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T Robert A. Kennelly, Jr.+

Informatics General Corporation
Palo Alto, California

Abstract

An improved method for use of optimization
techniques fn  transonic airfoll design is
demonstratad. FLOGQNM incorporates a modified
quasi-Newton optimization package, and is shown
to be more reliable and efficient than the
method developed previously at NASA-Ames, which
used the COPES/CONMIN optimization program. The
design codes are compared on a series of test
casas with known solutfons, and the effects of
problem .scaling, proximity of initial point to
solution, and objective function precision are
studied. In contrast to the older method,
well-converged solutions are shown to be
attainable 1in the context of engineering design
using computational fluid dynamics tools, a new
result. The f{mprovements are due to better
performance by the optimization routine and to
the use of problem-adaptive finite difference

. stap sizes for gradient evaluation.

Introduction

Prediction of system behavior is often Jjust
a first step - the real goal is an improved
system, or better yet, one that 1{s optimal in
some sense. Numerical optimization techniques
provide one means for direct use of analysis
methods in  engineering design. A scalar
objective function 1{s specified such that a
decrease in value due to changes in the design
variables corresponds to an improvement. If a
minimum can be found, it represents the "best"
that can be achieved, at least locally.
Optimization in this context only means solution
of the formal problem posed; the suitability of
the design obtained depends on the problem and
the properties of the analysis. program used.
Mathematical programming techniques permit these

problems to be solved convincingly - a point can
be found where the sensitivity of the objective
to the design variables (the gradient) 1{is very
much reduced from f{ts value at the initial
point, and where the change 1n the variables
each design {teration 1s small, Specialized
techniques, if available, may be more efficient,
but cptimization methods offer the advantages of
generality and flexibility since many analysis
methods can be adapted to this use and applied
to a wide vrange of . problems. Careful
integration of analysis and optimization codes
is required, however, and special attention must
be paid to the robustness of the individual
components for the sake of overall relfability.

* This paper {s based on NASA CR- prepared
for Ames Research Center under MNASA Contract
NAS2-11555.

+ Member of the Profassional Staff, Member AIAA.
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The general aerodynamic design prcblem
{nvolves an objective function, and possibly
constraints, formed frcm configuration jeometry,
computed pressures, forces, etc. The variables
may include parameters describing the geometry
or onset flow. Several design points defined by
combinations of Mach number and angle of attack
may be of interest, and {f broader
considerations such as structures or performance
are to be taken into account, the proplem
formulation may be even more ccmplex. An
interesting special case fs the "pseudo-inverse’
problem where a pressure distridution fis
specified on a surfac2 and it is desired to find
a shape, or shape plus flow. conditions, which
will produce those pressures.

A nurber of authors have described methcds
and results of aoplicatfons 1n subsonic,
transonic, and supersonic flow using 2 varfety
of techniques for both aerodynamic analysis and
optimization ([References 1-11; numbers in
brackets refer to bidliographic citations
listed below]. The present work is an attenmpt
to evaluate two design programs for robustness
and efficiency. 4We are primarily concerned here
with the relative performance of the methods,

‘not with the designs obtained. The test cases

consist of relatively simple two-dimensional
transonic pseudo-inverse problems which are
convenient because they can be constructed with
knewn solutions, yet retain many features of
more realistic applications. Subsonic problanms
were not considered, but this was not because of
any limitation of the design codes.

From. an optimization standpoint,
significant problem characteristics include the
following:

1. Objective function evaluations dominate the
cost of a run

2. Only function values are avaflable -

derivatives with respect to the design

variables must be approximated by finite.

. differences

3. The number of variables is not so large that
storage considerations need be considered in
the choice of a method

4. The iterative flow solution technique allows
the precision of the objective to be traded
off against cost

5. The opttmum point need not be determined to
high precision since the final values of the
individual variables are not of interest

6. The overall design process s fafrly long,
so that some user i{ntervention 1{s
anticipated

7. The objective function may be occasionally
discontinuous
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in this context, three interrelated goals have
besn pursued. First, demonstration of superior
performance by 3 new = technique on
aerodynamically interesting tast probiems with
xnown solutions. Second, the precedure was
jntended to 1llustrate the use of the new metnod
and to provide examples of typical difficulties
and thair resolution. Finally, the work to be
described may be helpful as a case study in the
development of m—_t design-by=
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ng is employed to transform the
ow region to the {nterior of a circle.
Corrections to the discretized potentfal are
computed by a fast Poisson solver combined with
relaxation sweeps which are repeated one or more
times per i{teration. The analysis code was
modified fn several ways including provision for
tightening some internal tolerances, revising
storage allocations, and performing some detail
changes for the sake of execution speed. -The
process of preparing FLO6 for coupling with the
new optimization methods resulted in a number of
improvements over the version used {in FLO60PT:
it 1is now more reliable, permits better user
control over the precisfon of the results, fs
easily modified to use different mesh densities,
and {s about 25% cheaper to run.
comparison s based on work. done on the
NASA-Ames CDC 7600 computer, but the bulk of the
results to be reported were obtained with the
recently-acquired Cray-1S. No modifications to
take advantage of the Cray's vector capabilities
have yet been performed, so absalute program

‘{stics noted

{This cost

timings will not be emphasizad in wnat follows.)

2ncountered
several FLOS
effort td

Convergence difficulties ware
during praliminary ctesting, and
carereters wer2 varfed in  an
understand and cure the oroblem. Increasing the
numper of Fourier <cefficieats wusad {in the
mapping seemed to help one otharwise
unremarkabla c¢asa converge from a  stored
solutfon. (There was no prcblem obtafning a

converged solutfon with the same case when
1tarting from scratch.) The number of
coefficients was left at the higher 1level, and

the test cases proceeded without further
‘ncident. Subsequent computational
has led to the conjecture that many convergence
failures, discontinuities f{n optimization
objective, and instances of a restarted solutfon
not @matching {its progenftor are due to
ncn-unigueness 1n the flow solution ftseif. If
this is correct, then the sensftivity of the
computations to seemingly irrelevant factors
such as overspecifying the number of Fourfer
coefficients 1s less surprising.

~.

COPES/COMMIN Package

FLOSCPS makes use of a more recent versfon
of CONMMIN than did FLO60PT, and uses the COPES
front end orogram for input and control. The
optimization packase was originally written for
structural design problems with large numbars of
varfables and constraints, but includes
provision for computing unconstrained search
directfors when no constraints are active.
Since both FLO60PT and {ts three-dimensional
sibling FLO220PT have often been used 1n
pseudo-inverse mode without constraints [10,
22-25], ~ the unconstrained portion of the
optimization code has acquired more sfgnificance
in application to aerodynamic problems than {t
had in the original design. The Fletcher-Reeves
conjugate gradient algorithm {mplemented for
this purpose appears to have attractive
theoretical properties, has low storage
overhead, and is easy to implement in {ts basic
form. It {s not, however, the method of choice
except for very large problems, where 1t may be
the only alternative [21, 26]. At each
{teration of this technique, the gradient f{s
calculated and a line search performed along a
ray given by a certain linear combination of the
current gradient and the last search direction.

Computer storage requirements are low because
“only a

few vectors of length n need be
accommodated, where n fs the number of design
variables.

Objective function gradients are calculatsd
by forward differencing, with no provision for
use of central differences. -The step size
employed can be scaled by the size of the
associated varfable, but 1s fndependent of the
value of the objective function, its precision,
or its derivatives.

FLO6OPT and FLO220PT have not been entirely
satisfactory in applications, and some users
(22, 27] have rasorted to use of only a few

design variables at a time. This s
inconvenient and can result in failure to solve
even simple problems, as discussed fin (26,

28-29]1, for example. The COPES/CONMIN package

/\/ﬁg’/‘j /\5757;._!
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has no pravision for restarting an interrupted
run with data from a greceding one. This loss
of history can lead to f{nefficiency since a
restart must begin from scratch with  the
nctorfously slow  steepest descent search
direction.

Quasi-Mewton Method

A new program, FLO6QMM, has been developed
for uncenstrained design problems, or for
problens whose few, loose constraints permit
efficient use of penalty functions. It yas
hoped that an optimization algorithm more
specifically suited to such problems would prove

- superior to COPES/CONMIN. QNMDIF {s efficient,
reasonably up-to-date and well documented, and
contains safeguards to help maintain progress in
the face of difficulties such as roundoff
errors, 111-conditioning, or occasional small
discontinuities in tha objective function. It
uses finite difference approximations to the

_least small,

derivatives of the objective with respect to the '

design variables.

The quasi-Newton algorithm, 1fke Newton's
method ftself, attempts at each iteration k to
step to the minimum of a quadratic model of the
2ctual objective. This step, denoted p(k)
belew, Is determined by the linear system

G{k) p(k) = -g(k)

where g(k) is the gradient and G(k) 1s, f1n
lewton's method, the matrix of mixed partial
derivatives. In practice, a
one-dimensional search {s performed to locate a
minimum along. the ray p from the current point.
Instead of G, which may be difficult or
expensive to evaluate, quasi-Newton methods use
a sequence of matrices 3(k) which approximate

G{k) in a certain sense. After the new point
x(k+1) has been found and the gradient
reevaluated, B {s modiffed so- that the

quas{-Newton condition
[g(k+1) - g{k)] = B(k+1) [x(k+1) - x(k}]

holds, as it would i{f the objective were
quadratic and if B8 were the true Hessian. This
relationship i{s just the truncated Taylor series
for the gradient about the point x(k). Using a
rank-2 update to B, the approximate Hessian's

symmetry and.- positive definiteness can be
preserved, even 1in the presence of roundoff
errors [19]. On a new problem, B(0) fs usually

taken to be “the {identity, but {in  FLOG6QNM
estimates of the diagonal elements are available
{f step size procedure FDSTEP has been used.

Theoretically, in the specfal case of a
quadratic objective in n dimensions, the
quasi-Newton algorithm converges to the minimum
{n n iterations, as should the algorithm used by

CONMIN.  However, the quasi-Newton algorithm
does not depend on exact 1line searches, and
fndeed 1s usually more efficient when a
relatively coarse line search s used [18].

This {s an advantage over CONMIN because the
conjugate gradient algorithm depends on exact
searches for its good theoretical
properties. (CONMIN's search does not actually
appear to perform exact searches anyway.)

convergence’

Comautational axperienca, and scne
analytical results, f{ndicatz that quasi-Newton
methods converge superlinearly, or at least at a
fast linear rate. Thus the asymptotic error
constant, the limiting value af the error ritio
for successive f{%terations, will be zero or at
In the convergence histories to be
presented below, the difference bdetween the
current objective and its {known) optimal value
is plotted against {teration number.
Superlinear convergence {s fndicated by a curve
which steepens as the optimum {s approached.
The appearance of this noped-for benavior may de
taken as supporting evidence that a true minimum
point has been found [21].

Several features of QNMDIF are included for
the sake of reliability. Since the approximate
Hessfan s positive definite by construction,
GNMDIF generates descent dirsctions at each
step, providing the gradients are
accurate.
significantly better point, the program switches
to central difference gradients, ind can switch
back again tater 1f an improved rate of progress
warrants {t. A further degree of adaptability
{s available: FLO6QMM can be restarted with
tighter aerodynamic conversence -iclerances if
even better gradient information 15 riquired.
The optimization routine has been Jodified ta
take account of objective function precisicn,
and to permit resumption of an {nterrupted run
without loss of information. Other enhancements
include a user interface between QNMDIF and the
analysis code which permits housekeeping chores
such as printing FLO6 results after each
optimization {1teration, and provision for
executing a Tlocal search at the beginning of a
run as a means of moving away from a ragicn f{n
the design space _ where the objective f{s
df scontinuous.

For problems such as those under
consideration here, with few varfables and an
objective with large storage and CPU time
requirements, the additional overhead due to
QNMDIF  {s negligible. (CPU refers to a

_ computer's Central Processing Unit.)

Test Cases

The test cases consist of “reifnventing® a

_representative supercritical airfoil using three

different sets of design variables. The
parameterizations were all chosen to be able to
represent accurately the modifications required
to transform the upper surface of a NACA 63A210
section into the target airfoil. Though
superficially similar, the three problems appear
very different to the optimizer. In each case,
the perturbation to the {nitial surface is a
1inear combination of smooth functions,
fdentically zero at the leading and trafling
edges, and a single 1linear ramp term which
allowed for non-zero trailing edge thickness.
The various terms were normalized so that they
all have a maximum value of about 1.0 over the
airfofl's chord. The optimal coefficients of

the  linear combination representing the
solution, and {in one case the nonlinear
parameters of the  perturbing functions

themselves,

were determined by performing a
general

Teast squares fit .to the difference

sufficiently”
If the Y{ne search falls to produce a

<
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setween the kaown -initial and #{nal shapes.
These three sections, <onsisting of initial
airfoil plus fitted di fference terms, were then
analyzed using FLOS. For aach case, aressure
coefficients 1t sixty-two points from about
0.002 to 0.997 «x/c along the upper surface of
the tarzet airfoil were extractad from the
sutcut of the analysis program to serve as
targets for the design problems. Initfal and
target airfoils and Cp distributions are
illustrated in Fiqure 1, where x/c 1s the
normalized chordwise coordinate and Cp s the
local static pressure minus the free strean
static opressure, divided by the free strasl
dynamic pressure. The objective functisn .o»
each problem is defined as the sum =7 Toe
squared differences between the target and
calculated pressure coefficients. The solution
detarnined by the gjeometr{ical leasi sguaces
+minimization solves the aerodynamic prablam %22,
since the ron-nejative objective i35 zary 1% hisz
noint. MNote that this tast procedures is mc~2
stringent than simply running the two desiyn
codes and ccmparing the results, since th2
possibility exists here for both to fafl!l

The run conditions for the analysis program
were as ollows: .

1. Mach number 0.76
2. Angle of attack 0.0 degrees
3. 2§6 Fourier coefficients used in the mapping
4, Mapping tolerances 1.0E-10
5. Mash size 128 circumferential x 32 r;dial

6. 8 (sometimes 6) relaxatfon sweeps per hybrid
FLO6 {teration

"7. Convergence tolerance for maximum residual
" 1.0E-8 :

(Note use of the FORTRAN convention. for powers

" of ten: 1.0E-1 is one-tenth.) The
sum-of-squares objective function was precise to
about 1.0E-6 under these conditions, as
estimated from values of the objective which
were computed and printed out as the flow
solution converged. Average CPU time per flow
solution was about seven seconds on the Cray-lS,
starting each solution from the potentfal array
computed and stored at the beginning of every
design fteration. .

_ The level of precision chosen for these

tests was a compromise. Six figures are more-

than adequate for the first case: usable
results were obtained very quickly by FLOGQNM
with a convergence criterion. of 1.0E-4, which
gives only about two good figures {n  the
objective function! But as will be shown, the
more difficult (and more realistic) problems
. require tighter tolerances. A single,
intermediate degree of precfsion was chosen to
fl1lustrate the sort of results one might obtain
without foreknowledge. : \

The available {nput parameters for the two
optimization routines were different,
complicating the attempt to compare them. Most
fnputs were simply left at their default values,

Sut a few choiras nad to he made. Among these,
the choice of stap size for the gradient
evaluations was mast oroolsmatic. FLOROMNM
permits autcmatic choize of optimal step
leajths, where the canc2llation 2rror in  the
sradient due 30 the limita< nracision of the
objective function i§s »daiznces against the
truncition arrer  raguleias feom the yge of the
finfte diffarence aporcximatica to cine gradient.
The default si2p sizz zm3isysd Sy COPES/CONAIN
is 0.01 ‘times the currert vwalue of each
variable, but never less than 2.31. That scheme
did not wark well in {nizial =wriais. [t was
rapiaced by a unifora value o7 3.001 for ail of

ai
a

tu2 rarfables, follawing tha rul2 of thumdb that.

the step size should be abcut the sguare root of

the relative precision of the objective function.

[21). This 1is nearly the optimal choice here {n
any 2veat, sinca it is approximataly the average
of tne values generated by <zhe step langth
gracedure {n FLO6GHM for these well-scalad
oroplems.

A muitiplicative scaling Factor was apalied
to each ‘of the design variables. In the casas
%9 be roperted here, a factor of one hundred.was
sufficient to put all the first and second
derivatives in the range 0.02 to 20. - With tais
scaling, a2 design variaple with value 1.0
changes the section ordinates by 2t most 0.01.

QNMDIF requires that the nrojected gradient
along the direction of search be reduced to a
specified fraction of {ts {nitfal value. In
design  applications with expensive gradient
evaluations, it was felt %o be desiradblz to make
the most of each 1teratfon, so this fraction
was set to 0.10 for a ‘“moderate accuracy"
search. In the cases to bte described, the
average number of steps per line search was
between four and fiva. :

It was not possible to compare the number
of optimization steps required for "convergence"
since that is ill-defined 1{in this context of
relatively crude function values and finite
difference gradient approximations. Instead,
the termination criteria were set tight enough
to permit comparison of the rates of convergence
over a reasonable number of steps. The
comparison is not exhaustive, but 1s intended to
demonstrate that the convergence rates predicted
for quasi-Newton methods can be achieved 1n
practice with “unfriendly” objective functions.
The superiority of these methods over conjugate
gradient techniques, as previously found {n more
elaborate comparisons wusing cheaper, more
precise objectives, will be shown to hold true
in the context of aerodynamic design. Reviews
of computational experience regarding the
relative robustness and efficiency of conjugate
gradient and quasf-Newton methods may be found
in [21, 26, 29-30]. : '

Test Case |

The first test case was specially
constructed to be easy to solve. The design
variables were chosen to permit matching the
target airfoil with only five “tuned” perturbing
functions. Their general forms were as follows:

e




- .Table 1.

1. C(l-(x/c))*(x/c)**n / EXP {m=(x/c)]
2. SIN [pi*(x/¢c)**n]**m
where pi = 3.14..., and FORTRAN  aljebraic
notation has been used. These are similar to
the terms used in [9], but in addition to the
coefficients of the 1linear combination, the
parameters m and n controlling the width and
location of the peak were systematically
adjusted using a nonlfnear least squares program
to yield a good geometric Ffit. The shape
parameters were then frozen &t their optima}
values and only the linear coefficients were
ysed in the aerodynami¢ optimization., The final
set of functions are shown in Figure 2.

Even in this simple case, the performance
of the two design programs is different: {n
taras of both objective function value and norm
of the final gradiant, FLOGQHM achieves a detter
result, in less time, than does FLC6CPS. The
results obtained are summarized {in Table 1.
FLCECPS performed 111 flow evaluations while
FLO6QMM  required " only 93 to obtain a
significantly better result. The function count
for FLOGQNM, but not FLO6CPS, includes extra
objective evaluations for the step size
caiculations and for the estimation of the final
gradient, necessary for checking convergence.
Viewed another way, FLC6Q!NM required only five
fterations to reach the objective function level
of FLOGCPS after ten. But the goal of this work
was to improve relfabflifty as well as
efficiency, and some additional runs were made
to check this.

Test Case [ summary.

In addftion to the basic case, a series of
perturbed problems was considered. Arbitrary
sets of design.- variables were deliberately
perturbed by factors of ten within the analysis
program in an effort to model the sort of
uncertainty regarding problem scaling which is
typical of many applications. The resuits with
FLO6CPS on this set of problems, using uniform
finite difference step sizes, are presented 1in
Figure 3. Of the eight problems attempted, only
the base (unperturbed) run reached an objective
value below 0.01 (which would represent a fairly
good match to the target for this problem); the
others are unsatisfactory. Next, the
convergence histories obtained when FLO6QNM was
used with the same uniform set of step sizes are
shown in Figure 4. While the new program. solved
all the problems, there i{s a fair degree of
varfation from run to run.. Finally, with the
addition of the automatic step size selection to
FLOGQNM, the results of Figure 5 were obtained.
The curves have collapsed into one, with
consistently rapid convergence for all versions

FLOSCPS FLOG6QNM
Objective ({nftially 3.08) 0.00088 0.0000011
“Gradient norm (inftially 6.55) 0.11  0.0032-
Optimization {terations 10 ‘ 7

~in  the

of the problem. Thus aven for mfldly afsscaled
problems, wuse of good finite diffarence
fntervals for approximating the gradient zan
make 31 siqnificant <{mprovemsnt {a efficiency,
especially when the avaflable prescisfon is
limitad. Alternatively, orcper choice of step
sizas may permit use of coarser (and perhaos
cheaper) flow calculatfon tolerances. H
sunmary, well-convarged solutfons were cbtained
by FLOSQI far all of the perturbed problems,
including. those where "{ncorrect" step sizes
were used, whila FL26CP?S found only a medfocre
solution to the unperturbed case and failed on
the athers. .

Test Case 11

The basis set for Test Case II consists of
a "naive"
(10]. The form of the functions was the same as
first test case, but 1n this more
realistic problem no effort was made 3 acapt
the basis set to the known solution. Althoush
thirteen terms wara used, the geometric FfIt to
the target was not as good as for Tast Case I.
Yowever, sinca the prassures computad from the
fitted  surface wera wused ia forming the
chjective function, the ~optimal value of thne
objective was sti1l near zero.

The perturbing functions consisted of two
exponential terms, with peaks near the leading
edge, sine terms centered at 5% and also at 10%
intervals along the chord, and a linear ramp.
The normalized shape functions are displayed in
Figure 6. They are not as geometrically
distinct as the specfal set derived for
artificially simple Test Case [, and their
similarity may help explain the slow convergence
of both design codes shown in Figure 7. The
upper curves show that when started from
scratch, neither method converges with the
rapidity exhibited in the previous case,
although FLOG6QNM does again achieve a better
result than FLO6CPS, Several attempts to
restart the FLOGQNM run midway to calculate
improved finite difference step sizes fared no
better. ' :

collection of functions adapted from..

FLO6QNM

_ FLO6CPS
Objective (inftfally 3.23) 0.0137 0.00510
Gradfent norm (inftially 8.2) 0.12 0.073
Optimization {terations 13 32

Table 2. Test Case II summary.

It seemed possible that both programs were
converging to some local minimum other than the
known one since ddspite the relatively small
values of the objective, the profiles obtained
did not match the target. What had been found
was nearby points _in the design space
reoresenting airfo{ls which supported pressures
similar to the target - the true solution was
quite a bit farther from the initial point.
Several experiments were performed to see if the
target could be reached. The- lower pairs of

(¢4



curves in Figure 7 1{llustrate the effect of
starting closer to the known solutfon. The base
runs {upper curves) began with a1l variables set

to zaro. The middle set of curves result from
starting at 20%, aond the lower set at 39%, of
the “correct" values.- The FLOSQNM runs

converged promptly (but still not to the target)
while FLO6CPS showed the same hehavior as in the
base run - initial design improvement followed
by leveling off and terminating due to lack of

progress. Each run stopped at about the same
distance from the solution (in the 13
dimensional design space) as it had begqun.

Evidently, a number of different points fin the
space gave rise to shapes which resemﬁﬁed the
target airfoil fairly closely, and under the
present conditions nefther program was able to
make the fine distinctions required to reach the
nown solution.. This difficulty reflects the
goorly conditioned geometric fit to the solution
by the overlapping elements of the basis
function set used. Further runs showed that
FLOGQHM could reach the true solution to the
probltem from the original starting point, but
only by tightening the convergence criterion to
provide additional precision, about 1.0E-8.
Seventy design iterations were required for the
objaective to drop to 1.6E-6. It {s reassuring
that such problems can be solved {f necessary,
but this might be unreasonably expensive in a
normal desisgn context. Near the end of the run,
rapid convergence similar to that obtained in
Test Case I was displayed, as i1llustrated in
Figure 8.. At the final point of this 1tong,
composite calculation, which was restarted a
number of times, the normm of the gradient had
dropped to 3.0E-5 and the error {n the design
variables was less than 1% relative to the known
solution, a much better result than obtained
previously with cruder function values. -The
effects of objective function precision are
explored more systematically in the final test
case.

Test Case 1

The basis set here consists of integrals of
the so-called Wagner functions, described and
first applied to airfoil optimization by
Ramamoorthy and Padmavathi [7]. They resemble
distorted sine functions, and
follows:

1. [theta+SIN (theta)l/pi -

are defined as

[SIN (theta/2)]**2 (for n=0)
2. SIN [(n+1)*thetal/[pi*(n+1)] +

{SIN (n*theta)]/pt {for n>0)
where theta = 2 * ASIN [SQRT (x/c)], and n is

the series index. A sketch of the first nine
members of the set {s presented 1in .Fiqure 9.
These "terms plus a linear ramp were sufficient
to produce a very good match to the original
target, both geometrically and aerodynamically.
In fact, these ten basis functions permitted a
better representation of the target than the
thirteen used in Test Case II. (A Fourier sine
series based on the appropriate periodic
continuation of the afirfoll upper surface also
did not fit as well, even with several times as
many terms.) In the base runs for this probiem,
with six digits of precision in the objective

slow inear
an objective

function, FLO6C?S  exhibited
convergence, eventually reaching
valuye of about J.01 after twenty {terations;
the norm of the final gradient was 0.17. in
contrast, FLOGQUM quickly (fn eight {teracicns)
acnieved” an objective of 0.001 but then leveled
off before terminating with final gradient norm
0.002.

. FLO6CPS

FLO60HM
Objective (inftially 3.19) 0.0118 0.00112
Gradient norm (fnftially 5.6) _ 0.17 0.0022
Optimfzation fterations 20 12

Table 3. Test Case [II summary.

To 1investigate the plateauing behavior
of FLOBQNM here, and in Test Case II, additfonal
runs were _made with both design programs. The
varfous convergence historfes ars compared fin
Figure 10, where the two sets of curves show the
effect of objectives nrecise to roughly 1.0E-4,
1.0E-6 {the basa case), and 1.0E-3. In the
lower set, the platzau encountered by FLO6Q!M
where the objective remafned nearly constant for
several {teratfons was followed by rapid
convergence to a level of 1.0E-9 at f{teration
twenty-three with the benefit of more precision.
FLO6CPS, on the other hand, continued its slow
convergence and reached only 0.005 (not even
down to the 1level reached by FLO6QNM with
coarser tolerances) after twenty-five
optimization steps. Final gradient norms were
on the order of 0.2 and 0.0001 for FLOGCPS and
FLOGQNM, respectively.. A striking feature of.
the set of three FLO6CPS trials {s the absence
of any eaffect on the convergence rate due to
varying the objective precision. The slow
progress 1s not improved when better fnformation
i{s provided. Increased precisfon {1s reflected
in the better results obtafned by FLOGQNM at
each level. Although the convergence of FLOSQNM
was not steady while distant from the optimum,
the ultimate convergence rate was high and the
final solution obtained was satisfactory.

The results of Test Case III were also used
to obtain a comparison of the relative "costs”
of the two methods. In Figure 11, the value of
the objective fs plotted agafnst CPU time on the
Cray-1S. The time intervals were estimated by .
multiplying the number of objective function
evaluations for each fteration by the average
time per evaluation. The cost per fteration is
evidently about the same for FLOG6CPS and
FLOGQNM, but the progress after the first few
iterations differs substantially, favoring the
new method. The average cost per flow solution
of the three Test Case III trials s given fin
Table 4. Note that the precise calculations
required for the well-converged solutions are
not too much more expensive than the looser ones
used in the less successful runs.

Based on the number of {terations required
for convergence on the fine mesh when starting
from scratch, these results might have been
expected to show a larger penalty for the
tighter cases. For example, {n the initial FLO6



calculation far Test Casa III, the maximum
residual reachad 1.0E-6 after seven flow
{tarations but took nineteen iterations to reach
1.CS-10 - about two and one-nalf times as long.
Tr2 actual ratio is lass than this, only about
ona 1ind one-half, because the gradient s
zoproximatad using finite difference intervals
Ahish degrease roughly as the square root of the
nsrecision level. For the flow solutions
required 1n the gradient calculatfons, the
physical configuration f{s only changed a small
amount. The stored potential array therefore
provides a very good inftial estimate, which
improves as the convergence tolerance, and hence
the corresponding finite difference {ntervalis,
are tightened. Since the gradient calculations
taka more than half of the total CPU time, this
effect significantly mitigates the cost penalty
of the nmore precise function values. In

Maximum residual - Precision CPY time
1.0E-6 1.0E-4 5.2

1.0e-8 1.0€-6 7.0

1.0E-10 1.0€-8 3.0

Table 4. FLO6 convergence criterion, objective
precision, -and average Cray-15 CPU time per flow
calcylation {in seconds) for Test Case III.

addition, progress per C?U second favors the run
with  the ?oosest tolerances only in the
beginning, oresumably because their better
gradient information permits the tighter runs to
catch yp after 2 few, albeit more expensive,
{terations.

Discussion ' -

The main result of this work 1s that for
pseudo-inverse transonic design, the new method
1s capable of really solving the optimization
problems posed, in contrast to its precursor.
FLOG6QNM has aiso been shown to reach useful
levels of the design objective function more

-efficiently than FLC6CPS. In each test case,

and in each variation, this technique produced
better designs more quickly, and it achieved
greater reductions in the gradient of the
objective function - enough to ive good
‘evidence of optimality. An additional {ndicator
of true convergence was tha high final

. convergence rates observed fn the FLO6QNM runs,

at least when sufficiently precise abjective
function values were available. As demonstrated
with Test Case I, the new code 1s less sensitive
to bad problem scaling, especially when the
finite -difference step sfzes are chosen
appropriately.

. The difficulties due to 1imfted precision
fn the analysis program are surmountable,
although not always cheaply. The step size
selection method employed can be very useful,
but requires two or more function evaluations
per design vartable at the beginning of a run to

make 1ts estimates. in  FLOAQ'M, this
information can be used to provide f{fnftfal
estimates of the qradient and Hessian, thus
recovering part of the cost {involved. The
switch 0 central differsncing when progress fs
slow or when the gradient {s small, anothar
adaptive feature of GUMDIF which depends on
objective precision, can aiso increase the cost
of each ijteration but ray sermit progress where
other methods fafl.

An important differenca between the methods
{s that FLO6QMM {s systematically able to taka
advantage of increased precision snould {t be
necessary. The results of the third test case
seem to {ndicate that {f well-converged
solutions are needed, there {s an advantage to
using tight tolerances from the beginning.
(Just how tight depends on the problem at
hand.) One part per ten.thousand seems to be a
ninimum requirement, but will not be enocugh for
rmore complex problems. In  view of . this
uncertainty, the precision-adaptive and

~ restarting capabflities of FLC6QNM are {mportant

advances over the more 1imited FLOG6CPS.

The differences betwezn the performancas of
COPES/COMNMIN and QUMDIF, as modified €or this
application, amsunt %0 the 4iffaerence hetween a
design improvement method and an ontimal cesign
mathod. Since the posing and {ntarpretaticn of
aerodynanmic  design  prablems witn  current
analytical tools 1{s already difficult, the
ability %to solve such oproblems relfably {s a
significant step 1in the development of a
systematic design methodology. The designer
does not generally know whether a satisfactory
solution to his problem exists at all. I[f the

individual subproblems attacked can be solved ’

for the best design that can be achieved at each

stage, the overall process can proceed more.

surely. The alternative {s to be forced to rely
on guesswork to determine when to stop, tighten
tolerances, restart from a different point, or
reformulate the problem.

It may be worthwhile to refterate that
satisfactory results depend on careful
preparation as well as chofce of optimization
method. The analysis code must be very
reliable, produce consistently precise
calculations, and must be fast, since a large
number of analyses may be required for
convergence to the desired level, Good

. programming practfces make these requirements

easier to meet, and may Indeed be vital for
proper control of what can become a fairly
complex package. A degree of familfarity with
the capabiiities and 1imitations of the analysis
method {s necessary for real{stic problem
formulatfon. The best that an optimizatfon
method c¢an do {s to minimize efficiently the
objective function with respect to the design
variables provided - it {is the designer's
responsibility to ensure that the result wil) be
a useful improvement in engineering terms.

Concluding Remarks

1. An {mproved airfofl design method has been
demonstrated. In comparison testing on a
series of transonic pseudo-inverse problems



2.

3.

2.

3.

4.

5.

6.

7.

with known solutions, FLOG6Q!M was both more
relfable and more efficient than Its
predecessor. Clear evidence of convergence
to the solution was cbtained in every case.

The improvements are due to - better
nerformance by ontimization code QNMODIF and
to the wuse of problam adaptive finite
difference step sizes.

The new program makes good use of available
objective function precision. Its
nerformance impraoves as tighter tolerances
permit more accurate gradient estimates.}

The observed differences Dbetween the
quasi-Newton algorithm as implemented in
QHMOIF and the conjugate gradient algorithm
in COPES/COMMIN for unccnstrained problems
are consistent with the results of testing
with simpler problems. When the analysis
program FLO6 was modified to produce
objective function values with a known,
consistent level of precision, and the
optimization scheme appropriately adapted to
that level, superlinear or fast linear
ultimate convargence rates were obtained
with FLOGQNM on realistic aerodynamic test
problems. )
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Figure 1. Sample tast case Cp distribuiions and
afrfofls. Solid curves indicate {nitfal config
uration, dotted curves show target. :
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Figure 2. Test Case I shape functions. Expan-
~entfal and sine type, plus a linear ramp.
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