWEPT-BACK WING WITH SUPERSONIC TRAILING EDGE
(TIP CORRECTION)*

If the problem is now to find the loading on 2 swepl-back
wing with subsonic leading edges, but supersonic trailing
edges, only the tip effects will modify the triangular-wing
distribution. The calculation of the tip effect on a wing
with subsonic leading edge (m<1) is somewhat complicated
by the fact that the pressure becomes infinite at the leading
edge, but otherwise follows the procedure outlined in the
preceding section.

It will first be necessary to present the expression for the
previously described conical field with uniformly loaded sec-
tor. to be used as the element in canceling the lift outboard
of the tip.

ELEMENTARY SOLUTION FOR A STREAMWISE TIP

If s is the semispan of the wing, the apex of any element a
(see the section on Notation) is at

x,=%s; Yoa=8 . (8)
and, from equation (2),
—g ¥Y—Ss .
td_ﬁ I_ﬂ_s (9)
a

Then, if u, is the constant perturbation-velocity component
to be canceled over the region between the lip and the exten-
sion of the ray a, the previously listed boundary conditions
for each of the required canceling fields may be written as
follows (see fig. 5): -

(1) and (2) When 0 <t.<qa, u=+u, (constant for the ficld}

(3) When £,<0, w=0 '

(4} When f,>a, u=0

(5) When [t,| 21, u=p=w=0.

The solution of the supersonic flow equation satisfying the
above boundary conditions has been derived in reference 4.2
In'the zy p\lane, the streamwise component of the veloeity is

~1 0ttt 24l

{a—a (0)

U, .
u==£r.p. — ¢os
The signs refer to the upper and lower surfaces, respectively.
In figure 5, the essential features of the solution are
shown. At the top is a detail view of the wing side edge and
shows the boundary conditions. In the center is a typical
plot of the argument of the inverse cosine in equation (10),
against ¢, Where this quantity is less than —1 (i. e,
0<t;<a), the real part of the inverse cosine is . Vhere
the argument is greater than 41 ({,>a and £,<—1), the
t Approximste formulas, valld when m I8 close to 1, have been neesented for this case (n
reference 10,

# The corresponding solutlons for reked-fn or raked-out tips may also he found [n reference 4,
or deduced from later sections [n the present report. .
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Mach line
la=~1— Mach line,
Blan view e ~la=1
l‘a(i',v)- \
”i‘fg-a
Wing #
A.d- U Au-}\
A7
Argument of Gt ietcdls tt feat“
frverse cosine ale

\\—_-_

_Jl; '[
\ \o

7 .

) -Au

Velocity %
distribufion *J
/ua

T -1 . @ a 1

ta

FrocrE 5.—Elementary solution for canceling 1ift at the tip. .

real part of the inverse cosine is zero. On the wing
(—1<¢,<0), the argument goes from 41 to —1 and the
inverse cosine is real. Thus in canceling, or subtracting,
the velocity u, between {,=0 and f,=a, the increment in
velocity :

w(z,, a,)———:_ cos™! i—l__tﬁa%

a5

is induced on the wing upper surface.

TIP-INDUCED CORRECTION TC THE LOADING

Following the procedure outlined in Part I, we proceed to

determine the effect of canceling the lift outboard of the-

wing tip. Since the value of u%, for the initial canceling
field —ua(m) and the value for the first ineremental field

%—‘5 da are both infinite when the leading edge is subsonie,

it is first necessary to write the induced velocity at a point

,?/ as
_.1 a+ta+2af¢_[__
t:—a.

~1 a+ta+2at¢ d ]

t—a

—lim '“A(a)
(AMt}iep ¢£>m -
a .
1 dus cos

w,fag da (1 2)

where the limit @, is the value of a corresponding to the
rearmost sector including the point x, in its Mach cone.
The value of g, is found by setting #, (equation (9)) equal
to —1. Thus, for the tip correction,

Bs

~ZTBG—9 3)
This parameter will be addit—ion&lly useful as the value of @ -~ _
at which the velocity correction given by equation (11)
goes to zero and its derivative has a singularity. .

Before performing the mtegra,tlon of equation (12), ¢,

must be replaced by its expression in terms of x, ¥, and a.
Then integration of the second term by parts results in a
term which, at the upper limit, exactly cancels the first
term, and at the other limit is zero, leaving, after substitution
for ua,

Q)=

—m(a:—l—ﬁy)uuf"‘ Jaols—y) da
_ TV oy (@2—BY) Jm*—a?) (1+a) (a—ay

(14)

This integral is finite and can be evaluated in terms of
elliptic integrals as follows:

- [mBE—v) N e
(AU eep ="y 5 (I+By)

where

L—KEW, Ico—(Ku—Eu)F(w, ) (16)

and K, and E, are 2/r times the complete elliptic integrals
K and E of modulus

fm o [0 (L —m)
Zm(ao'.l' 1)
In equation (16}, F (,k’') and E (y,&’') are the incomplete
integrals'with the complementary modulus %‘=+/1—k? and

argument .
-t [@(mz+BY)
¥Y=S0"Y Bs(art m)
The functions Ky, E; and A, are tabulated in reference 114 or
may be computed from the tables of reference 12. A plot
of A, is given in figure 6. '
Value at the side edge.—A¢t the tip, ¥ is equal to ¢ and the
first term in equation (15) vanishes. In the second term, ¢
becomes =/2 and E (¢,k") and F (&) reduce to the complete
mtegrals E'=E{#) and K’'=K(’), respectively. Then
since, by Legendre’s relation,

K'E—K'K+KE'=x[2 —

Ag reduces to 1. The induced velocity correction is seen to
be exactly equal to —wua, bringing the lift to zero at the
wing tip.

Drop in lift across tip Mach line—An interesting effect
shows itself at the other limit of the tip region, thatis, at the
Mach line from the tip of the leading edge. Along thl.S line
only the influence of the leading-edge pressure is felt, so that

4 The quantity Es Is called Fuin reference il
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has been modified by the introduetion of side edges, then this _ _

ay=m. Then k=0, k'=1, K==/2, E{{k") reduces to
sin ¢ = \,‘ E,%_f—y: and finally . .
. —ua 8 -
(Au)up (tm=— 1) =Au*=.\-'2(x—[—ﬁy) (m;r—ﬁs) (1 fa:)-
or, since along the tip Mach line B(s—y)=r—2%,
ap _ﬂ_o'\.m

: = - (17b)
v2(1+m)(mz—Bs) .

This result indicates a finite drop in pressure across the

Mach line from the tip, an effect which is associated with the.

cancellation of infinite pressure at the leading edge and con-
sequently does not appear as long as the leading edge is
ahead of the Mach lines. The ratio of the drop in lift across
the tip Mach Jne to the uncorrected lift can be written

Au* (l-I—Ia)(m-[—a-} .
eV s

This ratio is plotted against a/m in figure 7 and shows the

percentage loss of Iift at the tip to be very large. In fact,
for any but the lowest-aspect-ratio wings. the lift remaining
in that region is almost negligible. This effect, which should
be of considerable practical interest, was first indicated in
the results of reference 13 for the limiting case of m=0.

100
// 7
T
80 Sl S //Z/ :
5 so/ mr/
g
&
<
20
] 2z 4 -8 .8 20
¢ afm ' LE

FiGTRE 7.—Percent drop In lift across dfach line from tip.

SWEPT-BACK WING WITH SUBSONIC TRAILING EDGE

The- tip-effect correction just derived applies equally to
wings with supersoniec or subsonic trailing edges. The effect
 of a subsonic trailing edge is calculated separately, and is

primarily due to canceling the triangular-wing loading in
* the wake region. If, however, the triangular-wing loading

213637T—58——T4

modification must also be taken into account when canceling
the lift behind the trailing edge. In the conical-flow method,
the various component flow fields must be canceled individu-

ally. The sections immediately following will discuss the can- .

cellation of the triangular-wing loading ; cancellation of the tip-
induced components of velocity will be considered under the
heading “Secondary Corrections.”
PRIMARY TRAILING-EDGE_CORRECTIONS

Procedure for canceling lift in the wake region.—The
basic procedure is again to consider the load to be canceled
to be built up by the superposition of uniformly loaded
sectors, bounded on one side (see fig. 8} by the rays a, and

" on the other by the trailing edge of the wing. It is con-

venient at this point to introduce the parameter
m,=BXcot (angle of sweep of trailing edge)

Mach fine,

a1 Ta,Ya
/
/
~ «
. ~.
- - - 4 <

-Au

Ug
~1 o a ™ I

- ta

FioTRE 8.—Oblique constant-lift element (shaded} for cancellutlon of 1t at sabsonic
trailing edge, and Induced veloelry distribution.

The boundary conditions to be satisfied by the u compo-
nent of the elementary canceling velocity field are indicated
for the right span in figure 8; each field must have constant
velocity u, when a <f,<m; and zero streamwise velocity over
the wake region, —1<#<a. The concomitant vertical
velocity must be zero on the wing surface. However, when
a@ is small, the region —1<¢,<a will include a portion of the

left-hand wing panel. Sinee in this region the u component

of velocity has already been specified, the vertical velocity

——
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will not, in general, be zero. Nor is it possible to modify
the field to satisfy the boundary condition on the far wing,
since the area involved is not conical with respect to the apex
of the field.

The error involved in the foregoing procedure is minimized
by the use of a symmetrical flow field to cancel the initial
load 4, at a=0, where a single conical field can be made to
satisfy the boundary conditions exactly on both wing panels.
This flow field (see fig. 9) would have its origin at the apex
¢o,0 of the trailing edge, and the constant-load region would
extend over the entire wake region. Between the trailing
edge of the wing and the Mach lines from ¢,0 the induced
downwash would be zero in the plane of the wing, while the

pressure would vary as required to satisfy the fundamental -

flow equations.

In figure 9, 2 typical curve of us is shown, from which it
can be seen that the load to be canceled is very nearly
constant over a considerable fraction of the wake region.
Cancellation of the velocity u, by the symmetrical field will
consequently leave only a small variation in # to be canceled
by the oblique fields described earlier in the section. The
resulting violation of the flat-plate condition may be expected
to be small,® and will take place only over a small region
near the tip of the trailing edge. '

™~
N

u
w U
-(Au), ol
-1 M, a me 1
o

FIGURE V.—Bymmetrical field for cancellation of ua at subsoniec trailing edge.

¥ Calenlations mede to okeck this statement have shown the Induced downwash angles to
be Jess than 0.5 percent of the angle of attack, even In the mest unfaverable clrcumstances.
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Symmetrical solution.—For the symmetrical solution we
define the conical variable

e BY a9

T—Cq -

which is zero along the center line of the wing and equals 4-m,
at either trailing edge. Then the boundary condifions to be
satisfied in the zy plane may be summarized as follows:

—m; <t <+m,
m<Jt| <1

The required solution is given in reference i4. The % com-
ponent in the xy plane is

U= U,

w=0

+ % g
r.p. m F((#, R l—mgi)

where K'(m,) is the complete elliptic integral of the first kind

of modulus y1—m? and F(¢,v/1-m2) is the corresponding
incomplete integral of argument

. [1—t2 T
_— -1 [
¢=sin T—mp

The form of the induced velocity on the wing (see fig. 9) is
very similar to the inverse cosine curves of the tip solutions.

On the wing, ¢ isreal and the symbols r. ». may be omitted.
The velocity induced oni the upper surface by cancellation of
%, behind the trailing edge is therefore

(Au)e= —ITQ(LOFJ F(¢,T—m/

(20)

Oblique solutions for the wake region.—The symbol
t, will be used as before to indicate a ray of the flow field
with apex at ,,., the point of intersection of the ray e with
the wing boundary—in this case the trailing edge. Along
the trailing edge,

y¢=% (xa—co)

Since a=48 (y.fz,), we may solve for », and y, as functions
of a and the constants m, and ¢,:

= _Milq . _
i : @n
__ MLl
2 (22)
Then
; __By(m,—a)—m,coa (23)

T z(m—a)—mcy

The béundary conditions {o be satisfied by the elementary
solution are (for a>>0)

aStaSmg U= '_Jl:.ua
m<t.<+1 w=0
—1<<a u=0
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The solution satisfying these conditions may be obtained
from the tip solutions by an oblique transformation. (See
reference 4} In the zy plane, the resulting expressmn for
the ¥ component is

-1 A—a)t.—m)—(m.—a)(1—1)
© (l—m)t—a)

rp:i: cos

Then the velocity induced at any point z,¥ on the upper
surface of the wing by the cancellation of the infinitesimal
increment of perturbation velocity %, over the sector bounded
by the ray a and the trailing edge is

o (1—a)ta—m)—(m,—a) (1 —£)
(1—m,) (ta—a)

dAu — Uy
d—da (A )a — Cos

(24)

Correction of loading near the trailing edge.—To deter-
mine the lift at any point 2,4 near the trailing edge of the
wing, 1t 1s first necessary to determine the most rearward
canceling sector @g that will influence that point. Setting ¢,
(equation (23)) equal to 1, we solve for

z—By—co

AQo=Myy ——————————
T g — By —mcy

(25)

Then the total correction to the triangular-wing velocity ua
obteined as a result of cancelirig that velocity behind the

trailing edge is

@) 5. (2, 9) =)t f i,

(262)

The integral in the foregoing expression has been evaluated
in terms of an incomplete elliptic integral of the third kind,
which may be computed with the aid of the tables of refer-
ences 11 and 15. Because it will be necessary to define several
new functions it was thought better to present the results in
an sppendix (appendix B). For practical use, graphical or
numerical integration may be preferred, in which case a

convenient form is obtained by rewriting u, as (dus/da) da,

or dua, In equation (24). Thus equation (26a) becomes
Aw)zr 2. (x,9)= (A‘u)u—"

1 u_\(ao) - (1—a) ta—my)—(m,—
2 e

(1 mt) (ta_‘a

where £, and #a must be evaluated for selected values of @
between zero and @;. The integrand, of course, goes to zero
at us(ag). At points along the leading edge (in esses in which
the leading edge extends into the zone of influence of the
trailing edge), the integral takes on a somewhat simpler form,
with the result that the entire trailing-edge corréction at
such points can be written

me ——qy F(é)V —mt)
@)z, ( ) { E({/1—md ‘
ml)—mt(l_tﬂ) I
(l—m;)tg g

2 ty—m) i:‘;: EW, k_)]} @26¢)

A= 7., @6h)

_1 (tﬂ

CO

1 Yy —
}\/(1—1%) ( —mz)to[F W=

where the first term inside the braces is (Au) and, in the last
term, -
. 2ay,
— —I
y=sm m+a
and

i [A=m mtag
2m (1—agy

SECONDARY CORRECTIONS

The term “secondary corrections” is used here to designate
the effect of canceling the lift introduced outside the bound-
aries of the wing in the process of canceling the original tri-
angular-wing loading beyond the tips and behind the trailing
edge. As previously mentioned, cancellation of Iift at the
tip introduces new (negative) components of Lift to be can-
celed at the trailing edge. The original cancellation of lift

behind the trailing edge, on the other hand, will introduce
negative incrementsal pressures outboard of the tip and, under

certain circumstances (see figs. 1 (a) and (b)), ahead of the
The distribution of lift to be canceled in each

leading edge.
case is no longer part of a single conicel field, but is composed
of an infinite number of superposed conical fields originating
at various points along the trailing edge or tip. In order to
cancel these pressures accurately, it would be necessary to
set up, for each of the original canceling elements, an infinity
of positively loaded elements at the opposite boundary.
Thus, each secondary correction would require a double
integration for each point, and would obviously be quite
tedious. The procedure is described in detail in references
7 and 8. The more recent work of Mirels (reference 5) offers
an alternative method which, while no less tedious at the com-
putational state, is somewhat easier to set up for computing.
Nevertheless, the exact calculation of the secondary correc-
tions, and of the succeeding corrections arising as the second-
ary corrections are In turn canceled at the opposite edges,
appears feasible only with the aid of high-speed computmb
machinery.

These corrections may be thought, of as a convergmg
geries, since in each case (except in the neighborhood of the

Ieading-edge) the induced effect is smaller than the canceled

lift. Over most of the wing, the secondary correction is of
the same order of magnitude as the tolerable error. Formulas
for obtaining a major part of the secondary corrections can be
given rather simply and should suffice to give results of
practical accuracy in problems (fig. 1(¢}) not involving lead-
ing-edge corrections. Problems of the type shown in figure
1(b) will be discussed in & later section.

Secondary corrections at the trailing edge—The pressure
differences induced by the tip are in the main due to can-

cellation of the infinite pressure at the leading edge. It

should therefore be permissible, for the secondary corrections,
to approximate the tip-correction field by a single conical
field from the leading-edge tip. The lift associated with this

-field may then be canceled behind the wing (see fig. 10) by a

single infinity of superposed fields, as was the original triangu-
ler-wing loading. If the values of (Au)., calculated for

points z»,Y» along the trailing edge are assumed to apply all

along the corresponding rays £ (zs,ys) from the tip, then the



Frivke 10,—8keteh for approxlmate caneellation of exdrancous lift iniroduced behind
the leading edge by the tip correetion.

lifting pressure will be exactly canceled along the trailing edge -

and the remaining variation of pressure in the wake will have
very little effect on the flow over the wing.

The cancellation fields are of the previously used oblique
type, with a replaced by

=88 @7
B _
] »
I

Lart- the particular point at which the line {,—=—1 intersects
the trailing edge be designated by z*y* and other symbols
referring to that point be similarly starred. Then the
velocity induced at any point z,y ou the wing by removal of
(Au) 4, along the trailing edge will be (from equation (24))
cos—! 2(t*"—mr)—(m:+1)(]~—'t*)_ o

(1—m)(t*+1)
1 I't,,(ro»ﬂol d.(Au)upc o {l—= tm)(t;,—m,) (m'_t’“)(l_mdt

—Au*

T )1 dtm (1 _‘ml) (tb_tm)
(28}
where Au* is given by equation (17),t*and ¢, are calculated by
*__ 3(@/ ?J *)
== o (29)
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and .
fb=B(y—y°) . . (30)

T—Is

respectively, and xq, ¥o is the point of interseetion of the Mach
forecone from 2, y with the trailing edge.

The derivative d(: {An) up, would have to be determined

numencall_} or graphically from a plot of the caleulated
values of (Au) ., againsti,. I order to avoid this procedure,
it is preferable to rewrite expression (28) as

—Au¥* 2@ —m)—(m ) At
(I—m)(*+1) -

oy A —ta) e—m)—(m,—ta) (1 —
cos (1—mp) (fy—ta)

Ccos

1 [(a%)iip (20, 70)

ta) d(Ait) gy,
@1

and integrate by plotting the i mverse cosine funetion against
(AY) 11p.

As long as the aspect ratio of the w mg is greater thau /8
(a conditiou already imposed by the exclusion of the problem

T Jau¥

- shown in fig. 1 (a)), Ax* will be more (han half (A%),, at

any other point oun the trailing edge. Since, moreover, the
integral term in ecquation (31) has zero slope at the Mach
cone (¢*=1), while the first term starts with infinite slope,
it 13 appédrent that the secondary correction may be simplified
stil further by omitting the caleulation of the integral.
For points near the trailing edge, the loading can usually be
faired to zero with sufficicat aceuraey.

Secondary correction at the tip.—A similar method of
approximating the secondary correction at the tip eannol be
formulated with equal confidence. Since, however, over
most of the wing the symmetiienl correetion (Au)y eontrib-
utes the larger part of the total subsonic-trailing-cdge
effect, it will again be assumed that the entire effeet con-
stitutes a single conical field, with its apex al ¢, 0. The u
velocity aloug each ray ¢ will have the value (Au)y g, (£, &)
of the trailing-edge correction at the interseclion x,, 5 of the
ray with the tip. The ecanceling fields wall have the same
form as those (equation (10}) used in deriving the primary
tip corréction, and the total upplommate correetion {0 the u

-velocity will be

. (Aw)p g (25.8) ot
Llfeernts ’°+f°"'2"°"” ddwr s (32)
TJ fp=1
in which .
_Bly—s) _ _
b= r—y (33)
zy is the value of », which makes #=—1, and (Au)r z is

calculated for 2=1y, y=3 by equation (26h).
._.'_. . NU'\‘[ERI(‘AL EXAMPLE

Before proceeding to consider the problem of interaction

‘between the leading and trailing edges, which introduces

some radically different cffects, the resulis so far obtained
will be illustrated by a numerical example. The loading
over an untapered wing, with 8 cot A=0.0 and redueed
aspect ratio 84=1.92, has been calculated at four spanwise
stations: 25-, 50-, 75-, and 95-percent semispan. The wing
plan form and section lift distributions are shown in figure 11,
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The results of the calculations are presented in the form of
values of ﬂ(Ap/gra) (equation (5)). .

The various components of lift are presented separa,t,ely as
calenlated. In figures 11 (a) and (b), the discontinuities in
slope show the effect of the cancellation of the finite velocity
4, at the trailing-edge apex. The integrated part of the
trailing-edge correction {(component 2) has zero slope at the
Mach line. The two outboard sections (figs. 11 (¢) and (d))
are intersected by the Mach cone from the tip, as indicated
by the finite drop in the load curves. Cancellation of the
finite tip effect at the trailing edge (component 4 in both
figures) results in a sharp discontinuity in pressure gradient
along the reflected Mach line, at 9l-percent chord at
y/s=0.75 and at 78-percent chord when y/6=0.95. .The
cancellation of the trailing-edge corrections at the tip, which
affects only the last section shown, results in another break
in the load curve at 49-percent chord. Further corrections
enter at the rear of the section as a result of successive can-
cellations of the superposed pressures af the tip and trailing
edge. Their effect has been only estimated.

SWEPT-BACK WINGS WITH INTERACTING TRAILING
AND LEADING EDGES

When, 2s in figure 1 (b), the Mach cone from the trailing- -

edge apex includes a region ahead of the leading edge, the
previously calculated trailing-edge corrections to % must be
canceled in that region, since they represent a discontinuity
in pressure which cannot be supported in the free stream.
Thus there must be calculated a leading-edge correction,
which is one of the previously defined secondary corrections.
However, the location of the disturbed field ahead of the
wing causes its influence on the wing to be so much more
widespread than that of the other secondary corrections as
to require more careful consideration. A new type of flow
field is also required, as discussed in the following paragraphs.

LEADING-EDGE CORRECTIONS

Elementary solution for the region ahead of the leading
edge.—In general, the elementary solution required for the
cancellation of pressure in the plense of the wing ahead of the
leading edge is one that:

1. Provides constant streamyise velocity over an infinite
sector bounded on one side by the leading edge of the wing
(extended) and on the other by en arbitrary ray extending
outward into the stream from some point z;, ¥, on the leading
edge. (See fig. 12.)

2. Induces no vertical velocity, or downwash, on the wing.

3. Induces no lift except on the wing and within the sector
described in condition 1.

At first glance these conditions would appear to be satisfied
by the oblique solutions used at the trailing edge, if properly
oriented with respect to the wing, and the same form of solu-
tion might be expected to apply. In reference 4, however, it
has been pointed out thet the downwash connected with the
latter solution remains constant over the wing only if the
wing area does not include the line y=constant extending
downstream from the apex of the element. In the case of
the leading-edge element this condition. is violated (fig. 12)
and an additional term is needed to bring the downwash to
zero throughout the area of the wing affected by the element.
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FIGERE 12—Leading-edge element and Induced-veloelty function.

The solution applicable to this case has been given in refer-
ence 4. The « component of the velocity in the plane of the
wing is as follows:

_ fed -1 (ta—m)(l'l‘tb)—“(m_tb)(l"'ta)_
w=reg |:-°°S TFm t—ta)

e iﬁ)tn’(‘a—'m) Ay 1t 2 :|

where u, is the constant sireamwise perturbation velocity
over the element, and f, refers as before to a ray from its
apex. The ray bounding the element originates at a point
on the trailing edge and has been designated, from equation
(24), as t,, When the correction is being made for the sym-
metrical trailing-edge element, £, is replaced in equation (34)
by k.

For brevity, the two parts of the (,orrcctlou function will
be referred to as

(34)

AT - te—m) A +8)—(m—t) (1 £
Cty=r.p. cos T 6D . (35)
and '
Re)=r-p G G L8 m)(1+t,>\/ R

The variation with ¢, of these functions and the induced
velocity (equation (34)) are illustrated in figure 12.



FORMULAS FOR THE SUPERSONIC LOADING OF FLAT SWEPT-BACK WINGS WITH LEADING EDGES BEHIND MACH LINES 1159

Leading-edge correction to the loading.—The single conical
field of (Au), will be considered first. (See fig. 13.) The
velocity feld to be superposed ahead of the leading edge to
cancel the velocity (Au), induced in the plane of the wing
by the symmetmca,l solution (equation (20)) can be built up,
as shown in figure 13, of overlapping constant-velocity sec-

\
\
\
S—
\
—
—
\
\\
~

- — Pt ¢ ey = o

/\/

———— p—— ) — Tt E—n e
.,

FIGURE 13—Cancellation of the pressure fleld introdnced shead of the leading edge fn the
course of canceling u, behind the trailing edge.

tors having one edge along the leading edge of the wmg and
one along the extended ray %, from the apex of the trailing

edge. The magnitude of the constant velocity on each ele-
ment is (d’ : o dt, or, from equation (20),
a

Uy dig _
K'(m)(1—6) E*—m) )

Applying equation (34) to the cancellation of the sym-
metrical-correction velocities (Awx), ahead of the wing results
in the following induced velocity increment at any point

(z, ¥} on the wing:

37

T d(Au),

1
(Aﬂu)ﬂ_; . dfo (3 8)

[CG0)+R{ta)] dis
where 7, is that value of f; for which ;= —1, and designates
the most rearward leading-edge element containing the
point x, ¥ within its Mach cone. In terms of x and ¥,

m{z+8y) .
“ Gy —{T+m

(39)

Integfa.tion of g%’ C(ty) di, is not feasible by elementary
]

means. For graphical integration it is advisable to rewrite
d(Au), '
dio
at fp=1.
The second term of the product in equation (38) can be
integrated in closed form as follows:

- [ Rt

where
k=<J 2m;(1—‘ro)
(L —m)rotms)
and : E(L)
with
i [ToEm
‘I,——Sm ' 21’0
The function Z(¥, k) is tabulated in reference 16; a plot of
ZW, k
Ic(:lln xg against ¢ is given in figure 14.

Similarly, for each oblique trailing-edge element e (see
fig. 15), a canceling field ean be built up ahead of the leading
edge by the superposition of sectors bounded by the leeding
edge and by rays {, from the apex z,, y. of the element g,
end having a constant velocity of the magnitude

d(Aw), 1 g1 (1 —a)(tz—mo)—(m.—a)(1—t)
S dtum— L e g o8 G—m)e—) s

(42)

(from. equation (24)). If the symbol Awug e 1iIs used to
designate the total leading-edge correction to the % com-
ponent of veloeity at any point, then the part due to canceling
the field of a single oblique trailing-edge element ¢ is

LT J‘ ke [0+ RG dte

where
m(m,—a)(z+By)—m.eo(l +m)a
T (m—a) @+ By)—mc LT m)

is the value of #; for which t;,——1 and the leading-edge
correction function vanishes.

(44)

When the expression (equation (42)) for —a(g—;u')-‘ is sub-

stituted in equation (43), it is again impractical to attempt
to write & closed expression for the integral of the first term

dty as d(Au), to avoid the infinite value of the derivative

(43) -

4:m312,u'0K(k) z+‘3y Ce em—
m;(1+m)K'(m,)\/r_ﬂyZ(¢, H oy

a-%étu—)“(}’(t,) of the product. The integral of the second

term is
10(Au),
n Of ~or, Radta=
—Am U _\/(m;—a)(l—m)(m+8y)-mzco(1—rm)(l—a)
w(1+m) a (1—m)(mz—By)
Z ay g, Z‘Pﬂxk
K(kq) [w’— k(ﬁm ¢) Vi—a k(smtz) “5)
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where

G+m)Q—ra
(1—m)(1+7d-

= U Frd
ve=sin r— ) L Fm)

ko=,

\DG—SID._I—\/ m‘(l + Ta)

To{l+my

e e ity o P = it 1
——

Traitihg-edge
e/emgnfa.g -

Fi1GURE 15—Cancellation of the pressure field ntroduced aheed of the leading edge by o
single oblique trafling-edge element. f

i

Then the total leeding-edge correction to the velocity  at |
any point z, ¥ is ‘

0 d(Au)L E. d (4:6)

(rl’lt)z. E. —(Azu)o'l‘f
where (Amu), is obtained from equations (38) and (40),

d(—Agz'L'E—'ﬁ'om equations (43) and (45), and

I (L +m)ce— (1 —m) (@ +By) m
T {1+m)mco— (1 —m) (24 8y)

@#7)

is the value of ¢ at which 7(z, 9, @) (equatior (44)) is equal
to 1.

‘The last term in equation (46) will seldom be found to
contribute any significant amount to the loading, but will be
needed in calculating the leading-edge thrust.

- FURTHER CORRECTIONS

- Omitting for the moment any specification of tip location,
it is in any case necessery, as seen in figure 12, to consider
the effect of a further cancellation necessitated by the excess

i Lift introduced behind the trailing edge by the leading-edge

capcellation field. To compute this effect by the conical-
flow method would be feasible only with the aid of h.lgh-speed'

computing machinery. The previously mentioned cancella-
tion method of reference 5, being more direct, would be some-
what easier to use in this connection, but the calculations
would still be very lengthy. It will be shown by numerical
example that the effect of the first cancellation at the trailing
edge of the leading-edge correction, which is initially quite
small, may be estimated with adequate accuracy when the
section loading is considered as-a whole, provided the fraction
of the chord affected is not too large.

If the product B8 cot A is low or the aspect ratio high, still
further cancellations will be required (see fig. 16) at both

leading and trailing edges. It is clear that calculation of the

effect of these further cancellations by the conical-flow
method is all but impossible.
method of reference 5 does not appear to offer arey consider-
able advantage in this application since, in canceling lift
ahead of o subsonic leading edge, it is necessary to find not
only the pressure distribution to be canceled, but the asso-
ciated sidewash distribution as well.

It is apparent that-an alternative method must be sought
for describing the flow in the outboard regions of a high-
aspect-ratio wing or a wing the sweep of which is large com-
pared to the sweep of the Mach line.

—— —— Mach lines

FicorE 16:—Plan view of central portion of high-aspect-ratlo wing, showing partern of
Mach lines arfsing at leading and trailing edges.
. .

The doublet-distribution

If the wing could be _
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extended indefinitely, it is known that the flow must even-
tually approach the two-dimensional subsonic flow, in accord-
ance with simple sweep theory. The question then arises,
can the flow at a distance of the order of a semispan from
the apex of the swept-back wing be related to the two-
dimensional asymptotic flow? While the flow field appears
to be too complex to obtain an answer to this question on
analytical grounds, numerical values, presented in the
following paragraph, suggest a practical approach.

NUMERICAL RESULTS (WITHOUT TIP EFFECT)

Load distributions have been calculated by the conical-
flow method for three comhinations of taper, sweep, and
Mach number as follows:

) Untapered Tapered
m= 02 04 0.4
. M= 0.2 04 0.6

These values of m and m, represent, by virtue of the Prandtl-
Glauert transformation, a variety of sweep angles at Mach
numbers between 1 and 2; as for example, 0.2 would be the
value of m for a wing with 63° sweep of the leading edge at
& Mach number of 1.075, or 75° sweep at a Mach number of

7
,~~ Triangular-wing
g oading
&1
5 —
£~
.
Ap
ﬁ ] . ’,
qa Final loading <~
25
/ -
Leading-edge correction -~
0 ==
Obligue trailing-edge correction -
4
~/F
Symmetric traifing-edge correction—-~""
(a)
-2 ] 1 ] ! I
o 20 40 6o 80 . a0

Distance from leading edge, percent chord
(a) Section A~A Byfcy=0.667
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1.25. Similarly, m=0.4 would correspond to 45° of sweep
at M=1.08, 60° at M=1.22, or 75° at Af=1.80. The
trailing-edge sweep angles at these latter Mach numbers,
if m,=0.6, are 34°13’, 49°, and 68°, respectively.

Figure 17 presents the lift distributions at iwo stations
of the tapered wing. Each component is plotted independ-
ently in order to show the magnitudes at the leading edge.
Section A—A contains the intersection of the trailing-edge
Mach line with the leading edge, so that the value of the
leading-edge correction is zero at the leading edge of this
section. At points farther back along the leading cdge, as
at By/c,=0.8, the correction is minus infinity. However, it
is seen to increase to & small positive value within a fraction
of the chord length at this station.

At both stations it is necessary to cstimate the effeet of
cancellation of the leading-edge correction at the trailing
edge to satiefy the Kutta condition. Cancellation would be
carried out by means of obligne elements of the type usecd
previously (equation (24)) in canceling lift at the trailing
edge. The pressure to be canceled is initially (i. e., at
Z,ys (fg. 16)) zero. Then the lift induced on the wing
by this cancellation may be presumed to have the same
general shape as the oblique trailing-edge correction of figure

r
. === Correction for
Hutta condition
festima ted)
&
5 i I .
,~~ Triangular -wing loading
4 =
ki
4 bAp Final loading -+~
qa
2
f = .
Leading-edge correction -~
O ————— e =~
Oblique Iralling-edge correction =
- I =
Symmefric trailing-edge correction - —
(v)
=2 — 1 — ] 1 | -
a 40 60 80 160

e a0
-Distance from leading edge, percent chord
{b) Bection B-B Ayfey=0.800

Fi0urE 17.—Load distributions calculated by the conical-flows method for two stresmwise sections of a tapered swept-back wing; m=0.4; mym0.6.
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5r
~= Triangular-wing
loading
4‘ =
3 -
E -
A
sE , >
ga Final laading ——
I+
Leading-edge correction -~
g e— — ——
Gbligue Trailing-edge correction—~" T~
-/ . -
Symme?ric trailing-edge correction ——
(a)
-2 1 1 1 L 1
(4] 2g 44 “6a 8¢ 10g

Distance from leading edge, percent chord
(8) Section A-A Byfea=0.667

——— Corredtion for

Hutta condition
festimated]

£

3k e Triangular-wing leading

2k

g Ap Final loading -~
gqa

Leading-edge correction—~_

Oblique frailing-edge m

Symmetric frailing-edge correction -~

(6]
g 20

_[—.

[
g

1
80

Distance from leading edge, percent chord

[ 1
40 1ag

(b} Section B-B Byfea=0.800

FioGRE 18.—Load distributions calcnlated by the confcal-flows method for two streamwise sections of an untapered wing; m=0.4.

11, falling along a modified inverse cosine curve from the
value of the error at the trailing edge to zero, with zero
slope, at the boundary of the region affected. With this
boundary (the Mach line from the point z,,%), it is possible

to draw a satisfactory estimate (dotted curve) of the correc-

tion needed to bring the pressure once more to zero at the
trailing edge.

The untapered wing with the same sweep (m=0.4) relative
to the Mach lines is shown in figure 18, with the load dis-
tributions calculated at the same stations.

Four sectiou lift distributions are preseunted (fig. 19) for

m=0.2. At~iﬂ=0.15 ooly the rear 60 percent is influenced
]

by the subsonic trailing edge. The reflection of this influence
at the leading edge slters the pressure over the rear 40 per-
‘cent of the section. Af section B—B, the leading- and
trailing-edge interaction affects the entire section. A further
reflection of this effect at the trailing edge must be estimated.

At section C-C the influence of cancellation of the leading-
edge correction at the trailing edge extends over the whole
of the chord and any estimate of its magnitude would be
necegsarily erbitrary. Also, & stcond pair of reflections
must be taken into account. The final pressure distribution
has therefore been drawu as & baund within which the true

curve may be showu to lie. TIts height is the error introduced
at the trailing edge by the first leading-edge correction,
except very near the leading edge, where an infinite negative

correction is known to be introduced by the second leading-

edge correction. The calculations were also carried out for

By/e,=0.45.
have increased by any appreciable amount.

The margin of uncertainty was found not to

(See fig. 19 (d).)

APPLICATION OF TWO-DIMEN:SIONAL FORMULAS TQ CALCULATION OF
LOAD DISTRIBUTION

Correletion of two-dimensional and swept-back-wing
loadings.—It is apparent from the caleulated results that,
whenever the plan form and the Mach number are such that
the trailing-edge Mach line intersects the leading edge, the
load distribution behind the Mach lines from the point of
intersection resembles in shape the theoretical load distribu-~
tion over an infinitely long flat plate in incompressible flow.
However, as the results have been plotted, the quantitative
agreement is not good, particularly in the case of the tapered

*wing. Ou the other hand, if the load distributions in

cross sections nmormal to the stream are examined, a mear
proportionality of the curves is observed. In order to
determine the factor of proportionality, it is only necessary

to find the ratio of the strengths of the singularities at the
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—— —— —— Correction for Kutta condition (estimaled)
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F10uE 19.—Losd distributions calculated by the conical-flows method for four streamwise sections of an untapered wing; m=0.2,
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leading edge. Then an approximate expression for the
loading on the outer portions of a high-aspect-ratio wing
cau be obtained by adjusting the two-dimensional loading
by that factor. '

Both the swept-back-wing and the subsonie two-dimen-
sional loadings approach infinity as the reciprocal of the
square root of the distance to the leading edge. In sections
normal to the stream, the distauce from auy poiut 2,y to the

leading edge may be Wntten = (mr—ﬁy) The value at the

lesding edge of the coefficient of (mz—By) Y2 will be referred
to as the strength of the leading-edge singularity.

The subsonie two-dimensional perturbation velocity has
the form

1—9 -
U=B+f—— 48
\/ . (48)
where % is the distance to the leading edge; expressed as a
fraction of the chord. and B is a constant. If the section of
the swept-back wing is taken perpendicular to the stream
{r constant), the chord length is

% fmae—m (x—eg)] (49)
and
—% - (50)
Substitution for ¢ in equation (48) gives
w=B /m " 61)

mxr—By

Then the strength of the leading-edge singularity in u is
Bymz—m(z—cy (52)

The leading-edge singularity in the loading on the swept-
hack wing is initially (region I, fig. 16) that in the triangular-
wing loading. -Introduction of the leading-edge corrections
to the load, in region IT, reduces the strength of the singular-
ity there through the terms R(%) and R({;). (The inverse-
cosine function is always finite.) The coefficient of
(ma—By)~"*in u, is. from equsation (6),

MUy
ymz+By

| C'F“n@
at the leading edge.

From equations (40) and (45), decrements to this coeffi-
cient may be derived for the portion of the leading edge just
behind the intersection zy,; with the trailing-edge Mach
line, as follows:

reducing to
(53)

o —dmu K (k) '
(A= — ) Z(xp,lu) (54)

and, for each velue cf ¢ from 0 to that value a’ which makes
74 equal to one,

—4 —
Z(‘[’a;La:) f— Z(\[’ﬂrkﬂ)

+a.‘1‘ Sl.n. ‘p ’\1 (55)

@ k. sin ¢,
where 1, (equation (39)) and e (equation (44)) reduce to

mx
T—Cqy

Tog—

and

(m — Q) MT— M, Col
(m,—a)r— mtco

and the arguments and moduli of the elliptic mtegraL

follow as for equations (40) and (45).

.||:i‘

ECIR

The coefficient of (mr—By)~*2 at the Ieadmcr edge is, _

therefore, in region II, figure 186,

Cst @0t [ 4L (56)

with ¢’ reducing to
(o m N e—(l—m)z .
0 (& 57 )=me )z 67)

Equating the two coefficients, expressions (56) and (52),

{ gives for any one section

B— —CO) [a+(A0)o+ f

Amr—m{r—

odAC’ :[

For convenience, a nondimensional cofficient

@)=z | et [ L ]
is defined, so that -

-a(z) \’a

B=Va Vmrz—m{z—eg

By substituting for B in equation (51), the loading on the

outer portions of a swept-back wing is obtained as

cdBy—m{xr—eg)]
[mx—m 2z —er)j(mz—By)

- =O’(J.‘)—\/ (60)

Numerical results,—The closeness with which the fore-
going procedu_re ‘predicts the theoretical loading over swept-
back wings is indicated by figures 20, 21, and 22, where the
previously calculated load distributions are compared with
those calculated by equation (60).
highly tapered wing, the agreement is seen to be good.
At the most inboard section of the m=0.2 wing (fig. 19 (a))
there is, of course, no agreement over that portlon forward
of the 60—percent—chord point, where the flow is essentmllv
conical. At station B-B, however, the agreement is very
good. Atsections C-C and D-D, where the exact theoretical

Even in the case of the __
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er Corrected fwo= <
dimensional theory---"

(8) .

1 I
aq &0 40 64
Distance from leading edge, percent chord
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=--Conical-flows method .

'
N

®

i
&a 100

1 1 1
a 20 49 60 . _
Distance from leading-edge, percent chord -

(a) Bection A-A
(b) Boction B-B

FisuRE 20—Loaed distributions on the tapered wing as caleculated by the

conical-lows method, compared with the two-dimensional approximetion.

30 700

loading had not been determined, the two-dimensional-type
loading lies within the band prescribed by the conical-flow
caleulations. Since the discrepancy between the corrected
two-dimensional loading and the exact theoretical distribu-
tion is already, at section B-B (fig. 22 (b))}, less than the width
of the bands in figures 22 (¢) and (d) and must diminish to
zero at infinity, it may be supposed thai the correeted two-
dimensional curve is at least as satisfactory an approximation
to the correct curves at sections C-C and outboard as
at section B-B. Tt is probably more satisfactory than can
be obtained by a limited application of the conical-flow
method. '

The load distributions derived by simple sweep theory
are included in the last part of each figure to show the magni-
tude of the plan-form effect and also, in the case of the un-
tapered wings, the curves that the load distributions must

1L Corrected two- .
dimensionol theory---"

(&) 1 1 [
73 20 40 &0 8a 100
Distonce from leading edge, percent chord
o1
4
r-Simple sweep fheory
=1 .
Ap r-Slender-wing theory (ref 3}
8 qa !
2k - ~-Conical-Flows method
It Corrected two-
dimensional theory---*
® . L ; .
a 20 40 80 aa o0
Distance from leading edge, percent ¢hord
(a) Sectlon A-A
(b) Section B-B

FI6TRE 21.—Load distributions on the untapered wing, m=0.4, as ealculated
by the conical-flows method, compared with the two-dimensfonal spproxi-
mation,
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F1ooRE 22.—T.oad distribirtions on the untapered wing, m=0.2, as calculated by the conlcal-flows method, compared with the two-dimensfonal approximation.

approach as the distence from the plane of symmetry is
increased. In figures 21 (b) and 22 (b), comparison is also
made with results of the slender-wing theory of reference 3.

Discussion of the ¢ function.—In the calculation of the
pressure coefficient at points toward the rear of most of the
sections considered in figures 20, 21, and 22, it was necessary
to find o(z) for values of z greater than z, (fig. 16). In
deriving (), it was mentioned that expression (56) applied
to region II. In region III, the strength of the leading-edge

singularity is affected by further modifications of the flow
taking place in region IIb, so that edditional terms in o(z)
should be considered When ¢ is greater than z;. Evaluation
of these terms by presently known methods would require,
as suggested earlier, the aid of high-speed computing ma-
chinery. However, the successive terms are all initially

zero and enter with zero slope at x3, zero slope and curvature
at x5, and so on, so that the three-term expression for ¢ given

by equation (59) may be used with satisfactory accuracy

1167 ___
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for some distance beyond the last value of z for which it is | through the Mach number range for any one wing. The
strictly valid. In practice, the third term in equation (58) | value of z, is readily determined:
may also be neglected for values of z only slightly greater
: ¢
than r;. | — | x’=1—°m SN 1))
Charts bave been prepared (fig. 23) giving (% 4 /;mm_) a
. r—zx - . The curves were computed using equation (59) and are
as a'function of * for several values of the ratio m/m,. & pufed using q oo )
Co. g ) therefore exact only up to x=x; (shown by a vertical mark
This last parameter is the ratio of the tangents of the semi- | on each eurve). Cross marks are drawn at the points 2=z,
apex angles of the leading and trailing edges and is constant | to indicate a more practical limit to which use of the curves
Lo ,
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(b} m/m =09
FI6GRE 23, —Charts for determining #, the strength of the leading-edge singularity.
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F1crRE 23—Continued,

may be extended. (These points are off the scale for m,=0.8
and 0.9 in figure 23 (2).) When the wings are untdpered
(m/m,=1.0), asymptotes

Beo (=) /l—m_ 1
- m \ m _111+m

derived from simple sweép theory, may be drawn.

The curves. for the most part, are regular enough to permit
interpolation within intervals of 0.2 iIn m,. However. at
m,=1.0 the lines diminish to a point on the vertical axis; a
curve for m,=0.9 was therefore inserted in the charts for
values of mfm, equal to or greater than 0.5. When m/m, is
less than 0.5, m=0.9 represents, if the leading edge extends
beyond z,.04, such extreme taper that the successive reflection
of the Mach lines (at 3, 5, . . .) take place within a very
small fraction of & chord length and no useful curve can be
drawn. XNo curves are drawn for values of m, smaller than
0.2 because of the tip-interference limitation mentioned In
the introduction.

Calculation of tip effect.—The foregoing assumption of
two-dimensional flow can be extended to give fairly simple

" the loading remains constant.

~

approximate formulas for the tip effect on & high-aspect-
ratio wing. It is assumed that the wvelocity distribution to

be canceled in the stream outboard of the tip is cylindrical; _

that is, is an extension of the velocity distribution calculated
for the tip section along lines parallel to the leading edge.
For this purpose the approximate load distribution given
by equation (60) is used, still further simplified by assuming
¢ ta remain constant at its value at the leading edge of the
tip section. (Where the wing is tapering to a point and «
is changing very rapidly, the tip region is so small that the
entire calculation of tip effects could probably be omitted.)

The assumption of constant ¢ results in a failure to cancel = _

exactly the lift along the tip. The assumption of cylindr ca
flow, while reasonable for the untapered wing (compare ifig
21 (a) with fig. 21 (b}, for example) would appear to be too
drastic for the tapered wing, where neither the chord nor
However, as has been men-
tioned earlier, the major part of the tip effect results from
the cancellation of the infinite pressure along the leading
edge, and this part will be accurately caleulated. The
effect of the residual lift on the rearward portion of the tip
section and in the stream should be small.
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The distribution of perturbation velocity at the tip station
y=s, with the simplification of constant ¢, is, from equation
(60}, approximately

[Bs—m, (x.—cd] ¢
Imz.—m, (2, —ed] (mz,—Bs)

u (2., 8)=0,Vea \/

where z.s are the coordinates of a point on the tip and o,
is the value of & at the leading edge of the tip section.

This expression mey be more conveniently written in
terms of the parameter

m

u=1 _E (63)
and the variable
B
=t (64)

which is che distance of zs from the leading edge (see fig.
24) expressed as a fraction of the tip chord ¢, Since

c,=(co+E—8—)—%§

m,

equation (62) may be written

_oVa 1—¢,
= VI—0E: (©3)

where X is the taper ratio e/co. - o _

If the velocity distribution w is assumed to be constant
beyond y=s along lines parallel to the leading edge, it may
be canceled by the superposition of conieal flow fields of
which the constant-velocity regions have one edge along the
tip and the other parallel to the leading edge, with apexes
displaced along the tip by increments in §. The velocity
induced at a point 2,y by each such element would be

(equation (11))

Ys pogt m-{.-+2mi,
T t.—m

" where

t=

sy—s -(67)

r—z,

and %, is the velocity on each sector.

Following the procedure used in deriving equation (14),
the corresponding equation may be written for the pres-
sures induced by canceling the cylindrical flow

My
Va u,—
—Jm A+ m) (x—z¢ [ % (z., 8) dz,

rVa  Ja[l+m)z—zo—mel] Vi—2,

7(68)

where zy,8 is the intersection of the Mach forecone from z,y
with the tip. :

-(é é)

(66)
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s

Fiovrx 24.—Sketch for derfvatlon of approximate tip correction to loading at Ir.

If the distances of z,y and z,,s back of the leading edge,
measured as fractions of the tip chord, are

—1(,_8Y
E_c : (:c m (ﬁg)'
and :
1. _Bs -
e (20— 22 (70)
it can be shown that
(I+m) x—zd=me,(—£&) (71)

from which equation (68) can he written (with the substi-
tution for u(z,s) from equation (65))

A\ __ on/E=h b di =%
Valus~  aymy Jo =&V BB (—rl0E

In integrating equation (72), three cases must be distin-
guished: (1) £<1 (always true for the uniapered wing),

(72)

2 1<£<71‘- (when the point z,y lies more than a tip-

" chord length behind the leading edge), and (3) E>—i—
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(a possible condition for some points near the trailing edge

of a highly swept or tapered wing).
In the first case (£<1)

LAE — O m E—&
Va/uy Jmx my(1—pd —#EoKG-{_

. m&

Lo Vi Gy
N )
b= T A—kd

and A, is the function (equation (16)) plotted in figure 6.
In the second case (1 <& %)

(73a)

where

| VR Dhpet)
(73b)

ay __ o
Va/uy  ym\ gI—rk

where

xp,=_sin‘1\/m‘(1 -;yE)

m

and Z is the function (equation (41)) plotted in figure 14.

. "1
In the third case (E>;):
Au — Gy AO(¢3; k)
Va/u, +mig Sin s (7éo)
where
pomsinciy L ]

Along the Mach line from the leading-edge tip all three
equations reduce to the value

P :
Va= Jmre (74)

- By the procedure just described, approximate cancellation
of all pressure differences outboard of the tip has been

effected, but the pressures induced by such cancellation -

now violate the condition of zero lift in the wake. Approxi-
mate cancellation of the induced pressure differences in the
- wake region can be accomplished, as before, by making use
of the known value of the tip-induced velocity at the trailing
edge of the wing, but assuming the entire error to originate
at the leading edge of the tip. - Equation (31) is directly
applicable, with Au* given by equation (74) and (Au).., by

-

equation (73). On the trailing edge of an untapered wing,

£=1 and

ﬂl’-) = — LJ
Va Eml ,\-,1_n 'KO

There is no corresponding simplification for the tapered wing.

Numerical examples, tip effect.—Equations (73) and (31)
have been used to calculate the tip effect in two cases, namely:
m=m,=0.4, B8=0.94c,; and m=04, m,=0.6, 8s=0.86¢,.
The tip effect has been calculated for each wing at Sy=0.8¢,,
where the loading was. previously calculated (figs. (17b) and
(18b)) assuming the wing to extend indefinitely.

of the primary tip effect affected the section at fy=0.8e,.

Figure 25 shows the results of the caleculations. The heavy
solid curve in each case was calculated entirely by the
corrected two-dimensional theory—that is, by equations
(60), (73), and (31). As a check on the accuracy of the
cylindrical-flow approximation for the flow outboard of the
tip* Ioca.tlon the accurate theoretical loading was calculated

&
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FiouRE 25.—Loed distribution over st:enmwtse section near tip as eelculsted by two-d[men-
sional formulas, compared with more accurate theoretfcal valnes.

(75)

The tip
locations were selected so that in each case only one reflection

e
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FIuTRE 25—Continued .

for one point within the region of influence of the tip in each
case. The procedure employed for the exact calculation was
as follows:

The accurate loadings with no side-edge effects had already

been calculated, as has been noted, by the conical-flow

method. A primary tip correction was calculated for each
case by equation (15). This correction is the effect of cancel-
ing the unmodified triangular-wing loading off the tip sta-
tion. The remaining pressure differences to be canceled
consisted of those introduced by the leading-cdge and trail-
ing-edge corrections. These pressures were computed by
means of equations (26) and (46) of the present report and
canceled by the method of reference 5.

' adapted by obvious means to raked tips as well.
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The re_usplts are designated by the circled points on each
ﬁgure At the point at which the section enters the tip Mach

-cone in eqch case, a second circled point. indicates the accurate

theoretical Ioadlng The value differs from that calculated
by the appromnate formulas only as the two loadings without

_tlp effects differ.

It may‘be pointed out in concluding this section on lom[' -
calculatigns that, while the formulas have been developed for
plan forms \uth streammse tips, the procedure may be
However,
in every tdse the deviation in the tip regions of the phy bl(ﬂl
flow from_,_j_rhe assumed potential low must be borne in mind.

- III—LIFT®
GENERAL PROCEDURE FOR CONICAL FLOWS

The total lift for any wing is, of course, the integral of the
loading over the wing area. In general, however, it is difficult
to ohtaiy_an analytic expression for the Lift by a direct’
integration of the lift distribution. In the conical-flow
method, advantage may be taken of the simplicity of the
compouetit fields by integrating the lift associated with cacli
oue and then combiuing the results in the same way as the
pressure ﬁelds

Conical elements of area are employed for the integrations.
These are infinitesimal friaungles bounded by two adjacent
rays of the conical field and the intercepted boundary of the
wing plan form. Over each of the infinitesimal triangles the
velocity # of the conical field will be coustant. Thus it
remajns only to perform a single integration, with respeel Lo
the conical variable of the ficld, to obtain the total lift
associated with that field.

GENERAL FORMULA FOR THE LIFT INDUCED BY A SINGLE TIP ELEMENT

The lift (AL), induced on the wing by a single caneeling
tip element is obtained first. Although the notation of the
golution (equation (11)) used to caucel the triangular-wing
loading is employed, the derivation will hold generally for any
canceling element bounded on one side by the tip of a swept-
back wing, since no use is made of the fact that the other
boundary of the clement passes through the origin of the
%,y uxes. - We write

(ADu=2pV f (au)e 52 d 5 i, (76)

where (Au), (cquation (11)) is the streamwise ineremeut Qf
velocity induced by the capceling field and gts dt, (fig. 20) is
the element of wing area S for integration. For simplicity it
will be specified that the Mach cone from the apex of the

element does not include the apex of the trailing edge nor any
part of the opposite tip. Then (see fig. 26)

dS m@fr,— :c,)
dit, 25 m;—1,
¢ It may be noted that, as & resalt of the reversibillty property (reference 17}, the formulas

for the 1ift given herein for swept-back wings ere equelly applicsble to the su.upt—(urward
wings having the same plan forms but reversed in heading. )

(77)

.
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Troiling edge, \
Byemi(z-co) ="

)

T3y S
FIGURE 26.—Sketch for the determination of lift induced by a single tip element.

Substituting from equations (11) and (77) and integrating
by parts, we obtain

(AL)=~2 t;m‘g Uo(2:—24)*g(a) (78)
where )
1 / a(l+a) a -

g(a)—mz_ﬂ[ m(1+m.) mt] (79)

and #,—z, is the distance of the apex of the element from the
trailing-edge tip.
GENERAL FORMULA FOR LIFT INDUCED BY OBLIQUE TRAILING-EDGE
ELEMENT

VWith the notation of equation (24) for the velocity field of
an oblique trailing-edge element, and on the assumption that
the Mach lines from the apex of the element do not cross the
leading edge, the formula for the elementary ares of integra-
tion with apex on the trailing edge (fig. 27) is written

cZS=6(Ly“)2 dt,

P taz (8 O)

where s—y, is the spanwise distance from the apex of the
element to the wing tip. Then the lift associated with the
element is

. _ Ug L —1 {(1—a)@,—m,)— (mi—a)(1—1) @
@Du=2p7 %2 [ cos —m)G—a) A
(81)

Integration of equation (81) gives

(A= Via—yp 2o [ /= 2U=0)_Met] (g

F-JT,__ dis

_A—fg'mf

= TFicCrRE 2Z7.—Sketch for the determination of lft {nduced by a trailing-edge element.

WING WITH SUBSONIC LEADING EDGE
. UNCORRECTED LIFT _
First, the uncorrected triangular-wing loading (equation
(6)) is integrated over the wing plan form. The element of
area is a triangle formed by two rays from the leading-edge

_apex g and g-+da and either (1) the trailing edge of the wing

or (2) the wing tip, accordingly as a is less than or greater
than a,, the value of ¢ corresponding to the ray through the
tip of the trailing edge. (See fig. 2.) In the first case the

differential of area is

mey’
%8 (me—ay °°
and in the second

2

so that the total uncorrected. lift is :
_4[3 ‘F’ ap mtzcoz ‘I‘MEE ]
From the geometry of the wing, the relation

-m,cu=ﬁ—8 (m,—a,) (84)

173
may be deduced. Yith this substitution, and the substitu-
tion for ua from equation (6), equetion (83) may be inte-.
grated to obtain

Ly, 45 &,{mz(m,—a,)’ M, (cos“ mi—m.a;
gae malrVel mi—m? | fmi_m? m{m;—a;)

1 : 2__ .
cos I ]I I) ] (858)
)+

m, me—m
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When m,;=m, this reduces to L .

Lo__8s° %[(mﬂ,)r——ms—af—(m—aoﬂ (85b)

ga 3ma,

It should be noted, that, for a given plan form, % varies
with Mach number only as u,.
WING WITH SUPERSONIC TRAILING EDGE (TIP CORRECTION)

Proceeding to the calculation of the tip correction to the
lift, we integrate the. change in lift (AL}, (equation (78))

induced by each element ¢ over the range ¢,<e<m. The

quantity uA(m) is substituted for u, of the initial canceling
As in
calculating the tip-induced pressure correction, the difficulty
is encountered that us(m) is inﬁnite, and therefore the total

lift correction must be written in terms of limiting values.
Following the substitution

element and da 4 da for u, for the remgining ones.

1

F (86)

2— 2, =P
in equation (78), it is convenient to define the function

60=254 o)

Then the total induced lift may be written

AL=25Vm? 5" lim [ —w(0)G(0)+ I e 6ada | (87)

Integrating by parts results in cancellation of the first
term inside the brackets. Since G(a,) is zero, equation (87)

reduces to )
& ——— .2 2 m"_l_A(E_) 14
(qa),,," amBs f "L grade (880)

(A_L _
qo/up

2m2 (1 +a.)® m—i—a;
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where
@)= “’[ PR “‘)g()

is the derivative of G(a).

Equation (88a) has been mbegrated (appendix C) in
terms of an incomplete elliptic integral of the third kind.
If the necessary tables are not available, it may be prefer-
able to integrate numerically.” In that case it is noted that

a—a;

—a>\/(m,+m3)(a+:?§]

1

o

and ua da is rewritten as

= d sin™!
da m

)
maud pos
Equation (88a) then becomes

I'

ALN g Yo , _
(g—a Wi 4m2mPs Va, o G(a)d sin ‘——) (88b

In this way infinite values in the mtegrand arc avoided.

'
WING WITH SUBSONIC TRAILING EDGE

The expressions (equations (85)) for the uncorrected lift
apply regardless of whether the trailing edge is subsonic or
supersonic. The formulas for the tip correction may serve
as & first approximation when the trailing edge is subsonic
if the accuracy of a second correction is nof required. For
that purpose the special value for the untapered wing will
be of interest:

If the wing is untapered the elliptic integrals in cquatlon
(88a) (see appendix C) reduce to the first and second kind
and. the primary induced lift may be written in the following

closed form:

(1—m)*

45 Bu, ——3, [madm’—ad }3 (m—ay)* [2 — _
_3——ma'2'f[7£ (2(m-|—a,,)\m —'(l; ——(1+M)(1+a,) { (m Gc) 2m+m(1+m), a, 2(m+aA)

(m—a,)

a1+my(m-+ay) 2

where .
i m—a, . jl—m
Y=gin l‘/__m(l—l-a‘) and L—‘/———g

The primary tip correction, however, is usually quite large.
It may therefore be desirable to take into account the sec-
ondary correction resulting from its cancellation at the sub-
sonic trailing edge. Rather than compute & single secondary
correction to the lift, as an additional item, it is again found
advantageous to treat each superposed field individually, that
is, to cancel each conical tip field at the trailing edge and
find the net effect on the lift, then integrate over all the
tip elements for a combined primary and secondary tip
correction.

T Or see reference 10 for an approximate formula valld when m is close ta one,

N \/1—+—m‘ (m—-ai(::-l—Za,) F(¢,k)—[2(ma-l-az)_ 2 2ma,?_1+;1)]E(‘“‘k)})

(88c)

Tip correction with subsonic trailing edge.—For the can-
cellation at the trailing edge of a pressure field originating
at a point z,, ¢ on the wing tip, equation (82) is applied,
with the parameter ¢, which defines one boundary of the
oblique canceling field, replaced by #, referring to a ray from .
z4,8. The velocity u, is the gradient

dAu
E— dt,
of the field (equation (11)) to be canceled. The distance
from the apex of the canceling field to the w ing’tip is express-
ible as .
_ETi—2s Muls
ﬁ ml—tl
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Then the effect on the lift of canceling the single field from

Zq,8 IS
_—P.prmgz (zg—xﬂ)zfﬂ . fa dA‘u
(.AZ-L)G_ ] B -1 (mg—a)2 dtg

(m—t) (1 —t) me—ta |
|:-\ me B m, ]dtﬂ

which may be integrated, after substitution for %1—6

X

69

» to give

; s (Z—x)t c(1+a) ]
@uDem—pVmu, Ztd [ SQHD gy

a A B)

e [“m]} (90)
m which

— M,
b=y1F

and

m—a
v=sn " o T—a

If the foregoing result is added to the Lift assoeiated
with the original tip element, given by equations (78) and
(79), it is found that the latter Lift is exactly canceled by the
algebraic terms in the reflected lift, leaving

2, (Ze—Td) a(1+a) ¢ Af¢, k)
(AL)e=p Ve iy, —a)[\/mx(l-l-m:) * m siny

@1)

for the lift induced by one tip element and its eancellation
at the trailing edge. It will generally be found that further
steps in the cancellation process are unnecessary for engineer-
ing aceuracy.

For the total t1p-1nduced correction fo the lift, it is neces-
sary to write as before

(ALY, =2 Vim8s® lim I:—'u-A(a)J(a-)—f- f : ‘;—”;.J(a)da] (02)
where J{a) is

(a—a.) [ \/ a(1+a) & _ o Ady k)
a’a* m.—a m(1+m,) Eq m; siny

An integration by parts reduces equation (92) to

(AL)uy=—2p Vi 2ps? f " us@)J (@)da (93)

c:z_:‘ mit—a {l:(a‘ ‘ f:;,—a>
it (L tm)] LD -
= L

2 [(LrDet)y Qoo 10D oy

with

J(a)

If the wing is untapered, J’(a) becomes indeterminate when ___

a=m. The limiting value is

_ m—a; {[1-—37)1 (a; L]' Gg
T miel—mL 3 m' 1—m

m—a, 8mt N\

10m <3—1—m’)]E°(L)+
l G,;J_].—a-;

Zm [3 m' 1—m

Further integration must be performed numerically. In

J'(m)

order to avoid infinite values in the integrand, note again that

-(95)

so that equation (93) may be rewritten

o 2, = f2
( =—4mm 2s? Bt °f
tip Va sin-!

Trailing-edge corrections.—In deriving the trailing-edge
corrections to the total lift, primary and secondary effects
will again be combined. Further corrections will be
omitted.

For the symmetrical wake correction, the element of area
is obtained from equation (80) by setting y. equal to zero,
and substituting £, for #,. Then the decrement in lift in-
duced by the application of the symmetrical canceling ele-
ment at the trailing edge is, from equation (20},

d t,,

(AIL)I\— 2PV582 Kl(m )J‘ F(¢:'\ 1— ) (97)

o AR e )]

By (mas-f;K (T=md

or

(AIL)O (9 8)

where

The effect of canceling the pressure field mduced by the
symmetrical wake correction at the wing tips is obtained

with the aid of the previously derived formula (equation

(78)) for the lift associated with a single tip element. The
parameter defining the boundary of the canceling tip ele-
ment is now £, instead of ¢, and the velocity on the canceling
sector is

dty

Uy diy
K’ (mg A —tD Ei—ms)

dty

. The distance from the apex of the canceling sector to the

trailing edge may be expressed as

(100)

L

xﬂJ'(a)az(sin-l %) (96)
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so that the secondary effect of the symmetrical trailing-2dge
correction becomes : - S

~ o L/1  1\? g () dto
AL)e=2pV m B¢ K (m) fm‘(m, fo

t/ V(1—1) ' —ms)
(101)

or

‘A_2%=4_8_’%[1'_ 127 Ky
ga  m; Ve K/ (m) 1i+m, K (ms)

with k=1/1—om" . o

Addition of this secondary correction to the primary
effect given in equation (98) results in the single correction

BB-E®] (109

2 Ki(l)—E, (k)

103
Ky’ (m)) (109

(A_L_ _—8¢" By,
qa/y m; Va¥l4m,
By a similar procedure, the effect of canceling one of the

oblique trailing-edge fields at the tip is readily obtained and
added to the primary effect given by equation (82) to yield

AL=pV8 o—40* =] Eo®) Yim—8 (=)~

m—a¢ fite,
\,1+m‘\/ P Ao(nl/,k)] (104)
with k=\/ i—l_—Zj and Y=sin—! % as the combined

primary and secondary correction to the lift due to a single
oblique trailing-edge cancellation. _ .

For the total correction to the lift due to cancellation of
the gradient of the triangular-wing loading in the wake,
equation (104) is integrated graphically or numerically
across the span as follows:

Aq_-i=__—;m_% J; ——-(Tffz_z‘dz))alz [EO (k) ‘V(m;-a) (1 _a)-—
my—a 14a
AV o b k):l da (105)

Numerical examples to. be presented will show this com-
ponent of the lift to be very small, in general.

WING WITH INTERACTING LEADING AND TRAILING EDGES

In computing the load distribution it was found that,
when interaction tekes place between the flow fields of the
leading and trailing edges, the wing plan form appears to
comprise two prineipal regions separated (see fig. 16) by the
Mach line arising at the point of intersection ;3 of the
trailing-edge Mach line and the leading edge. Ahead of
this line (region I) the flow is most readily described in
terms of conical fields. Behind this line the flow is more
nearly two-dimensional. .On this basis, the total lift will
be found in two parts, using for region I the conical-flow
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expressions for the loading, and for the remainder of the
wing the quasi-two-dimensional approximation.

LIFT ON INBOARD PORTION OF WING

The uncorrected triangular-wing loading will first be
integrated over region I, shown shaded in figure 28. Tor

“TFIGURE 28.—Inbourd portion (reglon I) of high-aspect-rutfo wing.

this purpose the region is considered in two parts, separated
by the ray a, from the wing apex to the point 3., When
a is less than as, the element of area is as before

mies
5RCm—ay "
When a>>aqj, the element of area is _ . .

{1+ m)%¢,’
580 —my¥1 £ af %2

Thus, the uncorrected lift in the entire shaded region is

_2,0}702 2 md " v(i_+m)“
L==~ [L (m,—a)*““d“*’.ﬁ,Z‘i—‘m)’(1+a)’“‘d“]
(108)
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or .
Lo_4m g o 1+m 1 sos—! m*Ha, |\mP—al T+
qa 13 V (l—m)s A1—m? m(l+a;) 1-+ta,
m, l"'__‘ m?—as®
—m M— Qs +
o MMy 10
(\ m,; —m’ [C o8 m(m:_a'z) —eos M } (107)
with '
2mm;, (108)

0= 1+m-+m,—mm,

When m,=m (untapered wing), the second part of equation

(107) becomes indeterminate. In this case,
Lq 4mﬂc, 14+m 1 cos-1 m:t+a; +mi—a
ga B Ve ' |(1—mp| JT—m? m(l+a) 1+a.

1

5[(1% ) z“L‘Z (109)

The trailing-edge corrections to the loading are to be
integrated over the part of the shaded region behind the
trailing-edge Mach lines. Integration of the symmetrical
weke correction (equation (20)) yields

@AL)  —l16mied E{(m.)
7o BOATmII— m)*Va{ — m,[l‘ Zme) } (110)

For each oblique element, the reduction in lift is given by

L P
ga da
2, 1-4+m, o - fA4my(i—a)
TBFa 14a M x“)z[\‘ 5(m— ) 1]
(111)
. _dus __ Mo
with Up= da, :r,—m —a and
1
* —( +m+ )l-l-m: (112)
The total lift in reglon I is then given by
CEN s2dAL
(ga = + - da (113)

The quantity —2——2(—) is plotted against m, in figure 29 for
m Co \qo/x
several values of the ratio mfm,.
LIFT ON OUTER PORTIONS OF WING

In order to find the total lift (except for tip losses) on the
remainder of the wing (fig. 30), a double integration with
respect to z and y is performed on equation (60). A first
mtegra.tmn with respect to v, yields for the indefinite
mtegral

Y 0'1') iy (mz—By) (m.co—
J-—V;.dy [ / M Co— (M —

m)z tan™?

mex+-Py)

m)x

+

mzr—fBy |
mzca—mzx-l-ﬁy_l 14

/
VMCo— (M —
213687 —53——73

The values of By to be substituted as limits in equation
(114) are indicated in figure 30. Along the leading edge,
the right-hand member of équa.t—ion (114) reduces to zero;
along the trailing edge it becomes

5@

x —
3 g Vo Vmco—(m,—m)z

Then the total lift on the outboard region (both wing
halves), except for tip losses, is

54 [ @ oo 24 BB ao

[ ewnda— [ @) (f: tan“? J}J5 ]
; - (115)

Qa

where

f1=-\"’mzco— (m—m)z

Si=+(1+m)@z—z) fi=~'m(z—Bs/m)

=1 Em) (e—1) —.f
. =+ +m) (xa—2) Jo=+v m(z:—2)
The indicated integrations may be performed numerically
or graphically, using values of #(z) taLen from the charts of

figure 23.
TIP.INDUCED CORRECTION TO THE LIET

In deriving a tip correction to the lift, the same simplifying
assumption of completely eylindrical Aow will be adopted
concerning the pressure field to be canceled as was used in
obtaining a tip correction to the loading. As in the preceding
section, a combined primery and secondary tip correetion
will be derived. All further corrections will be omitted.

If the notation of equation (63) is used the distance from
the apex x,¢ of a canceling element to the trailing-edge tip is
¢:(1—&.), and the Lift induced by the element and its eancella-
tion at the trailing edge is, from equation (91),

c2l—g2] [miitm) 5 A(d,k)
(AL)G Pvmtauc ﬁ(m;—m) ‘\ m.;(l +m‘) EO(L) m. ;i]l\b
(116)
where
l_m;,
k= 1+,

as before, and
i =1 m;—m
y=sin Y m,(1—m)
since the outer boundary of each element now has the slope
m .

8 .
It is seen that only u. and (1—%.)* in the coefficient of
equation (116) vary with the element. For the first element
(£.~=0), the velocity u, is the initial value of the uncorrected
velocity along the tip section given in equation (65), and, for
the other elements, the differential of that velocity. Then
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FI1GURE 29.—Chart for the compatation of Hft in region I,
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BY=myx-ca) — Ay=8s
z=z,

FIGURE 30.—Boundaries of outboard region of high-espectratio wing, for nse as. Umits of
integration in equation (114).

the combined primary and secondary tip correction on both

wing halvesis -
AL 4m, ¢la,

_ / m(l+m)
Ea— (m.—m) YymA [ m.(1 +mt) Eo(k)—
m AR | 4 2 [ 1—&
m, sin '5” f{z—% [(1 —4) Es(l —K Ec)
2 1— Ec
f (1 Eq) —%— fc(l iy Ec) d&]

Integration by parts gives, finally,

(117)

AL 8xmic’ [: m(1+m)
ot Bk
2o 36m. 5. LN i Emy TAE—
&
o |[en—miml i —2m.(2 ——) E(V0) |
(118a)
If the wing is untapered, equation (118a) takes on the value
_AL= TCu
ga  B(1—
Except for the occurrence of ¢,,¢. and M in the coefficients, the

tip correction obtained in the foregoing way is a function of m
and m, only, independent of the tip location. Values of

have been plotted in figure 31 in & form similar

,)cr. [2mEo(k)+(1 —3m) Ey(k)] (118b)

a :G: (Q’a tip
to the chart of (—) (fig. 29).
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FisrrE 31.—Chart for the correction of the lift for tip effect, nsing two-dimensional

formulas.

APPLICATION OF LIFT FORMULAS

CASES COMPUTED

~

The lift-curve slope C;_has been calculated for two families
of u'nta-pt_ered wings with varying aspect ratios as follows: -

. mm02 m=0.4
as B4 8% BA .
0.3 0 0.6 L2
-8 8 L6
L2 1.2 24
1.6 32
and for two tapered wings:
m=04, m=0.6
: .
8 P 84 X
e | Ls ¥
-8 24 %

It should be noted that the untapered-wing cases (except for
the last one under m==0.4) represent three wings of fixed
geometry at two different Mach numbers such that g is
doubled in going from the first to the second. No calcula-
tion was made for m=0.2 to correspond to the last case
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under m=0.4 because at the lower Mach number it was not | obtained entirely by means of the conical-low formulas, as
possible to calculate satisfactory values of ¢ out to the wing | follows: )
f;l?. The tapered wings were chosen to show, jby comparison Capored wing, Ad=1.0| Untupored, gAmt.2
with the first two of the untapered m=0.4 wings, the effect * Component of lft Equation
of taper with the span held constant and, by comparison BLigeest | % total | @Ljgacet | % total
with the second and third untapered m=0.4 wings, the | uncorrected trianguiar wing....... 20| 171 2 505 143.0
. . . : Tipeffect. .. e e e g} —.180 -11.0 —. 422 —3.1
effect of taper with a given aspect ratio. Symmemeal trafling-edge correc- >
103 —.159 —4.2 —.310 ~18.7
Obllqna trailing-edge correction.. ElO& —. 018 -0 —. 019 ~1.0
SUMMARY OF COMPUTATIONS —
) .. ) Totals. __ L | 1000 Lei| 1000
With m=0.4 and Bs/c,=0.6, the trailing-edge Mach lines g
do not intersect the leading edge, and the values of C; were | #Ct=fLiaS prradiafl. .o-ooovonreeoees 1920 Laz
The calculations for the remaining values of 84 are summarized in the following table: . -
. . B s - AR P - = I
TUntiapered wings
N = . i ] T rod wing
€omponent of lift Obtained from m=02 m=(.4 4; =08
i o _Taa-o.s, pA=sd
BA=06 BAm=0.8 Biml2 BA=18 BAm24 pA=3.2
Lift on inboard Fig. 28 or equanon (113}... 0.366 0.366 0.3% 2.128 2,128 2,138 1,981
Lift on outboard por Equation (118 180 g 830 .849 1593 4,459 .82
fo Fig. 81 or equation (118).... 085 —. ~. 008 —. 363 -~ 502 -, 415 —. 002
otals, B Ligete ~261 2 1.0 2614 139 8112 I%
8Cs, S e T ‘@ 92 1.63 L& L\ 2%

DISCUSSION OF RESULTS

The results of the calculations are plotted against the
reduced aspect ratio BA in figure 32. The curves for the
untapered wings may be seen to be approaching, at the
upper end, the value 2#m/4/1—m? given by simple sweep
theory.

At the lower end, the curves should approa.ch the origin

along the line C’L¢=3 A given by low-aspect-ratio theory

(reference 13). The two points on the m=0.2 curve for
BA<1 are not entirely accurate because no account was
taken of the interference between the flow fields from the
tips. The points are included, however, because, with so
much sweep, the wing areas affected are small and the inter-
ference effects-should be negligible. The resulting curve
appears consistent with the corresponding curve calculated

= Simple swaép?iebry--,-'
m=0.4
2 ] | |m=ng
N 9 - ]
LT /34 — - —
2 AT 1
8y, /
/ m=02 m=0.2'—
¥ —
Vi ) o Untopered wings
o Tgpered wings 7{ m=04; m;=0.6) |
—~——S/ender-wing theory (ref 3)
/ 3
g /. 2 3 1 o)

pA

FIGURE 32.—Variation of lift-curve slope with aspect ratio.

by the slender-wing theory of reference 3, although a dis-
parity in plan form lessens the significance of the comparison.

The slender-wing-theory values are also plotted for m=0.4.
In that case, however, the assumption of extreme slenderness
is no longer justified and introduces an appreciable error.
(It should be mentioned that the asympotote for the slender-
wing-theory curves is below the value given by simple sweep
theory by the factor y1—m?.)

An estimate of the accuracy of the lift formulas of the
present report, compared with results which would take into
account all the successive reflections at the tips and trailing
edge, may be made from the following observations:

The values obtained (in the first table) from equatloub
(96) and” (103), which combine primary and secondary
corrections, differ from values obtainable for the primary
corrections alone by only 1 percent of the total lift in the case
of the tapered wing, and 4 percent of the total lift for the
untapered wing. Third-order corrections would be only a
fraction of those small corrections and would, in turn, be
peartly canceled out by a fourth-order correction.

The results in the second table, incorporating the two-
dimensional approximations, agree within 2 or 3 percent
with values calculatéd entirely by the conical-flow method.

_ IV—DRAG DUE TO LIFT

The drag due to lift of a wing with supersonic leading
edge is simply the Iift times the angle of attack. When the
leading edge is subsonic, the drag is reduced by a suction
force due to the upwash around the leading edge. In the
linearized theory this force appears as the limit of the
product of an infinite velocity across an infinitesimal fron{al
ares.

The formula for the suction force on a subsonic leading
edge has been derived (see, e. g., Hayes, reference 18) by
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assuming the flow near the leading edge to be essentially
two-dimensional and applying the resulfs of two-dimensional
potential theory. The simple result obtained in that
manner has been verified for the swept-back wing of finite
span by application of the somewhat différent approach of
reference 19.

By the two-dimensional approech, the suction force is
found to be proportional to the square of the strength of
the leading-edge singularity in the perturbation velocity w.
The latter is the quantity discussed earlier in connection
with the adjustment of the two-dimensional loading to the
loading on the swept-back wing. With the use of the pre-
vious terminology it is possible to write for the longitudinal
component of the suction force per unit streamwise length
of leading edge,

) ar pﬂ'

/_‘.'
az 1—m

02 (119)
where C; (equation (53)) is the value, at the leading edge,
of the coefficient of (mz—pBy) % in ua.

Then, if the trailing-edge Mach line does not intersect the
leading edge, the thrust iz merely

T=prut\l— f r dx

xu 2 pls?
e

The totel drag due to lift is obtained by subtracting the
thrust from the product of the lift and the angle of atfack,
or, in coefficient form,

(120)

GD=aOL_CT (121)
where Cy is. the thrust coefficient T/¢S. Thus, in the fore-

going case,
—'@f) CARST]

When a portion of the leading edge is influenced by the
trailing edge, the leading-edge singularity. takes on, for that
portion, the value given by expression (56), which then
replaces Cx In equa.tmn (119) for the thrust. The total
thrust is

2 f ;%d1=2 i 41—_?{ [ " drt
Q

L)

f [0A+(A0)°+f°dA0 :Id.r} (123)

Co
1—m
locates the intersection of the trailing-edge Mach line with
the leading edge. Integratmg the first term and reducing
so coefficient form gives

where

r=

w1l —m

_ Bs
i1 —m? 4 m s
3 [ {i") + % dx] (124)

B

C’r=
so that

2} L —
Cp—g‘{@—r-\l m[

In figure 33, % times the drag-rise factor %’i, is plotted

against the reduced aspect ratio SA for two combinations of ___

sweep and Mach number, m=0.2 and m=0.4, for unta,pered
wings. Companson is made with & theoretmal minimum for _
slender wings in supersonic flight obtained by R. T. Jones
in an unpublished ana,lyms Usmg & method similer to Hayes
(reference 18) and assuming the wing to be narrow compared
with. the Mach cone, Jones has derived a minimum wave-drag
coefficient

B
Os, =5 O (126)

where A, is the aspect ratio defined in the streamwise,
instead of the spanwise, direction; that is, if I (numerically
equal to z,) is the over-all length of the wing in the stream
direction,

A=BS (127)
7
[
= \ ——o Flat swept-back wings
\‘ o «QZ ——Thearefical minimum ™
5] \\}l ' fequation 25).
X\
“ AR
16 ., INEN
aer ANESN
AN g \\.~ _a4
v : ——
a ! 2 3 R
Y-/

FIGUES $3.—Veriation of drag-rise factor with sspect ratio for untapered wings.

The wave drag is to be added to the vortex drag, which is

the induced drag of subsonic flow, calculated from the

spanwise loading. Using the minimum induced drag ob-
tained from lifting-line theory gives as the minimum super-
sonic drag-rise factor ®

Cp_ 1 g
_C'—z_n'—A+2rA¢

It may be seen thaf the drag rise of the constant-chord

swept-back wings is fairly close to this minimum, especially

at the lower valués of m for which equatmn (128) was
derived.

V—SUMMARY OF FORMULAS

The formulas for the loading, lift, and drag coefficients are
summarized in the following teble, in which the equations
are identified by number.

1 This result has since been published in The Journsal of the Aeronantical Sciences, vol.
18, no. 2, Feb. 1851, pp. 75-81.

~

(128)
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Not evaluated

| Ap_ Au _LL o
Case i 0 Va Cr=3% qa Co
L —— SIach lines . Region | Equations.f;'-u. Equa. for q—i Equa. No.
1 (6) b (85) 4 (88) (122)
2 )+ (15)° N
1 | e L . (85)+(96) -+ (103) +
2 6)+ (15)° . (105)¢ (122)
3 (6)+(26b)
4 | (6)4(15)*+(26b)
5- | (6)+(15)*+(26b)+(31)
6 (6)+ (15)°+(26b)+(32) .
7 (6)+(15)“+(26b)+(31)+(35
1 . () - (113)¢4-(115)°+ (125)°
2 (6)+(26b) (118)%+
3 | (80 | __ _
4. | (60)+ (3 e - )
5 (60)°+ (73)>->e+ (31) -
6

¢ In evaluating, use fig. 6.
¢ In evaluating, use fig. 23.

°Ta evaluating, use fig. 14.

¢ or see fig. 29.
*or see fig. 31.

AMES AERONAUTICAL LABORATORY,

NationaL Apvisory COMMITTEE FOR AERONAUTICH,
Morrerr Fieup, Cavtr., Mar. 15, 1960.
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~ APPENDIX A
SYMBOLS _
GENERAL £ streamwise distance of x,7 back from leading edge,
7 . as a fraction of the tip chord (equstion (69)) "
Itlf g::ﬁ:i j\.facllltiumber & distance of z,,¢ behind leading-edge tip, as &.frac- .
tion of the tip chord (equation (70))
A AL—1 . fee . L : £ distance of z.,¢ behind leading-edge tip, as a frac-
R Peﬁﬁﬁ?ﬂ?&%ﬁﬁi S::Pa{::‘;f:f;‘-“mtmmr tion of the tip chord (equation (64))
: ions, -
p density of air " CONICAL COORDINATES o
q dynamic pressure (*:1,7 PV’> In the following, all slopes ere measured counterclockwise
Ap pressure (difference between upper and lower from a line ex.tendmg dow:nstrea,m from the apex of the wing
surfaces, or Tocal lift or of the pertinent can.qehn.g sector:
a angle of attack, radians m slope of leading : dg9=ﬁ cot A
L lift slope of Mggh ]35__ es _
T leading-edge thrust, or component of leading-edge | m, slope °fi£a ling edge e o
suction force in flight direction slope. o Iach lines™ -
) . f2 o slope of ray from the ' ongm_ ﬁy
Cr lift coefficient <_S— . slope of Mach lines -
g 40 & the value of ¢ corresponding to a primary eanceling
Cr, lift-curve slope ( 7 E) element of which the apex lies on the Mach fore-
cone of the point at which the load is being
Ch drag coeﬂiment ( ) ealculated (equation (13) for tip corrections,
_ e : equation (25) for trailing-edge corrections)
Cr ! thTrust coefficient (—S— 0 ay’ limiting value of a for leadmg-edge correction
g -(equation (47))
WING DIMENSIONS az a(Z;, ¥:) (equation (108))
Y root chord & a(z;, )
e tip chord 5 slope of ray from apex of element e ﬂy Yo
: e slope of Mach lines T—2Z,
s gemispan
S wing area " slope of ray ﬁ-om.a:,, Ys ﬁy—y,
l over-all length in the steamwise direction slope of Ma_ch lines T—Tp
A .angle of sweep of the leading edge 't slope of ray ffom ¢ —p L8
z taper ratio (¢i/e) slope of Mach lines = "x—=, _
A pspect ratio (4§%/S) . slope of ray from leadmg edge tip__ /3 Yy—8 - -
A, streamwise aspect ratio (2/S) slope of Mach lines z~—(Bs/m)
_ ) . slope of ray from z*,y* _y—y*
RECTANGULAR COORDINATES slope of Mach lines z—z* _
z,9 Cartesian coordinates in the stream direction and | ™ limiting velue of f, for leading-edge correction
across the stream, in the plane of the wing _ (equation (39)) . ) .
e, Ya coordinates -of apex of conical field used to cancel | T« limiting value of i, for leading-edge correction
triangular-wing loading (Equation (8) at tip, (equation (44))
equations (21) and (22) at traili e) .
T, UYp coordinates of apex of conical Eel?lmuie‘zldi second- COMPONENTS OF STRRAMNISE PERTURBATION VELOCITY
ary cancellations Uy ~ basie (uncorrected) perturbation velocity as given
T, 8 coordinates of point on tip; apex of conical field by solution for friengular wing (equation (6)
used to cancel assumed cylindrical load : for subsonic leading edge) '
T, Yo coordinates of intersection of Mach forecone from | wu, value of ux at a=0 (equation (7))
2,y with edge at which correction is being made | Aun correction to %, induced by cancellation of pressure
,%h coordinates of intersection of trailing-edge Mach differences outside the wing plan form
cone with leading edge (x given by equation | %, constant perfurbation velocity on sector used in
(61)) : canceling triangular-wing loading
T2, Y2 coordinates of intersection of Mach line from @,y | u, constant perturbation velocity on sector used in
. with trailing edge (2, given by equation (112)) secondary cancellation .
x* y* coordinates of intersection of tip Mach line with | «. constant perturbation velocity on sector used out-
trailing edge board of tip in canceling assumed cylindrical
L8 coordinates of intersection of tip and trailing edge field
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(Au)q symmetrical trailing-edge correction to us (equa- - ELLIPTIC INTEGRALS AND FUNCTIONS
oy co:i(;?tf:r?)induced by canceling (au) at leadlng k moi]ulus of}'l elhi)ptic integral, defined where used
it .

edge (equation (38)) % i ( Tmt su scr(liptis) (JI=F)
{Au), correction to ua due to single oblique trailing- - compiimentary modutus {1

edge element (equation (24)) dory arg('ulm.entlcilf eﬂgptl? m)tegrals, defined where used

* ’ ® also with subscripts
Au value of tip correction to u, at the pomt =yt F(¢,k) incomplete elliptic integral of the first kind of
i modulus % and argument ¢
ARBITRARY MATHEMATICAL SYMBOLS K,K(k) complete elliptic integral of the first Lmd thal is,
. 1 .

s value of coefficient of Jmz—fy in 2, at the lead- K=F (51 k)

ing edge (equation (53)) o E(¢,k) incomplete elliptic integral of the second kind of
(AC),  decrement in’Ca due to reflection of (Au), at lead- modulus k and argument ¢
IAC ing edge (equation (54)) E,E(k} complete elliptic integral of the second kind ; that is,
e da  decrement in C, due to reflection of (Au), at lead- E= E(T l:)

a = rid

ing edge (equation (55)) _ 2
v Non-dimensional expression for strength of the Jre 2y

leading-edge singularity (equation (59)) ° x
as value of ¢ at leading-edge tip [a’ (B—ﬂi)] E, 2 E

T
n taper parameter (m,—m K K(k')
t ’ e Xa

g function defined by equation (79) 2 E(k) ; ) ]
C inverse-cosine term of leading-edge correction zeta luncuon (.equatzon (fﬂ)) L

function (equation (35)) Ay functlon‘ used in e}faluatlon of elhptl-c integral of
R radical term of leading-edge correction function the third kind, circular case (equation (16))

(equation (36)) Q function used in evaluation of elliptic integral of
rop. real part ' the third kind, circular case (equation (B11))

APPENDIX B

EVALUATION OF THE INTEGRAL IN EQUATION (26)

It is first necessary to recall that ¢, is a function (equation
(23)) of 7, y, and a. After substitution for ¢, in equation
(26), we may integrate by parts to obtain

to - (1—a) (tc"'mt)—(ﬂ"c'—a) (1—t) du (a)
f €08 (1—my) (.—a) c?a da=
_ _ (I+m) ﬂy—2m,(x—co)_
o co a—m,) By

(@ — ﬁy)\/ﬂy Mm@ —cy

r—By—mc,

da
j; (By—az) V(1 —a) (a—a) (m—a) (m+a):| -(B )

The integral term on the right-hend side of equation (BI)
is an elliptic integral of the third kind which may be eval-
uated through the substitution of

w=sn"! \/(m—l-ao) (m—a)

2m(l—ag)

(A=m) ntag_

If the value of w at the lower Limit is designated by wg, this
substitution gives

o da B
.I; (ﬁy_—ax) -\/(l—a) (@—a) (mn—a) (n+a) e
m+ao 2

By— aome(l au)f I-I-nsn

where _
(m+ag (mz—pBy)
2m (By—aex)

N w

da (B2)

B3)

. (e da _
f" (ﬁy—a:c) v(1—a) (a—a) m—a) (m+a) ’

mx— By\‘m(l aq)[“’f' (‘I'm ﬂy)"s(wu,k n)](B4)

By—aox

where

By
0, (o, I, 1) = [ et

aEII L UTEL
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is the normal form of the elliptic integral of the third kind.
It is first noted that n>>0. For this case it can be shown
that the substitution

p=fn""1 (»\ %y k’) .

gives
I, (e, by W)= anen? (s, koTs"’(”;iﬁ?f”,‘fg”' k) £tk ¢)+s:|
6
where ®)
¢=tan"! kz (BT)

is the amplitude of the elliptic function v, A, is the function
defined in equation (16), and © is an angular function of k,»

®5)

and dn(y, &) = / k:&:l;l) mey befound, so thatequation (B6)

may be rewritten without recourse to the Jacobian elliptic
functions as

Ha(“’or k,ﬂ)— F(\!’x k) +

it
oL

Aol ¢)+a:| (B10)

'\/(1 +n) (n+459

This expression is to be substituted in equation (B4) and

the result used in equation (Bl). As previously mentioned,

the functions Kj and A, are tabulated in reference 11 and A4
is plotted in figure 6. The function € is giver_l by?

95 (—1)i+ () sin 2522 inh 27—
E( Y*iq(® sin IZ S 1T

and w, which will be discussed later. Q=tan~! = : P — B11) .
—- 1)+l (2) . o ;¥ .
It _ 1 221( 1y¥+1q(® cos 23 7, cosh 2‘7Ku
. [ 2a .
t[l:Sm_L‘\ ﬂ‘;—o (B8) with
~ then ' g=¢—%
o wo=F (¢, %) (B9) (tabulated in reference 15).
e . n e k?
From equation (B5), sn(», k") =»\/ oy en(v, k) =53 % The symbol ¢ in equation (B11) Is standard notation for the nome of the Jacoblan theta
. n+ 'n"[_k function, and is not related to the dynamte pressure ¢ of the text.
APPENDIX C |
INTEGRATION FOR LOSS OF LIFT AT THE TIP OF WING WITH SUBSONIC LEADING EDGE
From equations (88a) and (6) (m.—a)* cos“ ma,—m*
azz‘mz(m: —m? Vme Imi—m? m(m,—a}

4mlms®Bu, (™ G’(a) d

( up_ Ve er 4/m3— (Cl)
where -
ey E— @ m;—a; a+a- _E_ _
@@= alaim,—a) G) ( m:-“)(\/ m.*
- ©2)

2Jm+miJatal

The terms in @’(a) are of two types; namely, those that
contain va+a?and those that do not. The former combine
with the radical +/m?*—a® in equation (C1) to form elliptic
integrals of the first, second, and third kinds. The latter
give rise to terms in equation (C1) which are integrable by
elementary means. It is convenient, therefore, to consider
the integral in two parts, writing

= @(a)

—_ da=
o A/m?—a?

L+1,

where I; is that part of the integral not requiring elliptic
integrals.
Then

J"’" a—a, a‘ T Mi—d, da
I1= z
ar &y m:a(m,—a) T m,—a N mi—a?

213637—58——16

mga;—'m

ymi—ad
m? _

(C3)

The remaining terms, involving +e-+a® and +/m*—a?,

ere integrated by means of the substitution

/ m—a 1—m
The result is

1.— 1 ([m:—a; fm;—a, a.

: a"m‘{2mm,(1—|—m,)l m, 1+m; m
2l 0| P e[ (14 T B b+

m;—a; m+ag
(", ) %a, o2 ‘”]_
A +m)(m:—as) m , m,—m _
e 2] (1 ot ) Mo, B, )+

2m(1_+7;n) aﬂa(wnk n) } (C5)
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where w,=w(a,), ¥ is its amplitude, and
My—m
From equation C(4),
—sin-! m—a,;
y=smn m(1+ @) (07)
The elliptic integral
dw

wp
Ty, &, n)=j; Toneda
is evaluated in equation (B10). Its derivative with respect
to the parameter n may be obtained for this case (n>>0) in
the form

ab?: 2n \/(n+k2)(1+n){(1_[_n n+kz)|:A°(¢’k) F('#,k)-l--

%m0} \/(’+_“fc’)(ﬁ*“)|: (eain) FW”
By, By tpenedne g (8)

where ¢ and Q are the angles defined in equations (B7) and
(B11) and the elliptic functions ¢nw, and dnw,, obtained
from equation (C4), have the values

atm) . _ [Emmte) o
CNnwy= m—(l_l_—a_‘-)- dnw;— —W (CQ)
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