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IMPROVED METHOD FOR TRANSONIC AIRFOIL DESIGN-BY -OPTIMIZA TIOII* 
---- Robert A. Kennelly, Jr.+ 

Informatics General Corporation 
Palo Alto, California 

Abstract 

An Improved method for use of optimization 
techniques In transonic airfoil design is 
demonstrated. FL06QNM Incorporates a modified \ 
quasi-/lewton optimization package, and ;s shown 
to be more reliable and effiCient than the 
method developed previously at NASA-Ames, which 
used the COPES/CONMIN optimization program. The 
desisn codes are compared on 3 series of test 
cases with ~nown solutions, and the effects of 
problem .scallng, proximity of Initial point to 
solution, and objective function precision are 
studied. In contrast to the older method, 
well-conversed solutions are shown to be 
attainable in the context of engineering design 
using computational fluid dynamics tools, a new 
result. The Improvements are due to better 
performance by the optimization routine and to 
the use of problem-adaptive finite difference 
step sizes for gradient evaluation. -

Introduction 

Prediction of system behavior Is often just 
a ff rst step - the rea I goa I is an' improved 
system, or better yet, one that is optimal in 
some sense. Numerical optimization techniques 
provide one means ·for direct use of analysis 
methods in engineering design. A scalar 
objective function is specified such that a 
decrease In value due to changes in the design 
variables corresponds to an Improvement. If a 
minimum can be found, it represents the "best" 
that can be achieved, at least locally. 
Optimization in this context only means solution 
of the formal problem posed; the suitability of 
the design obtained depends on the problem and 
the properties of the analysis, program used. 
Mathematical programming techniques permit these 
problems to be solved convincingly - a point can 
be found where the sensitivity of the objective 
to the deSign variables (the gradient) is very 
much reduced from its value at the initial 
point, and where the change In the variables 
each design Iteration Is small. Specialized 
techniques, if available, may be more efficient, 
but optimization methods offer the advantages of 
generality and flexibility since many analysis 
methods can be adapted to this use and applied 
to a wide range of. problems. Careful 
Integration of analysis and optimization codes 
fs requfred, however, and specfal attentfon must 
~e paid to the robustness of the Individual 
components for the sake of overall reliability. 

, 
* This paper Is based on NASA CR- prepared 
for Ames Research Center under tlASA Contract 
HAS2-1l555. 

+ Member of the Professional Staff, Member AIAA. 

·1. 

The general aerodynamic design prcblem 
Involves an objective function, and possibly 
constraints, for~ed fr~ configuration Jeometry, 
computed pressures, forces, etc. The 'fari ab I es 
may Include parameters describing the seometry 
or onset flow. Several design points defined by 
combinations of Mach number and angle of attack 
may be of Interest, and If broader 
considerations such as structures or perfor~ance 
are to be taken into account, the proolem 
formulation ~ay be even more ccmplex. An 
Interesting special C3se is the "pseudo-Inverse" 
problem where a pressure distributlJn Is 
specified on a surfac~ and It Is deslr~d to find 
a shape, or shape plus flow conditions, which 
will produce those pressures. 

A nu;;-.ber of luthors nne desc rl bed methcd5 
and results of ~oplications In subsonic, 
transonic, and supersonic flow ~sing a variety 
of techniques for both ~erodynamic analysis and 
optimi zati on [References 1-11; numbers in 
brackets refer to bibliographic citations 
listed below]. The present work is an attenpt 
to evaluate two deSign programs for robustness 
and efficiency. ~e are primarily concerned here 
with the relative performance of the methods, 

·not with the designs obtained. The test C3ses 
consist of relatively Simple two-dimensional 
transonic pseudo-inverse problems which are 
convenient because they can be constructed with 
known solutions, yet retain many features of 
more realistic applications. SubsoniC problems 
were not considered, but this was not because of 
any limitation of the design codes. 

From, an opti~izatlon standpoint, 
significant proble~ characteristics Include th~ 
following: 

1. Objective function evaluations dominate the 
cost of a run 

2. Only function values are available 
derivatives with respect to the design 
variables must be approximated by finite 
differences 

3. The number of variables is not so large that 
storage considerations need be considered in 
the choice of a method 

4. The iterative flow solution technique allows 
the precision of the objective to be traded 
off against cost . 

5. The opttmum pOint need not be determined to 
high precision since the final values of the 
individual variables are not of Interest 

6. The overall deSign process Is fairly long" 
so that some user intervention is 
anticipated 

7. The objective function may be occaSionally 
discontinuous 
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rn thi S context. three I nterre I ol ted goal shave 
be~n pursued. First,'demonstration of superior 
performance by a new· techni que on 
aerodynamically .interesting test :>robl~ms with 
known sol'Jtions. Second, the precedure ~/as 
inte'1ded to i11us~rate the 'Jse of the new method 
and to provide e~amples of typical difficulties 
and their resolution. Finally. the work to be 
described may be helpful as a C3~P study in the 
development of _.. desi~n-by-
ootimiu.'-~ 'istics noted' 
. I / r many other 
~ r the design 
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ng is employed to transform the 
ow region to the interior of a circle. 

Corrections to the discretized potential are 
computed by a fast Poisson solver combined with 
relaxation sweeps which are repeated one or more 
times per iteration. The analysis code was 
modified in several ways including provision for 
tightening some internal tolerances, revising 
storage allocations, and performing some detail 
changes for the sake of execution speed. The 
process of preparing FL06 for coupling with the 
new optimization methods resulted in a number of 
improvements over the version used in FL060PT: 
it is now more re1iable, permits better user 
control over the precision of the results, is 
easily modified to use different mesh densities, 
and is about 25% cheaper to run. (This cost 
comparison is based on work. done on the 
NASA-Ames CDC 7600 computer, but the bulk of the 
results to be reported were obtained with the 
recently-acquired Cray-IS. No modifications to 
take advantage of the Cray's vector capabilities 
have yet been performed, so absolute program 
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timings will not be e~~hasizad in what follows.) 

Convergence difficulties ware ~ncountered 
during preliminary ~esting, and se'/eral FL05 
par.!r.;eters · .... er~ vari ~a in an effort t,) 
'Jnderstand ~nd cur':! the prob lem. :ncreu Ing :he 
numOer of rourl ~r :ceffici ~nts usa:! in the 
~apping seemed to help one otherwise 
~nremarkJbl~ ColS~ conver~e fro~ J stored 
solution. (There was no prCblem obtaining a 
converged solution ',o/Ith the same case when 
1tarting from scratch.) The number of 
coeffiCients wa's left at the higher level, and 
:he test cases proceeded ~ithout further 
Incident. Subsequent computatfonal experience 
has led to the conjecture that many convergence 
failures, discontinuities in optimization 
objective, and Instances of a restarted solution. 
not ;;)atching its progeni tor are due to 
nen-unlqueness in the flow solution itself. If 
thi s fs correct, then the sensftivlty of the •. ~ 
computations to seemingly irrelevant factors 
such as overspecifying the number of Fourier 
coefficients fs le~_s surprfsin!1. . 

COPES/CO~1IN Package 

FL~5CPS makes use of a more recent version 
of CONMIN than did FL060PT, and uses the COPES 
front end program for input and control. The 
opt Imi za tion packa;e ',las ori!ii nally wrft~en for 
structural design problecs witn large nur.bars of 
variables and constraints, but includes 
proviSion for computing .unconstrained search 
directior.s when no constraints are active. 
Since both Fl060PT and fts three-dimensional 
sibling FLOZZOPT have often been used in 
pseudo-inverse mode without constraints [10, 
22-25]. the unconstrained portion of the 
optfmi za ti on code has acqui red more si gnfficance 
in application to aerodynamic problems than it 
had in the original design. The Fletcher-Reeves 
conjugate gradient algorithm implemented for 
this purpose appears to have attractive 
theoretical properties, has low storage 
overhead, and is easy to implement in its basic 
form. It is not, however, the method of choice 
except for very large problems, where it may be 
the only alternative (21, 26]. At each 
Iteration of this technique, the gradient is 
calculated and a line search performed along a 
ray given by a certain linear combination of the 
current gradient and the last search direction. 
Computer storage requirements are low because 

'only a few vectors of length n need be 
accommodated, where n is the number of deSign 
vari ab les. 

Objective funct·ion gradients are calculated 
by forward differencing, with no provision for 
use of central differences. .The step size 
employed can be scaled by the size of the 
associated variable, but is independent of the 
value of the objective function, its preciSion, 
or its den va ti ves. 

FL060PT and FL0220PT have not been entirely 
satisfactory in applications, and SOr.le users 
(22, 27] have resorted to use of only a few 
deSign variables at a time. This is 
inconvenient and can result in failure to solve 
even Simple problems, as discussed in (26, 
28-29], for example. The COPES/CONMIN package 
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has no provision for restar!lng an interrupted 
run with data fror.\ a preceding one. This loss 
of history can lead to IneffiCiency since a 
restart must begi:'! fron scratch with the 
nctoriously slow st2epest descent search 
direction. 

Ouasl-I/ewton ~ethod 

A new program, FL060~/N, has been developed 
for unccnstralned design problems, or for 
problems whose few, loose constraints permit 
efficient use of penalty functions. It \las 
hoped that an optimization algorithm more 
specifically suited to such problems would prove 

. superior to COPES/CONHIN. QNHDIF is efficient, 
reasonably up-to-date and well documented, and 
contJlns safeguards to help maintain progress In 
the face of difficulties such as roundoff 
errors, ill-conditioning, or occasional small 
discontinuities in the objective function. It 
uses finite difference approximations to the 
derivatives of the objective with respect to the· 
desiSn variables. 

The quasi-Newton algorithm, 11 lee Newton's 
t:1ethod Itself, attempts at each Iteration Ie to 
step to the ,nini,11um of a quadratic model of the 
~ctual objective. This step, denoted p(le) 
belOit, Is determined by the linear system 

G(k) p(le) • -g(k) 

where ~(k) is the gradient and G(Ie) Is, in 
~/ewton s method, the matrix of m.fxed partial 
second deri va tives. In practi ce, a 
one-dimensional search Is performed to locate a 
minimum along the ray p from the current point. 
Instead of G, which may be difficult or 
expensive to evaluate, quasi-Newton methods use 
a sequence of matrices a(k) whiCh approximate 
G(Ie) in a certain sense. After the new point 
x(k+ll has been found and the gradient 
reeva 1 ua ted, B is modi fl ed so· tha t the 
quasi-Newton condition 

(g("k+l) - g(k)] • B(k+1) (x(k+l) - x(k)] 

holds, as it would If the objective were 
quadratic and If B were the true Hessian. This 
relationship Is just the truncated Taylor series 
for the gradient about the point x(k). Using a 
rank-2 update to B, the approximate Hessian's 
sYrmlf!try and.' posi tive definiteness can be 
preserved, even In the presence of roundoff 
errors (19]. On a new problem, B(O) is usually 
taken to be -·the identity, but in FL06QNM 

-estimates of the diagonal elements are available 
ff step s1ze procedure FDSTEP has been used. 

Theoretically, In the special case of a 
quadratic objective in n dimensions, the 
quasi-Newton algorithm converges to the minimum 
in n iterations, as should the algorithm used by 
CONMIN. However, the quasi-Newton algorithm 
does not depend on exact line searches. and 
indeed Is usually more efficient when a 
relatively coarse line search is used [lB]. 
This fs an advantage over CONMIN because the 
conjugate gradient algorithm depends on ex·act 
searches for its good theoretical convergence· 
properties. (CONHIN's search does not actually 
appear to perform exact searches ~nyway.) 

COf.l;lutltional experi ence, and sCl':1e 
analytical results, Indicate that quasi-Newton 
methods converge superlinearly, or at l~ast at a 
fast linear rate. Thus the asymptotic error 
constant, the limiting 1alue Jf the ~rror rltio 
for successive Iterations, ',1111 be zero or at 

. least small. In the convero;ence histories to be 
presented below, the difference ~etween the 
current objectfole 3nd Its (known) optimal value 
is plotted against fteratfon nu:rober. 
Superllnear convergence Is Indicated by a curve 
which steepens as the optimum Is approached. 
The appearance of this hoped-for behavior may be 
taken as supporting evidence that a true minimum 
point has been found (21). 

Several features of QNMDIF are Included for 
the sake of reliability. Since the approximate 
Hessian Is positive definite ~y construction, 
GNMDIF generates descent dl rectlons at each 
step, providing the gradients are sufficiently' 
accurate. If the line search 'ails to produce a 
significantly better point, the program switches 
to central difference gradients, !~d C3n s~I=:h 
back again later if an Im;lroved rate of progress 
'"arrants I t. A further degree of 3daptabll i ty 
Is a'lailable: FL06Qm1 can be restarte:1 wi th 
tishter aerodynamic conv~r;ence tcle~ances if 
even better gradient information Is r~qulred. 
The optimization routine has been ~odlfied to 
take account of objective function precision, 
and to per~it resu~ptlon of 3n Int~rrupted run 
without loss of Information. Other enhance~nts 
Include a user Interface between QNrfOIF and the 
analysis code which pe~its housekeeping chores 
such as printing FLOG results after each 
optimization Iteration, and provision for 
executing a local search at the beginning of a 
run as a means of moving away from a regien in 
the design space where the objective fs 
discontinuous. 

For problems such as those under 
consideration here, with few variables and an 
objective with larse storage and CPU time 
requirements, the additional overhead due to 
QNMDIF is neglfgible. (CPU refers to I 
computer's Central ProceSSing Unit.) 

Test Cases 

The test cases consist of -reinventing- a 
representative supercritlcal airfoil using three 
different sets of design variables. The 
parameterizations were all chosen to be able to 
represent accurately the modifications required 
to transform the upper surface of a NACA 63A210 
section Into the target airfoil. Though 
superficially similar, the three problems appear 
very different to the optimizer. In each case, 
the perturbatfon to the fnitial surface Is a 
linear combination of smooth functions 
Identically zero at the leading and trallln~ 
edges, and a single linear ramp term which 
allowed for non-zero trailing edge thickness. 
The various terms were normalized so that they 
all have a maximum value of about 1.0 over the 
airfoil's chord. The optimal coefficients of 
the . linear combination representing the 
solutlon, and in one case the nonlinear 
parameters of the perturbing functions 
themselves, were determined by performing a 
general least squares fit ·to the difference 

- 3 -

, 1 

" 

.,,
v 



I 

I 
I 

bet' ... een the k,10',/n'" i nj tia I and fi na I shapes. 
These thr~e sections, . consisting of initial 
airfoil plus fitted difference terms, were then 
analyzed using FLOS. For each case. ~ressure 
coefficients lt sixty-two ~oints from about 
0.002 to 0.997 x/c along the upper surface of 
the ~r:et airfoil were extracted fror.1 the 
outcut ,)f the analysis ?rogram to serve as 
targets for the desi;n problems. Initial and 
t3r;et airfoils and Cp distributions are 
illustrated in ri~ure I, where x/c is the 
nor.nalized chordwise coordfnate and Cp fs the 
local static pressure minus the free Hrila,l1 
static pressure, divided by the free ;~!·'11.: 
dynamic pressure. The objecti"Je fur.':t::.;;! ;,~" \ 
each problem is de fi ned as the s::::t :: :;:e 
squared differences between the target and 
calculated pressure coefficients. The solution 
deter::ti ned by the :;eometrica 1 1 east S;;:"Il"~S 

.minimization solves the aerodynar.1ic ~r~bl~r.1 ~~~. 
since the r.on-ne;ativ~ objective i; ;:~ro 1': ~~:~; 
point. Note that this test procedure is '~n 
stringent tMn simply running the two desi9n 
codes and cc~paring the results, since t~l 
possibility exists here for both to fall! 

The run conditions for the analysiS program 
were as follows: 

1. :~ach number 0.76 

2. An9le of attacx 0.0 degrees 

3. 256 Fourier co~fflcients used in the mapping 

4. Mapping tolerances 1.OE-10 

S. Nash size 128 circumferential x 32 radial 

6. 8 (sometimes 6) relaxation sweeps per hybrid 
FL06 i teratl on 

'7. Convergence tolerance for r.1axl:num residual 
1.0E-8 

(Note use of the FORTRAN convention. for powers 
of ten: 1.0E-l I s one-tenth.) The 
sum-of-squares objective function was precise to 
about 1.0E-6 under ~hese conditions, as 
estimated from values of the objective which 
were computed and printed out as the flow 
solution converged. Average CPU time per flow 
solution was about seven seconds on the Cray~lS, 
starting each solution from the potential array 
computed and stored at the beginning of eve~ 
design iteration. 

The level of precision chosen for these 
tests was a compromise. Six figures are more' 
than adequate for the first case: usable 
results were obtained very quickly by FL06QNM 
with a convergence criterion. of 1.OE-4, which 
gives only about two good figures In the 
objecti~ function! But as will be shown, the 
more difficult (and more realistic) problems 
require tighter tolerances. A Single, 
Intermediate degree of precision was chosen to 
illustrate the sort of results one might obtain 
wi thout foreknowl edge. , 

The available input parameters for the two 
optimization routines were different, 
cOr.1pllcatlng the attempt to compare them. Most 
inputs were simply left at their default values, 
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~u~ a few choi~~s h31 to be ~a1e. ~~o~g these, 
the choice of step size for the ~radient 
eV'lluations · ... as :r.os~ ,=roo!;;r.1atlc. rLCt::C:I:~ 
pernits autc~atic choi':e of ~ptimal step 
lenlths, where the c~nc~11~tion !rror in the 
;radient due to tr.e li~itp.~ ?r~r.isiQn of the 
objective function is )aianceo against the 
trunc!ti'J!1 ~!"'r:r ~,!~!!~4;'f"'" &" .. ,:~ ~"''! 'JS! 'IT the 
fini te difference aporcxi.::atic:1 ta tile grJdient. 
The default s!~p :;iz~ ;:~.::: :;,;! ';:: ':C?ES/Ca:::U:1 
is 0.01 ti:::es the cu"rer~ '!011 '~e of each 
v~riable, but never les.i ~llan "J.:i!. ihat scheme 
did not work well in Ini ::ial -erials. It was 
repia~ed ~y a unifo~ value Jf ).001 f~r all of 
t::a '/olriables, fon:~lin~ t:-:e ... ::1~ of thur:tb that. 
the step size should be a~Gut t~e s~uare root of 
the relative precision of the objective fun::tlon· 
[21]. This Is nearly the optimal choice here In 
.!ny J'/ent, since it Is approximataly the !'1erase 
of ~ne values generated by :he steo leng!h 
,r,cel1ure in FL06QtlM for the!e well-sc31~d 
pr:lolems. 

A ~ultlpllcatt¥e scaltn~ ~~ctJr was lP?lied 
to each 'of the design 'lariables. In the cases 
to Je repcr~ed here, a Factor of one hundred.nas 
sufficient to put all the first and .econd 
derlvat~ves in the range 0.02 to ZOo ~I~~ this 
sCllln~, a. design variable with v!l~e 1.0 
changes ~he section ordinate5 ~y !~ ~ost 0.01. 

QIIMO IF requt res tha t the ,rojected gradi er.t 
along the direction of s~arch be reduced to a 
specified fraction of its initial val~e. In 
desi~n applications with expensive ;radient 
evaluations, It was felt to be desirable to ~ke 
the most of each Iter3tion, so this fraction 
was set to 0.10 for a "moderate accuracy" 
search. In the cases to be described, the 
average number of steps per line search was 
between four and five. 

It was not possible to cOr.1pare the number 
of optimization steps required for "convergence" 
since that is ill-defined In this context of 
relatively crude function values and flnfte 
difference gradi ent approxi rna tions. Ins tead, 
the termination criteria were set tight enough 
to permit comparison of the rates of convergence 
over a reasonable number of steps. The 
comparison Is not exhaustive, but Is intended to 
demonstrate that the convergence rates predicted 
for quasi-Newton methods can be achieved 1n 
practice with ·unfriendly· objective functions. 
The superiority of these methods over conjugate 
gradient techniques, as previously found In more 
elaborate cOr.1parisons using cheaper, more 
preCise objectives, will be shown to hold true 
in the context of aerodynamic design. Reviews 
of ~om~utatlonal experience regarding the 
relat1Ve robustness and efficiency of conjugate 
gradient and quasi-Newton methods may be found 
In (21, 26, 29-30]. ' 

Test Case I 

The first test case was specially 
constructed to be easy to solve. The deSign 
variables were chosen to permit matching the 
target airfoil with only five "tuned" perturbin9 
functions. Their general forms were as follows: 
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t. (1-(x/c)J*(x/c)~~n I EXP (m*(x/c)] 

2. SIN (pi*(x/c)**n]**m 

where pi .. 3.14.... lnd FORnAN al3e!lrlic 
notation has been used. The~e are similar to 
the terms used in (9). but in addition to the 
coefficients of the linear combination, the 
parameters m and n controlling the width and 
location of the peak 'liere systematically 
adjusted using a nonlfnear least squares progr·lm 
to yield a good ~eometric fit. The shape 
parameters were then frozen at their oPtim~1 
values and only the llnelr coefficients were 
USed in the Jcrcdynamfc optfmflatfon, The ffnal 
set of functions are shown in Figure 2. 

Even in thi s simple case, the perfor:nance 
of the t~o design programs is different: In 
te~s of both objective function value and norm 
of tl:e ~inal ;radlent, FLOSQtlM achieves a better 
result. In less time, than does FLCSCPS. The 
results obtained are summarized in Table 1. 
FLC6CPS perfor::led 111 flow evaluations :~hile 
F'L~SQ~::~ required' only 93 to obtain a 
significantly better result. The function count 
for FLOciQIlM, but not FLOSCPS, includes extra 
aOjective evaluations for the step size 
caiculations and for the estimation of the final 
gr~dient, necessary for checking convergence. 
Viewed another \~ay, FLCSQ:::I required only five 
iterations to reach the objective function level 
of FLOSCPS after ten. But the goal of this '..,ork 
was to improve reliabflity as well as 
efficiency, and some additional runs were made 
to check this. 

FL06CPS FLOSQ:I~I 

Objective (initially 3.08) 0.00088 0.0000011 

Gradient norm (initially 6.55) 0.11 

Optimization Iterations 10 

0.0032 -

7 

Table 1. Test Case I summary. 

In addition to the basic case, a series of 
perturbed problems was considered. Arbitrary 
sets of design.· variables were deliberately 
perturbed by factors of ten within the analysis 
program in an effort to model the sort of 
uncertainty regarding problem scaling which is 
typical of many applications. The results with 
FLOSCPS on this set of problems, using uniform 
finite difference step sizes, are presented in 
Figure 3. Of the eight problems attempted, only 
the base (unperturbed) run reached an objective 
value below 0.01 (which would represent a fairly 
good match to the target for this problem); the 
others are unsatisfactory. Next, the 
convergence histories obtained when FLOSQNM was 
used wi th the same uniform set of step si zes are 
shown In Figure 4. While the new program. solved 
all the problems, there is a fair degree of 
var1ation from run to run. Finally, with the 
addition of the automatic step size selection to 
FL06QNM, the results of Figure 5 were obtained. 
The curves have collapsed Into one, with 
consistently rapid convergence for all versions 
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of the probl~m. Thu~ ~ven for ~ildly ~l~scaled 
problems, ~se of good finite difference 
Interval s for approximating the ~radient -:an 
make 1 significant t:npro'lement I., efficiency. 
especially when the available preciSion is 
limited. Alternatively. preper ch01ce of step 
sizes may permit use of coarser (and pernaos 
cheaper) flow calculation tolerances. in 
.ummary. well-converged solutions ~ere obtllned 
by FLOSQlI:f for .]11 of the perturbed problems, 
Including those where "incorrect" step sizes 
were used, whfle FL06C?S found only a mediocre 
solution to the unperturbed case and failed on 
the others. 

Test Case II 

The basis set for Test Case II consists of 
a "naive" collection of functions adapted from .. -
(10]. The form of the functions was the same as 
In the first test case, but in this more 
realistic problem nO effort was made to adapt 
the basiS set to the known solution. Althou;h 
thl rteen ter::Js ','/er~ used, the ;eo::letrl c fl to to 
the targat 'lias not as good as for T~st C.i~e I. 
Ho',.;ever, si nca the pres sures computed from the 
fitted surface I'/ere used in forr.1i:1g the 
objective function, the' optimal value of the 
objective was still near zero. 

The perturbing functions consisted of t~o 
exponential terms, with peaks near the leading 
edge, sine terms centered at 5: and also at 10: 
Intervals along the chord, and a linear ramp. 
The normalized shape functions are displayed In 
Figure S. They are not as geo~etrlcally 
distinct as the special set derived for 
artificially simple Test Case I, and their 
similarity may help explain the ~low convergence 
of both deSign codes shown In Figure 7. The 
upper curves show that when started from 
scratch, nei ther method converges with the 
rapidity exhibited in the previous case, 
although FL06QNM does again achieve a better 
result than FLOSCPS. Several attempts to 
restart the FL06QNM run midway to calculate 
improved finite difference step sizes fared no 
better. 

FlOSCPS 

Objective (initially 3.23) 0.0137 

Gradient norm (Initially 8.2) 0.12 

Optimization iterations 13 

Table 2. Test Case II summa~. 

FLOSQIIM 

0.00510 

0.073 

32 

It seemed possible that both programs were 
converging to some local minimum other than the 
known one since despite the relatively small 
values of the objective, the profiles obtained 
did not match the target. What had been found 
was nearby points ,In the design space 
representing airfoils which supported pressures 
sim1lar to the tar;et - the true solution was 
quite a bit farther from the initial point. 
Several experiments were performed to see if the 
target could be reached. The' lower pairs of 
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ctJl"Ves 1 n Fi gure 7 i 11 us trl te the effect of 
starting closer to the known solution. The base 
runs (upper curves) began with all variables set 
to zero. The middle ~et of. curves result from 
starting at 90:, Jne the lower set at 19~, of 
t::e "correct" 'fa 1 ues. The Fl06Qtl:~ runs 
conver'1ed oroHlotly(but still not to the target) 
~hile FL06C?S showed the same ~ehavior as in the 
base run - initial design improvement followed 
by leveling off and terminating due to lack of 
progress. Each run stopped at about the same 
distance from the solution (in the 13 
dimensional design space) as it had begun. 
Evidently, a number of different points in the 
space gave rise to shapes which resemb~ed the 
target airfoil fairly closely, and under the 
present conditions neither program was able to 
make the fine distinctions required to reach the 
known solution.. Thi.s difficulty reflects the 
poorly conditioned geometric fit to the solution 
by the overlapplng elements of the basis 
function set used. Further runs showed that 
FL06Qm1 could reach the true solution to the 
problem from the original starting pOint, but 
only by tightening the convergence criterion to 
provide additional precision. about 1.OE-8. 
Seventy design iterations were required for the 
objective to drop to 1.CE-6. It is reassuring 
that such problems can be solved if necessary, 
but this might be unreasonably expensive in a 
nor:na 1 desi;n context. /lear the end of the run, 
rapid conversence similar to that obtained in 
Test Case I was displayed, as illustrated in 
Figure 8., At the final point of this long, 
cocposite calculation, which was restarted a 
number of times. the norm of the gradient had 
dropped to 3.0E-5 and the error in the design 
variables was less than 1$ relative to the known 
solution, a much better result than obtained 
previously with cruder function values. The 
effects of objective function preciSion are 
explored more systematically in the final test 
case. 

Test Case I II 

The basis set here consists of integrals of 
the so-called Wagner functions, described and 
first applied to airfoil optimization by 
Ramamoorthy and Padmavathi (7). They resemble 
distorted sine functions, and are defined as 
follows: 

1. (theta+SIN (theta)l/pi -
(SIN (theta/2)]**2 

2. SIN (Cn+l)*theta]/(pi*(n+l)) + 
(SIN (n*theta)l/pf 

(for n-O) 

(for n>O) 

where theta • 2 * ASIN (SQRT (x/c)]. and n fs 
the series index. A sketch of the first nfne 
members of the set fs presented in .Figure 9. 
These terms plus a linear ramp were sufficient 
to produce a very good match to the original 
target, both geometrically and aerodynamically. 
In fact, these ten basis functions permitted a 
better representation of the target than the 
thirteen used in Test Case II. (A Fourier sine 
series based on the appropriate periodic 
continuation of the ai rfoil upper surface also 
did not fft as well, even with several times as 
many terms.' In the base runs for this problem, 
with six digfts ,of precision in the objective 

function. FL05C?S exhibited slow lfnear 
convergence, eventually reaching ~n objective 
val'Je of about 0.01 after twenty Iterations; 
the norm of the final 1radient '",as 0.17. in 
contr'.lSt, i=L05Q11M quickly (In eight fterHI-:ns) 
achieved' an objective of 0.001 but then leveled 
off befo re termi nati ng ·",1th fi na 1 gradi ent nOr:;1 
0.002. 

Fl06CPS 

Objective (initially 3.19) 0.0118 

Gradient norm (initially 5.5) 0.17 

Optimization iteratfons 20 

Table 3. Test Case I'll summar]. 

FL0501ll~ 

0.00112 

0.0022 

12 

To investigate the plateauing behavior 
of FL06QNM here, and in Test Case II. additional 
runs were ,made with both design pr09rams. The 
various convergence histories are compared in 
Fi gure 10, ·.vhere the two sets of curves show the 
effect of objectives precise to roughly 1.OE-4, 
1.0E-5 (the base case), and 1.OE-S. In the 
lower set, the plateau encountered by FL06Q:J:4 
where the objective remained nearly constant for 
several iterations was followed :>y rapid 
convergence to a level of 1.0E-9 at Iteration 
twenty-three with the benefit of more precision. 
FL06CPS, on the other hand. continued its slow 
convergence an~ reached only 0.005 Cnot even 
down to the level reached by FL06QNM with 

,coarser tolerances) after twenty-five 
optimization steps. Final gradient norms were 
on the order of 0.2 Jnd 0.0001 for FL06CPS and 
FL06QIIM, respec,tively •. A striking feature of. 
the set of three FL06CPS trials is the absence 
of any effect on the convergence rate due to 
varying the objectfve preciSion. The slow 
progress is not fmproved when better information 
is provfded. Increased precision is reflected 
in the better results obtafned by FL06QNM at 
each level. Although the convergence of FL06QNH 
was not steady while distant from the optimum, 
the ultimate convergence rate was high and the 
final solution obtained was satfsfacto~. 

- 6 -

The results of Test Case III were also used 
to obtafn a comparison of the relative ·costs· 
of the two methods. In Figure II. the value of 
the objective is plotted agafnst CPU time on the 
Cray-IS. The time intervals were estimated by 
multiplying the number of objective function 
evaluatfons for each Iteration by the average 
time per evaluation. The cost per fteration Is 
evidently about the same for FL06CPS and 
FL06QllM, but the progress after the first few 
iterations differs substantially. favoring the 
new method. The average cost per flow solution 
of the three Test Case III trials is given in 
Tabl~ 4. Note that the precise calculatfons 
required for the well-converged solutions are 
not too much more expensive than the looser ones 
used in the less successful runs. 

Based on the number of fterations required 
for convergence on the fine mesh when starting 
from scratch, these results r.'Ii;Jht have been 
expected to show a larger penalty for the 
tighter cases. For example, in the Inftial FL06 
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calculation fJr jest Case III, the maximum 
residual reachad 1.0E-6 after seven flow 
iterations but took nineteen iterations to reach 
l.C£-lO - about t',o/O and one-nalf tir..es as long. 
Ti'~ 3c:t;al ratio is les!: than this, only about 
Jr.~ lnd one-half, because the gradient is 
aoprJximated using finite difference intervals 
,oIj,i:ll jecrease roughly as t!:e square root of the 
precision level. For the flow solutions 
required in ~he gradient calculations, the 
physical configuration is only changed a small 
amount. The stored potential array therefore 
provides a very good initial estimate, which 
improves as the convergence tolerance, and hence 
the corresponding finite difference interva\s, 
are tightened. Since the gradient calculations 
take more than half of the total CPU time, this 
effect significantly mitigates the cost penalty 
of the more preCise function values. In 

Maximum residual 

1.0E-6 

1.0E-8 

1.0E-I0 

Precision 

1.0E-4 

1.0E-6 

1.0E-8 

CPU time ---
5.2 

7.0 

8.0 

Table 4. FL06 convergence criterion, objective 
preci sion, 'and average Cray-iS CPU time per flow 
calculation (in seconds) for Test Case III. 

addition, progress per C?U second favors the run 
with the loosest tolerances only in the 
beginning, presumably because their better 
gradient information permits the tighter runs to 
catch up after a few, albeit more expensive, 
iterations. 

Discussion 

The main result of this work is that for 
pseudo-inverse transonic design, the new method 
is capable of really solving the optimization 
problems posed, in contrast to its precursor. 
FL06QNM has also been shown to reach useful 
levels of the design objective function more 

.efficiently than FLC6CPS. In each test case, 
and in each variation, this technique produced 
better designs more quickly, and it achieved 
greater reductions in the gradient of the 
objective function - enough to give good 
'ovidence of optimality. An additional Indicator 
of truo convergence was tho high ffnal 
convergence rates observed fn the FL06QNM runs, 
at least when sufficiently precise objective 
function values were available. As demonstrated 
with Test Case I, the new code is less sensitive 
to bad problem scaling, especially when the 
finite -difference step sizes are chosen 
appropriately. 

The difficulties due to limited precision 
In the analysis program are surmountable, 
although not always cheaply. The step size 
selection method employed can be very useful,· 
but requires two or more funct10n evaluat10ns 
per design variable at the beginning of a run to 

/ 
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make its estimates. in FL06Q~IM, tllis 
information can be used to provide Initial 
estimates of the ~radf~nt and Hessian, :hus 
recov~ring ~art of the cost Involved. The 
switch ';0 central differencing '~hen progress Is 
slow or when the gradient is small, another 
adaptive feature of CIIMOrr which depends on 
objective precision, can o1;SO increase the cost 
of each i teratl on but ,roay ;ler::li t prO!jress where 
other methods fail. 

An important 11 fference b~t'l/een the rr.ethods 
is that FL06QII:1 I s systematically 3ble to take 
advantage of increased precision should It be 
necessary. The results of the third test case 
seem to 1ndlcate that If well-converged 
solutions are needed, there Is an advantage to 
using tight tolerances from the beginning. 
(Just how tight depends on the problem at 
hand.) One part per ten. thousand .eems to be a 
minimum requirement, but will not be enoush for 
r.:ore complex problems. In view of this 
uncertainty, t~e precislon-~daptlve and 
restarting capabil i ties of rLC6Q:I:1 are iHlportant 
advances over the ~ore limited FL05C?S. 

The di fferences !le';Ioo'een :he perfor;;:ar.ces of 
COPES/COIliU~ and QUHOIF, as :nodffied !or this 
appl ication, dr.10U:1t to :he :1i fference oet ... een a 
desi3n improvement method and an opti~al :esfgn 
method. Si:1ce the pOSing 3r.d l:1t~rpret3ticn of 
aerodynamic desi;:1 ~roblens witn current 
analytical tools Is already difficult, the 
ability to solve such problems reliably is a 
significant step In the development of a 
syste~tic design methodology. The desisner 
does not generally know whether a satisfactory 
solution to his problem exists at all. [f the 
Individual subproblems attac~ed can be solved' 
for the best desisn that can be achieved at each 
stage, the overall process can proceed more. 
surely. The alternative Is to be forced to rely 
on guesswork to determine when to stop, tighten 
tolerances, restart from a different point, or 
reformulate the problem. 

It may be worthwhile to reiterate that 
satisfactory results depend on careful 
preparation as well as chofce of optimization 
method. The analysis code must. be very 
reliable, produce consistently precise 
calculations, and must be fast, since a large 
number of analyses may be required for 
convergence to the desfred level. Good 
programming practices make these requlr~ents 
easier to meet, and may Indeed be vital for 
proper control of what can become a faIrly 
complex package. A degree of familIarity wIth 
tho c~Pdbllfties and limitations of tho analysis 
method Is necessary for realistic problem 
formulation. The best that an optimization 
method can do is to minimize efficiently the 
objective fUnction w;th respect to the design 
variables provided - It fs the designer's 
responslbllfty to ensure that the result will be 
a useful Improvement in engineering terms. 

Concluding Remarks 

1. An improved airfoil design method has been 
deroonstrated. In comparf son testing on a 
series of transonic pseudo-Inverse problems 

" . 
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wi th known" solutions, FL06Qm-l was tloth more 
reliable and r.1Ore efficient than its 
predecessor. Clear evidence of convergence 
to the solution was obtained in every case. 

2. The improvements are due to tletter 
performance by optimi za ti on code QNMDIF and 
to t~e use of problem adaptive finite 
difference step sizes. 

3. The new program makes good use of available 
objective function precision. Its 
performance improves as tighter tolerances 
permit more accurate gradient estimates.\ 

4. The observed differences between the 
quasi-Newton algorithm as implemented in 
QtlMD IF and the conjuga te gradi ent algorithm 
in COPES/COt/MIN for unconstrained problems 
are consistent with the results of testing 
with simpler problems. when the analysis 
program FL06 was modified to produce 
objective function values with a known, 
consistent level of precision, and the 
optimi.ution scheme appropriately adapted to 
that level. supe~inear or fast linear 
ulti~ate conver~ence rates were obtained 
'.11th FL06QNM on realistic aerodynamic test 
problems. 
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Figure 1. Sample test case Cp distributions and 
airfoils. Solid curves indicate initial config
uration, dotted curves show target. 
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Figure 2. Test Case I shape Functions. Expon
ential and sine type, pl~s a linear ramp. 
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Various arbitrary 
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Figure 3. Test Case I' iteration history. 
Program FL06CPS with uniform ffnlte difference 
ste'ps of,O.OOl. 
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Figure 4. Test Case I iteration history. 
Program Fl06QNM with uniform finite difference 
steps of 0.001. 

o Unperturbed scalfng 

. (others) Varfou~ arbftr-ary 
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Figure 5. Test Case fteration history. 
Program FL05CPS with ffnite dffference steps 
chosen by procedure FOSTEP. 
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Figure 6. Test Case II shape fur.ctfons. Expon
ential and sfne type, plus a linear ra.~. 
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Ffgure 7. Test Case II iteration history. 
Upper curves represent "standard- inftfal pofnt, 
mfddl~ and lower pafrs result from starting at 
90~ and 9~ of the solutfon, respectively. 
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Fi;:zre S. Speci al iest Ca~e II i~ration 
hi story. Progrlr.'l FLC6QIIl1 wf th enhanced objectf ve 
function pr~cf s1 on. 
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Figure g. Test Case III shape functions. Wagner 
function integrals, plus a linear ramp. 
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Figure 10. Test Case III fterltion history. 
Effect of objective functi~n precision on 
convergence rates of FL06CPS and FL06ellM • 
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Figure 11. Test Case III iteration history. 
Design progress vs. computer time for' various 
objective function precisions. 
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