N73 25045

N73-25045 NASA CR-2228 PART I

NASA CONTRACTOR REPORT

IASA CR-2228 PART I

AN IMPROVED METHOD FOR THE AERODYNAMIC ANALYSIS OF WING-BODY-TAIL CONFIGURATIONS IN SUBSONIC AND SUPERSONIC FLOW

Part I - Theory and Application

by F. A. Woodward

Prepared by AEROPHYSICS RESEARCH CORPORATION Bellevue, Wash. 98009 for Langley Research Center

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION • WASHINGTON, D. C. • MAY 1973

• . . .

AN IMPROVED METHOD FOR THE AERODYNAMIC ANALYSIS

OF WING-BODY-TAIL CONFIGURATIONS

IN SUBSONIC AND SUPERSONIC FLOW

PART I - THEORY AND APPLICATION

By F. A. Woodward Analytical Methods, Incorporated

SUMMARY

A new method has been developed for calculating the pressure distribution and aerodynamic characteristics of wing-bodytail combinations in subsonic and supersonic potential flow. A computer program has been developed to perform the numerical calculations.

The configuration surface is subdivided into a large number of panels, each of which contains an aerodynamic singularity distribution. A constant source distribution is used on the body panels, and a vortex distribution having a linear variation in the streamwise direction is used on the wing and tail panels. The normal components of velocity induced at specified control points by each singularity distribution are calculated and make up the coefficients of a system of linear equations relating the strengths of the singularities to the magnitude of the normal velocities.

The singularity strengths which satisfy the boundary condition of tangential flow at the control points for a given Mach number and angle of attack are determined by solving this system of equations using an iterative procedure. Once the singularity strengths are known, the pressure coefficients are calculated, and the forces and moments acting on the configuration determined by numerical integration.

Several examples of pressure distributions calculated by this program are presented, and compared with experimental data. Good correlation between theory and experiment has been achieved.

.

TABLE OF CONTENTS

SUMMARY	1
INTRODUCTION	2
LIST OF SYMBOLS	3
AERODYNAMIC THEORY	7
Description of Method	7 34 43 47 57
COMPUTER PROGRAM	59
Program Description	59 59 59 61 76
EXPERIMENTAL VERIFICATION	78
Isolated Bodies	78 82 87
CONCLUSIONS	91
APPENDIX I: Integration Procedures	93
APPENDIX II: Panel Geometry Calculation Procedure	94
APPENDIX III: Sample Case	100
REFERENCES	125

1. Report No. NASA CR-2228 Pt T	2. Government Accessi	on No.	3. Recipient's Catalog	No.
ADA CR-2220, Pt. 1 4. Title and Subtitle AN IMPROVED METHOD FOR THE AERODYNAMIC ANALYSIS OF CONFIGURATIONS IN SUBSONIC AND SUPERSONIC FLOW PART I - THEORY AND APPLICATION		WING-BODY-TAIL	 Report Date May 1973 Performing Organiza 	ition Code
7. Author(s) F. A. Woodward			8. Performing Organiza	tion Report No.
9. Performing Organization Name and Address	*Under Subcontra	ct by:	0. Work Unit No. 501-06-01-0	6
Aerophysics Research Corporation Box 187 Bellevue, Washington 98009	Analytical Metho 9320 S. E. Shor Bellevue, Washi	ods, Inc. eland Drive ngton 98004	1. Contract or Grant 1 NAS1-10408	No.
12. Sponsoring Agency Name and Address			Contractor	Report
National Aeronautics and Space Adm Washington, D. C. 20546	inistration		4. Sponsoring Agency	Code
16. Abstract A new method has been develop	ed for calculation	g the pressure distr	ibution and aero	dynamic w. A
computer program has been developed The configuration surface is an aerodynamic singularity distrib- panels, and a vortex distribution on the wing and tail panels. The points by each singularity distrib- linear equations relating the strevelocities. The singularity strengths whi control points for a given Mach number The singularity for a given Mach number the strevelocities of the strevelocity of the strevelocit	d to perform the subdivided into a ution. A constan having a linear v normal components ution are calcula ngths of the sing ch satisfy the bo mber and angle of	numerical calculation large number of part t source distribution ariation in the stree of velocity induced ted and make up the ularities to the mage undary condition of attack are determin	ens. whels, each of whi is used on the earwise direction i at specified co coefficients of gnitude of the no tangential flow hed by solving th	ch contains body is used ontrol a system of ormal at the is
system of equations using an interative procedure. Once the singularity strengths are known, the pressure coefficients are calculated, and the forces and moments acting on the configuration determined by numerical integration.				
Several examples of pressure compared with experimental data. achieved.	distributions cal Good correlation	culated by this prog between theory and e	gram are presente experiment has be	ed, and een
17. Key Words (Suggested by Author(s))		18. Distribution Statement		
Potential Flow Pressure Distribution Lifting Surface Theory Vortex Representation Solution of Linear Equations		Unclassified		
19. Security Classif. (of this report) Unclassified	20. Security Classif. (c Unclassifi	if this page) .ed	21. No. of Pages 128	22. Price* \$3.00

*For sale by the National Technical Information Service, Springfield, Virginia 22151

INTRODUCTION

A unified approach to the aerodynamic analysis of wingbody-tail configurations in subsonic and supersonic flow was originally presented in references 1 and 2. This method has been extended by the introduction of several new aerodynamic singularity distributions which substantially improve its capability to represent arbitrary shapes. For example, the new method permits the analysis of non-circular bodies, provides a more accurate representation of rounded wing leading edges, and allows the determination of wing interference effects in the presence of body closure.

A computer program has been developed to perform the numerical calculations. The program accepts the standard geometry input format currently in use at the Langley Research Center, and described in reference 3. The graphics capability of the program of reference 3 may be used to obtain a visual display of the configuration input geometry. In addition, the new program has two boundary condition options available for determining the pressure distribution on lifting surfaces. In the first option, the aerodynamic singularities are located on the mean plane of the surface, and approximate planar boundary conditions applied to determine the singularity strengths. In the second option, the aerodynamic singularities are located on the upper and lower surfaces of the lifting component, and exact surface boundary conditions applied. This results in a more accurate pressure distribution, but requires considerably more computer time. Surface boundary conditions are always applied in the determination of the body pressure distribution.

Part I of this report outlines the aerodynamic theory, describes the input requirements of the computer program, and compares the program output with experimental data for several isolated wings, bodies, and wing-body combinations. Part II contains a detailed description of the computer program, including a complete program listing and sample case.

The author wishes to acknowledge the contributions made by Mr. E. W. Geller to the aerodynamic theory, and the assistance given by Dr. T. S. Chow in the formulation of the matrix solution techniques, and by Mr. D. N. Bergman in the development of the computer program.

LIST OF SYMBOLS

A consistent set of units is assumed throughout this report.

a	Aerodynamic influence coefficient, tangent of body panel inclination angle δ , or wing panel edge slope parameter ($\lambda_2 - \lambda_1$)
A	Matrix of aerodynamic influence coefficients, or cross-sectional area
b	Wing thickness influence coefficient, or wing panel span, or major axis of ellipse
с	Panel chord length, or reference chord length
с	Aerodynamic coefficient
d	Distance of control point from singularity origin, or body diameter
D	Diagonal block matrix
e	Distance of control point from wing panel tip intersection
Е	Off-diagonal block matrix
F, G, Н	Velocity distribution functions
I	Integral expression
k	Supersonic scaling factor, or iteration number
к	Kernel function
l	Length of line source or vortex, or body length
m	Body panel edge slope dy/dx
М	Mach number, or pitching moment
n	Direction cosine of panel normal vector, or velocity component normal to panel
N	Normal force, or number of aerodynamic singularities

NW	Number of wing and tail singularities
NB	Number of body singularities
q	Magnitude of velocity at control point
r	Radial distance
R	Reynolds number
S	Auxiliary variable
S	Wing reference area
t	Auxiliary velocity distribution function, or wing thickness
Т	Tangential force
u, V, W	Components of induced velocity
v	Induced velocity at control point
х, У, Z	Cartesian coordinates of points

Greek

α	Angle of attack
β	Mach number parameter, (l - M²) ^½
γ	Ratio of specific heats for air, or aerodynamic singularity strengths
δ	Inclination angle of panel with x axis
Δ	Incremental value
ε	Minor axis of ellipse
θ	Inclination angle of panel with x,y plane
λ	Tangent of panel sweepback angle dx/dy, or direction cosine of coordinate transformation

Λ	Sweepback angle
μ, ν	Direction cosines of coordinate transformation
ξ , η	Integration variables along x and y axes
π	Ratio of circumference to diameter of circle
ρ	Radial distance of control point from streamwise line through wing panel tip intersection
φ	Velocity potential, or angle between velocity vector and x axis
x	Integration variable
ω	Velocity component normal to panel

Subscripts

В	Body
base	Body base
с	Wing camber
D	Drag
i	Index of panel control point
j	Index of influencing panel
k	Index of panel corner point
L	Lift
М	Pitching moment
max	Maximum
N	Normal force
p	Pressure
t	Wing thickness

Т	Tangential force
W	Wing
х, У, Z	Refer to x, y, z axes

AERODYNAMIC THEORY

Description of Method

The configuration surface is divided into a large number of panels, each of which contains an aerodynamic singularity distribution. A constant source distribution is used on the body panels, and a vortex distribution having a linear variation in the streamwise direction is used on the wing and tail panels. A typical configuration panel subdivision is shown on Figure 1.

Analytical expressions are derived for the perturbation velocity field induced by each panel singularity distribution. These expressions are used to calculate the coefficients of a system of linear equations relating the magnitude of the normal velocities at the panel control points to the unknown singularity strengths. The singularity strengths which satisfy the boundary condition of tangential flow at the control points for a given Mach number and angle of attack are determined by solving this system of equations by an iterative procedure. The pressure coefficients at panel control points are then calculated in terms of the perturbation velocity components, and the forces and moments acting on the configuration obtained by numerical integration.

The following paragraphs describe the derivation of the perturbation velocity components induced by the aerodynamic singularities, the formation and solution of the boundary condition equations, and the procedure used to calculate the pressure coefficients, forces, and moments on the configuration. Two non-standard integrals appearing repeatedly in these derivations are given in Appendix I.

Derivation of the Incompressible Velocity Components

Formulas for the perturbation velocity components u, v, and w induced by the aerodynamic singularity distributions in incompressible flow are derived by superposition of elementary line sources or vortices located in the plane of the panel. The resulting expressions are subsequently transformed by Gothert's rule to obtain the compressible velocity component formulas for subsonic and supersonic flow.

Elementary line source. The velocity at a point P(x, y, z) induced by a point source of unit strength located on the x axis a distance ξ from the origin is given by:

$$V = \frac{1}{4\pi \left[(x - \xi)^2 + y^2 + z^2 \right]}$$
(1)

Linear Vortex Distribution on Wing and Tail Panels

Figure

ц -

Aerodynamic

Representation

The velocity is directed along the line joining the point source and the field point P.

The u, v, and w components of velocity at the point P induced by a unit strength line source coincident with the x axis and having a length ℓ is obtained by resolving V into its x, y, and z components and integrating with respect to ξ . The geometry is illustrated on the following sketch:

$$u = \int_{0}^{\ell} V \cos \phi \, d\xi$$

= $\frac{1}{4\pi} \int_{0}^{\ell} \frac{(x - \xi) \, d\xi}{\left[(x - \xi)^{2} + y^{2} + z^{2}\right]^{3/2}} = \frac{1}{4\pi} \left[\frac{1}{d_{2}} - \frac{1}{d_{1}}\right]$ (2)

$$v = \int_{0}^{\ell} V \sin \phi \cos \theta \, d\xi$$
$$= \frac{y}{4\pi} \int_{0}^{\ell} \frac{d\xi}{\left[(x - \xi)^{2} + y^{2} + z^{2} \right]^{3/2}} = -\frac{y}{4\pi r^{2}} \left[\frac{x_{2}}{d_{2}} - \frac{x_{1}}{d_{1}} \right] \quad (3)$$

$$w = \int_{0}^{\ell} V \sin \phi \sin \theta \, d\xi$$

= $\frac{z}{4\pi} \int_{0}^{\ell} \frac{d\xi}{\left[(x - \xi)^{2} + y^{2} + z^{2}\right]^{3/2}} = -\frac{z}{4\pi r^{2}} \left[\frac{x_{2}}{d_{2}} - \frac{x_{1}}{d_{1}}\right] (4)$

where $r = \sqrt{y^2 + z^2}$

$$x_{1} = x \qquad x_{2} = x - l$$

$$d_{1} = \sqrt{x^{2} + r^{2}} \qquad d_{2} = \sqrt{(x - l)^{2} + r^{2}}$$

$$\phi = \tan^{-1} \frac{r}{x - \xi} \qquad \theta = \tan^{-1} \frac{z}{y}$$

The three components of velocity satisfy Laplace's equation, since

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} = 0$$

and $u = \frac{\partial \phi}{\partial x}$, $v = \frac{\partial \phi}{\partial y}$, $w = \frac{\partial \phi}{\partial z}$, where ϕ is the velocity potential of the line source.

The elementary line source is used as the basis of the more complex source distributions derived in this report.

Elementary line vortex.- The velocity at the point P induced by a unit strength line vortex coincident with the x axis and having a length l is obtained by applying Biot-Savart's law to each element of the vortex and integrating.

$$V = \frac{1}{4\pi_0} \int \frac{\chi}{(x - \xi)^2 + y^2 + z^2}$$

The velocity vector is normal to the plane containing the x axis and the point P.

Noting that $\sin \phi = \frac{r}{\left[(x - \xi)^2 + y^2 + z^2\right]^{\frac{1}{2}}}$ and integrating with respect to ξ ,

$$V = -\frac{1}{4\pi r} \left[\frac{x_2}{d_2} - \frac{x_1}{d_1} \right]$$
(5)

There is no axial component of velocity induced by the line vortex. The v and w components are obtained by resolving V into its y and z components. Thus,

 $u = 0 \tag{6}$

$$v = -V \sin \theta = \frac{z}{4\pi r^2} \left[\frac{x_2}{d_2} - \frac{x_1}{d_1} \right]$$
 (7)

w = V cos
$$\theta = \frac{-y}{4\pi r^2} \left[\frac{x_2}{d_2} - \frac{x_1}{d_1} \right]$$
 (8)

The notation is defined following equation (4). The three components of velocity can also be shown to satisfy Laplace's equation.

The elementary line vortex solution is used as the basis of the more complex vortex distributions derived in this report. Care must be taken during these derivations to ensure that all vortex lines form closed rings and thus satisfy Helmholtz's vortex theorem.

Rotation of coordinates.- In the following applications, the line source or vortex coordinate system is in general rotated with respect to the reference coordinate system of the panel. Using primed coordinates to refer to the rotated line source or vortex, and defining $\lambda = \tan \Lambda$ to be the tangent of the sweep angle of the rotated system, the following coordinate transformations apply:

$$\mathbf{x'} = \frac{\lambda \mathbf{x} + \mathbf{y}}{(1 + \lambda^2)^{\frac{1}{2}}} \tag{9}$$

$$\mathbf{y'} = \frac{\lambda \mathbf{y} - \mathbf{x}}{(1 + \lambda^2)^2}$$
(10)

$$z' = z \tag{11}$$

The geometry of the rotated coordinate system is illustrated in the following sketch:

The distance d from the field point to the origin is unchanged in this transformation, but the perpendicular distance of the point from the line source or vortex is given by

$$\mathbf{r'} = \sqrt{\frac{(\mathbf{x} - \lambda \mathbf{y})^2}{1 + \lambda^2}} + \mathbf{z}^2$$

The velocity components are transformed into the reference coordinate system as follows:

$$u = \frac{\lambda u' - v'}{(1 + \lambda^2)^{\frac{1}{2}}}$$
(12)

$$\mathbf{v} = \frac{\lambda \mathbf{v'} + \mathbf{u'}}{(1 + \lambda^2)^{\frac{1}{2}}} \tag{13}$$

$$w = w' \tag{14}$$

Constant source distribution on unswept panel with streamwise taper. The velocity components induced at a point P by a constant source distribution in the plane of the panel are derived by summing the influences of a series of elementary line sources extending across the panel parallel to the leading edge. The geometry of the elementary line source located a distance ξ from the leading edge and having a strength d ξ is illustrated in the following sketch:

In the following derivation, it is assumed that the panel lies in the x, y plane. The distance of the point P from the left end of the line source is $d_1 = [(y - m_1\xi)^2 + (x - \xi)^2 + z^2]\frac{1}{2}$

and the distance from the right end of the line source is $d_2 = [(y - b - m_2\xi)^2 + (x - \xi)^2 + z^2]^{\frac{1}{2}}$. The panel edge slopes m = dy/dx may be arbitrary. The velocity components are obtained by applying a 90 degree coordinate rotation to the line source velocity formulas given by equations (2) - (4), and integrating across the panel chord as follows:

$$u = -v' = \frac{-1}{4\pi} \int_{0}^{0} \frac{(x - \xi) d\xi}{(x - \xi)^{2} + z^{2}} \left[\frac{y - m_{1}\xi}{d_{1}} - \frac{y - b - m_{2}\xi}{d_{2}} \right]$$
(15)

$$v = u' = \frac{1}{4\pi} \int_{0}^{0} \left[\frac{1}{d_{1}} - \frac{1}{d_{2}} \right] d\xi$$
 (16)

$$w = w' = \frac{-z}{4\pi} \int_{0}^{C} \frac{d\xi}{(x - \xi)^{2} + z^{2}} \left[\frac{y - m_{1}\xi}{d_{1}} - \frac{y - b - m_{2}\xi}{d_{2}} \right]$$
(17)

Only the first integral in each formula need be evaluated, as the second integral may be obtained by a simple coordinate translation. For the same reason the integrals are evaluated only at the lower limit. The resulting velocity components correspond to the influence of the inboard corner of the panel leading edge. Denoting these results by the subscript one,

$$u_{1} = \frac{1}{4\pi} \left[\frac{m_{1}}{(1 + m_{1}^{2})^{\frac{1}{2}}} \sinh^{-1} \frac{x + m_{1}y}{[(y - m_{1}x)^{2} + (1 + m_{1}^{2})z^{2}]^{\frac{1}{2}}} - \sinh^{-1} \frac{y}{(x^{2} + z^{2})^{\frac{1}{2}}} \right]$$
(18)

$$\mathbf{v}_{1} = \frac{-1}{4\pi (1 + m_{1}^{2})^{\frac{1}{2}}} \sinh^{-1} \frac{\mathbf{x} + m_{1}\mathbf{y}}{\left[(\mathbf{y} - m_{1}\mathbf{x})^{2} + (1 + m_{1}^{2})\mathbf{z}^{2} \right]^{\frac{1}{2}}}$$
(19)

$$w_{1} = \frac{1}{4\pi} \tan^{-1} \frac{z(x^{2} + y^{2} + z^{2})^{\frac{1}{2}}}{-x(y - m_{1}x) + m_{1}z^{2}}$$
(20)

The velocity components induced by the remaining three corners are obtained by applying the above formulas with the origin shifted to the corner under consideration, and using the appropriate edge slope. The influence of the complete panel is obtained by summing the influences of the four corners, where the subscripts refer to the corner numbers shown on the sketch.

$$u = u_1 - u_2 - u_3 + u_4$$
 (21)

$$v = v_1 - v_2 - v_3 + v_4$$
(22)

$$w = w_1 - w_2 - w_3 + w_4$$
(23)

The velocity components given by equations (18) - (20) are expressed in terms of a coordinate system lying in the plane of the panel. One additional rotation of coordinates about the y axis is required to obtain the formulas used in the computer program. Referring to the following sketch, the panel coordinate system now denoted by primes, is rotated through an angle δ with respect to the unprimed reference coordinate system. The reference system also has its origin at the inboard corner of the panel leading edge, but the x axis is parallel to the body reference axis.

Defining $a = tan\delta$, the coordinate transformations are

$$x' = \frac{x + az}{(1 + a^2)^{\frac{1}{2}}}$$
(24)

$$\mathbf{y'} = \mathbf{y} \tag{25}$$

$$z' = \frac{z - ax}{(1 + a^2)^{\frac{1}{2}}}$$
(26)

$$m' = \frac{m}{(1 + a^2)^{\frac{1}{2}}}$$
(27)

Similarly, the velocity components become:

$$u = \frac{u' - aw'}{(1 + a^2)^{\frac{1}{2}}}$$
$$= \frac{1}{4\pi (1 + a^2)^{\frac{1}{2}}} [mG - H - aF]$$
(28)

$$v = v' = \frac{-G(1 + a^2)^{\frac{1}{2}}}{4\pi}$$
 (29)

$$w = \frac{w' + au'}{(1 + a^2)^{\frac{1}{2}}}$$
$$= \frac{1}{4\pi (1 + a^2)^{\frac{1}{2}}} [F + a(mG - H)]$$
(30)

where:

$$F = \tan^{-1} \frac{(z - ax)(x^{2} + y^{2} + z^{2})^{\frac{1}{2}}}{-x(y - mx) - z(ay - mz)}$$

$$G = \frac{1}{(1 + a^{2} + m^{2})^{\frac{1}{2}}} \sinh^{-1} \frac{x + my + az}{[(y - mx)^{2} + (ay - mz)^{2} + (z - ax)^{2}]^{\frac{1}{2}}}$$

$$H = \sinh^{-1} \frac{y}{(x^{2} + z^{2})^{\frac{1}{2}}}$$

<u>Constant source distribution on swept panel with spanwise</u> <u>taper</u>. The velocity components induced at a point P by a constant source distribution in the plane of a swept panel are derived in a similar manner by summing the influences of a series of elementary line sources extending across the panel parallel to the leading edge. In this case, the line sources are swept back by the angle Λ . The geometry of an elementary line source located a distance ξ from the leading edge, and having strength d ξ , is illustrated on the following sketch:

The panel is assumed to lie in the x, y plane. The distance of the point P from the left end of the line source is $d_1 = [(x - \xi)^2 + y^2 + z^2]^{\frac{1}{2}}$ and the distance from the right end of the line source is $d_2 = [(x - \xi - \lambda b)^2 + (y - b)^2 + z^2]^{\frac{1}{2}}$, where λ is the tangent of the leading edge sweepback angle Λ . The velocity components are obtained by rotating the coordinates of the line source velocity formulas through the angle Λ , and integrating across the panel chord as follows:

$$u = \frac{\lambda u' - v'}{(1 + \lambda^2)^{\frac{1}{2}}}$$

$$= \frac{1}{4\pi (1 + \lambda^2)^{\frac{1}{2}}} \int_{0}^{C} \left\{ \lambda \left[\frac{1}{d_2} - \frac{1}{d_1} \right] + \frac{x - \xi - \lambda y}{r^2} \left[\frac{\lambda (x - \xi) + y}{d_1} - \frac{\lambda (x - \xi - \lambda b) + y - b}{d_2} \right] \right\} d\xi$$
(31)

$$v = \frac{\lambda v' + u'}{(1 + \lambda^2)^{\frac{1}{2}}}$$

$$= \frac{1}{4\pi (1 + \lambda^2)^{\frac{1}{2}}} \int_{0}^{C} \left\{ \frac{1}{d_2} - \frac{1}{d_1} - \frac{\lambda (x - \xi - \lambda y)}{r^2} \left[\frac{\lambda (x - \xi) + y}{d_1} - \frac{\lambda (x - \xi - \lambda y)}{d_2} \right] \right\} d\xi \qquad (32)$$

$$= \frac{z(1 + \lambda^{2})^{\frac{1}{2}}}{4\pi} \int_{0}^{c} \frac{d\xi}{r^{2}} \left[\frac{\lambda(x - \xi) + y}{d_{1}} - \frac{\lambda(x - \xi - \lambda b) + y - b}{d_{2}} \right] (33)$$

where $r^{2} = (x - \xi - \lambda y)^{2} + (1 + \lambda^{2}) z^{2}$

In order to obtain the results in standard form the integrals are divided by $(1 + \lambda^2)^{\frac{1}{2}}$ prior to their evaluation. As before, only those integrals associated with the inboard edge of the panel require evaluation, and then only at their lower limit. The resulting velocity components correspond to the influence of the inboard corner of the panel leading edge. Denoting these results by the subscript one,

$$u_{1} = \frac{-1}{4\pi (1 + \lambda^{2})^{\frac{1}{2}}} \sinh^{-1} \frac{\lambda x + y}{\left[(x - \lambda y)^{2} + (1 + \lambda^{2}) z^{2} \right]^{\frac{1}{2}}}$$
(34)

$$\mathbf{v}_{1} = \frac{1}{4\pi} \left[\frac{\lambda}{(1+\lambda^{2})^{\frac{1}{2}}} \sinh^{-1} \frac{\lambda \mathbf{x} + \mathbf{y}}{\left[(\mathbf{x} - \lambda \mathbf{y})^{2} + (1+\lambda^{2}) \mathbf{z}^{2} \right]^{\frac{1}{2}}} \right]$$

$$-\sinh^{-1}\frac{x}{(y^2 + z^2)^{\frac{1}{2}}}$$
 (35)

$$w_{1} = \frac{1}{4\pi} \left[\tan^{-1} \frac{z \left[x^{2} + y^{2} + z^{2} \right] \frac{1}{2}}{-xy + \lambda \left(y^{2} + z^{2} \right)} - \tan^{-1} \frac{z}{y} \right]$$
(36)

The velocity components induced by the remaining three corners are obtained by applying the above formulas with the origin shifted, and using the value of λ corresponding to the leading or trailing edge. The influence of the complete panel is obtained by summing the influences of the four corners as indicated by equations (21) - (23).

Linearly varying source distribution on swept panel with spanwise taper.- The velocity components induced by a source distribution having a linear variation in the chordwise direction are derived in the same manner as described in the preceding section for the constant source distribution. In this case, however, the expressions under the integral signs in equations (31) - (33) are multiplied by ξ prior to integration. The velocity components induced by the inboard corner of the panel leading edge are given below:

$$u_{1} = \frac{-1}{4\pi} \left\{ \frac{x - \lambda y}{(1 + \lambda^{2})^{\frac{1}{2}}} \sinh^{-1} \frac{\lambda x + y}{[(x - \lambda y)^{2} + (1 + \lambda^{2})z^{2}]^{\frac{1}{2}}} \right\}$$

+ y
$$\sinh^{-1} \frac{x}{(y^2 + z^2)^{\frac{1}{2}}}$$

1

$$- z \left[\tan^{-1} \frac{z (x^{2} + y^{2} + z^{2})^{\frac{1}{2}}}{-xy + \lambda (y^{2} + z^{2})} - \tan^{-1} \frac{z}{y} \right] \right\}$$
(37)

$$\mathbf{v}_{1} = \frac{1}{4\pi} \left\{ (\mathbf{x} - \lambda \mathbf{y}) \left[\frac{\lambda}{(1 + \lambda^{2})^{\frac{1}{2}}} \sinh^{-1} \frac{\lambda \mathbf{x} + \mathbf{y}}{\left[(\mathbf{x} - \lambda \mathbf{y})^{2} + (1 + \lambda^{2}) z^{2} \right]^{\frac{1}{2}}} \right\}$$

$$-\sinh^{-1}\frac{x}{(y^2 + z^2)^{\frac{1}{2}}} + x + [x^2 + y^2 + z^2]^{\frac{1}{2}}$$

$$-\lambda z \left[\tan^{-1} \frac{z (x^{2} + y^{2} + z^{2})^{\frac{1}{2}}}{-xy + \lambda (y^{2} + z^{2})} - \tan^{-1} \frac{z}{y} \right] \right\}$$
(38)

$$w_{1} = \frac{1}{4\pi} \left\{ (x - \lambda y) \left[\tan^{-1} \frac{z (x^{2} + y^{2} + z^{2})^{\frac{1}{2}}}{-xy + \lambda (y^{2} + z^{2})} - \tan^{-1} \frac{z}{y} \right] \right. \\ + z \left[(1 + \lambda^{2})^{\frac{1}{2}} \sinh^{-1} \frac{\lambda x + y}{[(x - \lambda y)^{2} + (1 + \lambda^{2})z^{2}]^{\frac{1}{2}}} - \lambda \sinh^{-1} \frac{x}{(y^{2} + z^{2})^{\frac{1}{2}}} \right] \right\}$$
(39)

The velocity components induced by the remaining three corners are obtained by applying the above formulas with the origin shifted, and using the appropriate value of λ . The influence of the complete panel is obtained by summing the influences of the four corners as indicated by equations (21) - (23).

<u>Constant vortex distribution on swept panel with spanwise</u> <u>taper</u>.- The velocity components induced at a point P by a constant vortex distribution in the plane of a swept panel are derived by summing the influences of elementary line vortices extending across the panel parallel to the leading edge, and concentrated edge vortices extending back to infinity from the panel side edges. The geometry of an elementary line vortex located a distance ξ from the leading edge, and having strength d ξ , is illustrated on the following sketch:

The influence of the bound vortices are considered first. The distance of the point P from the left end of the vortex is $d_1 = [(x - \xi) + y^2 + z^2]^{\frac{1}{2}}$, and the distance from the right end of the vortex is $d_2 = [(x - \xi - \lambda b)^2 + (y - b)^2 + z^2]^{\frac{1}{2}}$, where λ is the tangent of the leading edge sweepback angle as before. The velocity components are obtained by rotating the coordinates of the line vortex velocity formulas through the angle Λ , and integrating from the leading edge to infinity as follows:

$$u = \int_{0}^{\infty} \frac{\lambda u' - v'}{(1 + \lambda^2)^{\frac{1}{2}}} d\xi$$
$$= \frac{z}{4\pi} \int_{0}^{\infty} K d\xi \qquad (40)$$

$$\mathbf{v} = -\lambda \mathbf{u} \tag{41}$$

$$w = \frac{-1}{4\pi} \int_{0}^{\infty} (x - \xi - \lambda y) K d\xi$$
 (42)

where
$$K = \frac{1}{r^2} \left[\frac{\lambda (x - \xi) + y}{d_1} - \frac{\lambda (x - \xi - \lambda b) + y - b}{d_2} \right]$$

and
$$r^2 = (x - \xi - \lambda y)^2 + (1 + \lambda^2) z^2$$

Only those integrals corresponding to the inboard edge of the panel require evaluation, since the outboard edge can be obtained by a coordinate translation. In this case, however, both upper and lower limits of the integrals must be evaluated to obtain the correct results. The resulting velocity components give the influence of a semi-infinite region bounded by the leading edge and the x axis, with origin at the inboard leading edge corner of the panel. They are identified by the subscript one.

$$u_{1} = \frac{1}{4\pi} \left[\tan^{-1} \frac{z (x^{2} + y^{2} + z^{2})^{\frac{1}{2}}}{-xy + \lambda (y^{2} + z^{2})} - \tan^{-1} \frac{z}{y} \right]$$
(43)

$$\mathbf{v}_1 = -\lambda \mathbf{u}_1 \tag{44}$$

$$w_{1} = \frac{1}{4\pi} \left[(1 + \lambda^{2})^{\frac{1}{2}} \sinh^{-1} \frac{\lambda x + y}{\left[(x - \lambda y)^{2} + (1 + \lambda^{2}) z^{2} \right]^{\frac{1}{2}}} - \lambda \sinh^{-1} \frac{x}{(y^{2} + z^{2})^{\frac{1}{2}}} - \lambda \log (y^{2} + z^{2})^{\frac{1}{2}} \right]$$
(45)

It should be noted that the last term of equation (45) is obtained by considering the influence of both inboard and outboard edges of the panel simultaneously as the upper limit of the integral approaches infinity.

The edge vortex contributes only to the v and w components of velocity. The velocity components are obtained by integrating equations (7) and (8) for a line vortex of infinite length with respect to ξ , as follows:

$$\Delta v_{1} = \frac{z}{4\pi} \int_{0}^{\infty} \frac{d\xi}{y^{2} + z^{2}} \left[1 + \frac{x - \xi}{\left[(x - \xi)^{2} + y^{2} + z^{2} \right]^{\frac{1}{2}}} \right]$$
$$= \frac{z}{4\pi} \left[\frac{x + (x^{2} + y^{2} + z^{2})^{\frac{1}{2}}}{y^{2} + z^{2}} \right]$$
(46)

$$\Delta w_1 = \frac{-y}{4\pi} \left[\frac{x + (x^2 + y^2 + z^2)^{\frac{1}{2}}}{y^2 + z^2} \right]$$
(47)

Therefore, the velocity components induced by the inboard leading edge corner of the panel are given by equation (43), the sum of equations (44) and (46), and the sum of equations (45) and (47). The velocity components induced by the remaining three corners are obtained by applying these equations with the origin shifted, and using the appropriate value of λ . The influence of the complete panel is obtained by summing the influences of the four corners as indicated by equations (21) -(23). Linearly varying vortex distribution on swept panel with spanwise taper. A vortex distribution is considered which has a linear variation in the chordwise direction, and lies within the triangular region bounded by the panel leading and trailing edges extended to intersection, and the panel inboard edge. The velocity components induced at a point P by this vortex distribution are derived in three steps. In the first step, the velocities induced by a horseshoe vortex of strength ξ d ξ having its bound segment located along a radial line from the intersection of the leading and trailing edges are evaluated and integrated across the panel chord. The geometry of the bound and trailing segments of the horseshoe vortex are shown on the following sketch.

The bound vortex is located a distance ξ from the panel origin. The point P is located a distance $d_1 = [(x - \xi)^2 + y^2 + z^2]\frac{1}{2}$ from the inboard end of the vortex, and a distance $d_2 = [(x - \xi - \lambda b)^2 + (y - b)^2 + z^2]\frac{1}{2}$ from the outboard end. In this derivation, the slope of the vortex is a linear function of ξ , $\lambda = \lambda_1 + a\xi/c$, where $a = \lambda_2 - \lambda_1$, b = c/a, and λ_1 and λ_2 are the slopes of the leading and trailing edges of the panel, respectively. The line vortex formulas are rotated through the angle Λ , as before, to obtain expressions for the velocity components of the bound vortex prior to integration. The velocity components are given below in integral form:

$$u = \frac{z}{4\pi c_0} \int \frac{c_{K\xi}}{r^2} d\xi$$
 (48)

$$v = -\lambda u \tag{49}$$

$$w = -\frac{1}{4\pi c} \int_{0}^{C} \frac{(x - \xi - \lambda y) K\xi}{r^{2}} d\xi$$
 (50)

where $\lambda = \lambda_1 + a\xi/c$

$$K = \frac{\lambda (\mathbf{x} - \xi) + \mathbf{y}}{d_1} - \frac{\lambda (\mathbf{x} - \xi - \lambda \mathbf{b}) + \mathbf{y} - \mathbf{b}}{d_2}$$
$$\mathbf{r}^2 = (\mathbf{x} - \xi - \lambda \mathbf{y})^2 + (1 + \lambda^2) \mathbf{z}^2$$

These integrals are evaluated by making use of the following substitution in terms of the integration variable χ .

$$\xi = \frac{c[(x - \lambda_1 y) (c - ay) - a\lambda_1 z^2]}{(c - ay)^2 + a^2 z^2} - \chi$$
(51)

After a lengthy integration procedure, the velocity components induced by the inboard edge of the panel are obtained. In the following formulas, the parameter λ is redefined as the panel leading edge slope.

$$u = \frac{c}{4\pi\rho^{2}} \left\{ z \left[\frac{ad}{c} + \left(\lambda - \frac{2as}{\rho^{2}} \right) G_{2} \right] + \frac{z}{\rho^{2}} \left[(c\lambda - ax)as - (c - ay)e^{2} \right] G_{1} - \frac{1}{\rho^{2}} \left[(c\lambda - ax)az^{2} + (c - ay)s \right] F_{1} \right\}_{0}^{C}$$
(52)

$$\mathbf{v} = - (c\lambda - a\mathbf{x})(c - a\mathbf{y})\mathbf{u}/\rho^2 - a\mathbf{zt}$$
 (53)

$$w = - (c - ay)t + (c\lambda - ax)azu/\rho^2$$
(54)

where
$$t = \frac{-1}{4\pi\rho^2} \left\{ d \left[\frac{a(x + \xi)}{2c} - \frac{(c\lambda - ax)(c - ay)}{\rho^2} \right] \right\}$$

+
$$\left[\frac{c}{\rho^{4}}\left[(c - ay)(c\lambda - ax)s + ae^{2}z^{2}\right] - y + \frac{ar^{2}}{2c}\right]G_{2}$$

$$-\frac{e^{2}}{\rho^{4}}\left[(c - ay)s + (c\lambda - ax)az^{2}\right]G_{1}$$
$$+\frac{zc}{\rho^{4}}\left[(c - ay)e^{2} - (c\lambda - ax)as\right]F_{1}\bigg\}_{0}^{C}$$
(55)

and
$$d = [(x - \xi)^{2} + r^{2}]^{\frac{1}{2}}$$

$$r^{2} = y^{2} + z^{2}$$

$$\rho^{2} = (c - ay)^{2} + a^{2}z^{2}$$

$$e^{2} = (c\lambda - ax)^{2} + \rho^{2}$$

$$s = (c - ay)(x - \lambda y) + a\lambda z^{2}$$

$$F_{1} = \tan^{-1}\frac{zd}{(\lambda - a\xi/c)r^{2} - y(x - \xi)}$$
(56)

$$G_{1} = \frac{1}{e} \sinh^{-1} \frac{(c\lambda - ax)(x - \xi) + y(c - ay) - az^{2}}{c[[x - \lambda y + (c - ay)\xi/c]^{2} + z^{2}[1 + (\lambda - a\xi/c^{2}]]^{\frac{1}{2}}}$$
(57)

$$G_2 = \sinh^{-1} \frac{x - \xi}{r}$$
(58)

It should be noted that the functions F_1 , G_1 and G_2 differ from those defined following equation (30).

The distribution of vorticity corresponding to these functions can be determined by examining the behaviour of the axial velocity u for z = 0. From equation (51),

$$u = \frac{-c(x - \lambda y)}{4(c - ay)^2}$$

Along the panel leading edge, $x = \lambda y$ and therefore u = 0. Along the trailing edge $x = c + \lambda_y y$, therefore

$$u = \frac{-c}{4(c - ay)}$$
 (59)

Thus, the vorticity distribution is seen to vary linearly chordwise, and inversely as the local chord spanwise.

The contribution of the trailing vortex originating along the inboard edge of the panel is considered next. This vortex contributes only v and w components of velocity, which are obtained by multiplying equations (7) and (8) for a line vortex of infinite length by ξ , and integrating. The results are as follows:

$$\Delta v = \frac{z}{4\pi c} \int \frac{\xi \, d\xi}{y^2 + z^2} \left[1 + \frac{x - \xi}{\left[(x - \xi)^2 + y^2 + z^2 \right]^{\frac{1}{2}}} \right]$$
$$= \frac{-z}{8\pi c} \left\{ \frac{x - \xi}{r^2} \left[x - \xi + \left[(x - \xi)^2 + r^2 \right]^{\frac{1}{2}} \right] + G_2 \right\}_0^C$$
$$- \frac{z}{4\pi r^2} \left[x - c + \left[(x - c)^2 + r^2 \right]^{\frac{1}{2}} \right]$$
(60)

Similarly,

$$\Delta w = \frac{-y}{8\pi c} \left\{ \frac{x - \xi}{r^2} \left[x - \xi + \left[(x - \xi)^2 + r^2 \right]^{\frac{1}{2}} \right] + G_2 \right\}_0^C + \frac{y}{4\pi r^2} \left[x - c + \left[(x - c)^2 + r^2 \right]^{\frac{1}{2}} \right]$$
(61)

The first term in the braces gives the velocities induced by a pair of line vortices of quadratic strength along the x axis, and the last term gives the velocities induced by a linearly varying vortex from the panel trailing edge. The combination gives the contribution of a line vortex of quadratic strength to the trailing edge, followed by a constant vortex of strength c/2 extending downstream in the wake. A constant vortex of equal but opposite strength trails downstream from the outboard tip of the triangular panel.

In the second step, the velocities induced by a vortex distribution having a linear variation in both chordwise and spanwise directions is derived and subtracted from those given above to obtain the velocity components corresponding to a vortex distribution having a linear variation chordwise, but remaining constant spanwise. In this step, the bound vortex located along the radial line from the intersection of the panel leading and trailing edges is given a linear variation in the spanwise direction prior to performing the chordwise integration. The linearly varying bound vortex is made up by superimposing a series of horseshoe vortices of strength $\xi d\xi d\eta$ with inboard edge located at η , and outboard edge located at b. The geometry is illustrated below:

The contribution of the bound segment of this elementary horseshoe vortex is obtained from the line vortex formulas, with the origin shifted to the point $(\xi + \lambda\eta, \eta)$, and the coordinates rotated through the angle Λ . The point P is located a distance $d_1 = [(x - \xi - \lambda\eta)^2 + (y - \eta)^2 + z^2]\frac{1}{2}$ from the inboard end of the bound vortex, and $d_2 = [(x - \xi - \lambda b)^2 + (y - b)^2 + z^2]\frac{1}{2}$ from the outboard end. The velocity components are given below in integral form:

$$u = \frac{z}{4\pi c} \int_{0}^{c} \frac{\xi d\xi}{r^{2}} \int_{0}^{b} K d\eta$$
 (62)

$$\mathbf{v} = -\lambda \mathbf{u} \tag{63}$$

$$w = \frac{-1}{4\pi c} \int_{0}^{c} \frac{\xi (x - \xi - \lambda y) d\xi}{r^{2}} \int_{0}^{b} K d\eta$$
 (64)

where $\lambda = \lambda_1 + a\xi/c$

$$a = \lambda_2 - \lambda_1$$

$$K = \frac{\lambda (\mathbf{x} - \xi - \lambda \eta) + \mathbf{y} - \eta}{d_1} - \frac{\lambda (\mathbf{x} - \xi - \lambda b) + \mathbf{y} - b}{d_2}$$

$$r^2 = (\mathbf{x} - \xi - \lambda \mathbf{y})^2 + (1 + \lambda^2) z^2$$

Only the first term in the K integral requires evaluation, as the second term cancels in the superposition process. Integrating this with respect to η ,

$$I = \int_{0}^{b} \frac{\lambda (x - \xi) + y - (1 + \lambda^{2})\eta}{d_{1}} d\eta$$

= d - d₂ (65)

where $d = [(x - \xi)^2 + y^2 + z^2]^{\frac{1}{2}}$

and d, is the same as previously defined.

The integrals (60) - (62) may now be written

$$u = \frac{z}{4\pi c} \int_{0}^{C} \frac{(d - d_{2})\xi \, d\xi}{r^{2}}$$
(66)

$$\mathbf{v} = -\lambda \mathbf{u} \tag{67}$$

$$w = \frac{-1}{4\pi c} \int_{0}^{c} \frac{(d - d_{2})(x - \xi - \lambda y)\xi}{r^{2}} d\xi$$
 (68)

These integrals are evaluated, using the substitution given by equation (51). The velocity components induced by the inboard edge of the panel are given below, where λ is redefined as the panel leading edge slope.

$$u = \frac{-c}{4\pi\rho^{2}} \left\{ z \left[x - \frac{2(c\lambda - ax)(y(c - ay) - az^{2})}{\rho^{2}} \right] G_{2} - zd - \frac{z}{\rho^{2}} \left[(c\lambda - ax)cs - e^{2}(y(c - ay) - az^{2}) \right] G_{1} + \frac{1}{\rho^{2}} \left[(c\lambda - ax)cz^{2} + s(y(c - ay) - az^{2}) \right] F_{1} \right\}_{0}^{C}$$
(69)

$$v = - (c\lambda - ax)(c - ay)u/\rho^2 - azt$$
 (70)

$$w = -(c - ay)t + (c\lambda - ax)azu/\rho^{2}$$
 (71)

where t =
$$\frac{c}{4\pi\rho^2} \left\{ \frac{d}{c} \left[\frac{(c\lambda - ax)(y(c - ay) - az^2)}{\rho^2} - \frac{x + \xi}{2} \right] + \left[\frac{-1}{\rho^4} \left[(c\lambda - ax)(y(c - ay) - az^2)s + ce^2z^2 \right] + \frac{r^2}{2c} \right] G_2 \right\}$$

$$+ \frac{e^{2}}{\rho^{2}} \left[(y(c - ay) - az^{2})s + c(c\lambda - ax)z^{2} \right] G_{1}$$

$$+ \frac{z}{\rho^{2}} \left[(c\lambda - ax)cs - e^{2}(y(c - ay) - az^{2}) \right] F_{1} \Big]_{0}^{C}$$
(72)

and the remaining functions and variables are defined following equation (55).

The distribution of vorticity corresponding to these new velocity functions is given by the value of u for z = 0. From equation (68)

$$u = \frac{-cy(x - \lambda y)}{4(c - ay)^2}$$

The axial velocity is zero along the leading edge, and along the trailing edge, where $x = c + \lambda_2 y$,

$$u = \frac{-cy}{4(c - ay)}$$
 (73)

If the new axial velocity function is multiplied by a/c and subtracted from the original, the value of u along the trailing edge will be constant. This can be seen by multiplying equation (73) by a/c and subtracting from equation (59). The result is:

$$u = \frac{-c}{4(c - ay)} + \frac{ay}{4(c - ay)} = -\frac{1}{4}$$

Thus, the combined functions give the desired vortex distribution on the panel, which is zero along the leading edge, constant along the trailing edge, and varies linearly in the chordwise direction. The velocity components corresponding to this vortex distribution are given below:

$$u = \frac{-1}{4\pi\rho^2} \left\{ sF_1 + z \left[e^2 G_1 - (c\lambda - ax) G_2 \right] \right\}_0^C$$
(74)

$$\mathbf{v} = - (c\lambda - a\mathbf{x})(c - a\mathbf{y})\mathbf{u}/\rho^2 - a\mathbf{zt}$$
(75)

$$w = - (c - ay)t + (c\lambda - ax)azu/\rho^2$$
(76)

where:
$$t = \frac{c}{4\pi\rho^2} \left\{ \frac{s}{\rho^2} \left[e^2 G_1 - (c\lambda - ax) G_2 \right] - \frac{ze^2}{\rho^2} F_1 + \left(y - \frac{ar^2}{c} \right) G_2 + \frac{c\lambda - ax}{c} d \right\}_0^C$$
(77)

and the remaining functions and variables are defined following equation (55). It should be noted that the final velocity functions given by equations (74) - (77) are considerably simpler than either of the preceding sets.

The derivation of the velocity component formulas for this vortex distribution is completed by adding the contribution of the wake. Returning to the sketch on page 26, it can be seen that the elementary horseshoe vortices generate a trailing vortex sheet of constant strength. This vortex sheet contributes only to the v and w components of velocity. The v component of velocity will be derived first by integrating equation (7) for a line vortex of infinite length, as follows:

$$\Delta v = \frac{-az}{4\pi c^2} \int_{0}^{C} \xi \, d\xi \int_{0}^{D} \frac{d\eta}{(y - \eta)^2 + z^2} \left[1 + \frac{x - \xi - \lambda \eta}{d_1} \right]$$
(78)

where
$$d_1 = [(x - \xi - \lambda \eta)^2 + (y - \eta)^2 + z^2]^{\frac{1}{2}}$$

and
$$\lambda = \lambda_1 + a\xi/c$$

The inner integral is evaluated first, giving

$$\Delta v = \frac{-a}{4\pi c^2} \int_{0}^{C} \left[\tan^{-1} \frac{z \left[(x - \xi)^2 + r^2 \right] \frac{1}{2}}{-y (x - \xi)^2 + \lambda r^2} - \tan^{-1} \frac{z}{y} \right] \xi \, d\xi$$
$$= \frac{-a}{8\pi} \left\{ \left[\tan^{-1} \frac{z (x - \xi)^2 + r^2 \frac{1}{2}}{-y (x - \xi) + \lambda r^2} - \tan^{-1} \frac{z}{y} \right] \right\}$$
$$- \frac{zt}{c} + \frac{(x - \lambda y) (c - ay) + a\lambda z^2}{(c - ay)^2 + a^2 z^2} \, u \right\}_{0}^{C}$$
(79)

where u and t are given by equations (74) and (77) respectively, $r = (y^2 + z^2)^{\frac{1}{2}}$, and λ is redefined as the leading edge slope λ_1 .
The w component of velocity is derived in a similar manner, by integrating equation (8) for a line vortex of infinite length. Here,

$$\Delta w = \frac{a}{4\pi c_0^2} \int_0^c \xi \, d\xi \int_0^b \frac{(y-\eta)d\eta}{(y-\eta)^2 + z^2} \left[1 + \frac{x-\xi-\lambda\eta}{d_1}\right] \quad (80)$$

where d₁ is defined above, and $\lambda = \lambda_1 + a\xi/c$.

The inner integral is evaluated first, giving

$$\Delta w = \frac{a}{4\pi c_0^2} \int_{0}^{C} \left[\frac{\lambda}{(1+\lambda^2)^{\frac{1}{2}}} \sinh^{-1} \frac{y+\lambda(x-\xi)}{[(x-\xi-\lambda y)^2+(1+\lambda^2)z^2]^{\frac{1}{2}}} - \sinh^{-1} \frac{x-\xi}{r} + \log r \right] \xi d\xi$$
(81)

Only the last two integrals can be evaluated in closed form. Thus

$$\Delta w = \frac{a}{4\pi c^2} \left[I_1 - I_2 + I_3 \right]$$
(82)

where

$$I_{1} = \int_{0}^{C} \frac{\lambda\xi}{(1+\lambda^{2})^{\frac{1}{2}}} \sinh^{-1} \frac{y+\lambda(x-\xi)}{[(x-\xi-\lambda y)^{2}+(1+\lambda^{2})z^{2}]^{\frac{1}{2}}} d\xi \quad (83)$$

$$I_{2} = \frac{1}{4} \left\{ (3x + \xi) \left[d - (x - \xi)G_{2} \right] + d^{2}G_{2} \right\}_{0}^{C}$$
(84)

$$I_3 = \frac{c^2}{2} \log r$$
 (85)

where $\lambda = \lambda_1 + a\xi/c$, and d, r, and G₂ are defined following equation (55). Equation (83) is integrated numerically in the computer program.

It should be noted that Δv and Δw as derived above have been multiplied by -a/c prior to integration in order to correctly account for the contribution of the wake. The velocity components induced by a vortex distribution which has a linear variation in the chordwise direction, and remains constant in the spanwise direction have now been derived for a triangular region bounded by the panel leading and trailing edges, and the inboard side edge. In the third step of this analysis, these velocity component formulas are combined to give the influence of a swept, tapered panel of arbitrary span. This is accomplished by superimposing two of these triangular regions having common outboard intersections and equal values of the leading and trailing edge slopes. The superposition process is illustrated by the following sketch:

The upper triangular panel has a concentrated vortex of strength c_1 trailing from the inboard edge, and a vortex sheet of strength a behind the trailing edge. There is no concentrated vortex shed from the outboard tip, since the circulation around the trailing vortex sheet is equal and opposite to that of the concentrated edge vortex. A similar vortex pattern is shed by the second triangular panel, except that the concentrated vortex has a strength c_2 .

The influence of a swept, tapered panel of finite span b can be obtained by superimposing the two triangular panels as indicated. It should be noted that the concentrated vortices trailing from the edges of this panel are of unequal strength if the panel is tapered, the difference being made up by the vortex sheet in the wake. The vortex distribution on the panel is zero along the leading edge, and varies linearly in the chordwise direction to a constant value along the trailing edge. The axial component of velocity u is given by equation (74), the v component of velocity is given by the sum of equations (60), (75) and (81), and the w component of velocity is given by the sum of equations (61), (76), and (82).

If the influence of a triangular panel is required, special care must be taken in the evaluation of equations (74) and (77). In this case, the chord of the outboard panel subtracted in the superposition process is zero, and two terms in the equations become indeterminate. The limiting values of these terms are given below.

First, the function G, becomes:

$$\lim_{c \to 0} \left[G_{1} \right]_{0}^{c} = \frac{1}{2} \log \frac{(x - \lambda_{1}y)^{2} + (1 + \lambda_{1}^{2})z^{2}}{(x - \lambda_{2}y)^{2} + (1 + \lambda_{2})^{2}z^{2}}$$
(86)

where λ_1 and λ_2 are the slopes of the panel leading and trailing edges.

Second, the last two terms in the expression for t become:

$$\lim_{c \to 0} \left[\frac{1}{c} (r^2 G_2 + xd) \right]_0^c = (x^2 + r^2)^{\frac{1}{2}}$$
(87)

The remaining terms in the equations are unchanged.

Derivation of the Compressible Velocity Components

The compressible velocity components induced by the source and vortex distributions are obtained by applying Gothert's rule to the incompressible velocity components derived in the previous section. The original derivation of Gothert's rule presented in reference 4 considered only compressible subsonic flows; here the rule is extended to include supersonic flows The extended rule states that the velocity components as well. u, v, and w at a point P(x, y, z) in a compressible flow are equal to the real parts of u_i , βv_i and βw_i , where u_i , v_i and w_i are the incompressible velocity components evaluated at a point $P(x, \beta y, \beta z)$, and $\beta = (1 - M^2)^{\frac{1}{2}}$. In subsonic flow, this rule agrees exactly with that given by Gothert if each of the compressible velocity components are divided by the constant β^2 . In supersonic flow, the compressible velocity components become complex functions, and care must be taken to extract the real parts of these functions in order to obtain the correct results. However, this procedure is generally much simpler than formally evaluating the velocity components by integration, and provides a straightforward method for obtaining the supersonic velocity fields corresponding to any existing incompressible flow solution.

A simple example of the extended rule is obtained by transforming the velocity components induced by a line source located along the x axis. The velocity component formulas given by equations (2) - (4) are unchanged by this transformation, except that $d_1 = (x^2 + \beta^2 r^2)^{\frac{1}{2}}$ and $d_2 = ((x - \ell)^2 + \beta^2 r^2)^{\frac{1}{2}}$. Both these terms are real in subsonic flow; but in supersonic flow, both are imaginary ahead of the Mach cone from the origin, d_1 is real but d_2 is imaginary between the Mach cone from the origin and the rear Mach cone, and both are real behind the rear Mach cone. Thus the velocity components are zero ahead of the Mach cone from the origin, and the finite length of the source has no influence on the velocity field except within the rear Mach cone. Considerable advantage is taken of this ability to correctly define the regions of influence of each term in the velocity component formulas in the following applications.

The compressible velocity components for each of the five basic singularity distributions used in this method are presented in the following sections.

<u>Constant source distribution on unswept panel with stream-</u> wise taper.- The incompressible velocity components for this source distribution are given by equations (28) - (30). The corresponding compressible velocity components are:

$$u = \frac{-k}{4\pi (1 + \beta^2 a^2)^{\frac{1}{2}}} \left[aF - (\beta^2 mG - H) / \beta^2 \right]$$
(88)

$$v = \frac{-k(1 + \beta^2 a^2)^{\frac{1}{2}}}{4\pi} G$$
 (89)

$$w = \frac{k}{4\pi (1 + \beta^2 a^2)^{\frac{1}{2}}} \left[F + a (\beta^2 m G - H) \right]$$
(90)

where
$$F = \tan^{-1} \frac{(z - ax) d}{-x(y - mx) - \beta^2 z (ay - mz)}$$
 (91)

$$G = \frac{1}{e} \sinh^{-1} \frac{x'}{\beta r'}$$
(92)

$$H = \beta \sinh^{-1} \frac{\beta y}{(x^2 + \beta^2 z^2)^{\frac{1}{2}}}$$
(93)

and $\beta^2 = 1 - M^2$

$$k = \begin{cases} 1 \text{ for } M \leq 1 \\ 2 \text{ for } M > 1 \end{cases}$$

$$d = (x^{2} + \beta^{2}r^{2})^{\frac{1}{2}}$$

$$e = [1 + \beta^{2}(a^{2} + m^{2})]^{\frac{1}{2}}$$

$$d' = de$$

$$r' = [(y - mx)^{2} + (z - ax)^{2} + \beta^{2}(ay - mz)^{2}]^{\frac{1}{2}}$$

$$x' = x + \beta^{2}(my + az)$$

The constant k gives the correct scaling factor for the supersonic velocity components.

In supersonic flow, the real parts of the functions F, G, and H must be determined. The function F is zero everywhere ahead of the Mach cone from the origin, except for panels having supersonic side edges, when $F = \pm \pi$ within the "twodimensional" region bounded by the Mach waves from the side edge and the Mach cone from the origin. The boundaries of the two-dimensional region are given in the following sketch, which shows the traces of the Mach waves and Mach cone from the origin on a plane perpendicular to the x axis.

The function G takes several different forms depending on the relative sweepback on the side edges. Expressing the function in logarithmic form,

$$G = \frac{1}{e} \log \frac{x' + d'}{\beta'r'} \quad \text{for } e^2 > 0$$

or $G = \frac{d}{x'}$ for $e^2 = 0$

or
$$G = \frac{1}{e'} \cos^{-1} \frac{x'}{\beta'r'}$$
 for $e^2 < 0$
and $-\beta'r' < x' < \beta'r'$

36

or
$$G = \pm \frac{\pi}{e'}$$
 for $e^2 < 0$, $x' \le -\beta'r'$
and $x > \frac{my + az + |ay - mz|e'}{a^2 + m^2}$

or G = 0 elsewhere

where $\beta' = (M^2 - 1)^{\frac{1}{2}}$

$$e' = [-1 - \beta^2 (a^2 + m^2)]^{\frac{1}{2}}$$

Finally, in supersonic flow, the function H becomes:

$$H = \beta' \tan^{-1} \frac{d}{\beta' y} \quad \text{for } x > \beta r$$

or
$$H = 0 \qquad \text{elsewhere} \qquad (95)$$

<u>Constant source distribution on swept panel with spanwise</u> <u>taper.- The incompressible velocity components for this source</u> <u>distribution are given by equations (34) - (36).</u> The corresponding compressible velocity components are:

$$u = \frac{-kG_1}{4\pi}$$
(96)

$$\mathbf{v} = \frac{\mathbf{k}}{4\pi} \left[\lambda \mathbf{G}_1 - \mathbf{G}_2 \right] \tag{97}$$

$$w = \frac{k}{4\pi} \left[F_1 - F_2 \right]$$
(98)

where
$$F_1 = \tan^{-1} \frac{z d}{-xy + \lambda r^2}$$
 (99)

$$F_2 = \tan^{-1} \frac{z}{y}$$
 (100)

$$G_{1} = \frac{1}{e} \sinh^{-1} \frac{\lambda x + \beta^{2} y}{\beta \left[(x - \lambda y)^{2} + (\beta^{2} + \lambda^{2}) z^{2} \right]_{2}^{1}}$$
(101)

37

(94)

$$G_2 = \sinh^{-1} \frac{x}{\beta r}$$

and

 $k = \begin{cases} 1 \text{ for } M \leq 1 \\ 2 \text{ for } M > 1 \\ d = (x^{2} + \beta^{2}r^{2})^{\frac{1}{2}} \\ e^{2} = \beta^{2} + \lambda^{2} \\ r^{2} = y^{2} + z^{2} \end{cases}$

In supersonic flow, the real parts of the functions F_1 , F_2 , G_1 and G_2 must be determined. The function F_2 is always real, and can be dropped from equation (98) without affecting the results since the contributions from the four corners of the panel always cancel. The function F_1 is zero everywhere ahead of the Mach cone from the origin, except for panels having supersonic leading edges, when $F_1 = \pm \pi$ within the "two-dimensional" region bounded by the Mach waves from the leading edge and the Mach cone from the origin. The boundaries of the two-dimensional region for this case are shown on the following sketch:

(102)

The function G_1 takes several different forms depending on the relative sweepback of the panel leading edge. Expressing the function in logarithmic form,

$$G_{1} = \frac{1}{e} \log \frac{x' + d'}{\beta' r'} \quad \text{for } e^{2} > 0$$
or
$$G_{1} = \frac{d}{x'} \quad \text{for } e^{2} = 0$$
or
$$G_{1} = \frac{1}{e'} \cos \frac{x'}{\beta' r'} \quad \text{for } e^{2} < 0$$
and
$$-\beta' r' < x' < \beta' r'$$
or
$$G_{1} = \frac{\pi}{e'} \quad \text{for } e^{2} < 0, x' < -\beta' r'$$
and
$$x > \lambda y + e' |z|$$
or
$$G_{1} = 0 \quad \text{elsewhere} \quad (103)$$
where
$$\beta' = (M^{2} - 1)^{\frac{1}{2}} \quad x' = \lambda x + \beta^{2} y$$

$$e' = (-\beta^{2} - \lambda^{2})^{\frac{1}{2}} \quad r' = [(x - \lambda y)^{2} + e^{2} z^{2}]^{\frac{1}{2}}$$

d' = ed

 $G_2 = 0$

$$G_2 = \log \frac{x+d}{\beta'r}$$
 for $x > \beta r$

elsewhere

or

Linearly varying source distribution on swept panel with spanwise taper. The incompressible velocity components for this source distribution are given by equations (37) - (39). The corresponding compressible velocity components are:

$$u = \frac{-k}{4\pi} \left[(x - \lambda y)G_1 + yG_2 - z(F_1 - F_2) \right]$$
 (105)

$$v = \frac{k}{4\pi} \left[(x - \lambda y) (\lambda G_1 - G_2) + x + d - \lambda z (F_1 - F_2) \right]$$
(106)

(104)

$$w = \frac{k}{4\pi} \left[(x - \lambda y) (F_1 - F_2) + z [e^2 G_1 - \lambda G_2] \right]$$
(107)

where the functions F_1 , F_2 , G_1 , G_2 , d, e, k, and r are defined by equations (99) - (102). In supersonic flow, the behaviour of functions F_1 and F_2 is described following equation (102) and the real parts of G_1 and G_2 are given by equations (103) and (104). The sum (x + d) appearing in equation (106) is replaced by d in supersonic flow, and is real only within the Mach cone from the origin.

Constant vortex distribution on swept panel with spanwise taper. - The incompressible velocity components for the bound vortex distribution are given by equations (43) - (45). The corresponding compressible velocity components are:

$$u = \frac{k}{4\pi} \left[F_1 - F_2 \right] \tag{108}$$

$$\mathbf{v} = -\lambda \mathbf{u} \tag{109}$$

$$w = \frac{k}{4\pi} \left[e^2 G_1 - \lambda G_2 \right]$$
(110)

where the functions F_1 , F_2 , G_1 , G_2 , d, e, k, and r are defined by equations (99) - (102). In supersonic flow, the behaviour of the functions F_1 and F_2 is described following equation (102), and the real parts of G_1 and G_2 are given by equations (103) and (104).

The contribution of the edge vortices in compressible flow is given by

 $\Delta u = 0 \tag{111}$

$$\Delta \mathbf{v} = \frac{\mathbf{k}\mathbf{z}}{4\pi} \frac{\mathbf{x} + \mathbf{d}}{\mathbf{r}^2} \tag{112}$$

$$\Delta w = -\frac{ky}{4\pi} \frac{x+d}{r^2}$$
(113)

In supersonic flow, the sum (x + d) appearing in the above equations is replaced by d, and is real only within the Mach cone from the origin.

Linearly varying vortex distribution on swept panel with spanwise taper. - The incompressible velocity components for the bound vortex distribution are given by equations (74) -(77). The corresponding compressible velocity components are:

$$u = \frac{-k}{4\pi\rho^2} \left\{ sF_1 + z \left[e^2 G_1 - (c\lambda - ax) G_2 \right] \right\}_0^C$$
(114)

$$v = - (c\lambda - ax)(c - ay)u/\rho^2 - azt$$
 (115)

$$w = - (c - ay)t + (c\lambda - ax)azu/\rho^2$$
 (116)

where
$$t = \frac{ck}{4\pi\rho^2} \left\{ \frac{s}{\rho^2} \left[e^2 G_1 - (c\lambda - ax) G_2 \right] - \frac{ze^2}{\rho^2} F_1 + \beta^2 \left(y - \frac{ar^2}{c} \right) G_2 + (c\lambda - ax) d \right\}_0^C$$
 (117)

where

$$k = \begin{cases} 1 \text{ for } M \leq 1 \\ 2 \text{ for } M > 1 \end{cases}$$

$$a = \lambda - \lambda_{2}$$

$$d = [(x - \xi)^{2} + \beta^{2}r^{2}]^{\frac{1}{2}}$$

$$r^{2} = y^{2} + z^{2}$$

$$\rho^{2} = (c - ay)^{2} + a^{2}z^{2}$$

$$e^{2} = (c\lambda - ax)^{2} + \beta^{2}\rho^{2}$$

$$s = (c - ay)(x - \lambda y) + a\lambda z^{2}$$

and

$$F_{1} = \tan^{-1} \frac{zd}{-y(x - \xi) + (\lambda - a\xi/c)r^{2}}$$
(118)

$$G_{1} = \frac{1}{e} \sinh^{-1} \frac{(c\lambda - ax)(x - \xi) + \beta^{2}[y(c - ay) - az^{2}]}{\beta c[[x - \lambda y + (c - ay)\xi/c]^{2} + z^{2}[\beta^{2} + (\lambda + a\xi/c)^{2}]]^{\frac{1}{2}}}$$
(119)

$$G_2 = \sinh^{-1} \frac{x - \xi}{\beta r}$$
(120)

In supersonic flow, the behaviour of function F_1 is described following equation (102), and the real parts of G_1 and G_2 are given by equations (103) and (104), where

$$x' = (c\lambda - ax)(x - \xi) + \beta^{2}[y(c - ay) - az^{2}]$$

$$r' = c[[x - \lambda y + (c - ay)\xi/c]^{2} + z^{2}[\beta^{2} + (\lambda + a\xi/c)^{2}]]^{\frac{1}{2}}$$

$$d' = e d$$

$$e' = [-(c\lambda - ax)^2 - \beta^2 \rho^2]^{\frac{1}{2}}$$

Finally, the contribution of the vortex sheet in the wake in compressible flow is given by

$$\Delta u = 0$$
(121)
$$\Delta v = \frac{-a}{8\pi} \left\{ k (F_1 - F_2) - \frac{zt}{c} + \frac{(x - \lambda y) (c - ay) + a\lambda z^2}{(c - ay)^2 + a^2 z^2} u \right\}_0^C$$
(122)

where u and t are given by equations (114) and (117) respectively.

$$\Delta w = \frac{ka}{4\pi c^2} \left[I_1 - I_2 + I_3 \right]$$
(123)

where I_1 , I_2 and I_3 are given by equations (83) - (85), with the Gothert transformation applied.

Aerodynamic Representation

The source and vortex distributions derived in the preceding sections provide the basis for the aerodynamic representation of the configuration. The strengths of these singularities are determined by satisfying the boundary condition of tangential flow at panel control points for given Mach number and angle of attack. In general, the control points are located at the panel centroids, except where noted below. The body is represented by constant source distributions on surface panels, but two optional methods are available to represent the wing and tail surfaces. (Here, tail surface implies any horizontal or vertical tail or canard surface.)

Planar boundary condition option. - In this option, the panels are located in the mean plane of the wing or tail surfaces. Linearly varying source distributions are used to simulate the airfoil thickness, and linearly varying vortex distributions are used to simulate the effects of camber, twist, and incidence.

The slope of the airfoil thickness distribution is approximated by linear segments between the panel leading and trailing edges. This linear distribution is constructed by superimposing a series of triangular source distributions extending over two adjacent panels. The strength of the triangular source distribution is determined by the slope of the thickness distribution at the intermediate panel edge, as illustrated below:

Chordwise thickness and slope distributions

Triangular source distribution

The same method is used to approximate the chordwise vortex distribution on the wing. In this case, the strengths of the vortex distributions are determined by satisfying the boundary condition that the resultant normal velocity is zero at panel control points. A typical chordwise vortex distribution is shown below:

Chordwise vortex distribution

In subsonic flow, or if the trailing edge is swept behind the Mach line in supersonic flow, the Kutta condition implies that the vorticity goes to zero along the trailing edge. In this case, the control points are located at the panel centroids. If the trailing edge lies ahead of the Mach line in supersonic flow, an additional vortex singularity is added at the trailing edge, as indicated by the dashed line in the above sketch. In this case, an additional control point is added on the trailing edge of the wing, and the intermediate control points adjusted linearly between the leading edge control point and the trailing edge. If the leading edge of the wing lies on or is swept behind the Mach line, the leading edge control point is located at the centroid as before, otherwise the leading edge control point is located on the wing leading edge.

In the non-planar boundary condition option, the panels are located on the upper and lower surfaces of the wing and tail, and linear vortex distributions alone are used to simulate both lift and thickness effects. The upper and lower surface vortex distributions are similar to those described above, and the two vortex sheets are joined together at the leading edge by equating the vortex strengths of the leading edge panels. The resulting continuous distribution of vorticity around the chord is illustrated below.

In subsonic flow, the non-planar boundary condition option presents the problem that one more control point exists than the number of vortex distributions if the Kutta condition is enforced at the trailing edge. An additional source or vortex distribution must be included to make the resulting system of equations determinate. One way to resolve this problem is to introduce an additional pair of trailing edge vortices having equal and opposite strength, as indicated by the dashed line on the above sketch. Another method is to add an internal line source at some point in the interior of the airfoil. In either method, the strength of the additional line source or vortex approaches zero and has small effect on the final solution. The second method is recommended, however, since the first tends to generate an ill-conditioned system of equations for airfoils with small trailing edge angles.

In supersonic flow, a similar problem exists if the trailing edge lies on or is swept behind the Mach line. If the trailing edge lies ahead of the Mach line, additional trailing edge vortex singularities must be added on the upper and lower surfaces, and the strengths of these determined by satisfying the boundary conditions at additional control points on the trailing edge. The remaining vortex strengths are determined as described above. If the leading edge lies ahead of the Mach line, the vortex distributions on the upper and lower surfaces of the airfoil are determined independently using control points located on the panel leading and trailing edges.

The influence of the trailing vortices in the wake is included in the velocity component formulas derived for the constant and linearly varying vortex distributions. Since the wake is assumed to lie in the plane of the panel in these derivations, the wake vortices must be rotated at the leading edge of each downstream panel to follow the contour of the upper or lower surface of the wing to the trailing edge. The paths of the trailing edge vortices are illustrated on the following sketch.

The Boundary Condition Equations

A system of linear equations is established which relates the magnitude of the velocity normal to the surface at each panel control point to the aerodynamic singularity strengths. The geometrical relationship between each influencing panel and control point is required to evaluate the coefficients of this system of equations.

Wing and body panel geometry. - A typical panel subdivision of a configuration which includes a wing, body, and tail is illustrated on figure 1 (page 8). A reference coordinate system is established with origin at or near the nose of the body, having its x axis on the center line and parallel to the body axis, and a vertical z axis. Since symmetry about the xz plane is assumed throughout this analysis, panels are located only on the positive y (right hand) side of the configuration.

The body panel corners are defined by the intersections of a series of planes normal to the x axis, and longitudinal meridian lines. A maximum of 30 rings of panels may be used, each containing up to 20 rows of panels around the circumference. The body panels are numbered in sequence from the bottom to the top of each ring, starting with the forward ring.

The wing and tail surface panel corners are defined by the intersections of a series of vertical planes parallel to the x axis, and lines of constant percent chord. A maximum of 20 columns of panels may be used, including those on the wing and all other horizontal or vertical tail or canard surfaces, and each column may contain up to 30 rows of panels. The wing and tail panels are numbered in sequence from the leading edge to the trailing edge of each column, starting with the inboard column of the wing.

For each panel, the corner point coordinates, centroid coordinates, inclination angles, area, and chord length through the centroid are calculated, using the method outlined in Appendix II. It should be noted that the panel inclination angles δ and θ are related to the direction cosines of the normal as follows:

$$n_{x} = -\sin \delta$$

$$n_{y} = -\cos \delta \sin \theta \qquad (124)$$

$$n_{z} = \cos \delta \cos \theta$$

A primed system of coordinates is introduced, originating at corner point k of panel j, and inclined at the angle θ_i

with respect to the xy plane. For body panels, the x' axis is parallel to the reference x axis, and the y' axis lies in the plane of the panel through the leading edge. The panel is inclined at the angle δ_i to the x'y' plane. For wing panels,

the x' axis lies in the plane of the panel along the inboard side edge, and is perpendicular to the y axis. The z' axis is normal to the panel. In this case, the x' axis is inclined at the angle δ_i to the x axis. The geometry of the wing and body

panels, and panel corner point numbering convention, is illustrated below:

Body panel

Wing panel

The control point of a panel is defined as that point on the panel where the boundary conditions are satisfied, and each panel has a unique control point associated with it. The control point of panel i is normally located at the panel centroid. Exceptions to this rule exist for wing or tail surfaces using planar boundary conditions, as described in the previous section. The coordinates of the control point are given in terms of the primed system originating at corner k of panel j as follows:

For body panels, and wing panels using the planar boundary condition option,

$$x'_{i} = \Delta x$$

$$y'_{i} = \Delta y \cos \theta_{j} + \Delta z \sin \theta_{j}$$

$$z'_{i} = \Delta z \cos \theta_{j} - \Delta y \sin \theta_{j}$$
(125)

where

$$\Delta \mathbf{x} = \mathbf{x}_{i} - \mathbf{x}_{k}$$

$$\Delta z = z_i - z_k$$

 $\Delta y = y_i - y_k$

For wing panels using the non-planar boundary condition option,

$$\mathbf{x}_{i}^{\prime} = \lambda_{1} \Delta \mathbf{x} + \lambda_{2} \Delta \mathbf{y} + \lambda_{3} \Delta \mathbf{z}$$

$$\mathbf{y}_{i}^{\prime} = \mu_{1} \Delta \mathbf{x} + \mu_{2} \Delta \mathbf{y} + \mu_{3} \Delta \mathbf{z}$$

$$\mathbf{z}_{i}^{\prime} = \nu_{1} \Delta \mathbf{x} + \nu_{2} \Delta \mathbf{y} + \nu_{3} \Delta \mathbf{z}$$
(126)

where $\Delta \mathbf{x}$, $\Delta \mathbf{y}$ and $\Delta \mathbf{z}$ are defined above, and

The direction cosines n_x , n_y and n_z are given by equation (124) with subscript j applied to the angles θ and δ . It should be noted that equations (126) reduce to (125) for $\delta_i = 0$.

The coordinates of the image of control point i on the opposite side of the xz plane are given by equations (125) or (126) with $\Delta y = -y_i - y_k$. The image control point is used to

calculate panel symmetry effects.

Calculation of the normal velocity at the control points.-The resultant velocity normal to panel i at the control point is the sum of the normal component of the free stream velocity vector and the normal velocities induced by the panel singularity distributions. In the following analysis, the free stream velocity vector is assumed to have unit magnitude, and lie in the xy plane at an angle α to the x axis. The component of the velocity vector normal to panel i is

$$\omega_{i} = \sin \alpha \cos \theta_{i} \cos \delta_{i} - \cos \alpha \sin \delta_{i}$$
(128)

The three components of velocity parallel to the reference axes at control point i are given by the following equations:

$$\Delta u_{i} = \sum_{j=1}^{N} \left[\left(\lambda_{i} u_{ij}' + \mu_{i} v_{ij}' + \nu_{i} w_{ij}' \right) + \left(\lambda_{i} \overline{u}_{ij}' + \mu_{i} \overline{v}_{ij}' + \nu_{i} \overline{w}_{ij}' \right) \right] \gamma_{j}$$
(129)

$$\Delta \mathbf{v}_{i} = \sum_{j=1}^{N} \left[\left(\lambda_{2} \mathbf{u}_{ij}^{\prime} + \mu_{2} \mathbf{v}_{ij}^{\prime} + \nu_{2} \mathbf{w}_{ij}^{\prime} \right) - \left(\lambda_{2} \overline{\mathbf{u}}_{ij}^{\prime} + \mu_{2} \overline{\mathbf{v}}_{ij}^{\prime} + \nu_{2} \overline{\mathbf{w}}_{ij}^{\prime} \right) \right] \gamma_{j}$$
(130)

$$\Delta w_{i} = \sum_{j=1}^{N} \left[\left(\lambda_{3} u_{ij}^{\prime} + \mu_{3} v_{ij}^{\prime} + \nu_{3} w_{ij}^{\prime} \right) + \left(\lambda_{3} \overline{u}_{ij}^{\prime} + \mu_{3} \overline{v}_{ij}^{\prime} + \nu_{3} \overline{w}_{ij}^{\prime} \right) \right] \gamma_{j}$$
(131)

where N is the total number of singularities Y j is the strength of the jth singularity u'ij, are the three components of velocity induced at control point i by panel j, given in the primed coordinate system of panel j w'ij u'ij, are the three components of velocity induced at image point i by panel j given in the primed coordinate system of panel j w'ij

and the coefficients of the transformation λ , μ , ν , are given by equations (127), where the direction cosines are associated with panel j.

The normal component of velocity at panel i induced by the panel singularity distributions is given in terms of the above velocity components as follows:

$$\Delta \omega_{\mathbf{i}} = v_{1} \Delta \mathbf{u}_{\mathbf{i}} + v_{2} \Delta v_{\mathbf{i}} + v_{3} \Delta w_{\mathbf{i}}$$
(132)

The coefficients v_1 , v_2 , and v_3 are also given by equation (127), except that the direction cosines are associated with panel i.

Combining equations (128) and (132), the resultant normal velocity at control point i is

$$n_{i} = \omega_{i} + \Delta \omega_{i}$$
$$= \omega_{i} + \sum_{j=1}^{N} a_{ij} \gamma_{j}$$
(133)

where the aerodynamic influence coefficient a can be obtained from equations (129) - (132).

For body panels, and wing panels using the planar boundary condition option, the x' axis is parallel to the reference x axis, and $\delta_{1} = 0$. In this case, the normal and tangential

velocity at control point i can be written

$$w_{i}^{"} = \sum_{j=1}^{N} \left[w_{ij}^{'} \cos \left(\theta_{j} - \theta_{i}\right) + v_{ij}^{'} \sin \left(\theta_{j} - \theta_{i}\right) + \overline{w}_{ij}^{'} \cos \left(\theta_{j} + \theta_{i}\right) + \overline{v}_{ij}^{'} \sin \left(\theta_{j} + \theta_{i}\right) \right] \gamma_{j}$$
(134)

$$\mathbf{v}_{i}^{"} = \sum_{j=1}^{N} \left[\mathbf{v}_{ij}^{'} \cos \left(\theta_{j} - \theta_{i}\right) - \mathbf{w}_{ij}^{'} \sin \left(\theta_{j} - \theta_{i}\right) - \overline{\mathbf{v}}_{ij}^{'} \cos \left(\theta_{j} + \theta_{i}\right) + \overline{\mathbf{w}}_{ij}^{'} \sin \left(\theta_{j} + \theta_{i}\right) \right] \gamma_{j}$$
(135)

and the three components of velocity parallel to the reference axes at control point i are:

$$\Delta u_{i} = \sum_{j=1}^{N} (u_{ij}' + \overline{u}_{ij}') \gamma_{j}$$

$$\Delta v_{i} = v_{i}'' \cos \theta_{i} - w_{i}'' \sin \theta_{i}$$

$$\Delta w_{i} = w_{i}'' \cos \theta_{i} + v_{i}'' \sin \theta_{i}$$

$$\Delta w_{i} = row_{i}'' \cos \theta_{i} + row_{i}'' \sin \theta_{i}$$

$$(136)$$
Then, from equation (132)

$$\Delta \omega_{i} = w_{i}^{"} \cos \delta_{i} - \Delta u_{i} \sin \delta_{i}$$
(137)

Formation of the boundary condition equations. - The boundary condition equations are obtained by setting $n_i = 0$ in equation (133). The complete set of equations may be written:

$$\sum_{i=1}^{N} \sum_{j=1}^{N} a_{ij} \gamma_{j} = -\sum_{i=1}^{N} \omega_{i}$$
(138)

Alternatively, in matrix notation,

3.7

$$[A_{ij}] \{ \gamma_j \} = - \{ \omega_i \}$$
 (139)

52

where A is the matrix of aerodynamic influence coefficients, and ω_i is given by equation (128). In general, the matrix is

subdivided into four partitions in order to simplify the calculation procedures. The first partition, ABB, gives the influence of the body panels on the body control points, the second, ABW, gives the influence of the wing panels on the body control points, the third, AWB, gives the influence of the body panels on the wing control points, and the fourth, AWW, gives the influence of the wing panels on the wing control points. Equation (139) is rewritten in terms of these four partitions below.

$$\begin{array}{c|c} ABB & ABW \\ AWB & AWW \end{array} \begin{pmatrix} \gamma_B \\ \gamma_W \end{pmatrix} = - \begin{pmatrix} \omega_B \\ \omega_W \end{pmatrix}$$
 (140)

The subscripts W and B refer to wing or body panels. In the present program, the maximum order of each partition is 600.

The right side of the boundary condition equations is modified if the planar boundary condition option is selected. In this case, the slope of the wing surface is given by:

$$\tan \delta_{i} = \left(\frac{dz_{c}}{dx} \pm \frac{dz_{t}}{dx}\right)_{i}$$
(141)

where $\frac{dz_c}{dx}$ is the slope of the wing camber surface.

$$\frac{dz_t}{dx}$$
 is the slope of the wing thickness distribution.

The positive sign applies to the upper surface, the negative sign to the lower surface. In addition, the normal velocity at control point i is given by

$$\Delta \omega_{i} = \sum_{j=1}^{N} a_{ij} \gamma_{j} + \cos \alpha \sum_{j=1}^{NW} b_{ij} \left(\frac{dz_{t}}{dx} \right)_{j}$$
(142)
where $b_{ij} = \cos \delta_{i} \left(w_{ij} \cos \theta_{i} - v_{ij} \sin \theta_{i} - u_{ij} \tan \delta_{i} \right)$

NW is the number of wing panels,

and u ij, are the velocity components induced at control v ij, point i by the source distribution on wing panel j w

The second term in equation (142) is multiplied by $\cos \alpha$, the projection of the free stream velocity vector in the plane of the wing.

Combining equations (128) and (142)

$$n_{i} = \cos \delta_{i} [\sin \alpha \cos \theta_{i} - \cos \alpha \tan \delta_{i}] + \sum_{j=1}^{N} a_{ij} \gamma_{j} + \cos \alpha \sum_{j=1}^{NW} b_{ij} (\frac{dz_{t}}{dx})_{j}$$
(143)

Setting $n_i = 0$, the new boundary condition equations are:

$$\sum_{i=1}^{N}\sum_{j=1}^{N}a_{ij}\gamma_{j} = \sum_{i=1}^{N}\omega_{i}$$
(144)

where $\omega_{i} = \cos \delta_{i} [\cos \alpha \tan \delta_{i} - \sin \alpha \cos \theta_{i}]$

$$-\cos \alpha \sum_{j=1}^{NW} b_{ij} \left(\frac{dz_t}{ax}\right)_j$$
(145)

On the wing, tan δ is given by equation (141). Furthermore, for panels lying in the plane of the wing,

$$\frac{dz_{t}}{dx}\cos \delta_{i} = \sum_{j=1}^{NW} b_{ij} \left(\frac{dz_{t}}{dx}\right)_{j}$$

So that

$$\omega_{i} = \cos \delta_{i} \left[\cos \alpha \left(\frac{\mathrm{d} z_{c}}{\mathrm{d} x} \right)_{i} - \sin \alpha \cos \theta_{i} \right]$$
(146)

For non-coplanar wing or tail segments, equation (145) must be used.

Solution of the boundary condition equations.- Several methods could be employed to solve the boundary condition equations for the unknown source and vortex strengths. For example, equation (139) could be solved by direct inversion, even though this is generally impractical for dense matrices of orders up to 1200. On the other hand, the partitioned matrix of equation (140) can be solved using the method described in reference 1, which requires the inversion of only the diagonal partitions, having a maximum order of 600, together with matrix multiplications of the off-diagonal partitions.

A rapidly convergent iteration scheme for solving large order systems of equations has been reported in reference 5. In this method, as applied in this report, the partitions are further subdivided into smaller blocks, with no block exceeding order 60. The matrix elements in each block are carefully chosen to represent some well defined feature of the original configuration. For example, a body block represents the influence of one ring of panels around the body, while a wing block represents the influence of one chordwise column of wing panels. For wings using the non-planar boundary condition option, the block size corresponds to the total number of panels on the upper and lower surface of the column.

The initial iteration calculates the source and vortex strengths corresponding to each block in isolation. For this step, only the diagonal blocks are present in the aerodynamic matrix. Once the initial approximation to the source and vortex strengths is determined, the interference effect of each block on all the others is calculated by matrix multiplication. The incremental normal velocities obtained are subtracted from the normal velocities specified by the boundary conditions. This process is repeated 15 to 20 times, or until the residual interference velocities are small enough to ensure that convergence has occured. At present the computer program repeats the iteration a fixed number of times, namely 15.

The procedure is illustrated below for an aerodynamic matrix consisting of nine blocks. The unknown singularity strengths are designated γ_i , the specified normal velocities ω_i .

To solve

 $A_{ij} \quad \gamma_{j} = \omega_{i}$

where

$$A_{ij} = \begin{bmatrix} A_{11} & A_{12} & A_{13} \\ A_{21} & A_{22} & A_{23} \\ A_{31} & A_{32} & A_{33} \end{bmatrix}$$

55

Put A = D + E

$$= \begin{bmatrix} A_{11} & 0 & 0 \\ 0 & A_{22} & 0 \\ 0 & 0 & A_{33} \end{bmatrix} + \begin{bmatrix} 0 & A_{12} & A_{13} \\ A_{21} & 0 & A_{23} \\ A_{31} & A_{32} & 0 \end{bmatrix}$$

Therefore $\begin{bmatrix} D + E \end{bmatrix} \{\gamma\} = \{\omega\}$ or $\{\gamma\} = D^{-1} \{\omega - E\{\gamma\}\}$

First approximation:

 $\{\gamma\}^1 = D^{-1}\{\omega\}$

Calculate $\Delta \omega^1 = E \{\gamma\}^1$

Second approximation:

$$\{\gamma\}^2 = D^{-1}\{\omega - \Delta\omega^1\}$$

Similarly, kth approximation:

$$\{\gamma\}^{k} = D^{-1} \{\omega - \Delta \omega^{k-1}\}$$

Note that
$$D^{-1} = \begin{bmatrix} A_{11}^{-1} & 0 & 0 \\ 0 & A_{22}^{-1} & 0 \\ 0 & 0 & A_{33}^{-1} \end{bmatrix}$$

56

Calculation of Pressures, Forces, and Moments

Once the strengths of the aerodynamic singularities have been determined, the three components of velocity at a point i can be determined as follows:

$$u_{i} = \Delta u_{i} + \cos \alpha \qquad (147)$$

$$v_{i} = \Delta v_{i} \tag{148}$$

$$w_{i} = \Delta w_{i} + \sin \alpha \qquad (149)$$

where Δu_i , Δv_i and Δw_i are given by equations (129) - (131).

If the planar boundary condition option has been selected, the incremental velocity components induced by the wing thickness distribution must also be calculated and added to the above equations. The pressure coefficient is then calculated using the exact isentropic formula

$$C_{p_{i}} = \frac{-2}{\gamma M^{2}} \left\{ \left[1 + \frac{\gamma - 1}{2} M^{2} (1 - q_{i}^{2}) \right]^{3.5} - 1 \right\}$$
(150)

where $q_i^2 = u_i^2 + v_i^2 + w_i^2$

For M = 0,

$$C_{p_{i}} = 1 - q_{i}^{2}$$
 (151)

The forces and moments acting on the configuration can then be calculated by numerical integration. The normal force, tangential force, and pitching moment about the origin of coordinates of panel i are given by:

$$N_{i} = -A_{i}C_{p_{i}}\cos\theta_{i}\cos\delta_{i}$$
(152)

$$T_{i} = A_{i}Cp_{i}\sin \delta_{i}$$
(153)

$$M_{i} = N_{i}x_{i} - T_{i}z_{i}$$
(154)

where A is the panel area

$$\theta$$
, δ are the panel inclination angles, defined
i i by equation (124)

The total force and moment coefficients acting on the configuration are obtained by summing the panel forces and moments on both sides of the plane of symmetry.

$$C_{N} = \frac{1}{S} \sum_{i=1}^{N} 2N_{i}$$
 (155)

$$C_{T} = \frac{1}{s} \sum_{i=1}^{N} 2T_{i}$$
 (156)

$$C_{M} = \frac{1}{S\overline{c}} \sum_{i=1}^{N} 2M_{i}$$
(157)

Finally, the lift and drag coefficients are:

$$C_{L} = C_{N} \cos \alpha - C_{T} \sin \alpha \qquad (158)$$

$$C_{\rm D} = C_{\rm N} \sin \alpha + C_{\rm T} \cos \alpha \qquad (159)$$

The computer program computes the forces and moment acting on the body, the wing and tail surfaces, and the complete configuration. In addition, section forces and moment may be calculated for the wing and tail surfaces as an optional output.

COMPUTER PROGRAM

Program Description

A computer program has been developed to calculate the pressure distribution and aerodynamic characteristics of wingbody-tail combinations in subsonic and supersonic flow. The program is written in CDC FORTRAN IV, version 2.3 for a SCOPE 3.0 operating system and library file. It is designed for the CDC 6000 series of computers, occupies 70,000 (octal) words, and operates in OVERLAY mode. The program requires five peripheral disc files in addition to the input and output files.

Program Structure

The overlay structure of the program is illustrated on Figure 2. The main overlay program is designated USSAERO, and calls the three primary overlay programs GEOM, VELCMP, and SOLVE. In turn, GEOM calls seven secondary overlay programs CONFIG, NEWORD, WNGPAN, NEWRAD, BODPAN, NUTORD, and TALPAN, while VELCMP calls three secondary overlay programs BODVEL, LINVEL, and WNGVEL.

The complete program consists of 14 overlay programs and 19 subroutines. Detailed descriptions of each program and subroutine are given in Part II of this report. These descriptions give the purpose of the program or subroutine, outline the method used, and list the names of the principal variables and constants.

Operating Instructions

The program deck and data deck are loaded in the following sequence: job card, system control cards, end-of-record card, program deck, end-of-record card, input data deck, and end-offile card. The input data deck is described in the following section.

Figure 2 - Program Overlay Structure

Program Input Data

The input to this program consists of two basic parts, namely, the numerical description of the configuration geometry as described in reference 3, and an auxiliary data set specifying the singularity paneling scheme, program options, Mach number, and angle of attack. The program input is illustrated by the sample case presented in Appendix III.

Description of configuration geometry input cards. - The configuration is defined to be symmetrical about the xz plane, therefore only one side of the configuration need be described. The convention used in this program is to present that half of the configuration located on the positive y side of the xz plane. The number of input cards depends on the number of components used to describe the configuration, and the amount of detail used to describe each component.

Card 1 - Identification. - Card 1 contains any desired identifying information in columns 1-80.

<u>Card 2 - Control integers.</u> - Card 2 contains 24 integers, each punched right justified in a 3-column field. Columns 73-80 may be used in any desired manner. Card 2 contains the following:

Columns	Variable	Value	Description
1-3	J0	0 1	No reference area Reference area to be read
4-6	Jl	0 1 -1	No wing data Cambered wing data to be read Uncambered wing data to be read
7-9	J2	0 1 -1	No fuselage data Data for arbitrarily shaped fuselage to be read Data for circular fuselage to be read (With J6=0, fuselage will be cambered. With J6=-1, fuse- lage will be symmetrical with xy- plane. With J6=1, entire config- uration will be symmetrical with xy-plane)
10-12	J 3	0 1	No pod (nacelle) data Pod (nacelle) data to be read

Columns	Variable	Value	Description
13-15	J4	0 1	No fin (vertical tail) data Fin (vertical tail) data to be read
16-18	J5	0 1	No canard (horizontal tail) data Canard (horizontal tail) data to be read
19-21	J6	0 1 -1	A cambered circular or arbitrary fuselage if J2 is nonzero Complete configuration is sym- metrical with respect to xy-plane, which implies an uncambered circu- lar fuselage if there is a fuse- lage Uncambered circular fuselage with
22-24	NWAF	2-20	J2 nonzero Number of airfoil sections used to describe the wing
25-27	NWAFOR	3-30	Number of ordinates used to define each wing airfoil section. If the value of NWAFOR is input with a negative sign, the program will expect to read lower surface ordinates also
28-30	NFUS	1-4	Number of fuselage segments
31-33	NRADX(1)	3-30	Number of points used to represent half-section of first fuselage segment. If fuselage is circular, the program computes the indicated number of y- and z-ordinates
34-36	NFORX(1)	2-30	Number of stations for first fuse- lage segment
37-39	NRADX(2)	3-30	Same as NRADX(1), but for second fuselage segment
40-42	NFORX (2)	2-30	Same as NFORX(1), but for second fuselage segment
43-45	NRADX(3)	3-30	Same as NRADX(l), but for third fuselage segment

Columns	Variable	Value	Description
46-48	NFORX(3)	2-30	Same as NFORX(1), but for third fuselage segment
49-51	NRADX(4)	3-30	Same as NRADX(1), but for fourth fuselage segment
52-54	NFORX(4)	2-30	Same as NFORX(1), but for fourth fuselage segment
55-57	NP	0-9	Number of pods described
58-60	NPODOR	4-30	Number of stations at which pod radii are to be specified
61-63	NF	0-6	Number of fins (vertical tails) to be described
64-66	NFINOR	3-10	Number of ordinates used to describe each fin (vertical tail) airfoil section
67-69	NCAN	0-2	Number of canards (horizontal tails) to be described
70-72	NCANOR	3-10	Number or ordinates used to define each canard (horizontal tail) air- foil section. If the value of NCANOR is input with a negative sign, the program will expect to read lower surface ordinates also, otherwise the airfoil is assumed to be symmetrical

Cards 3, 4, . . . - remaining input data cards. - The remaining input data cards contain a detailed description of each component of the configuration. Each card contains up to 10 values, each value punched in a 7-column field with a decimal point and may be identified in columns 73-80. The cards are arranged in the following order: reference area, wing data cards, fuselage data cards, pod data cards, fin (vertical tail) data cards, and canard (horizontal tail) data cards.

Reference area card: The reference area value is punched in columns 1-7 and may be identified as REFA in columns 73-80.

Wing data cards: The first wing data card (or cards) contains the locations in percent chord at which the ordinates of all the wing airfoils are to be specified. There will be exactly NWAFOR locations in percent chord given. Each card may be identified in columns 73-80 by the symbol XAFJ where J denotes the last location in percent chord given on that card.

The next wing data cards (there will be NWAF cards) each contain four numbers which give the origin and chord length of each of the wing airfoils that is to be specified. The card representing the most inboard airfoil is given first, followed by the cards for successive airfoils. These cards contain the following:

Co	1	umns

Contents

1-7	x-ordinate of airfoil leading edge
8-14	y-ordinate of airfoil leading edge
15-21	z-ordinate of airfoil leading edge
22-28	airfoil streamwise chord length
73-80	card identification, WAFORGJ where J denotes the paricular airfoil, thus WAFORG1 denotes the most inboard airfoil

If a cambered wing has been specified, the next set of wing data cards is the mean camber line cards. There will be NWAFOR values of delta z referenced to the z-ordinate of the airfoil leading edge, each value corresponding to a specified percent chord location on the airfoil. These cards are arranged in the order which begins with the most inboard airfoil and proceeds outboard. Each card may be identified in columns 73-80 as TZORDJ where J denotes the particular airfoil. Note that the z-ordinates are dimensional.

Next are the wing ordinate cards. There will be NWAFOR values of half-thickness specified for each airfoil expressed as percent chord. These cards are arranged in the order which begins with the most inboard airfoil and proceeds outboard. Each card may be identified in columns 73-80 as WAFORDJ where J denotes the particular airfoil.

Fuselage data cards: The first card (or cards) specifies the x values of the fuselage stations of the first segment. There will be NFORX(1) values and the cards may be identified in columns 73-80 by the symbol XFUSJ where J denotes the number of the last fuselage station given on that card. If the fuselage is circular, the next card (or cards) gives the fuselage cross sectional areas, and may be identified in columns 73-80 by the symbol FUSARDJ where J denotes the number of the last fuselage station given on that card. If the fuselage is of arbitrary shape, NRADX(1) values of the y-ordinates for a half-section are given and identified in columns 73-80 as YJ where J is the station number. Following the y-ordinates are the NRADX(1) values of the corresponding z-ordinates for the half-section identified in columns 73-80 as ZJ where J is the station number. Each station will have a set of y and z, and the convention of ordering the ordinates from bottom to top is observed.

For each fuselage segment a new set of cards as described must be provided. The segment descriptions should be given in order of increasing values of x.

Pod data cards: The first pod (nacelle) data card specifies the location of the origin of the first pod. The card contains the following:

Columns

Contents

1-7	x-ordinate	of	origin	of	first	pod
8-14	y-ordinate	of	origin	of	first	pod
15-21	z-ordinate	of	origin	of	first	pod
73-80	card ident. where J dep	ifi note	cation, es the p	POI pod	OORGJ number	r

The next pod input data card (or cards) contains the xordinates, referenced to the pod origin, at which NPODOR values of the pod radii are to be specified. The first x value must be zero and the last x value is the length of the pod. These cards may be identified in columns 73-80 by the symbol XPODJ where J denotes the pod number.

For each additional pod, new PODORG, XPOD, and PODR cards must be provided. Only single pods are described but the program assumes that if the y-ordinate is not zero an exact duplicate is located symmetrically with respect to the xz-plane, a y-ordinate of zero implies a single pod.

Fin data cards: Exactly three data input cards are used to describe a fin (vertical tail). The first fin data card contains the following:

Columns	Contents
1-7	x-ordinate on inboard airfoil leading edge
8-14	y-ordinate of inboard airfoil leading edge
15-21	z-ordinate of inboard airfoil leading edge
22-28	chord length of inboard airfoil
29-35	x-ordinate of outboard airfoil leading edge
36-42	y-ordinate of outboard airfoil leading edge
43-49	z-ordinate of outboard airfoil leading edge
50-56	chord length of outboard airfoil
73-80	card identification, FINORGJ where J denotes the fin number

The second fin input data card contains NFINOR values of x expressed in percent chord at which the fin airfoil ordinates are to be specified. The card may be identified in columns 73-80 as XFINJ where J denotes the fin number.

The third fin input data card contains NFINOR values of the fin airfoil half-thickness expressed in percent chord. Since the fin airfoil must be symmetrical, only the ordinates on the positive y side of the fin chord plane are specified. The card identification FINORDJ may be given in columns 73-80 where J denotes the fin number.

For each fin, new FINORG, XFIN, and FINORD cards must be provided. Only single fins are described but the program assumes that if the y-ordinate is not zero an exact duplicate is located symmetrically with respect to the xz-plane, a yordinate of zero implies a single fin.

Canard data cards: If the canard (or horizontal tail) airfoil is symmetrical, exactly three cards are used to describe a canard, and the input is given in the same manner as for a fin. If, however, the canard airfoil is not symmetrical
(indicated by a negative value of NCANOR), a fourth canard input data card will be required to give the lower ordinates. The information presented on the first canard input data card is as follows:

Columns	Contents
1-7	x-ordinate of inboard airfoil leading edge
8-14	y-ordinate of inboard airfoil leading edge
15-21	z-ordinate of inboard airfoil leading edge
22-28	chord length of inboard airfoil
29-35	x-ordinate of outboard airfoil leading edge
36-42	y-ordinate of outboard airfoil leading edge
43-49	z-ordinate of outboard airfoil leading edge
50-56	chord length of outboard airfoil
73-80	card identification, CANORGJ where J denotes the canard number

The second canard input data card contains NCANOR values of x expressed in percent chord at which the canard airfoil ordinates are to be specified. The card may be identified in columns 73-80 as XCANJ where J denotes the canard number.

The third canard input data card contains NCANOR values of the canard airfoil half-thickness expressed in percent chord. This card may be identified in columns 73-80 as CANORDJ where J denotes the canard number. If the canard airfoil is not symmetrical, the lower ordinates are presented on a second CANORD card. The program expects both upper and lower ordinates to be punched as positive values in percent chord.

For another canard, new CANORG, XCAN, and CANORD cards must be provided.

Description of Auxiliary Input Cards

Card 1.1 - Identification. - Card 1.1 contains any desired identifying information in columns 1-80.

<u>Card 1.2 - Boundary condition and control point definition.</u>-Non planar boundary conditions are always applied on a body, however card 1.2 permits the selection of boundary conditions to apply on a wing, fin (vertical tail), or canard (horizontal tail). This card also selects the output print options. This card contains the following:

Columns	Variable	Value	Description				
1-3	LINBC	0	Control points on surface of wing, fin (vertical tail), and canard (horizontal tail). This is re- ferred to as the nonplaner bound- ary condition option. Control points in plane of wing, fin (vertical tail), and canard (horizontal tail). This is referred to as the planar bound-				
			ary condition option.				
4-6	THICK	0	Do not calculate wing thickness				
		1	Calculate wing thickness matrix if LINBC = 1				
7-9	PRINT	0	Print out the pressures and the forces and moments				
		1	Print out option 0 and the span- wise loads on the wing, fins, and canards				
		2	Print out option 1 and the veloc- ity components and source and vortex strengths				
		3	Print out option 2 and the steps in the iterative solution				
		4	Print out option 3 and the axial and normal velocity matrices				

A negative value of print adds the panel geometry print out to the output indicated for options 1-4.

LINBC, THICK, and PRINT are punched as right justified integers. THICK is not used if LINBC = 0.

<u>Car</u> control	d 2.1 - Revi	ised conf	iguration paneling description
right ju	stified inte	egers as	follows:
Columns	Variable	Value	Description
1-3	К0	0 1	No reference lengths Reference length data to be read
4-6	кl	0 1 3	No wing data Wing data to be read, wing has a sharp leading edge Wing data to be read, wing has a round leading edge
7-9	К2	0 1	No body data Body data follows
10-12	К3		Not used
13-15	K 4	0 1	No fin (vertical tail) data Fin (vertical tail) data to be read, fin has a sharp leading
		3	Fin (vertical tail) data to be read, fin has a round leading edge
16-18	К5	0 1	No canard (horizontal tail) data Canard (horizontal tail) data to be read, canard has a sharp leading edge
		3	Canard (horizontal tail) data to be read, canard has a round leading edge
19-21	К6		Not used
22-24	KWAF	0, 2-20	Number of wing sections used to define the inboard and outboard panel edges. If KWAF = 0, the panel edges are defined by NWAF in the geometry input
25-27	KWAFOR	0, 3-30	Number of ordinates used to define the leading and trailing edges of the wing panels. If KWAFOR = 0, the panel edges are defined by NWAFOR in the geometry input

Columns	Variable	Value	Description
28-30	KFUS		The number of fuselage segments. The program sets KFUS = NFUS
31-33	KRADX(1)	0, 3-20	Number of meridian lines used to define panel edges on first body segment. There are three options for defining the panel edges. If KRADX(1) = 0, the meridian lines are defined by NRADX(1) in the geometry input. If KRADX(1) is positive, the meridian lines are calculated at KRADX(1) equally spaced PHIKs. If KRADX(1) is negative, the meridian lines are calculated at specified values of PHIK
34-36	KFORX(1)	0, 2-30	Number of axial stations used to define leading and trailing edges of panels on first body segment. If KFORX(1) = 0, the panel edges are defined by NFORX(1) in the geometry input
37-39	KRADX (2)	0, 3-20	Same as KRADX(1), but for second body segment
40-42	KFORX (2)	0, 2-30	Same as KFORX(1), but for second body segment
43-45	KRADX(3)	0, 3-20	Same as KRADX(1), but for third body segment
46-48	KFORX(3)	0, 2-30	Same as KFORX(1), but for third body segment
49-51	KRADX (4)	0, 3-20	Same as KRADX(1), but for fourth body segment
52-54	KFORX (4)	0, 2-30	Same as KFORX(1), but for fourth body segment

The program is restricted to 600 body singularity panels. For this program there is an additional restriction that the total number of singularity panels in the axial direction on the body (fuselage) cannot exceed 30. The arbitrary body (fuselage) capability of this program is limited to those shapes for which the radius is a single-valued function of PHIK for each cross section of the body.

descript	rd 2.2 - Addi tion control	tional r integers	evised configuration paneling The contents of card 2.2 are
punched	as right jus	stified i	ntegers as follows:
Columns	Variable	Value	Description
1-3	KF(1)	0, 2-20	Number of fin sections used to define the inboard and outboard panel edges on the first fin. If KF(1) = 0, the root and tip chords define the panel edges
4-6	KFINOR(1)	0, 3-30	Number of ordinates used to define the leading and trailing edges of the fin panels on the first fin. If KFINOR(1) = 0, the panel edges are defined by NFINOR
7-9	KF(2)	0, 2-20	Same as for KF(1), but for second fin
10-12	KFINOR(2)	0, 3-30	Same as for KFINOR(1), but for second fin
13-15	KF(3)	0, 2-20	Same as for KF(1), but for third fin
16-18	KFINOR(3)	0, 3-30	Same as for KFINOR(1), but for third fin
19-21	KF(4)	0, 2-20	Same as for KF(1), but for fourth fin
22-24	KFINOR(4)	0, 3-30	Same as for KFINOR(1), but for fourth fin
25-27	KF(5)	0, 2-20	Same as for KF(l), but for fifth fin
28-30	KFINOR(5)	0, 3-30	Same as for KFINOR(1), but for fifth fin
31-33	KF(6)	0, 2-20	Same as for KF(l), but for sixth fin
34-36	KFINOR(6)	0, 3-30	Same as for KFINOR(1), but for sixth fin

Columns	Variable	Value	Description
37-39	KCAN(1)	0, 2-20	Number of canard sections used to define the inboard and outboard panel edges on the first canard. If KCAN(1) = 0, the root tip chords define the panel edges. If KCAN(N) negative, no vortex sheets carry through the body and concentrated vortices are shed from the inboard edge of the canard or tail surface
40-42	KCANOR(1)	0, 3-30	Number of ordinates used to define the leading and trailing edges of the first canard. If KCANOR(1)=0, the panel edges are defined by NCANOR
43-45	KCAN(2)	0, 2-20	Same as for KCAN(l), but for second canard
46-48	KCANOR(2)	0, 3-30	Same as for KCANOR(1), but for second canard
49-51	KCAN(3)	0, 2-20	Same as for KCAN(l), but for third canard
52-54	KCANOR(3)	0, 3-30	Same as for KCANOR(1), but for third canard
55-57	KCAN (4)	0, 2-20	Same as for KCAN(l), but for fourth canard
58-60	KCANOR(4)	0, 3-30	Same as for KCANOR(1), but for fourth canard
61-63	KCAN(5)	0, 2-20	Same as for KCAN(1), but for fifth canard
64-66	KCANOR (5)	0, 3-30	Same as for KCANOR(1), but for fifth canard
67-69	KCAN (6)	0, 2-20	Same as for KCAN(1), but for sixth canard
70-72	KCANOR (6)	0, 3-30	Same as for KCANOR(1), but for sixth canard

The program is restricted to a total of 600 singularity panels on the wing-fin-canard combination.

For this program there is an additional restriction that the total number of singularity panels in the spanwise direction on the wing-fin-canard combination cannot exceed 20.

<u>Cards 3, 4, . . . - remaining input data cards.</u>- The remaining input data cards contain a detailed description of the singularity paneling of each component of the configuration. Each card contains up to 10 values, each value punched in a 7-column field with a decimal point and may be identified in columns 73-80. The cards are arranged in the following order: reference lengths, wing data cards, fin (vertical tail) data cards, canard (horizontal tail) data cards, fuselage (body) data cards, and finally Mach number and angle of attack case cards. Note that the present program will not handle a pod and therefore there are no pod panel inputs. However, if the geometry input contains a pod description it will be read and ignored.

Reference length card: This card may be identified as REFL in columns 73-80 and contains the following:

Columns	Variable	Description
1-7	REFA	Wing reference area. If REFA = 0, the reference area is defined by the value of REFA in the geometry input
8-14	REFB	Wing semispan. If REFB = 0, a value of 1.0 is used for the reference semispan
15-21	REFC	Wing reference chord. If REFC = 0, a value of 1.0 is used for the reference chord
22-28	REFD	Body (fuselage) reference diameter. If REFD = 0, a value of 1.0 is used for the reference diameter
29-35	REFL	Body (fuselage) reference length. If REFL = 0, a value of 1.0 is used for the reference length
36-42	REFX	X coordinate of moment center
43-49	REFZ	Z coordinate of moment center

Wing data cards: The first wing data card is the wing leading edge radius card and is required only when Kl = 3. This card contains NWAF values of leading edge radius expressed in percent chord. It may be identified in columns 73-80 as RHOJ where J denotes the number of the last radius given on that card.

Next is the wing panel leading edge card. This card contains KWAFOR values of wing panel leading edge locations expressed in percent chord. This card may be identified in columns 73-80 as XAFKJ where J denotes the last location in percent chord given on that card. Omit if KWAFOR = 0.

The last wing data card gives the wing panel side edge data. This card contains KWAF values of the y ordinate of the panel inboard edges. This card may be identified in columns 73-80 as YKJ where J denotes the last y ordinate on that card. These values are arranged in the order which begins with the most inboard panel edge and proceeds outboard. Omit if KWAF = 0.

Fin (vertical tail) data cards: The first fin data card is the fin leading edge radius card and is required only when K4 = 3. This card contains NF values of leading edge radius expressed in percent chord, one value for each fin. It may be identified in columns 73-80 as RHOFIN.

Next is the fin panel leading edge card for the first fin. This card contains KFINOR(1) values of fin panel leading edge locations expressed in percent chord. This card may be identified in columns 73-80 as XFINKJ where J denotes the fin number. Repeat this card for each fin.

The last fin data card gives the fin panel side edge data for the first fin. This card contains KF(1) values of the z ordinate of the panel inboard edges. This card may be identified in columns 73-80 as ZFINKJ where J denotes the fin number. These values are arranged in the order that begins with the most inboard panel edge and proceeds outboard. Repeat this card for each fin.

Canard (horizontal tail) data cards: The first canard data card is the canard leading edge radius card and is required only when K5 = 3. This card contains NCAN values of leading edge radius expressed in percent chord, one value for each canard. It may be identified in columns 73-80 as RHOCAN.

Next is the canard panel leading edge card for the first canard. This card contains KCANOR(1) values of canard panel leading edge locations expressed in percent chord. This card may be identified in columns 73-80 as XCANKJ where J denotes the canard number. Repeat this card for each canard. The last canard data card gives the canard panel side edge data for the first canard. This card contains KCAN(1) values of the y ordinate of the panel inboard edges. This card may be identified in columns 73-80 as YCANKJ where J denotes the canard number. These values are arranged in the order that begins with the most inboard panel edge and proceeds outboard. Repeat this card for each canard.

Fuselage (body) data cards: The first body card is the body meridian angle card. This card contains KRADX(1) values of body meridian angle expressed in degrees and may be identified in columns 73-80 as PHIKJ where J denotes the body segment number. The convention is observed that PHIK = 0. at the bottom of the body and PHIK = 180. at the top of the body. Omit unless KRADX(1) is negative. Repeat this card for each fuselage segment.

The second body card is the body axial station card. This card contains KFORX(1) values of the x ordinate of the body axial stations and may be identified in columns 73-80 as XFUSKJ where J denotes the body segment number. Omit if KFORX(1) = 0. Repeat this card for each fuselage segment.

Mach number and angle of attack card: This card may be identified in columns 73-80 as MALPHA and contains the following:

Columns	Variable	Description					
1-7	МАСН	The subsonic Mach number (includ- ing the value MACH = 0.) or the supersonic Mach number at which it is desired to calculate the aero- dynamic data					
8-14	ALPHA	The angle of attack expressed in degrees at which it is desired to calculate the aerodynamic data					

A series of Mach number and angle of attack combinations for the same geometry may be calculated by repeating this card with the desired values.

A value of MACH = -1. on this card signifies the termination of the present case. Geometry cards for a new case can follow such a terminal card.

Program Output Data

All output is processed by a standard 132 characters-perline printer. The output from each run is always preceded by a complete list of the input data cards. The amount and type of the remaining output depend on the PRINT option selected, the number of panels used, and whether the configuration being analyzed is an isolated wing, an isolated body, or a complete wing-body-tail combination. The program output options are described below:

- PRINT = 0The program prints the case description, Mach number and angle of attack, followed by a table listing the panel number, control point coordinates (both dimensional and non-dimensional), pressure coefficient, normal force, axial force, and pitching moment. Separate tables are printed for the body and wing panels, noting that any tail, fin or canard panels are included with the wing output. If the planar boundary condition option has been selected, the results for the wing upper surface are given in one table, followed by a separate table giving the results for the wing lower surface. Additional tables giving the total coefficients on the body, the wing and the complete configuration follow the pressure coefficient tables. These include the reference area, reference span and reference chord, the normal force, axial force, pitching moment, lift, and drag coefficients, and the center of pressure of the component.
- PRINT = 1 In addition to the output described for PRINT = 0, the program prints out additional tables giving the normal force, axial force, pitching moment, lift and drag coefficients, and the center of pressure of each column of panels on the wing and tail surfaces. In addition, the indices of the first and last panel in the column are listed, together with the span, chord and origin of the column.
- PRINT = 2 In addition to the output described for PRINT = 1, the program prints out tables listing the panel number, the source or vortex strength of that panel, and the axial velocity u, lateral velocity v, and vertical velocity w at the panel control point. The normal velocity is also calculated for

body panels. Separate tables are printed for the body and wing panels, noting again that any tail, fin, or canard panels are included with the wing output. If the planar boundary condition option has been selected, separate tables are given for the wing upper and lower surfaces.

- PRINT = 3 In addition to the output described for PRINT = 2, the program prints out the iteration number, and the source and vortex strength arrays obtained at each step of the iterative solution procedure.
- PRINT = 4 In addition to the output described for PRINT = 3, the program prints out tables of the axial and normal velocity components which make up the elements of the aerodynamic matrices. The program prints out the matrix row number, and gives the number of elements in that row. A maximum of four matrix partitions will be printed if this option is selected, each of which is identified by number and its influence description prior to printing the velocity component tables.

If a negative value of PRINT is selected, the program prints all the information described above for the positive values, together with the complete panel geometry description of the configuration following the list of input cards. This consists of tables giving the wing panel corner points, control points, inclination angles, areas, and chords. If the configuration has a horizontal tail, fin or canard, additional tables are printed giving the same information as listed above for the wing. Finally, if the configuration includes a body, the body panel corner points, control points, areas, and inclination angles are listed.

The program output is illustrated by the sample case presented in Appendix III.

EXPERIMENTAL VERIFICATION

Several examples of pressure distributions calculated by the program are presented in this section, and compared with experimental data. The examples include isolated bodies, isolated wings, and wing-body combinations in both subsonic and supersonic flow.

Isolated Bodies

Ogive-cylinder body with boattail in subsonic flow.- The theoretical pressure distribution calculated for this body at M = .40 and $\alpha = 0$ degrees is presented on Figure 3. The experimental data has been obtained from reference 6, which also contains additional comparisons between the present theory and experiment for this body at M = .61 and .83. In this example, the blunt base and sting were replaced by an arbitrarily chosen 12 degree cone aft of the boattail region in an attempt to simulate the flow separation region behind the body. Good agreement between the theory and experiment is achieved over most of the body.

Haack-Adams body with base in supersonic flow.- The theoretical pressure distribution calculated for a Haack-Adams body having A /A = .532 and l/d = 10 is presented on Figure base max max
4, for M = 2.01 and α = 0 degrees. The experimental data for this body is obtained from reference 7, which also gives the pressure distribution calculated by characteristics theory. The present method agrees closely with the experimental data and the characteristics theory for this body.

Elliptic cone in supersonic flow.- The theoretical pressure distribution on an elliptic cone is compared with experimental data on Figure 5, for M = 1.89 and $\alpha = 0$ and 6 degrees. The experimental data was obtained from reference 8. Again, the theory agrees well with experiment except near the leading edge on the lower surface, where the positive pressure is slightly over-estimated.

$$M = 2.01$$
 $\alpha = 0$

$$A_{base}/A_{max} = .532$$
 $l/d = 10$

Figure 4 - Supersonic Pressure Distribution on Axisymmetric Body

Isolated Wings

<u>Two-dimensional airfoil in subsonic flow</u>.- The pressure distribution on a NACA 64A010 airfoil at M = .167 and $\alpha = 8$ degrees is compared with the experimental data from reference 9 on Figure 6. In this example, the surface boundary condition option was utilized in the theoretical calculations. The agreement with experiment is excellent on both upper and lower surface of the airfoil, indicating that viscous effects are small. The potential flow solution obtained by the present method also agrees closely with that given by the viscous flow solution presented in reference 10 for this airfoil, except for a small region near the trailing edge. In general, potential flow theory tends to over-estimate the negative pressure peaks in two-dimensional flow.

Figure 7 compares the results of the present program with the exact incompressible pressure distribution around a 10 percent thick Karman-Trefftz airfoil. Here, the program results agree closely with the exact solution, and give considerable confidence in the capability of the present method to reproduce theoretical two-dimensional flows.

Variable sweep wing in subsonic flow.- The pressure distributions calculated on a variable sweep wing having a NACA 64A006 section, 72 degrees inboard sweep, and two outboard wing sweep angles, are compared with experimental data from reference 11 at M = .23 and $\alpha = 10.5$ degrees on Figure 8. In this example, the boundary conditions are applied in the plane of the wing. The theory agrees reasonably well with experiment at the root and at the mid-span break point. The pressure distribution is less accurate near the wing tip, although the net loading appears to be approximately correct. The agreement between theory and experiment is considered to be acceptable, considering the relatively high angle of attack chosen for this comparison.

<u>Cambered arrow wing in supersonic flow.</u> The pressure distributions calculated on a cambered and twisted arrow wing having a 3 percent circular arc section and 70 degrees sweepback are compared with experimental data from reference 12 at M = 2.01 and $\alpha = 4$ degrees on Figure 9. Here, the boundary conditions are applied in the plane of the wing; and the theory can be seen to agree reasonably well with experiment over the entire wing, except in the immediate vicinity of the leading edge.

Figure 6 - Pressure Distribution on Two-dimensional Airfoil

Figure 7 - Incompressible Pressure Distribution on Two-dimensional Airfoil

Figure 8 - Subsonic Pressure Distribution on a Variable Sweep Wing with 72 degrees Inboard Sweep and NACA 64A006 Section

Figure 9 - Supersonic Pressure Distribution on a 70 degree Swept Wing with Camber and Twist and 3% Circular Arc Section

Wing-Body Combinations

Ogive-cylinder body with swept wing in supersonic flow.-The planform of this simple wing-body combination, and the paneling scheme used in the aerodynamic representation are shown on Figure 10. The wing has a NACA 65A004 section, is centrally mounted on the body, and the quarter-chord line is swept back 45 degrees. The ogival nose is 3.5 body diameters in length.

The pressure distribution on the wing is compared with experimental data from reference 13 for M = 2.01 and $\alpha = 5$ degrees on Figure 11. The theoretical curve was calculated using the planar boundary condition option. The agreement between theory and experiment is reasonably good, except near the wing leading edge. Part of this discrepancy is probably due to shock wave detachment ahead of the round leading edge of the airfoil for this supersonic leading edge wing, allowing a small circulation to develop around the leading edge. The theoretical calculations assume an attached Mach wave along supersonic leading edges, prohibiting the development of any circulatory flow.

The pressure distribution on the upper and lower meridian lines of the body are compared with experimental data on Figure 12. In this example the agreement between theory and experiment is extremely good.

OGIVE CYLINDER BODY WITH CENTRALLY MOUNTED SWEPT WING

NACA 64A005 SECTION

Figure 11 - Supersonic Pressure Distribution on the Wing of a Simple Wing-Body

68

CONCLUSIONS

The aerodynamic analysis method described in this report has been developed to succeed the earlier methods reported in references 1 and 2. Considerable progress has been made in the achievement of this goal, but additional work remains if the full potential of the new method is to be realized. Several promising areas for the future development of this method are described briefly below.

Program refinements.- Increased geometrical capability is required to permit the analysis of engine pods, nacelles, or fairings. In addition, improved programming techniques, including far field approximations to the aerodynamic singularity distributions would be desirable to reduce the time required to calculate the matrix of aerodynamic influence coefficients. Finally, the extension of the force and moment subroutine to include the calculation of additional aerodynamic stability derivatives would be valuable.

Development of the program as a design tool.- The present computer program is restricted to the determination of the pressure distribution, forces and moments on given configurations. The development of the program as a design tool would greatly increase its range of application. For example, the important problem of determining the wing camber and twist distribution which will generate favorable surface pressure distributions in the presence of an arbitrary body, or for minimizing pressure drag and interference effects could be included in this program based on the design procedures described in reference 1.

Development of leading edge vortex model.- The use of linearly varying vortex distributions to represent the circulatory flow around lifting wings permits the Kutta condition to be imposed along leading edges, as well as trailing edges. Using this flow model, the vortex sheet from leading edge panels can be modified to trail downstream from the leading edge or wing tip to simulate a separated flow, and provide a first approximation to the lift distribution on wings at high angles of attack.

Application of the method to the analysis of transonic flows. The non-linear effects of transonic flow can be approximated by using the local Mach number calculated from the potential flow solution to redefine the regions of influence and the magnitude of the velocity field induced by the aerodynamic singularities. An iterative solution of the boundary condition equations can then be established, in which the coefficients of the equations depend on the local Mach number distribution of the preceding step. The iterative procedure would be continued until a convergent pressure distribution is obtained.

Analytical Methods, Incorporated Bellevue, Washington December 31, 1972

APPENDIX I

Integration Procedures

The velocity component integrals appearing in the text may all be reduced to forms appearing in standard integral tables, and two non-standard integrals given below:

$$J_{1} = \int \frac{dv}{(v^{2} + e^{2})[av^{2} + 2bv + c]^{\frac{1}{2}}}$$

$$J_{2} = \int \frac{v dv}{(v^{2} + e^{2})[av^{2} + 2bv + c]^{\frac{1}{2}}}$$

The method used to evaluate these integrals is given in reference 1. The results are summarized below:

$$J_{1} = \frac{\gamma}{\gamma^{4} + b^{2}e^{2}} \left[b F + \frac{\gamma^{2}}{e} G \right]$$

$$J_{2} = \frac{\gamma}{\gamma^{4} + b^{2}e^{2}} \left[\gamma^{2}F - be G \right]$$

where γ is a real non-zero root of the equation

$$\gamma^{4} - (ae^{2} - c)\gamma^{2} - b^{2}e^{2} = 0, \quad \delta = be/\gamma$$

and
$$F = \tan^{-1} \frac{\gamma [av^2 + 2bv + c]^{\frac{1}{2}}}{\gamma^2 - bv}$$
,

$$G = \tanh^{-1} \frac{v\gamma + e\delta}{e[av^2 + 2bv + c]^{\frac{1}{2}}}$$

$$= \sinh^{-1} \frac{v\gamma + e\delta}{[(ae^{2} - \gamma^{2})v^{2} + (c - \delta^{2})e^{2}]^{\frac{1}{2}}}$$

93

APPENDIX II

Panel Geometry Calculation Procedure

The analytical procedure presented here follows closely the method first developed in reference 14. A quadrilateral surface element is described by four corner points, not necessarily lying in the same plane, as shown in the sketch. Note that the numbering convention of the corner points differs from that used in the preceding text. The quadrilateral element is approximated by a planar panel as follows:

The coordinates in the reference coordinate system are identified by their subscripts. The components of the diagonal vectors \vec{T}_1 and \vec{T}_2 are

 $T_{1X} = X_3 - X_1$ $T_{1Y} = Y_3 - Y_1$ $T_{1Z} = Z_3 - Z_1$ $T_{2X} = X_4 - X_2$ $T_{2Y} = Y_4 - Y_2$ $T_{2Z} = Z_4 - Z_2$

We may now obtain a vector \vec{N} (and its components) by taking the cross product of the diagonal vectors.

$$\vec{N} = \vec{T}_2 \times \vec{T}_1$$

$$N_{x} = T_{2y}T_{1z} - T_{1y}T_{2z}$$

$$N_{y} = T_{1x}T_{2z} - T_{2x}T_{1z}$$

$$N_{z} = T_{2x}T_{1y} - T_{1x}T_{2y}$$

The unit normal vector, \vec{n} , to the plane of the element is taken as \vec{N} divided by its own length N (direction cosines of outward unit normal).

$$n_{x} = \frac{N_{x}}{N}$$
$$n_{y} = \frac{N_{y}}{N}$$
$$n_{z} = \frac{N_{z}}{N}$$

where

$$\mathbf{N} = \left[\mathbf{N}_{\mathbf{X}}^2 + \mathbf{N}_{\mathbf{Y}}^2 + \mathbf{N}_{\mathbf{Z}}^2 \right]^{\frac{1}{2}}$$

The plane of the element is now completely determined if a point in this plane is specified. This point is taken as the point whose coordinates, \overline{x} , \overline{y} , \overline{z} are the averages of the coordinates of the four input points.

 $\overline{\mathbf{x}} = \frac{1}{4} \left[\mathbf{x}_{1} + \mathbf{x}_{2} + \mathbf{x}_{3} + \mathbf{x}_{4} \right]$ $\overline{\mathbf{y}} = \frac{1}{4} \left[\mathbf{y}_{1} + \mathbf{y}_{2} + \mathbf{y}_{3} + \mathbf{y}_{4} \right]$ $\overline{\mathbf{z}} = \frac{1}{4} \left[\mathbf{z}_{1} + \mathbf{z}_{2} + \mathbf{z}_{3} + \mathbf{z}_{4} \right]$

Now the input points will be projected into the plane of the element along the normal vector. The resulting points are the

corner points of the quadrilateral element. The input points are equidistant from the plane, and this distance is

$$d = |n_{x}(\bar{x} - x_{1}) + n_{y}(\bar{y} - y_{1}) + n_{z}(\bar{z} - z_{1})|$$

The coordinates of the corner points in the reference coordinate system are given by

$$x_{k}^{*} = x_{k}^{*} + (-1)^{k+1} n_{x}^{*} d$$

$$y_{k}^{*} = y_{k}^{*} + (-1)^{k+1} n_{y}^{*} d$$

$$k = 1, 2, 3, 4$$

$$z_{k}^{*} = z_{k}^{*} + (-1)^{k+1} n_{z}^{*} d$$

Now the element coordinate system must be constructed. This requires the components of three mutually perpendicular unit vectors, one of which points along each of the coordinate axis of the system, and also the coordinates of the origin of the coordinate system. All these quantities must be given in terms of the reference coordinate system. The unit normal vector is taken as one of the unit vectors, so two perpendicular unit vectors in the plane of the element are needed. Denote these unit vectors t_1 and t_2 . The vector t_1 is taken as T_1 divided by its own length T_1 , i.e.,

$$t_{1x} = \frac{T_{1x}}{T_{1}}$$
$$t_{1y} = \frac{T_{1y}}{T_{1}}$$
$$t_{1z} = \frac{T_{1z}}{T_{1}}$$

96

where
$$T_{1} = [T_{1X}^{2} + T_{1Y}^{2} + T_{1Z}^{2}]^{\frac{1}{2}}$$

The vector \dot{t}_2 is defined by $\dot{t}_2 = \dot{n} \times \dot{t}_1$, so that its components are

> $t_{2X} = n_{1Z} - n_{1Z} t_{1Y}$ $t_{2y} = n t_{1x} - n t_{1z}$ $t_{-} = nt - nt$

The vector \vec{t} is the unit vector parallel to the x or ξ axis of the element coordinate system, while $\dot{t}_{,}$ is parallel to the y or η axis, and \dot{n} is parallel to the z or ζ axis of this coordinate system.

The corner points are now transformed into the element coordinate system based on the average point as origin. These points have coordinates x', y', z' in the reference coordinate k k k system. Their coordinates in the element coordinate system with this origin are denoted by ξ , η , 0. Because they lie in k , kthe plane of the element, they have a zero z or ζ coordinate in the element coordinate system. Also, because the vector t, which defines the x or ξ axis of the element coordinate system, is a multiple of the "diagonal" vector from point 1 to 3, the coordinate η_{3} and the coordinate η_{3} are equal. In the (ξ,η)

coordinate system, the corner points of the element are:

$$\xi_{k} = t_{1x}(\bar{x} - x_{k}') + t_{1y}(\bar{y} - y_{k}') + t_{1z}(\bar{z} - z_{k}')$$
$$\eta_{k} = t_{2x}(\bar{x} - x_{k}') + t_{2y}(\bar{y} - y_{k}') + t_{2z}(\bar{z} - z_{k}')$$

97

These corner points are taken as the corners of a plane quadrilateral as illustrated in the following sketch.

The origin of the element coordinate system is now transferred to the centroid of the area of the quadrilateral. With the average point as origin the coordinates of the centroid in the element coordinate system are:

$$\xi_{0} = \frac{1}{3} \frac{1}{\eta_{2} - \eta_{4}} \left[\xi_{4} (\eta_{1} - \eta_{2}) + \xi_{2} (\eta_{4} - \eta_{1}) \right]$$
$$\eta_{0} = -\frac{1}{3} \eta_{1}$$

These are subtracted from the coordinates of the corner points in the element coordinate system based on the average point as origin to obtain the coordinates of the corner points in the element coordinate system based on the centroid as origin. Accordingly, these latter coordinates are

$$\xi_{k} = \xi_{k} - \xi_{0}$$

$$k = 1, 2, 3, 4$$

$$\eta_{k} = \eta_{k} - \eta_{0}$$

Since the centroid is to be used as the control point of the element, its coordinates in the reference coordinate system are required. These coordinates are

$$\mathbf{x}_{0} = \overline{\mathbf{x}} + \mathbf{t}_{1\mathbf{x}}\xi_{0} + \mathbf{t}_{2\mathbf{x}}\eta_{0}$$
$$\mathbf{y}_{0} = \overline{\mathbf{y}} + \mathbf{t}_{1\mathbf{y}}\xi_{0} + \mathbf{t}_{2\mathbf{y}}\eta_{0}$$
$$\mathbf{z}_{0} = \overline{\mathbf{z}} + \mathbf{t}_{1\mathbf{z}}\xi_{0} + \mathbf{t}_{2\mathbf{z}}\eta_{0}$$

Finally, the area of the quadrilateral is

$$A = \frac{1}{2} (\xi_{3} - \xi_{1}) (\eta_{2} - \eta_{4})$$

APPENDIX III

SAMPLE CASE

LIST OF INPUT CARDS

0000 1234	00000111 56789012	11111112 34567890	22222222 12234567	2233333 8901234	3333344 5678901	44 4444 23 456 7	44555555 890123450	5555666 678901∠	666666677 345678901	17777778 1234567890
0	UGIVE (CYL I NDER	800¥ w 1 2 ∡6	1TH 45 1 1 5 1	DEGREE 28	SWEEP	NACA 65A	004 MID	-W1NG	
٥.	• 5	•75	1.25	2.5	5.	7.5	10.	15.	20.	XAFI
25.	30.	35.	40.	45.	50.	55.	60.	65.	70.	XAF 2
75.	80.	85.	90.	95.	100.					YAFT
13.6	50.	0.	10.							HAFORCI
27.6	5 12.	0.	2.							HALOKOI
0.	.3075	.373	.4755	.6515	.8745	1.06	1.210	1.463	1.6505	MAFOROL
1.79	25 1.8955	5 1.964	1.9975	1.994	1.9475	1.857	1.728	1.5675	1.3815	WAEURD2
1.17	4 .949	.715	-480	.2445	.009					HAEOPDE
0.	.3075	.373	.4755	-6515	. 8745	1.06	1.216	1.442	1 4605	MAFURUS
1.79	25 1.895	5 1. 964	1.9975	1.994	1. 4475	1.857	1 7 29	1 5475	1 3316	MAFURUL
1.17	4 .949	.715	480	. 2445	.009		10/20	1. 3013	1.3013	WAFUNUZ
0.	. 5813	1.1667	1 - 75	2. 3343	2 0167	2 6	4 0933		E 26	MAPUKUS
5.63	33 6-416	7 7.0	7.5812	8.1667	207107	3.52	4.0033	4+0001	2+22	AFUSI
11.6	66715-2	18.75	22.4	26 46	24 4	7.3333	3.3101	10+2	11.0833	XFU52
0.	- 08601	5 3.573	40771	23.05	2704 51 700 0	32472	30. 3			XE023
4.95	8345 595.	76 1071	74 76 14	1.10093	7 1092	02.51.24	+22. 96UBC	3.0211	34.29759	FUSARUI
0 73	7	010.1911	0.707	71.20201	1.0895	58.055	58.3458/	18- 22010	08.68411	FUSARU2
0.12	1 0.121	0.121	0.121	8.121	8.121	8.727	8.727			FUSARD3
	JAINGOLA	AKTIT PA	NELING I	FUR SAM	LE CAS	E				
	1 -2									
	3 1		6 11	1 5 1	6					
144.	14.	0.84	وو و	36.5	20.813	0.				REFL
•204	4204									KH02
0.	10.	20.	30.	40.	50.	60.	70.	80.	90.	XAFK10
100.										XAFKII
1.60	2.97	5.37	1.73	10-1	12.0					¥K6
0.	1.5	4.5	7.5	10.5	11.667	15.594	817.3726	19.1503	20.928	XFUSK10
22.10)5824.483	520.28	£9.4	33.	36.5					XFUSK16
2.01	0.									MALPHA
2.01	5.									MALPHA
-1.										MALPHA

UGIVE CYLINDER BUDY WITH 45 DEGREE SWEEP NACA 654004 MID-WING

					1 44700	0 00000	17 11500	7 . 97000	0.00000	17.91700	2.97000	0.00000
1	15.59483	1.66700	0.00000	10.40310	1.00700	0.00000	17 91700	2.97000	0.00000	18.71900	2.97000	0.00000
2	16.48370	1.66700	0.00000	11.31251	1.00700	0.00000	10.71000	2 97000	0.00000	19.52100	2.970.00	0.00000
3	17.37257	1.66/00	0.00000	18.20145	1.00700	0.00000	10411900	2 07000	0.00000	20 22200	2.97000	0.00000
4	18.26143	1.66700	0.00000	19-15030	1.00/00	0.00000	19.52100	2.97000	0.00000	20. 32 500	2 970.00	0.00000
5	19.15030	1.66700	0.00000	20.03917	1.66700	0.00000	20.32300	2.97000	0.00000	21.12300	2.97000	0.00000
6	20.03917	1.60700	0.00000	20.92803	1.66700	0.00000	21.12500	2.91000	0.00000	21.92100	2.97000	0.00000
7	20.92803	1.66700	0.00000	21.81690	1.66700	0.00000	21.92700	2.97000	0.00000	22.12900	2.97000	0.00000
8	21.81690	1.66700	0.00000	22.70577	1.66700	0.00000	22.12900	2.97000	0.00000	23.55100	2.97000	0.00000
9	22.70577	1.66700	0.00000	23.59463	1.66700	0.00000	23.53100	2.97000	0.00000	24.33300	2.97000	0.00000
10	23.59463	1.66700	0.00000	24.48350	1.66700	0.00000	24.33300	2.97000	0.00000	25.13500	2.97000	0.00000
11	17.11500	2.97000	0.00000	17.91700	2.97000	0.00000	19.91500	5.37000	0.00000	20.55700	5.37000	0.00000
15	17.91700	2.97000	0.00000	18.71900	2.97000	0.00000	20.55700	5.37000	0.00000	21.14400	5.37000	0.00000
13	18.71900	2.97000	0.00000	19.52100	2.97000	0.00000	21.19900	5.37000	0.00000	21.84100	5.37000	0.00000
14	19.52100	2.97000	0.00000	20.32300	2.97000	0.00000	21.84100	5.37000	0.00000	22.48300	5.37000	0.00000
15	20.32300	2.97000	0.00000	21.12500	2.97000	0.00000	22.48300	5.37000	0.00000	23.12500	5.37000	0.00000
16	21.12500	2.97000	0.00000	21.92700	2.97000	0.00000	23.12500	5.37000	0.00000	23.76700	5.37000	0.00000
17	21.92700	2.97000	0.00000	22.72900	2.97000	0.00000	23.76700	5.37000	0.00000	24.40900	5.37000	0.00000
18	22.72900	2.97000	0.00000	23.53100	2.97000	0.00000	24.40900	5.37000	0.00000	25.05100	5.37000	0.00000
19	23.53100	2.97000	0.00000	24.33300	2.97000	0.00000	25.05100	5.37000	0.00000	25.69300	5.37000	0.00000
20	24.33500	2.97000	0.00000	25.13500	2.97000	0.00000	25.69300	5.37000	0.00000	26.33500	5.37000	0.00000
21	19-91500	5.37000	0.00000	20.55700	5.37000	0.00000	22.66833	7.73000	0.00000	23.15300	7.73000	0.00000
22	20.55700	5.37000	0.00000	21.19900	5.37000	0.00000	23.15300	7.73000	0.00000	23.63767	7.73000	0.00000
24	21,19900	5.37000	0.00000	21.84100	5.37000	0.00000	23.63767	7.73000	0.00000	24.12233	7.73000	0.00000
24	21.84100	5.37000	0.00000	22.48300	5.37000	0.00000	24.12233	7.73000	0.00000	24.60700	7.73000	0.00000
25	22-48300	5-37000	0.00000	23.12500	5.37000	0.00000	24.60700	7.73000	0.00000	25.09167	7.73000	0.00000
26	23.12500	5.37000	0.00000	23.76700	5.37000	0.00000	25.09167	7.73000	0.00000	25.57633	7.73000	0.00000
27	23.76700	5.37000	0.00000	24.40900	5.37000	0.00000	25.57633	7.73000	0.00000	26.06100	7.73000	0.00000
28	24.40900	5.37000	0.00000	25-05100	5.37000	0.00000	26.06100	7.73000	0.00000	26.54567	7.73000	0.00000
20	25-05100	5.37000	0.00000	25-69300	5.37000	0.00000	26.54567	7.73000	0.00000	27.03033	7.73000	0.00000
30	25.69100	5.37000	0.00000	26.33500	5.37000	0.00000	27.03033	7.73000	0.00000	27.51500	7.73000	0.00000
11	22.66833	7.73000	0.00000	23.15300	7.73000	0.00000	25.43333	10.10000	0.00000	25.76000	10.10000	0.00000
32	24.15300	7.73000	0-00000	23-63767	7.73000	0.00000	25.76000	10.10000	0.00000	26.08667	10.10000	0.00000
32	23.63767	7.73000	0.00000	24.12233	7.73000	0.00000	26.08667	10.10000	0.00000	26.41333	10.10000	0.00000
	24 12234	7.73000	0.00000	24-60700	7.73000	0.00000	26.41333	10.10000	0.00000	26.74000	10.10000	0.00000
36	24 60700	7.73000	0.00000	25.09167	7.73000	0.00000	26.74000	10.10000	0.00000	27.06667	10.10000	0.00000
32	25 00167	7. 73000	0.00000	25.57613	7.73000	0.00000	27.06667	10.10000	0.00000	27. 39333	10.10000	0.00000
30	25.67133	7 73000	0.00000	26-06100	7.73000	0.00000	27.39333	10.10000	0.00000	27.72000	10.10000	0.00000
31	25.51033	7 7:000	0.00000	26.54567	7.73000	0.00000	27.72000	10,10000	0.00000	28.04667	10.10000	0.00000
38	20.00100	7 7 2000	0.00000	20.34907	7.73000	0.00000	28.04667	10.10000	0.00000	28.37333	10.10000	0.00000
24	20.24201	7 7 2000	0.00000	27 61500	7.73000	0.00000	28.37333	10.10000	0.00000	28.70000	10.10000	0.00000
40	21.03033	10 10000	0.00000	21.91900	10.10000	0.00000	27.65000	12.00000	0.00000	27.85000	12.00000	0.00000
41	23.43333	10.10000	0.00000	25.70000	10.10000	0.00000	27.85000	12.00000	0.00000	28.05000	12.00000	0.00000
44	25.10000	10.10000	0.00000	20.00007	10 10000	0.00000	28.05000	12.00000	0.00000	28.25000	12.00000	0.00000
43	26.0800/	10.10000	0.00000	20.41333	10.10000	0.00000	28.25000	12.00000	0.00000	28.45000	12.00000	0.00000
44	20.41333	10.10000	0.00000	20.14000	10 10000	0.00000	28.45000	12.00000	0.00000	28-65000	12.00000	0.00000
45	26.74000	10.10000	0.00000	27.00007	10 10000	0.00000	29.45000	12.00000	0.00000	28.85000	12.00000	0.00000
46	27.06667	10.10000	0.00000	21.39333	10.10000	0.00000	28 85000	12.00000	0.00000	29,05000	12.000.00	0.00000
47	27.39333	10.10000	0.00000	21.12000	10.10000	0.00000	20.05000	12 00000	0.00000	29,25000	12.00000	0.00000
48	27.72000	10.10000	0.00000	28.04067	10-10000	0.00000	29-03000	12 00000	0.00000	29.45000	12.00000	0.00000
49	28.04667	10.10000	0.00000	28.37333	10.10000	0.00000	29.29000	12.00000	0.00000	20 65000	12.00000	0.00000
50	28.37333	10.10000	0.00000	28.70000	10.10000	0+00000	29.45000	15+00000	0.00000	27.03000	12:00000	

х 3

۲ 3

X 4

23

¥₄

4

.

WING PANEL CORNER POINT COURDINATES 1 ANU 3 INVICATE WING PANEL LEADING-EDGE POINTS, 2 AND 4 INDICATE TRAILING-EDGE PUINTS

X 2

×

PANEL

Y L

4

¥ 2

2
WING PANEL CUNTRUL PUINTS AND INCLINATION ANGLES

PUINT	x	Y	7	THETA	C 4 40 60		
	CP.	CP		INCIA	SLUDE	THICKNESS	
			•		SLOPE	SLUPE	
1	10.34190	2.30734	0.00000	0.00000	0.00000	17470	
2	17.14408	2.30734	0.00000	0.00000	0.00000	05606	
د	18.03425	2.30734	0.00000	0.00000	0.00000	-04245	
4	10.88043	2.30734	0.00000	0.00000	0.00000	.03203	
5	19.72661	2.30734	0.00000	0.00000	0.00000	00315	
Ð	20.51279	2.30734	0.00000	0.00000	0.00000	- 01370	
7	21.41896	2. 30734	U. 00000	0.00000	0.00000	- ((2010	
8	22.20514	6. 30734	0.00000	0.00000	0.00000		
9	23.11132	2.30734	0.00000	0.00000	0.00000	- 04433	
10	23.95749	2.30734	0.00000	0.00000	0.00000	04823	
11	24.80367	4. 14734	0.00000	0.00000	0.00000		
12	18.40329	4.12568	0.00000	0.00000	0.00000		
13	19.18825	4-12568	0.00000	0.00000	0.00000	.1/8/9	
14	19.91320	4.12568	0.00000	0.00000	0.00000	•03696	
15	20.63816	4.12568	0.00000	0.00000	0.00000	.03265	
16	21. 30311	4.12568	0.00000	0.00000	0.00000	-01709	
17	22.03807	+ 1/5on	0.00000	0.00000	0.00000	.00315	
18	22.81302	4-14568	0.00000	0.00000	0.00000	01379	
19	23.53798	4-12568	0.00000	0.00000	0.00000	-•02918	
20	24.26293	4-12568	0.00000	0.00000	0.00000	03946	
21	24.98788	4-12568	0.00000	0.00000	0.00000		
22	25.71284	4.12568	0.00000	0.00000	0.00000	04704	
23	21.22759	6.49507	0.00000	0.00000	0.00000	04710	
24	21.79458	0.49507	0.00000	0-00000	0.00000	.17879	
25	22.36158	0.49507	0.00000	0.00000	0.00000	.03696	
26	22.92857	6.49507	u.00000	0.00000	0.00000	•03205	
27	23.49557	6.49507	0.00000	0.00000	0.00000	-01709	
28	24.06256	6.49507	0.00000	0.00000	0.00000	.00315	
29	24.62956	0.49507	0,00000	0.00000	0.00000	- 01019	
30	25.19055	6.49507	0.00000	0.00000	0.00000	02918	
31	25.76355	6.49507	0.00000	0.00000	0.00000		
32	20.33054	6.49507	0.00000	0.00000	0.00000	- 46704	
33	26.89754	6.49507	0.00000	0.00000	0.00000	- 04710	
34	23.96109	8.83808	0.00000	0.00000	0.00000	17070	
35	24.37188	8.83808	0.00000	0.00000	0.00000	05404	
36	24.78208	8.83805	0.00000	0.00000	0.00000	01245	
37	25.19347	8.83808	0.00000	0.00000	0.00000	-01709	
38	25.60427	8.83808	0.00000	0.00000	0.00000	-00315	
39	26.01506	8.43808	0.00000	0.00000	0.00000	01379	
4U	26.42580	8.83808	0.00000	0.00000	0.00000	02918	
41	26.83665	8.83808	0.00000	0.00000	0.00000		
4 <i>2</i>	27.24745	8.83808	0.00000	0.00000	0.00000		
43	27.05824	8.83808	0.00000	0.00000	0.00000	04704	
44	28.06904	8.83808	0.00000	0.00000	0.00000	04710	
45	26.45281	10.97384	0.00000	0.00000	0.00000	.17879	
46	26.72122	10.97384	0.00000	0.00000	0.00000	-45696	
47	26.98963	10.97384	0.00000	0.00000	0.00000	.03265	
48	27.25805	10.97384	0.00000	0.00000	0.00000	.01709	
49	27.52640	10.97384	0.00000	0.00000	0.00000	.00315	
50	27.79487	10.97384	0.00000	0.00000	0.00000	01379	
>1	28.00.128	10.97384	0.00000	0.00000	0.00000	-02918	
52	28.33169	10.97384	0.00000	0.00000	0.00000	03946	
53	28.60010	10.97384	0.00000	0.00000	0.00000	04623	
24	28.80851	10.97384	0.00000	0.00000	0.00000	04704	
> >	29.13692	10.97384	0.0000	0.00000	0.00000	04710	

WING PANEL AREAS AND CHURDS

PANEL	AREA	CHORD
L	1.10100	.84618
2	1.10160	.84618
3	1.10100	. #46 18
4	1.10160	.84618
5	1.10160	.84618
6	1.10160	.84618
7	1.10100	.84618
8	1.10160	.84618
9	1.10160	.84618
10	1.10160	.84618
11	1.73280	• 72495
12	1.73280	• 72495
1.5	1.73280	• 72495
14	1.73280	.72495
15	1.73280	• 72495
16	1.73280	• 72495
17	1.73280	.72495
18	1.73280	• 72495
19	1.73280	.72495
20	1.73280	.72495
21	1.32947	.56700
22	1.32947	.56700
23	1. 32947	.56700
24	1.32947	.56700
25	1.32947	. 56700
26	1.32947	.56700
27	1.32947	. 56700
28	1. 32947	. 56700
29	1.32947	. 56 700
30	1.32947	. 56700
31	. 98143	.41079
32	.96143	.41079
33	.96143	.41079
34	. 96143	.41079
35	• 96143	.41079
36	.96143	.41079
37	. 96143	.41079
38	.96143	-41079
39	.96143	.41079
40	. 96143	-41014
41	. 500 3 3	.20841
42	.50033	.20841
43	.50033	.20841
44	.50033	.20841
45	.50033	• 20841
46	.50033	• 20091
47	. 50033	+ 2004L
48	. 50033	.20091
49	.50033	. 20541
50	.50033	.20841

							THOTORIC	- ALLING	LUGE FUI			
PANËL	X	¥	2	x	Y	2	x	Y	1	x	Y	,
	1	1	1	2	2	2	3	3	3	4	.4	-4
,	0.00000	4.00000	0.00000	1 60000	00000	- 404 11	0.00000	0				
ž	0.00000	0.00000	0.00000	1.50000	. 28726	- 22724	0.00000	0.00000	0.00000	1.50000	.28724	28724
š	0.00000	0.00000	u_000000	1.50000	.40622		0.00000	a 00000	0.00000	1.50000	.40622	.00000
4	0.00000	0.00000	0.00000	1.50000	.28/24	.287.4	0.00000	0.00000	0.00000	1.50000	- 000000	.28/24
5	1.50300	.00000	40622	4.50000	.00000	-1.04487	1,50000	.28724	28724	4-50000	73883	- 72892
C C	1.50000	.20724	28724	4.50000	.73883	73883	1.50000	.40622	-00000	4-50000	1.04487	
7	1.50000	.40622	.00000	4.50000	1.04487	.00000	1.50000	.28724	.28724	4.50000	.71883	. 7 488 4
8	1.50000	•28724	.28724	4.50000	.73863	.73883	1.50000	00000	.40622	4.50000	00000	1.04487
9	4.50000	• 0000u	-1.04487	7.50000	.00000	-1.45730	4.50000	د7388 ء	73883	7.50000	1.03047	-1.03047
10	4.50000	.73883	73683	7.50000	1.03047	-1.03047	4.50000	1.04487	.00000	7.50000	1.45730	.00000
11	4.50000	1.04487	.00000	7.50000	1.45730	.00000	4.50000	.73883	.73883	7.50000	1.03047	1.03047
12	4.50000	./3883	./3883	7.50000	1.03047	1.03047	4.50000	00000	1.04487	7.50000	00000	1.45730
15	7.50000	.00000	-1.45730	10.50000	.00000	~1.65030	7.50000	1.01041	-1.03047	10.50000	1.16694	-1.16694
14	7.50000	1.03047	-1.03047	10.50000	1.10094	-1.16694	1.50000	1.45730	.00000	10.50000	1.65030	.00000
10	7.50000	1.49730	.00000	10.50000	1.65030	.00000	7.50000	1.03047	1.03047	10.50000	1.10694	1.16694
17	10.50000	1.03047	1.03047	11.45700	1.10094	1.16694	7.50000	00000	1.45730	10.50000	00000	1.65030
18	10.50000	1.10094	-1-16694	11.66700	1 17454	-1.00070	10.50000	1.10094	-1.16694	11.66700	1.17854	-1.17854
19	10.50000	1.05034	-00000	11.06700	1. 5.5.570	-1+1/034	10.50000	1.05030	.00000	11.66700	1.66670	.00000
20	10.50000	1.16694	1.16694	11.66700	1.17654	1.17854	10.50000	- 00000	1.45.330	11.66700	1.1/854	1.17854
21	11.66700	.00000	-1.00070	15.59480	.00000	-1.66670	11.60700	1.17854	-1.17454	15.59480		1.00070
22	11.00700	1.17854	-1.17854	15.59480	1.17854	-1.17854	11.66700	1.66670	.00000	15.59480	1.45670	-1.17034
23	11.65700	1.66070	.00000	15.59480	1.66070	.00000	11.55700	1.17854	1.17854	15.59480	1.17854	1.17854
24	11.66700	1.17854	1.17854	15.59480	1.17854	1.17854	11.66700	00000	1.66670	15.59480	00000	1.66670
∠5	15.59480	•00000	-1.06670	17.37260	.00000	-1.66670	15.59480	1.17854	-1.17854	17.37260	1.17854	-1.17854
26	15.59480	1.17854	-1.17854	17.37260	1.17854	-1.17854	15.59480	1.66670	.00000	17.37200	1.66670	.00000
21	15.59480	1.66670	•00000	17.37260	1.00070	.00000	15.59480	1.17854	1.17854	17.37260	1.17854	1.17854
28	15.59480	1.17854	1.17854	17.37260	1.17854	1.17054	15.59480	00000	1.66070	17.37260	00000	1.00670
29	11.37260	.00000	-1.56670	19.15030	.00000	-1.00070	17.37260	1.17854	-1.17854	19.15030	1.17854	-1.17854
30	17 17 1200	1.1/804	-1.17854	19.15030	1.17854	-1.17854	17.37260	1.66670	.00000	19.15030	1.66670	.00000
42	17. 372.00	1.00070	.00000	19.15030	1.00010	.00000	17.37260	1.17854	1.17854	19.15030	1.17854	1.17854
13	19.15040	.00000	-1.66670	14.12030	1.17854	1+1/834	11.31200	00000	1.06670	19.15030	00000	1.66670
14	19.15030	4.17854	-1-17854	20-92800	1.17854	-1.00070	19.15030	1+17824	-1.1/854	20.92800	1.17854	-1.17854
35	19-15030	1.66670	.00000	20-92800	1.66670	-100000	14 15030	1.00070	.00000	20.92800	1.66670	.00000
36	19.15030	1.17854	1.17854	20.92800	1.17854	1-17854	19.15030	00000	1 66670	20.92800	1.1/854	1.17854
37	20.92800	.00000	-1.00070	22.70580	.00000	-1.66070	20.92800	1.17854	-1.17354	22.70580		-1 17954
Be	20.92800	1.17854	-1.17854	22.70580	1.17854	-1.17854	20.92800	1.66670	.00000	22.70580	1.66670	- 1.11034
39	20.92800	1.66070	.00000	22.10580	1.66070	.00000	20.92800	1.17854	1.17854	22.70580	1.17854	1.17854
40	20.92600	1.17824	1.17854	22.70580	1.17854	1.17854	20.92800	00000	1.66670	22.70580	00000	1.66670
41	22.10580	.00000	-1.66670	24.48350	.00000	-1.06670	22.70580	1.17854	-1.17854	24.48350	1.17854	-1.17854
42	22.70580	1.1/854	-1.17#54	24.48350	1.17854	-1.17854	22.70580	1.06070	•00000	24.48350	1.66670	.00000
43	22.70580	1.66670	.00000	24.48350	1.66670	.00000	22.70580	1.17854	1.17854	24.48350	1.17854	1.17854
44	22.10580	1.17854	1.1/854	24.48350	1.17854	1.17854	22.70580	00000	1.66670	24.48350	00000	1.66670
45	24+40330	.00000	-1.000/0	26.28000	.00000	-1.66670	24.48350	1+17854	-1.17854	26 .280 00	1.17854	-1+17854
+0 +7	24.48450	1.66670	00000	20.20000	1.11034	-1.1/854	24.48350	1+66670	.00000	26.28000	1.66670	.00000
48	24-48350	1.17454	1.17854	26.28000	1 17454	1 17854	24-40330	1.1/004	1.1/854	26+28000	1.17854	1-17854
49	20.28000	. 00000	-1.66670	29.40000	.00000	-1-66670	24+40330		4+000/0	20.28000	00000	1.66670
50	20.28000	1.17854	-1.1/854	29.40000	1.17854	-1.17854	26.28000	1.66670	-00000	29.40000	1+1/004	-1.1/824
51	26.28000	1.00070	.00000	29.40000	1.66670	.00000	26.28000	1.17854	1.17854	29.40000	1.17854	1.17964
52	26.28000	1.17854	1.17854	29.40000	1.17854	1.17854	26.28000	00000	1.66670	29.40000	~ 00000	1.66670
53	29.40000	•00000	-1.06670	33.00000	.00000	-1.66670	29.40000	1.17854	-1.17854	33.00000	1.17854	-1.17854
<u>54</u>	29.40000	1.17854	-1.17854	00000.66	1.17854	-1.17854	29.40000	1.66670	.00000	33.00000	1.66670	.00000
55	29.40000	1.60670	•00000	33.00000	1.66670	.00000	29.40000	1.17854	1.17854	33.00000	1.17854	1.17854
26	29.40000	1.11854	1.17854	33.00000	1.17854	1.17854	29.40000	00000	1.66670	33.00000	00000	1.66670
21	33.00000	.00000	-1.66670	16.50000	.00000	-1.66670	33.00000	1.17854	-1.17854	36.50000	1.17854	-1.17854
28 60	100000	1.1/854	-1.17854	36.50000	1.17854	-1.17854	33.00000	1.66670	.00000	36.50000	1.66670	.00000
59 60	33.00000	1 17464	+00000	30.50000	4.66670	.00000	33.00000	1.17854	1.17854	36.50000	1.17854	1.17854
50		1011024	4+1/854	20.20000	1.1/854	4.17854	00000.60	00000	1.66570	30.50000	00000	1.66670

BODY PANEL CURNER PUINT CUURDINATES I AND 3 INDICATE BUDY PANEL LEADING-EDGE POINTS, 2 AND 4 INDICATE TRAILING-EDGE POINTS

BODY PANEL CONTRUL PUINT COORDINATES

.

PUINT	X	Y	2
	CP	LP	CP
1	1.00000	.09575	- 00575
2	1.00000	- 23110	09575
د	1.00000	. 23110	. 23116
4	1.00000	. 27308	65928
2	3+22000	. 65928	27308
7	4.22006	. 65928	.27308
	3.22006	.27308	.65928
ŏ	6. 08242	. 44633	-1.07754
10	6.08242	1.07754	44633
11	6.08242	1.07754	.44633
12	6.08242	. 44633	1.07754
13	9.03105	. 55006	-1.32796
14	9.03105	1.32790	55006
15	9.03105	1.32796	.55006
16	9.03105	. 55006	1.32/96
17	11.08446	.58637	-1.41203
18	11.08446	1.41503	-+28031
19	11.08440	1.41202	
20	14 43000	. 58927	-1-42262
22	13.63090	1.42262	58927
22	13-63090	1.42262	.58927
24	13.63090	.58927	1.42262
25	16.48370	.58927	-1.42262
26	16.48370	1.42262	58927
27	16.48370	1.42262	.58927
28	16.48370	.58927	1.42262
29	18.26145	.58927	-1.42202
30	18.20145	1 42202	30327
31	18+20142	. 58927	1.42262
32	20 03915	. 58927	-1.42262
33	20.03915	1.42262	58927
35	20.03915	1.42262	.58927
36	20.03915	.58927	1.42262
37	21.81690	.58927	-1.42262
38	21.81690	1.42262	58927
39	21.81690	1.42262	.58927
40	21.81690	.58927	1.42262
41	23. 59405	.58927	-1.42202
42	23.59465	1.42202	20721
43	23.39903	589.27	1.42262
44	25. 39405	. 58927	-1-42262
46	25.38175	1.42262	58927
40	25-38175	1.42262	.58927
48	25.38175	.58927	1.42262
49	27.84000	. 58927	-1.42262
50	27.84000	1.42262	58927
51	27.84000	1.42262	.58927
52	27.84000	.58927	1.42262
53	31.20000	.58927	-1.42262
54	31.20000	1.42262	58921
55	31.20000	1.42202	1.42242
56	31.20000	• 30721 . 58027	-1.42262
51	34.75000	1.42262	58927
50	34.75000	1.42262	.58927
60	34.75000	.58927	1-42262

		BODY	PANEL	AREAS	AND	INCLINATION	ANGLES
--	--	------	-------	-------	-----	-------------	--------

PANEL	AREA	ÜEL ÎA	THETA
PANEL 1 2 3 4 5 6 7 8 9 10 11 13 15 16 7 8 9 10 11 13 15 16 7 8 9 10 11 13 15 16 7 18 9 10 11 13 15 16 7 18 9 10 11 13 15 16 7 18 9 10 11 13 15 16 7 18 9 10 11 13 15 16 7 18 9 10 11 13 15 16 7 18 9 10 11 13 15 16 7 18 9 10 11 12 23 24 24 24 24 24 24 24 24 24 24	AREA . 24037 . 24037 . 24037 . 24037 1. 69784 1. 69784 1. 69784 1. 69784 1. 69784 1. 69784 2. 89570 2. 807198 3. 57398 3. 26783 2. 26770 2.	DEL 1A 24517 24517 19420 19420 19420 19420 19420 19420 12634 12644 12644 12644 12644 12644 12644 12644 12644 12644 12644 1	THETA -2.74889 -1.96350 -1.17810 39270 -2.74899 -1.96350 -1.17810 39270 -2.74899 -1.96350 -1.17810 39270 -2.74889 -1.760 39270 -2.74889 -1.760 392
60 PARTITION	4.46473	0.00000 = 49.82100	39270
PARTITIUN INFLUENCE	= 2 TIME OF WING ON	■ 61.21900 BODY	
PARTITIUN INFLUENCE	* 3 TIME	= 72.21100 WING	
PARTITION INFLUENCE TIME = 94 TIME = 95	= 4 TIME OF WING ON 4.18100 5.90300	= 82.85100 Wing	

TIME = 103.35700

VELUCITIES UN BODY, MACH=2.010 ALPHA= 0.000

PANEL	SUURLE	AXIAL	LATERAL	VERTICAL	NORMAL
NU.	STRENGTH	VELOCITY	VELOCITY	VELUCITY	VELOCITY
L	.19642	09678	•08648	20879	+25020
2	.19642	09678	.20879	08648	25020
ذ	.19642	09578	.20879	.08648	.25020
4	.19642	09678	.08648	.20879	.25020
5	.17261	07016	.06998	16896	19668
6	.17261	07016	.16896	06998	.19668
7	.17261	07016	.16896	.06998	.19668
8	.17261	07016	•06998	.16896	•19668
9	.11296	03539	.04689	11319	12701
10	.11296	03539	.11319	04689	.12701
11	-11296	~.03539	•11319	.04689	.12701
12	.11296	03539	.04689	-11319	.12701
13	-05198	00181	.02270	05481	.05944
14	-05198	00181	+05481	02270	•05944
15	.05198	00181	.02481	•UZZIU	•05949
10	•02138	00181	.02270	.03481	•02944
11	02286	.02050	01334	- 00507	.01290
10	02280	02050	01224	00507	.01290
19	02280	.02050	00507	- 00 507	+01298
20	-+02286	01407	.00507	-01224	- 00000
21	- 00277	01807	.00000	.00000	- 00000
22		-01807	00000	- 00 000	00000
24	00277	-01807	00000	.00000	00000
25	-0<89)	- 00714	.00000	- 00000	00000
26	.02891	.00714	00000		-00000
21	-02 491	.00714	.00000	00000	00000
28	02891	.00714	00000	.00000	00000
29	00208	.00751	00000	00000	00000
30	.02371	00814	00807	01949	00000
16	.02371	00814	00807	.01949	00000
32	00208	.00751	.00000	00000	.00000
33	02.323	.00037	01946	00806	.00000
34	.01089	.00055	00635	01534	00000
35	.01089	.00055	00635	.01534	00000
36	02323	.00037	01946	.00806	.00000
37	04014	00101	01001	00415	+00000
38	01999	.01434	.00025	.00060	.00000
39	01999	.01434	.00025	00060	.00000
40	04014	00101	01001	.00415	.00000
41	.00854	00006	.00244	.00101	00000
42	00627	.01918	.00711	.01716	.00000
43	00627	.01918	.00711	01716	.00000
44	.00854	00006	.00244	00101	.00000
45	.03622	.00587	.01490	.00617	00000
46	01324	+01811	.01223	.02952	.00000
47	01324	-01811	.01223	02952	.00000
48	.03622	.00587	-01490	00617	00000
49	-01694	.01450	.02036	.00843	00000
50	06066	.00///	-00965	-02329	.00000
51	06066	.00///	.00965	02329	.00000
52	•01044	• 01420	.02036	00003	00000
53	- 05404	401317	•U2371	• 00 3 3 3	.00000
24	05393	-01141	-01118	. 02698	.00000
22 56	CKCC0+-	+UI141 01217	0/107	- 00000	.00000
57	.03094	.01517	0 2074		•00000
50	07901	.00072	.01240	- 02002	_00000
59	07801	.00925	-01240	02991	-00000
60	-01268	.00842	-02074		-00000
		100045			

UGIVE CYLINDER BODY WITH 45 DEGREE SWEEP NACA 65A004 MID-WING Singularity paneling fur sample case

INTEGRATION OF THE PRESSURE DISTRIBUTION

UN THE BUDY

	MACH=	2.0100									
	ALPHA=	0.0000								C 11	DOTAT
Puint	X	Ŷ	2	X/C	24/8	270	LP	CN		CM	PUINE
1	1.0000	.09575	23116	.02740	.02875	06942	.15199	. 03274	.00887	.64669	1
2	1.0000	0 .23116	09575	.02740	.06942	02875	.15199	•UL350	.00887	.26787	2
ذ	1.0000	0 .2311b	.09575	.02740	•06942	•02875	.15199	01350	.00887	26787	3
4	1.0000	J .09575	.23116	.02740	.02875	.06942	.15199	03274	.00887	64669	4
د	3.2200	6 .27308	65928	.08822	.08201	19798	•11589	.17374	.03699	3+03221	5
-	4.2200	6 .65928	27308	.08822	.19798	08201	.11288	.07197	.03699	1.25598	6
7	3.2200	6 .65928	.27308	.08822	.19798	.08201	.11288	07197	.03699	-1.25598	7
B	3.2200	o +27308	.65928	.08822	.08201	.19798	.11288	17374	•U3699	-3.03222	8
	6-0824	2 44633	-1.07754	.10664	.13403	32359	.05759	.15283	.02101	2.22805	9
10	6-08/4	2 1.07/54	44633	.16664	. 32359	-+13403	.05759	.06330	+02101	.92314	10
11	6.0824	2 1.07754	. 44633	.10004	.32359	.13403	.05759	06330	+02101	92314	11
- 12	6-08/4	2 .446.11	1.07754	.16664	.13403	.32359	.05759	15283	.02101	-2.22865	12
1.1	9-0310	5 .55006	-1.12796	24743	.16518	39879	.00010	.00034	.00002	.00392	13
14	9-0310	5 1.12796	55006	. / 4743	.39879	16518	.00010	.00014	.00002	.00163	14
15	9 0310	5 1.32796	. 55006	. 24743	. 19879	.10518	.00010	00014	.00002	00163	15
10	9.0310	5 .55006	1.32790	. 1474 1	-16518	.39879	.00010	00034	.00002	00392	16
10	11 0466	59417	-1 41563	10168	.176.09	42511	03988	05458	00077	52986	17
	11 0944	6 1 61 564	-1.41505	10168	.4/511	17009	03988	02261	00077	21948	18
10	11.0044	6 1 41 563	- 586 17	- 10368	.42511	-17609	03988	.02261	00077	.21948	19
19	11.0044	4 501.17	1 41503	10368	17609	. 42511	03986	.05458	00077	.52986	20
20	11.0044	0 .50037	-1 61/67	17346	17696	- 42721	03515	- 16270	0.00000	-1-16854	21
21	13+0309	0 .00727	-1+42202	17166	42721	- 17-96	03515	06739	0.00000	- 48402	22
22	13.0309	U 1.42202	-+30921	• 37343		17606	- 04515	06739	0.00000	48402	24
£ 3	13.6309	0 1.42202	.28921	.3/342	• 4 2 1 2 1	- 11070	- 03515	16270	0.00000	1.16854	24
24	13.6309	0 .58527	1.42202	.3/342	17090	62721	- 01613	- 02960	0.000000	12817	25
25	10.4831	.58927	-1.42202	•45161	.11090	- 17606	- 01413	- 012700	0.00000	05309	26
20	16.4831	0 1.42262	58927	.45101	.42721	17090	- 01413		0.00000	153.09	27
27	16.4837	0 1.42202	.58927	.45161	•42121	.11090	01413	.01220	0.00000	.12817	28
25	16.4837	0 .58927	1.42202	.43101	.1/090	+42721	01415	- 02117	0.00000	- 07942	20
29	18.2014	S ₅58927	-1.42262	.50031	.17696	42721	01486	03112	0.00000		29
0 E	18.2614	5 1.42262	58927	.50031	.42(21	-+11040	.01602	.01390	0.00000	03547	30
31	18.2614	5 1.42262	.58927	.50031	•42121	.17696	.01602	01340	0.00000		31
32	18.2614	5 .58927	1.42262	.50031	.17696	• 42721	01486	.03112	0.00000	.01942	32
33	20.0391	5 •58927	-1.42262	• 54 902	.17696	42721	00118	00248	0.00000	00192	33
54	20.0391	5 1.42262	58927	•5490∠	.42721	17696	00137	00119	0.00000	00092	34
30	20.0391	5 1.42262	.58927	.54902	•42721	.17696	00137	.00119	0.00000	.00092	39
ەد	20.0391	5 .58927	1.42262	.54902	.17696	. 42721	00118	.00248	0.00000	-00192	06
37	21.8169	0 .58927	-1.42262	.59772	.17696	42721	.00191	.00400	0.00000		31
38	∠1•8169	0 1.42262	58927	.59772	.42721	17696	02805	02434	0.00000	.02443	38
39	21.8169	0 1.42202	.58927	+59772	.42721	.17696	02805	.02434	0.00000		39
40	21.8169	0 .58927	1.42262	.59772	.17696	.42721	.00191	00400	0.00000	.00401	40
41	23.5940	5 .58927	-1.42262	.04643	.17096	42721	.00010	.00022	0.00000	00061	41
42	23.5946	5 1.42262	58927	.04643	•42721	17696	03756	0.1259	0.00000	.09066	42
43	23.5940	5 1.42262	.58927	.64643	.42721	.17096	03750	.03259	0.00000	09066	43
44	23.5946	5 .58927	1.42262	• 64643	.17696	.42721	.00010	00022	0.00000	.00061	44
45	25.3817	5 .58927	-1.42262	.69539	.17696	42721	01188	02515	0.00000	.11491	45
40	25.3817	5 1.42202	58927	.69539	.42721	17696	03616	03171	0.00000	•14490	46
47	25.3817	5 1.42262	.58927	.69539	•42721	.17696	03616	.03171	0.00000	14490	47
48	25.3817	5 .58927	1.42262	.69539	.17696	.42721	01188	.02515	0.00000	11491	48
44	27.8400	.58527	-1.42262	.76274	.17696	42721	02881	10593	0.00000	. 744 38	49
50	27.8400	U 1.42262	58927	.76274	.42721	17696	01596	02431	0.00000	.17085	50
51	27.8400	0 1.42264	.58927	.76274	•42721	.17696	01596	.02431	0.00000	17085	51
52	27.8400	.58927	1.42202	. 16274	.17696	.42721	02881	.10593	0.00000	74438	52
51	31.2000	.58927	-1.42262	.85479	.17696	42721	02645	11222	0.00000	1.16565	53
54	31,2000	1.42262	58927	.85479	.42721	17690	02323	04083	0.00000	•42408	54
55	31,2000	0 1.4//6/	-58927	.85479	.42721	.17696	02323	.04083	0.00000	42408	55
56	11.2000	.589.7	1-42262	.85479	.17696	.42721	02645	.11222	0.00000	-1.16565	56
57	34,7500	58927	-1.47762	95205	.17696	42721	01712	07061	0,00000	.98404	57
5.9	34,7500	1.4/262	- 58927	95205	42721	17696	01924	03288	0,00000	.45826	58
	34.7500	0 1.4/262	-58927	95205	.42721	.17696	01924	.03288	0.00000	45826	59
60	34.7500	58927	1-42262	.95205	.17696	.42721	01712	.07061	0.00000	98404	60
	5444.500										

36.5000

UN THE B	UUY			
REFA=	144.0000	KEFD=	3.330ü	KEFL=
REFX=	20.8130	REFZ=	0.0000	
CN=	.0000			
LĪ≠	.0037			
CM=	0000			
CL=	.0000			
CD=	.0037			
CP =	-1.5870			

VELOCITIES ON WING UPPER SURFACE, MACH=2.010 ALPHA= 0.000

PANEL	VORTEX	AX TA 1	LATERAL		
NO.	STRENGTH	VELOCITY	VELOCITY	VELOCITY	
			recourt	VECOCITI	
1	00000	12191	.14872	.17879	
2	00000	.02325	06309	-05696	
اد ا	.00000	.00695	03468	.03265	
4	.00000	.00518	02358	-01709	
5	.00000	.00868	01760	-00315	
6	00000	-01821	0 206 1	- 01 379	
1	00000	.02206	01522	- 02919	
8	.00000	.02414	0.0917		
9	.00000	.02864	01025	- 04623	
10	.00000	.02582	00434	- 04304	
11	00000	-02247	-00144	- 04710	
12	.00000	1/687	. 15178	17870	
13	00000	03264	04040	• 17679	
14	00000	00618	-00166	.03046	
15	00000	-02367	- 05002	.03205	
10	00000	.01651	- 03690	.01709	
17	.00000	-02284	- 04141	-01312	
18	.00000	. 02992	04103	01379	
19	00000	. 03571	04226	05918	
20	00000	112732	04400	03946	
21	00000	(124.3.0	~.04194	04623	
22	00000	03369	03595	04704	
2.4	00000	- 12601	03250	04710	
24		- 03502	• 1 408 0	-17879	
25	- 00000	- 01964	.04206	•05696	
26	- 00000	- 00034	.02123	•03265	
27	00000		.00966	.01709	
28	- 00000	.00056	~.00363	.00315	
20	00000	•02291	03670	01379	
40	- 00000	.04714	07500	02918	
41	- 00000	•04349	06282	03946	
12	- 00000	.04270	05353	04623	
34	- 00000	-04271	05200	04704	
34	~ 00000	.04111	04856	04710	
45		12400	.15068	.17879	
36	- 00000	03/64	.04531	.05696	
47		01850	+01967	.03265	
1.9	- 00000	00/91	.00540	.01709	
39	- 00000	00023	00397	.00315	
40	100000	.01001	01688	01379	
41	= 00000	.01939	02695	02918	
47	- 00000	• 02434	03331	03946	
42	- 00000	.02815	03980	04623	
44	00000	-02809	04334	-+04704	
45	- 00000	.03065	04243	04710	
45	- 00000	14139	.17134	.17879	
40	00000	04752	.06159	.05696	
49	- 00000	01946	.02050	.03265	
40	• 00000	-*01021	.00896	.01709	
47	00000	-+00287	00036	.00315	
50	.00000	.00763	01249	01379	
52	•00000	.01648	02250	02918	
52	00000	.02364	03263	03946	
55 56	- 00000	•02826	04052	04623	
54	00000	.02754	04298	04704	
	00000	+02755	04707	04710	

.

1 . OGIVE CYLINDER BUDY WITH 45 DEGREE SWEEP NACA 65A004 MID-WING SINGULARITY PANELING FUR SAMPLE CASE

INTEGRATION OF THE PRESSURE DISTRIBUTION

ON THE WING UPPER SURFACE

	MACH= 2	.0100									
PUINT	ALPHA- V	Y	L	X/C	27/8	2/0	CP	CN	CT	CM	POINT
1	16.76499	2.30734	0.00000	.05000	.19228	0.00000	.07831	08627	.01017	34921	1
2	17.61117	2.30734	0.00000	.15000	.19228	0.00000	03365	.03707	00166	11869	2
د	18.45734	2.30734	0.00000	.25000	.19228	0.00000	01353	-01490	00037	.03511	3
4	19.30352	2.30734	0.00000	.35000	.19228	0.00000	01427	.01572	00016	.02373	4
5	20.14970	2.30734	0.00000	.45000	.19228	0.00000	02670	.02941	.00016	.01951	5
	20.99587	2.30734	0.00000	.55000	.19228	0.00000	03980	.04384	.00094	00802	6
7	21.84205	2.30734	0.00000	.65000	.19228	0.00000	04580	.05046	.00173	05192	7
, B	22.68823	2.30734	0.00000	.75000	.19228	0.00000	05237	.05769	+00247	10819	8
9	23.53441	2.30734	0.00000	.85000	.19228	0.00000	05418	.05969	.00278	16243	9
цů	24.38058	2.30734	0.00000	.95000	.19228	0.00000	04851	.05343	.00252	19063	10
11	18.82577	4-12568	0.00000	.05000	.34381	0.00000	.14091	24418	.02878	48523	11
12	19.55072	4-12 568	0.00000	.15000	.34381	0.00000	.03717	06441	.00289	08131	12
1.1	20.27568	4-12568	0.00000	.25000	.34381	0.00000	01839	.03187	00079	.01712	13
14	21.00063	4-12568	0.00000	.35000	.34381	0.00000	04077	.07065	00071	01326	14
15	21.72559	4-12568	0.00000	.45000	.34381	0.00000	03961	.00864	.00037	06264	15
16	22.45054	4-12 568	0.00000	.55000	. 34381	0.00000	05263	.09119	.00196	14933	16
17	24.17550	4-12568	0.00000	- 65000	.34381	0.00000	06497	.11258	.00386	26596	17
โล่	23.90045	4.12568	0.00000	.75000	.34381	0.00000	07210	.12494	.00535	38575	18
19	24.62541	4-12568	0.00000	.85000	.34381	0.00000	07093	.12292	.00573	40861	19
20	25.35036	4-12568	0.00000	.95000	.34381	0.00000	06657	-11534	.00543	52336	20
21	21.51108	6.49507	0.00000	.05000	.54126	0.00000	.14331	19052	.02246	.13300	21
22	22.07808	6-49507	0.00000	.15000	. 54126	0.00000	.05227	06950	.00311	.08792	22
24	22.64507	6-49507	0.00000	-25000	-54126	0.00000	.02754	03662	.00091	.06708	23
24	23.21207	6-49507	0-00000	.35000	-54120	0.00000	.00870	01157	.00012	.02776	24
25	23.77906	6.49507	0-00000	45000	-54126	0.00000	02337	.03107	.00017	09215	25
26	24.34606	6.49507	0.00000	55000	-54126	0.00000	06915	.09194	.00198	32482	26
27	24.91305	6-49507	0.00000	5000	-54126	0.00000	08921	.11860	.00407	48628	27
28	25.48005	6-49507	0.00000	.75000	.54126	0.00000	08484	.11279	.00483	52638	28
29	20.04704	6-49507	0.00000	.85000	.54126	0.00000	08398	.11164	.00521	58435	29
30	26+61404	6-49507	0.00000	95000	-54126	0.00000	08242	.10958	.00516	63568	30
41	24.16649	8.83808	0.00000	.05000	.73651	0.00000	.14910	14335	.01690	.48071	31
32	24.57728	8.81808	0.00000	.15000	.73651	0.00000	.05497	05285	.00237	.19893	32
33	24.98808	8.83808	0.00000	.25000	.73651	0.00000	•0∠ 08	02507	.00062	.10468	33
34	25.39867	8.63808	0.00000	. 15000	.73651	0.00000	.00806	00775	.00008	.03552	34
35	25.80967	8.83808	0.00000	.45000	.73651	0.00000	01044	+01004	.00005	05018	35
ot	26.22046	8.83808	0.00000	.55000	.73651	0.00000	03020	.02904	.00062	15701	36
37	26.63126	8.83608	0.00000	.65000	.73651	0.00000	04417	.04247	.00146	24711	37
38	27.04205	8.83808	0.00000	.75000	.73651	0.00000	05322	.05117	.00219	31873	38
39	27.45285	8.83808	0.00000	.85000	.73651	0.00000	05728	.05507	.00257	36568	39
40	27.86304	8.83808	0.00000	.95000	.73651	0.00000	05967	.05737	.00270	40449	40
41	26.58702	10.97384	0.00000	.05000	.91449	0.00000	.16990	08500	.01002	.49082	41
42	26.85543	10-97384	0.00000	.15000	.91449	0.00000	.06594	03299	.00148	.19936	42
43	27.12384	10.97384	0.00000	.25000	.91449	0.00000	.02978	01490	.00037	•09402	43
44	27.39225	10.97384	0.00000	.35000	.91449	0.00000	.01342	00672	.00007	.04419	44
45	27.66006	10.97384	0.00000	.45000	.91449	0.00000	- 004 83	•00242	.00001	01656	45
46	27.92907	10.97384	0.00000	.55000	•91449	0.00000	02441	.01221	.00026	08692	46
47	28.19748	10.97384	0.00000	.05000	.91449	0.00000	04067	.02035	.00070	15026	47
48	28.46589	10.97384	0.00000	.75000	•91449	0.00000	05268	.02636	.00113	20172	48
49	28.73430	10.97384	0.00000	.85000	.91449	0.00000	05689	.02847	.00133	22549	49
50	29.00271	10.97384	0.00000	.95000	.91449	0.00000	05653	•02828	.00133	23164	50

VELUCITIES ON WING LUWER SURFACE, MACH=2.010 ALPHA= 0.000

PANEL	VURTEX	AXIAL	LATERAL	VERTICAL
NG.	STRENGTH	VELOCITY	VELOCITY	VELOCITY
	00000	12101	1 (03)	17070
1	00000		• 14872	17879
1	- 00000	- 00695	03468	03090
4	- 00000	- 00518	- 02358	- 01709
5	.00000	- 00510		00315
6	03000	01821	02061	.01379
7	00000	02206	01522	.02918
8	.00000	.02414	00917	.03946
9	.00000	.02864	01025	.04623
10	.00000	.02582	00434	.04704
11	00000	.02247	.00144	.04710
12	.00000	12687	.15178	17879
فل	00000	03264	.04060	05696
14	00000	00518	.00164	03265
15	00000	.02367	05002	01709
10	00000	+01651	03580	00315
17	.00000	•02284	04183	.01379
10	- 00000	02571	04226	.02918
20	- 00000	03743	04408	•03940
20		- 03639	- 03595	• 44023
22	00000	-04/69	03250	047104
23		- 12591	-14680	17879
24	00000	03502	.04200	05096
25	.00000	01856	.02123	03265
20	00000	00934	.00966	01709
27	00000	.00056	00363	00315
28	00000	.02291	03670	.01379
29	00000	.04714	07500	.02918
30	00000	.04349	06282	.03945
31	00000	.04270	05353	.04623
32	00000	-04277	05200	•04704
26	00000	.04111	04856	.04710
24	00000	12906	.15068	1/8/9
35	- 00000	- 03/04	.04531	05696
37	- 00000		.01967	03265
34		- 00024	- 00397	- 00 115
39	00000	.01061	01688	
40	.00000	.01949	02695	.02918
41	00000	.024 14	03331	-03946
42	00000	.02815	03980	04623
43	00000	.02809	04334	.04 704
44	.00000	.03065	04243	.04710
45	00000	14159	.17134	17879
46	00000	04752	.06159	05696
47 .	.00000	01940	.02050	03265
48	.00000	01057	.00896	+.01709
49	00000	00287	00036	00315
50	.00000	.00763	01249	.01379
51	.00000	.01648	02250	.02918
52	00000	.02364	03263	.03946
55	00000	•UZ820	04052	.04623
55	- 00000	+UZ124	04298	.04/04
22	00000	• 04/22	04/07	+04710

1

.

OGIVE CYLINDER BODY WITH 45 DEGREE SWEEP NACA 65A004 MID-WING SINGULARITY PANELING FOR SAMPLE CASE

INTEGRATION OF THE PRESSURE DISTRIBUTION

ON THE WING LOWER SURFACE

	MACH= 2	.0100									
POINT	X	•0000 Y	L	X/C	2¥/B	2/0	CP	CN	CT	CM	POINT
1	16.76499	2.30734	0.00000	.05000	.19228	0.00000	.07831	.08627	.01017	.34921	ì
2	17.61117	2.30734	0.00000	.15000	.19228	0.00000	03365	03707	00166	11869	2
3	18.45734	2.30734	0.00000	.25000	.19228	0.00000	01353	01490	00037	03511	3
4	19.30352	2.30734	0.00000	.35000	.19228	0.00000	01427	01572	00016	02373	4
5	20.14970	2.30734	0.00000	.45000	.19228	0.00000	02670	02941	.00016	01951	5
6	20.99587	2.30734	0.00000	.55000	.19228	0.00000	03980	04384	.00094	.00802	6
1	21.84205	2.30734	0.00000	.65000	.19228	0.00000	04580	05046	.00173	.05192	7
8	22.68823	2.30734	0.00000	.75000	.19228	0.00000	05237	05769	.00247	.10819	8
9	23.53441	2.30734	0.00000	.85000	.19228	0.00000	05418	05969	.00278	.16243	9
10	24.38058	2.30734	0.00000	.95000	.19228	0.00000	~.04851	05343	.00252	.19063	10
11	18.82577	4.12568	0.00000	.05000	.34381	0.00000	.14091	.24418	.02878	.48523	11
12	19.55072	4-12568	0.00000	.15000	.34381	0.00000	.03717	.06441	.00289	.08131	12
13	20.27568	4.12568	0.00000	.25000	.34381	0.00000	01839	03187	00079	01712	13
14	21.00063	4.12568	0.00000	.35000	.34381	0.00000	04077	07065	00071	.01326	14
15	21.72559	4-12 568	0.00000	.45000	.34381	0.00000	03961	06864	.00037	.06264	15
16	22.45054	4.12568	0.00000	.55000	. 343 81	0.00000	05263	09119	.00196	.14933	16
17	23.17550	4-12568	0.00000	.65000	.34381	0.00000	06497	11258	.00386	.26596	17
18	23.90045	4.12568	0.00000	.75000	.34381	0.00000	07210	12494	.00535	.38575	18
19	24.62541	4.12568	0.00000	.85000	.34381	0.00000	07093	12292	.00573	46861	19
20	25.35036	4-12 568	0.00000	. 95000	.34381	0.00000	066 57	11534	.00543	. 52336	20
21	21.51108	6.49507	0.00000	.05000	- 54126	0.00000	.14331	-19052	.02246	13100	21
22	22.07808	6.49507	0.00000	-15000	-54126	0.00000	.05227	.06950	.00311	08792	22
23	22.64507	6.49507	0.00000	-25000	- 54126	0.00000	.02754	-03662	.00091	06708	23
24	23.21207	6-49507	0.00000	.35000	-54126	0.00000	.00870	.01157	.00012	02776	24
25	23.77906	6.49507	0.00000	45000	- 54126	0.00000	02337	03107	-00017	.09215	25
26	24.34600	6.49507	0.00000	.55000	-54126	0.00000	06915	09194	-00198	32482	26
27	24.91305	6.49507	0.00000	.65000	.54126	0.00000	08921	11860	.00407	48628	27
28	25.48005	6.49507	0.00000	.75000	-54126	0.00000	08484	11/79	.00483	- 526 18	28
29	26-04704	6.49507	0.00000	.85000	54126	0.00000	08398	11164	.00521	.58435	29
30	26.61404	6.49507	0.00000	.95000	- 54126	0.00000	08242	- 10956	-00516	.63568	30
31	24-16649	8.83808	0.00000	.05000	.73651	0.00000	.14910	-14115	-01690	- 48071	31
32	24.57728	8.83808	0.00000	.15000	.73651	0.00000	.054.97	.05285	.00237	19893	32
33	24.98808	8.83808	0.00000	25000	.73651	0.00000	-02608	.02507	.00062	~ 10468	33
34	25.39887	8.83808	0.00000	.35000	.73651	0.00000	.00806	.00775	-00008	03552	34
35	25.80967	8.83808	0.00000	-45000	.73651	0.00000	01044	01004	-00005	-05018	35
36	26.22046	8 83 808	0.00000	.55000	.73651	0.00000	03020	02904	.00062	.1 5701	36
37	26.63126	8.83 808	0.00000		.73651	0.00000	04417	- 04247	-00146	-24711	37
8 ذ	27.04205	8.83808	0.00000	.75000	.73651	0.00000	05322		.00219	.31873	38
39	27.45285	8.83808	0.00000	.85000	.73651	0.00000	05728	05507	.00257	- 36568	19
40	27.86364	8-83808	0-00000	.95000	-73651	0.00000	05967	05737	.00270	40449	40
41	26.5870/	10.97384	0.00000	.05000	91449	0.00000	-16990	-08500	-01002	49082	41
42	26.85543	10.97384	0-00000	15000	91449	0.00000	-06596	-03299	-00148	19936	42
43	27.12384	10.97384	0.00000	.25000	91449	0.00000	0/978	-01490	.00037	09402	44
44	27.39225	10.97384	0.00000	. 15000	91449	0.00000	-01342	-00672	.00007	04419	44
45	27.66066	10.97384	0.00000	45000	91449	0.00000	004 83		.00001	.01656	45
46	27.92907	10.97384	0.00000	.55000	.91449	0.00000	02441	01221	00026	.08692	46
47	28.19748	10.97384	0.00000	.65000	.91449	0.00000	04067	02035	.00070	.15026	47
48	28.46589	10.97384	0.00000	.75000	.91449	0.00000	05268	02636	.00114	20172	48
49	28.73430	10.97384	0,00000	.85000	91449	0.00000	05689	02847	-00133	.22549	49
50	29.00271	10.97384	0.00000	95000	91449	0.00000	05653	- 02828	.00133	23164	50

TOTAL CL	OTAL CUEFFICIENTS										
REFA=	144.0000	REF 8.	12.0000	REFC=	6.8900						
REFX=	20.0130	REFZ=	0.0000								
CN=	0000										
CT=	.0046										
CH=	.0000										
CL=	0000										
CD=	.0046										
XCP=	1050										

TOTAL COEFFICIENTS ON THE COMPLETE CONFIGURATION

REFA=	144.0000	REF 6 =	12.0000	REFC=	6.8900
REFX=	20.8130	REFZ=	0.0000		
CN=	.0000				
CT =	.0083				
CM=	0000				
CL#	.0000				
CD=	.0083				
X CP =	-3.5710				

SECTION CUEFFICIENTS

DELY=	1.3030	KEFL=	6.8900	XLE=	16.3419
CN=	0000				
υT=	.0034				
CM≕	0000				
CL =	0000				
CD =	.0034				
XUP=	.3338				
DELY=	∠.4000	kt+L=	6.8900	XLE=	18.4633
CN=	0000				
CT≖	.0061				
LM≃	.0000				
ίL=	0000				
CD=	-00° T				
XCP≖	1551				
UELY=	2.3000	KEFL=	6.8900	XLE≖	21.2276
LN=	0000				
CI≖	.0072				
C M =	•0000				
LL≖	0000				
úD=	.0072				
XCP =	4471				

SECTION CUEFFICIENTS

UN	1 HE	- 14 1	NU

DELY=	2.3700	RÉFL≖	0.8900	XLE=	23.9611
CN=	0000				
υT=	.UU6 L				
CM=	.0000				
CL=	0000				
CD=	.0061				
XCP=	6329				
DELY=	1.9000	RÉ≁L=	6.8900	XLE=	26.4528
CN=	.0000				
CT =	.0065				
C M =	.0000				
CL=	.0000				
CD=	.0065				
XLP=	3.037				
CPSTAG = 2.45050	CPCRIT =	1.13092	CPVAC =	35360	
TIME = 122.42900					
TIME = 124.14500					

TIME = 131.60300

VELUCITIES ON BUDY, MACH=2.010 ALPHA= 5.000

PANEL	SOURCE	AXIAL	LATERAL	VERTICAL	NORMAL
NU	STRENGTH	VELOCITY	VELOCITY	VELUCITY	VELOCITY
1	.29821	12592	.12742	27006	.32977
2	.23814	10863	.24926	06568	•28260
د ا	.15320	08418	.16672	.10663	.21590
4	.09313	06689	.04488	. 14592	-16873
5	.29647	09585	.11639	23061	.27645
6	. 22 353	08065	.21498	03868	.22928
7	.12038	05914	.12165	.10076	.16258
8	.04 744	04393	.02305	.10602	.11541
9	.25703	05884	.09712	~.17579	.20705
10	.17238	→ . 04502	.16318	00891	.15988
11	.05267	02549	.06234	.08451	.09318
12	03198	01167	00371	.04973	+04601
13	.22872	01979	.07956	11702	•13973
14	.12507	00925	.11155	.02886	.09256
15	02150	.00564	00234	.07409	.02280
10	12515	-01618	03433	00/81	02131
17	.16034	.00840	-06631	07381	•09340
18	.05307	.01544	•07345	.05586	.04029
19	09802	.02540	04907	.00240	02042
20	20589	.03245	05621	04942	00139
21	.19295	-01318	.06479	06032	.00052
22	.07831	.01601	.064/9	.00925	- 03335
23	08383	.02000	06479	.06923	- 08052
24	19848	.02282	004/9	- 050052	
25	•23512	.00731	100300 04544	03990	-03335
26	.11426	.00720	.06500	.07137	03335
27	02000	.00/03	06566	05996	08052
28	1//22	00054	00206	08800	-08052
29	- 07655	- 03603	-00504	07486	-03330
30	0/005	01975	02128	0359/	03340
31	.12308	01440		08800	08052
32	00748	- 03445	02645	09813	.08054
22	.00148	- 03149	- 02600	- 14499	.03331
36	01679	-03255	-01123	11439	03340
35	- 05376	-03414	01240	08200	08050
37	- 05941		01938	09522	.08056
38	00/15	00961	00666	10331	.03338
30		.03816	.00723	10454	03333
40	13940	.04306	00056	08689	08049
41	10269	01962	.03603	07224	.08053
42	09683	01116	.01946	04030	.03340
43	.08433	.04942	00515	07459	03330
44	.11970	.01950	03113	07425	08051
45	.09772	03097	.01107	08255	.08050
46	03546	03552	01010	11170	.03342
47	.00907	.07167	• 0 346 5	17065	03329
48	02556	.04271	.01866	09491	08054
49	.0406i	02359	.04121	07005	.08049
50	0.008	00391	.03051	01369	.03343
51	06077	.01942	01112	06012	03328
52	00687	.05255	00061	08694	08055
55	.16144	00624	.06800	05875	.08053
54	03317	00266	.04641	.02451	.03349
55	07429	.02541	02383	02926	03321
50	09979	.03250	02073	07855	08051
57	.16721	.00258	.06929	05847	.08053
58	01301	.01136	.06502	.06939	.03351
59	14241	.00707	03996	.00974	03319
60	14195	.01420	02190	0/334	~*08021

116

UGIVE LYLINDER BUDY WITH 45 DEGREE SWEEP NACA 554004 MID-WING Singularity paneling für sample case

INTEGRATION OF THE PRESSURE DISTRIBUTION

ON THE BUDY

	MACH=	2.0100									
DUINT	ALPHA# 1	× 0000	1	X/C	2Y/B	270	CP	CN	C T	CM	POINT
POINT	^	•	-								
7	1.00000	.09575	23110	.02740	.02875	06942	.23352	.05031	•01362	.99362	1
2	1.00000	+23110	09575	.02740	.00942	02675	.17365	.01550	.01013	. 300 04	÷
3	1.00000	.23110	·U9575	.02740	.06942	.02875	.11402	01017	.00665	20096	3
4	1.00000	.09575	.23116	.02740	•02875	.06942	.08674	01869	.00506	36905	2
2	3.22000	.27308	65928	.08822	.08201	19798	.18116	.27883	.05936	4.80024	2
6	3.22006	•65928	27308	.08822	.19798	08201	.12674	.08080	.04153	1.41019	0
7	3.22000	.05928	.27308	.08822	+19798	.08201	.07717	04920	.02529	85805	
8	3.22006	.21308	.65928	.08822	.08201	.19798	.05850	09004	•01411	-1.3/143	ő
9	0.08242	.44633	-1.07754	.16664	.13403	32359	.11548	.30647	.04213	4.40708	
10	6.08242	1.07754	44633	.16664	. 32359	13403	.06657	.07318	.02429	1-00119	10
11	6.08242	1.07754	.44613	.16664	•32359	.13403	.02498	02146	-00411		11
12	6.08242	.44033	1.07754	.16664	.13403	. 12359	.01211	03215	.00442	400/0	12
ا ا	9.03105	.55006	-1.32796	.24743	16518	39879	.04100	.13514	.00869	1.30002	13
14	105دن. لا	1.32796	55006	.24743	.39879	16518	.00005	.00006	.00001	+00073	1.5
15	9.03105	1. 32 796	• 55006	• 24743	.39879	.16518	02680	.03933	00611	•40998	15
15	9.03105	.55000	1.32790	.24743	-16518	.39879	03132	.10324	00664	1.20/59	10
17	11.08446	.58637	-1.41563	.30368	.17609	42511	-+01359	01800	00028	18057	17
13	11.08440	1.41063	58637	. 10368	.42511	17609	04685	02656	00090	25/8/	18
19	11.08446	1.41563	• 58637	. 30368	·42511	.17609	06477	.03672	00125	.35647	19
20	11.08446	.58037	1.41563	.30368	.17009	•42511	05882	.08050	00113	./8155	20
21	13.63090	•58927	-1.42262	.37345	.17696	42721	02320	10738	0.00000	//118	21
42	13.63090	1+42262	58927	.37345	.42721	17696	05041	09667	0.00000	69426	22
23	13.63090	1.42262	.58927	.37345	.42721	.17696	05761	.11046	0.00000	.79330	23
24	13.63090	.58921	1.42262	. 17345	.17696	.42721	04146	.19190	0.00000	1.37824	29
20	16.48370	.56927	-1.42262	.45161	.17696	42721	01193	02500	0.00000	10824	25
26	10.48370	1.42262	58927	.45161	.42721	17096	03493	03031	0.00000	13124	20
21	10.48370	1.42202	.58927	.45161	•42721	.17696	03462	.03005	0.00000	.13009	21
28	10.483/0	.58927	1.42262	.45161	.17696	-42721	01116	.02338	0.00000	.10121	28
29	18.20145	.58927	-1.42262	.50031	.17096	42721	.00649	.01359	0.00000	+03468	29
30	10.26145	1.42262	58927	.50031	.42721	17696	.08422	.07309	0.00000	.18649	30
31	18.20140	1.42202	.58927	.50031	.42721	.17696	03398	.02949	0.00000	.01524	31
32	18.26145	.58927	1.42262	. 50031	.17696	.42721	02084	.04367	0.00000	•11142	32
33	20.03915	.50927	-1.42262	.54902	.17096	42721	.07774	.16288	0.00000	.12004	33
34	20.03915	1.42262	58527	•54902	•42721	17696	.06984	.06061	0.00000	.04090	34
35	20.03915	1.42202	.58527	.54902	•42721	.17696	05572	.04836	0.00000	.03/42	30
σE	20.03915	.58927	1.42262	•5490∠	.17696	• 42721	05800	.12152	0.00000	+09404	00
37	21.81690	.58527	-1.42202	•59772	.17096	42721	.10455	.21906	0.00000	21991	57
8 د	21.01690	1.42202	58927	.59772	.42721	17696	.02705	.02348	0.00000	02357	20
39	21.81690	1.42262	.58927	+59772	•42721	.17696	06541	.05676	0.00000		39
40	21.81690	.58927	1.42202	•59TTZ	.17696	.42721	07379	-15461	0.00000	13322	40
41	23.59465	.58927	-1.42262	•64643	.17595	42721	.04685	-04810	0.00000	- 04734	41
4∠	23.59465	1.42202	58927	•64643	•42721	17696	.02789	.02420	0.00000	- 30533	42
43	23.59465	1.42202	•58927	.04643	.42721	.17696	08500	.0/3//	0.00000	- 19674	43
44	23.59465	•58527	1.42262	• 0464 3	.17690	. 42721	03171	.06643	0.00000	- 70417	45
45	25.38175	• • 58 92 7	-1.42262	. 69534	.17690	42721	.07302	.13401	0.00000	- 22046	46
40	25.38175	1.42262	58927	.09539	.42721	17696	.08247	.01233	0.00000	- 51105	40
41	25.38175	1.42262	• 58927	.69539	.42721	.1/696	12/55	-11100	0.00000	- 71114	44
48	25.38175	.58921	1.42202	.69539	.17696	.42721	07352	.15365	0.00000	-1 41607	40
49	27.84000	.58927	-1.42262	.76274	.17696	42/21	.03484	.20103	0.00000		50
5 U	27.84000	1.42262	58927	.76274	•42721	17696	•00912	-01340	0.00000	- 23676	51
51	27.84000	1.42262	.58927	.16214	.42721	.11646	03128	+04/04	0.00000	-2 22045	52
5z	27.84000	.58527	1.42202	.76274	.17696	• 42 721	09019	. 33104	0.00000	- 44709	53
53	31.20000	.58927	-1.42202	. 85479	.17696	42/21	-01468	.00230	0.00000	03142	54
54	31.20000	1.42262	58927	.85479	•42721	17696	00172	~.00303	0.00000	- 83780	55
55	31.20000	1.42262	+ 58927	.85479	.42721	.11030		-01910	0.00000	-7.41764	56
50	31.20000	.58927	1.42262	85479	-17696	• 42 /21		- 01 109	0.00000	.18279	57
51	34.75000	• 58927	-1.42202	.95205	11696	42/21	00517	- 07170	0.00000	.99979	58
50	34.75000) 1.42262	58527	• 952 05	•42121	11040			0.00000	-, 410.22	59
59	34.75000	1.42262	•58927	.95205	.42/21	+11940	UL723	04000	0.00000	-1.22679	60
60	34.75000	•58927	1.42262	.95205	•11040	• 42 7 21	02134	.00002	0.00000		~~

KEFA=	144.0000	KEFD=	3.3300	REFL=	30.5000
REFX≠	20.8130	REFZ=	0.0000		
LN=	.0520				
して=	.0035				
CM=	.0053				
ul=	.0521				
LD=	.0081				
icpa	+1021				

VELOCITIES ON WE	NG UPPER	SURFALE,	MACH=2.010	AL PHA =	5.000
------------------	----------	----------	------------	----------	-------

PANEL	VURTEX	AXIA	LATERAL	VEDTICAL
NU.	SIRENGIH	VELOCITY	VELOCITY	VERTICAL
		12200111	VEEGGIN	VELOCITY
1	• 22 40 a		-01805	09144
2	·200∠2	.12328	18020	03020
з	.16902	.09144	- 13524	05450
4	-12030	.06533	+-09981	- 07007
5	.07135	.04435	07099	08401
٤	• J 34J8	.0.1523	05783	10095
7	.01636	.04023	05336	- 11634
8	•Uo∠U7	.05516	05672	- 12441
4	.07180	. 06449	- 06097	- 12120
10	.08669	.06911	- 05953	- 11419
11	+11014	01749	~ 06001	- 13419
12	.10587	04198	- 05506	13420
13	.16609	. 05036	- 05625	- 03020
14	+17415	08080	09951	- 05450
15	.15984	.10855	- 14900	- 07007
10	.15922	- 19612	- 1 298.9	- 08401
17	.1.1547	.09057	- 1256 2	
18	.10343	08161	- 11324	- 11423
19	.06977	. 47059		
20	.05319	-06391	- 09504	12001
21	.04601	.05768	08707	- 13530
22	.042	.05383	08245	
23	.14925	05/33	- 05979	~+13420
24	.14901	0 1945		.09103
25	+15071	05676	06657	- 05450
20	15334	- 06779	~ 07946	03450
27	.15678	. 07891	- 00435	07007
28	.10070	. 10422	= 12910	
29	•16U4U	.12730		10095
υE	-15040	.1/167	- 15367	11033
31	.14848	.11695	14177	12001
2د	-13225	.10889	- 13537	13338
ذ ذ	-11/11	-09716	- 17464	~.13419
34	.143.11	05743		13426
ذذ	1434/	.03404	- 03633	.09103
36	-14170	. 05144	- 06611	~.03020
37	.14424	- 06417		05450
56	.14474	.07211	- 00000	0/00/
39	-14540	.08331	- 10167	
40	.14666	-09269	- 11202	10042
41	.14815	. 098.39	- 11003	-+11033
42	14990	. 10307	- 13400	12661
43	15198	10404	- 12000	13338
44	.15498	10761	13018	13419
45	. 14022	- 07147	12918	-+13426
46	- 14038	0.224.0	•08951	•09163
47	14056	• • • • • • • • • • • • • • • • • • • •	02033	03020
48	-14085	05080	06147	05450
49	.14119	04740	0/314	07007
50	. 14151	00107	08261	08401
51	.14) #2	+ 01030	09488	10095
52	-14/15	•V0/3/	10503	11633
53	B14240 .14/56	• UY46Y	11528	12661
54	. 14299	•07751	12328	13338
55	14425	• 09013	-+12584	13419
~ ~	117363	• 03373	13002	13426

UGIVE CYLINDER BODY WITH 45 DEGREE SWEEP NACA 65A004 MID-WING SINGULARITY PANELING FOR SAMPLE CASE

INTEGRATION OF THE PRESSURE DISTRIBUTION

ON THE WING UPPER SURFACE

	MACH= 2	0100									
PUINT	X X	Y	2	X/C	2Y/B	2/0	CP	CN	CT	CM	PUINT
1	16.76499	2.30754	0.00000	.05000	.19228	0.00000	10958	.12071	01423	.48864	1
2	17.61117	2.30734	0.00000	.15000	.19228	0.00000	18922	.20844	00934	.66740	2
3	18.45734	2.30734	0.00000	.25000	.19228	0.00000	14170	.15610	00388	.36772	3
4	19.30352	2.30734	0.00000	.35000	.19228	0.00000	09971	.10984	00111	.16580	4
5	20.14970	2.30734	0.00000	.45000	.19228	0.00000	07159	•07887	.00042	.05231	5
6	20.99587	2.30734	0.00000	.55000	.19228	0.00000	06742	.07427	.00160	01358	6
7	21-84205	2.30734	0.00000	.65000	.19228	0.00000	08517	.09383	.00322	09655	7
Å	22.68823	4.30734	0.00000	.75000	.19228	0.00000	10645	.11727	.00502	21991	8
ă	23.53441	2.30734	0.00000	.85000	.19228	0.00000	11814	.13014	.00607	35417	9
10	24.38058	2.30734	0.00000	.95000	.19228	0.00000	12830	.14133	.00665	50421	10
11	18.82577	4-12568	0.00000	.05000	.34381	0.00000	01494	.02588	00305	.05143	11
12	19-5507/	4-12500	0.00000	.15000	.34381	0.00000	11757	.20373	00913	.25717	12
13	20.27568	4-12568	0.00000	.25000	.34381	0.00000	16626	.28810	00716	.15480	13
14	21.00061	4.12508	0.00000	.35000	.34381	0.00000	17911	.31036	00314	05823	14
15	21.72559	4-12568	0.00000	.45000	.34381	0.00000	16501	•2859J	.00152	26094	15
16	22.45054	4-12568	0.00000	.55000	.34381	0.00000	15367	.26627	.00572	43603	16
17	22 17550	4.12564	0.00000	5000	.34381	0.00000	13760	.23844	.00818	56330	17
10	22 00045	4.12568	0.00000	.75000	. 14381	0.00000	12315	.21339	.00914	05883	18
10	24.62541	4-12568	0.00000	.85000	.34381	0.00000	11204	.19414	.00905	74012	19
20	25 25025	4.12568	0.00000	-95000	- 34381	0.00000	10303	.17853	.00840	81004	20
20	22.33030	4.12 308	0.00000	-05000	.54126	0.00000	.00257	00342	.00040	.00239	21
24	21.07000	4 49507	0.00000	15000	- 54126	0.00000	08677	-11535	00517	14593	22
	22.01000	- 40507	0.00000	25000	- 54126	0.00000	11058	.14701	00366	26934	23
23	22.04.007	5 49507	0.00000	35000	- 54126	0.00000	- 12933	.17194	00174	41251	24
24	23.21201	5.49507	0.00000	45000	- 54125	U. 00000	15894	.21131	.00112	62676	25
23	23.11906	4 49507	0.00000	55000	-54126	0.00000	19700	.26191	.00563	92533	26
20	24.34000	4 40507	0.00000	- 65000	- 54176	0.00000	21101	-28052	.00963	-1.15017	27
21	24.91303	6.47507	0.00000	75000	54126	0.00000	- 20309	.27001	01157	-1.26013	28
28	25.48005	- 49507	0.00000	85000	- 54126	0.00000	19389	.25777	.01202	-1.34916	29
29	20.04/04	0.47507	0.00000	P5/000	54126	0.00000	- 17989	-23916	.01126	-1.38737	30
30	26.01404	0.47907	0.00000	05000	73651	0.00000	.01376	01323	.00156	.04436	31
21	24.10047	0.03000	0.00000	15000	74651	0.00000	07874	.07570	00339	28496	32
32	24.51128	8.83808	0.00000	25000	73651	0.00000	- 10507	. 10102	00251	42175	33
23	24.98808	8.83800	0.00000	25000	73461	0.00000	= . 12121	-11654	00118	53442	34
34	25.39887	8.83808	0.00000	+5000	- 73651	0.00000	13736	-13206	.00070	65988	35
د د	25-80961	8.83808	0.00000	\$\$000	71651	0.00000	15448	-14852	.00319	80313	36
36	20.22040	8.83608	0.00000	. 5000	74651	0 00000	- 10080	.16043	.00551	93341	37
اد	26.63126	8.03508	0.00000	- 05000	77451	0.00000	- 17540	-16861	.00722	-1.05041	38
38	21.04205	8.83808	0.00000	.15000	73451	0.00000	- 18025	.17330	.00808	-1.15065	39
39	21.45285	8.83808	0.00000	.05000	72451	0.00000	- 18353	-17646	.00831	-1.24413	40
40	27.86364	8.83808	0.00000	.95000	01669	0.00000	- 048/4	01914	.00225	.11044	41
41	26.58702	10.97384	0.00000	.05000	•71447	0.00000	- 06559	.03282	00141	- 19831	42
42	26.85543	10.97384	0.00000	.15000	• 71 447	0.00000	- 00404	04952	00121	31252	43
43	27.12384	10.97384	0.00000	.25000	• 91449	0.00000	- 11457	05682	00057	37386	44
44	27.39225	10.97384	0.00000		.91449	0.00000	- 12042	.06475	- 000 34	- 44341	45
45	27.00060	10.97384	0.00000	.45000	• 71447	0.00000	- 14607	.07304	.00157	- 52006	46
46	27.92907	10.97384	0.00000	.55000	*****	0.00000	- 15979	. 07994	.00274		47
47	28.19748	10.97384	0.00000	.65000	•91449	0.00000	- 17000	01505	- 00464	65091	48
4 13	28.46589	10.97364	0.00000	. /5000	+91449	0.00000	- 17701	-00-00 00-00-00-0 00-00-00-0	-00405	68928	49
49	28.73430	10.97384	0.00000	.65000	.91449	0.00000	- 17621	.08716	-00410	71385	50
50	29.00271	10.97384	0.00000	• 42000	• 91 4 4 9	0.00000	-+1/421	*00110	.00410		

VELOCITIES ON WING LOWER SURFACE, NACH=2.010 ALPHA= 5.000

PANEL	VORTEX	AXIAL	LATERAL	VERTICAL
NU.	SIKENGIA	VELOCITY	VELUCITY	VELOCITY
1	.22408	/ 3401	. 27948	26595
ž	.20022	07694	.05418	- 14412
3	.16902	07758	.06587	-11981
4	.12030	05497	• 0 5 2 5 B	- 10424
5	.07135	02700	.03570	09031
6	.03408	.00115	+01657	07336
7	.03636	.00387	.02286	05798
8	.06207	~.00691	.03836	04770
9	.07180	00731	.04059	04093
10	.08669	01757	.05097	04012
11	.11014	03265	.06299	04006
12	.16587	20984	.24857	26595
13	.16609	11573	•13752	14412
14	+17415	09329	.10285	11981
15	.16984	06128	.04905	10424
16	.15922	06311	.05825	09031
17	.13547	04490	•04213	07336
18	.10343	02179	.02868	05798
19	.06977	.00082	.01455	04770
20	.05319	.01072	.01115	04093
21	.04661	.01107	.01517	04012
22	.04233	-01151	.01750	04006
23	.14925	20058	•23392	26595
24	-14901	10955	.12903	14412
25	.15071	09395	.10910	11981
20	.15332	08603	.09883	10424
21	-15678	07786	.08716	09031
20	.18070	05/48	.05580	07336
29	•10V4U	03310	.01739	05798
30	•1304U	֥03473	.02806	04770
42	1 2 2 2 5	- 03134	•U3408	04093
33	-11211	- 01495	.03135	04012
34	14321		.02941	04006
35	. 14342	- 10939	12900	-•20393
36	.14370		10350	11001
37	.14474	-08007	- 08952	- 10434
38	-1 44 74	07263	.08038	- 00031
39	-14546	06215	- 06778	- 07334
40	-14666	05397	05819	- 05700
41	.14815	04976	- 05237	- 06770
42	-14990	04683	. 04547	- 04093
43	15198	04792	- 04356	- 04095
44	.15398	946 36	- 94500	
45	.14022	21168	-25309	26595
46	.14038	11769	.14344	14412
47	.14054	08974	-10248	11981
48	.14085	08102	.09111	10424
49	+14119	07349	.08196	09031
50	-14151	06315	.06996	07336
51	.14182	05445	.06007	05798
52	•14215	04746	.05006	04770
53	.14254	04303	.04231	04093
54	.14289	04393	.03996	04012
55	.14325	04412	.03598	04006

UGIVE CYLINDER BUDY WITH 45 DEGREE SWEEP NACA 65A004 MID-WING Singularity faneling fur sample case

INTEGRATION OF THE PRESSURE DISTRIBUTION

ON THE WANG LUNCH SURFACE

ALPHA= 5.0000 Y Z X/L 2Y/B L/ PUINT X Y Z X/L 2Y/B L/ 1 16.76499 2.30734 0.00000 .05000 .19228 0.0000 2 17.61117 2.30734 0.00000 .15000 .19228 0.0000 3 18.45734 2.30734 0.00000 .25000 .19228 0.0000 - 19.30352 2.30734 0.00000 .45000 .19228 0.0000 - 20.41970 2.30734 0.00000 .45000 .19228 0.0000				
1 16.76499 2.30734 0.00000 .05000 .19228 0.0000 2 17.61117 2.30734 0.00000 .15000 .19228 0.0000 3 18.45734 2.30734 0.00000 .25000 .19228 0.0000 4 19.30352 2.30734 0.00000 .35000 .19228 0.0000 5 20.14970 2.30734 0.00000 .45000 .19228 0.0000	C CP CN	ĹΤ	CM	POINT
2 17.01117 2.30734 0.00000 .15000 .19228 0.0000 3 18.45734 2.30734 0.00000 .25000 .19228 0.0000 4 19.30352 2.30734 0.00000 .35000 .19228 0.0000 5 20.19970 2.30734 0.00000 .45000 .19228 0.0000	0 .29517 .32516	.03833	1.31026	1
3 18.45734 2.30734 0.00000 .2000 .19228 0.0000 4 19.30352 2.30734 0.00000 .35000 .19228 0.0000 5 20.14970 2.30734 0.00000 .45000 .19228 0.0000	0 •17381 •19147	•00858	.61305	2
4 19.30352 2.30734 0.00000 -35000 -19228 0.0000 5 20.14970 2.30734 0.00000 -45000 -19228 0.0000	0 .14959 .16478	.00410	.38817	3
5 20.14970 2.30734 0.00000 .45000 .19228 0.0000	0 .09354 .10304	.00104	.15554	4
	0 .03394 .03758	00020	•02480	5
► 20 99587 2.30734 0.00000 .55000 .19228 0.0000	0 .00168 .00185	00004	00034	6
	U .00857 .00944	00032	00971	7
	0 .01865 .02054	00088	03852	8
0 22 53661 2, 30 736 0, 00000 .85000 .19228 0.0000	0 .02880 .03172	00148	08633	9
10 44 40 58	0 .05438 .05990	00282	21371	10
	0 .31460 .54513	.06426	1.08331	11
	0 .22055 .39251	.01759	.49553	12
12 19-35012 4-12-568 0-00000 -25000 -34481 0-0000	0 .17245 .29882	.00743	.16056	13
	0 .14107 .24445	.00247	04587	14
	0 .12247 .21221	00113	19366	15
	0 .07674 .13297	00286	21774	16
	0 .02777 .04812	00165	11367	17
	00058401011	.00043	.33122	18
	0 01031 02825	-00132	.10772	19
	0 = 01720 = 02980	.00140	.1 3520	20
20 25-35036 4-12368 0-00030 -95000 -359361 0-0003	0 .40147 .40146	.04732	28025	21
	0 22019 -29274	-01412	37033	22
22 22.07808 8.49507 0.00000 .15000 .94128 0.0000	0 10751 .26258	.00653	48107	23
23 22.64507 6.49507 0.0000 .25000 .54126 0.0000	0 19177 -24099	.00244	57815	24
24 23-21207 6-49507 0-00000 -35000 -54128 0-0000	0 15125 .20109	00107	29641	25
25 23.77906 6.49507 0.00000 .45000 .54126 0.0000	0 10311 .14708	00295	4 84 31	26
26 24.34606 6.49507 0.00000 .55000 .54128 0.0000	0 07770 .1333		- 42354	27
27 24.91305 6.49507 0.00000 .85000 .94128 0.0000	0 07472 04934	- 00426	40162	28
28 25.48005 6.49507 0.00000 .75000 .54128 0.0000		- 00483	43018	24
29 26.04704 6.49507 0.00000 .85000 .54128 0.000	0 06162 05868	00276	- 34040	30
30 26.61404 6.49507 0.00000 .95000 .54428 0.0000		014420	- 97410	41
31 24+166+9 0+83808 0+00000 +05000 +73651 0+0000	.30182 .29018	000420	- 79/93	32
د د د د د د د د د د د د د د د د د د د	0 •21633 •20149	00432	- 75447	13
33 24.98808 8.83808 0.00000 .25000 .73651 0.0000	0 .18//1 .1804/	.00449	- 74713	34
±4 25+19887 8+85808 U+00000 +35000 +73651 U+00000	0 .19320 .19530	.00103	- 72164	35
عدين 13651 0±0000 ++5000 +73651 0±0000 +	0 •15022 •14442	00077	- 1 7114	
20-22046 8-83808 0-00000 -55000 -73651 0-0000	0 .12952 .12452	00200	- 44536	27
37 26.63126 6.83208 0.00000 .60000 .73651 0.0000	0 .11537 .11092	00381	04030	20
JB 27.04205 8.83808 0.00000 .75000 .73651 0.0000	.10/11 .10298		04140	30
0000 .01506 .7×45285 8×83808 0×00000 •85000 •85000	0 .10512 .10106	00471	01103	37
40 27.8051 0.0000	10 .10402 .10059	00473		40
41 26+28702 10+97384 0+00000 +05000 +91449 0+000	0 .31643 .15832	.01856		41
42 26-85543 10-97384 0-00000 -15000 -91449 0-0000	0 .22349 .11182	.00501	0/505	42
4, 27,12,284 10,97384 0,00000 -25000 -91449 0,000	0 .18804 .09408	.00234	54313	43
44 27.39225 10.97384 0.00000 .35000 .91449 0.0000	0 .17134 .08573	.00087	56403	44
27.66 LU-97384 G-U0000 -45000 -91449 D-0000 -	.15208 .07609	00041	52104	45
46 27.92907 10.97384 0.00000 .55000 .91449 0.0000	0 .13093 .06551	00141	40017	40
47 28.19748 LU.97384 0.0000 .55000 .91449 0.000	0 •11329 •05668	00195	41859	41
48 28.46589 10.97384 0.00000 .75000 .91449 0.0000	0 .10052 .05029	00215	38490	48
49 28.73430 10.97384 0.00000 .05000 .91449 0.0000	0 .09666 .04836	00226	38310	49
50 29.00271 10.97384 0.00000 .95000 .91449 0.0000	0 .09814 .04910	00231	40212	50

•

ON THE WING						
RE <i>F</i> A≠	144.0000	REFB≠	12.0000	REFC=	6.8900	
REFX=	20.8130	REF Z=	0.0000			
CN= CT= CM= CL= CD= XCP=	.1969 .0046 0705 .1957 .0217 3600					

TUTAL COEFFICIENTS ON THE COMPLETE CONFIGURATION

REFA=	144.0000	REF8=	12.0000	REFC=	6.8900
REFX=	20.8130	REFZ=	0.0000		
CN= CT= CM= CL=	•2495 •0081 -•0651 •2479				
CD= XCP=	•0298 -•2628				

•

.

TOTAL COEFFICIENTS

SECTION CUEFFICIENTS ----

UN THE WING

UELY=	1.3030	REFL.	6.8900	XLE=	16.3419
CN=	.1974				
CT=	.0037				
CM=	.0356				
CL=	.1963				
CD=	.0209				
XCP=	.1812				
OtLY=	2.4000	REFL≠	6.8900	XLE=	18.4633
C N	2.05				
CN=	•2305				
61*	- 0136				
	0155				
LL= (D=	.2291				
CU=	- 0590				
XCP=	0390				
DELY=	2.3600	REFL=	6.8900	XLE=	21.2276
CN=	.2853				
CI=	• 006 9				
C M=	1299				
CL=	.2846				
CD=	.0316				
XüP≠	4563				

SECTION COEFFICIENTS UN THE WANG

	DELY=	2.3700	REFL=	6.8900	XLE=	23.9611
	CN=	.2841				
	CT.	.0058				
	CM=	2140				
	CL=	.2825				
	CD=	.0305				
	XCP=	7577				
	DELY=	1.9000	REFL=	6.8900	XLE=	20. 4528
	(' N =	. 2732				
	(T.	.0062				
	CM=					
	Cit≢	.2716				
	(D.=	-0300				
	XCP=	-1.0171				
CPSTAG	= 2.45650	uPCRIT =	1.13092	LPVAC ≃	35360	
T : MC -	150 55000					

TIME = 150.55900

,

REFERENCES

- Woodward, F. A., Tinoco, E. N., and Larsen, J. W.; Analysis and Design of Supersonic Wing-Body Combinations, Including Flow Properties in the Near Field. NASA CR-73106, August, 1967.
- Woodward, F. A.; Analysis and Design of Wing-Body Combinations, at Subsonic and Supersonic Speeds. <u>Journal of</u> Aircraft, Vol. 5, No. 6, Nov.- Dec., 1968.
- Craidon, C. B.; Description of a Digital Computer Program for Airplane Configuration Plots. NASA TM X-2074, September, 1970.
- 4. Gothert, B.; Plane and Three-Dimensional Flow at High Subsonic Speeds. NACA TM 1105, 1946.
- Labrujere, T. E., Loeve, W., and Slooff, J. W.; An Approximate Method for the Calculation of Pressure Distribution on Wing-Body Combinations at Subcritical Speeds. AGARD Conference Proceedings No. 71, September, 1970.
- Fox, C. H. Jr.; Experimental Surface Pressure Distributions for a Family of Axisymmetric Bodies at Subsonic Speeds. NASA TM X-2439, December, 1971.
- Harris, R. V. Jr., and Landrum, E. J.; Drag Characteristics of a Series of Low-Drag Bodies of Revolution at Mach Numbers from 0.6 to 4.0. NASA TN D-3163, December, 1965.
- Maslen, S. H.; Pressure Distribution on Thin Conical Body of Elliptic Cross Section at Mach Number 1.89. NACA RM E8K05, January, 1949.
- Peterson, R. F.; The Boundary-Layer and Stalling Characteristics of the NACA 64A010 Airfoil Section. NACA TN 2235, 1950.
- 10. Stevens, W. A., Goradia, S. H., and Braden, J. A.; Mathematical Model for Two-Dimensional Multi-Component Airfoils in Viscous Flow. NASA CR-1843, July, 1971.
- 11. Lamar, J. E., and McKinney, L. W.; Low Speed Static Wind Tunnel Investigation of a Half-Span Fuselage and Variable Sweep Pressure Wing Model. NASA TN D-6215, August, 1971.

- 12. Carlson, H. W.; Pressure Distributions at Mach Number 2.05 on a Series of Highly Swept Arrow Wings Employing Various Degrees of Twist and Camber. NASA TN D-1264, May, 1962.
- 13. Gapcynski, J. P., and Landrum, E. J.; Tabulated Data from a Pressure Distribution Investigation at Mach Number 2.01 of a 45 degree Sweptback-Wing Airplane Model at Combined Angles of Attack and Sideslip. NASA MEMO 10-15-58L, November, 1958.
- 14. Hess, J. L., and Smith, A. M. O.; Calculation of Nonlifting Potential Flow about Arbitrary Three-Dimensional Bodies. Douglas Aircraft Company Report, No. ES 40622, March, 1962.