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A STEADY AND OSCILLATORY KERNEL FUNCTION
METHOD FOR INTERFERING SURFACES IN SUBSONIC,
TRANSONIC AND SUPERSONIC FLOW

By Atlee M. Cunningham, Jr.
Fort Worth Division of General Dynamics

Abstract

This report presents the theory, results and user instruc-
tions for the aerodynamic program. The theory is based on linear
lifting surface theory and the method is the kernel function.

The program is applicable to multiple interfering surfaces which
may be coplanar or non-coplanar. Local linearization is used to
treat non-uniform flow problems without shocks. For cases with
imbedded shocks, the appropriate boundary conditions are added
to account for the flow discontinuities. The data describing
non-uniform flow fields must be input from some other source
such as experiment or a finite difference solution. The results
are in the form of small linear perturbations about non-linear
flow fields. The method is applied to a wide variety of problems
for which it is demonstrated.to be significantly superior to the
uniform flow method. The program user instructions are given in
the last appendix for easy access.,
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A STEADY AND OSCILLATORY KERNEL FUNCTION
METHOD FOR INTERFERING SURFACES IN SUBSONIC,

TRANSONIC AND SUPERSONIC FLOW

By Atiee M. Cunningham, Jr.
Fort Worth Division of General Dynamics

SUMMARY

This report presents the theory, results, and user instruc-
tions for a computer program to calculate steady and unsteady
aerodynamics on interfering surfaces in subsonic, transonic or
supersonic flow. The theory is based on linear lifting surface
theory and the method is the kernel function. The program is
applicable to multiple interfering surfaces which may be coplanar
or non-coplanar. Local linearization is used to treat non-uniform
flow problems without shocks., For cases with imbedded shocks,
the appropriate boundary conditions are added to account for the
flow discontinuities, The data describing non-uniform flow fields
must be input from some other source such as experiment or a
finite-difference solution. The results are in the form of small
linear perturbations about non-linear flow fields. The method is
applied to a wide variety of problems for which it is consistently
demonstrated to be significantly superior to the uniform flow
method.

All equations used in the method are summarized in the
appendices along with detailed derivations. A set of instruc-
tions for using the program is presented in the last appendix
for easy access. The instructions are included in this report
so that reference to pressure function or surface types and
example cases can be easily made,

In addition to the non-uniform flow capability, the program
can be used to obtain uniform flow solutions with a single option
change., Interference effects can be calculated for coplanar,
non-coplanar and intersecting planar surfaces. The aerodynamic
input geometry data format permits the input of arbitrarily
arrayed surfaces which are constrained only to being streamwise.



Each surface may or may not have an image surface, hence,
asymmetric configurations may be constructed,

The program has a built-in interpolation scheme for struc-
tural mode shapes. The scheme uses a surface spline fit over
various structural surfaces or regions., This will permit inter-
polation of modes for total airplane configurations with all-
movable and vertical surfaces.

Generalized forces can be calculated in unsteady flow and
pressure distributions can be obtained in both steady and un-
steady flow., The solutions obtained are essentially independent
in computer cost of the number of modes or downwash vectors input.
Once the aerodynamic matrices are computed, inverted and saved on
a magnetic tape, they can be used on subsequent problems for very
little cost as long as Mach number, reduced frequencies, and aero-
dynamic geometry remain unchanged. Thus, the method is tailored
for design applications where the structural mode shapes change
continually for structural changes and payload variations while
aerodynamic parameters remain constant,

INTRODUCTION

In recent years, interest has grown considerably in the
desire to fly efficiently in the high subsonic regime. As a
result, the need has increased for better unsteady transonic
aerodynamic tools so that flutter and dynamic response charac-
teristics can be more accurately predicted in this flow regime.
Presently, these characteristics are predicted only with methods
which are based on linearized theory in uniform potential flow,
In addition, since buffet and limit cycle flutter appear to be
similar in experimental flutter and buffet testing, it is impor-
tant that their distinction be better understood.

The characteristic of transonic flow which causes the
greatest difficulty when attempting to apply uniform flow theory
to such problems is the presence of shocks imbedded in the flow.
Such a gradient in velocity as that which exists across a shock
is no longer small, thus, linear theory methods (ref. 1) cannot
account for this phenomenon and hence become invalid., Finite
difference methods or other iterative schemes can account for
such discontinuities but they are usually very expensive to use
in terms of computer time required (refs. 2, 3, 4 and 5). More-



over, if they are used for flutter or dynamic response analyses
where solutions must be computed for 10 or more frequencies, the
computer costs quickly become astronomical.

For example, a simple cantilevered wing flutter analysis
with four natural modes and 10 frequencies could require 20 or
more hours of computer time on an IBM 360/65 for a single flutter
solution. Thus, such an approach is not well suited for solving
unsteady transonic aerodynamic problems in a practical sense,

A study was conducted to investigate the feasibility of
using combined subsonic and supersonic linear theory as a means
for solving unsteady transonic flow problems economically
(ref. 6). In the method developed, a wing over which the flow
was mixed supersonic and subsonic with imbedded shocks was
treated as an array of general aerodynamic lifting surface
(GALS) elements. Each element was allowed to have mutual inter-
ference with the other elements, Also, each was assigned a
different Mach number, either subsonic or supersonic, and its
downwash was modified accordingly. The Mach number distribution
and shock geometry was obtained from either experiment or a
finite difference solution, hence the method was used to predict
uns teady perturbations about known steady mean flows. Once
assembled, the solution proceeded in a manner identical to ordi-
nary aerodynamic interference methods (ref. 7). The frequency
sweep could be performed at about the usual cost of a standard
subsonic or supersonic unsteady aerodynamic analysis which is
less than one hour - usually about 10 minutes - as opposed to
20 hours or more for a finite difference solution. As a result
of the feasibility study the computer procedure documented in
this report was developed.

The theory, results and program utilization are given in
this volume for the subsonic, transonic and supersonic aero-
dynamic program, The program is described in Volume II of this
report, This program is applicable to steady and unsteady flow
over multiple arbitrarily arrayed lifting surfaces. The Mach
range is subsonic, mixed transonic with or without shocks, and
supersonic, In addition to uniform flow subsonic and supersonic
solutions, non~uniform Mach number distributions can be used
which lead to significant improvements in solution accuracy.

The method is based on a kernel function technique which uses
assumed pressure functions with unknown coefficients., By match-
ing flow tangency boundary conditions at the control points, the
unknown coefficients are uniquely determined. The Mach number



and reduced frequency at the control point are used to calculate
the aerodynamic influence coefficients at that point. The
presence of a normal shock is simulated by a line doublet which
represents the load induced by shock movement. The appropriate
steady or unsteady normal shock boundary conditions, as derived
in this report, are satisfied across the shock along the surface
of the wing. 1In the application of the transonic method to

several cases, the solutions are shown to be significantly
superior to uniform flow theory solutions with a relatively
small increase in computer costs.

SYMBOLS
a free stream speed of sound, meters/second
a conical coordinate
AR aspect ratio
bREF reference length, meters =- usually % wing chord
for 2-dimensional flow or ¥ MAC for finite wings
in 3-dimensional flow
b(%) wing semi-chord at span station 7%,
non~dimensionalized. by brer
Cp = Eézﬂ— pressure coefficient
[~ 2]
h(X,7) mode amplitude at point X,y
non-dimensionalized by bgrgr
1= (-1)%
wbREF
k 5 reduced frequency
m = A
M=2U Mach number




APq(é,m)

p U2
2

mean aerodynamic chord, meters

supersonic pressure weighting function
in the plane of the qth surface, non-dimensional

pressure, Newtons /meter?

lifting pressure amplitude in the_plane
of the qth surface, Newtons/meter

dynamic pressure, Newtons /meter?

Py
[(y—n )2 + (z-¢ )2] * non-dimensionalized by brEF

v BZI

1-M2

wing semi-span, non-dimensionalized by bRrgr
free stream velocity, meters/second

velocity components in the x,y,z directions,
respectively, meters/second

amplitude of the oscillatory downwash
normal to the pth surface, meters/second

wp (X, %) /U
cartesian coordinate location of the downwash

point in the kermel function (x is in the
direction of U), non-dimensionalized by bRrgr

coordinates in the plane of the pth surface:
with Z perpendicular (see fig. 3.)

distance from an influence point to the downwash
point, (x-¢), (y=-7), (2-{), non-dimensional

lifting pressure coefficient

angle of attack, degrees



Args At
&, m,¢

E 7, T
En( M)

&, n, L =
ﬁa: ﬁb

&

W

Subscripts:
L
LE

MC

TE

Xy

leading and trailing edge sweep angles, degrees

location of an influence (or integration) point
in the kernmel function, non-dimensionalized by bgrgrp

coordinates in the plane of the qth surface
with { perpendicular (see fig. 3.)

location of the mid-chord at span station 7,
non-dimensionalized by bggp

limits of the spanwise integration as determined
by geometry and the Mach hyperbola

chordwise variable of integration, non-dimensional

rotational frequency, radians/second

local value

leading edge

Mach cone (or hyperbola) boundary
downwash surface

integration surface

trailing edge

local value at point x,y

free stream conditions



TRANSONIC FLUTTER AND DYNAMIC RESPONSE ANALYSIS

Before proceeding with describing the transonic method,
it is appropriate that a brief discussion be given concerning
the problems associated with transonic flutter and dynamic
response analysis,

In conventional dynamic analysis, the points to be considered
are defined over a Mach number-altitude envelope. Since the
analysis methods use linear theory aerodynamics, there is no
coupling between the unsteady and steady flow fields, and altitude
is accounted for only through the variation of air density. 1In
transonic flow this is no longer true,

The prediction of unsteady pressure distributions induced by
a surface oscillating in a mixed transonic flow is complicated by
the strong coupling between the steady and unsteady flow fields.
The steady flow fields are in turn drastically modified by Mach
number, altitude, thickness, camber, twist, angle of attack,
planform geometry, interference, and static aeroelastic and
boundary layer effects. For a given Mach-altitude point and a
fixed configuration, however, the only additional variable is the
angle of attack, «. Thus, transonic flutter and dynamic response
analysis must be performed over a three-dimensional envelope as
specified by Mach-altitude-a conditions.

Transonic analysis is further complicated by the need to
compute unsteady pressures on the entire configuration, that is
both upper and lower surfaces, in most cases. Through changes in
the static aeroelastic deformation and boundary layer, altitude
effects in the shock structure and flow fields are as significant
as those due to Mach number and «. Thus, a new mean flow field
is needed for each Mach-altitude-a condition.

The use of finite difference or other iterative schemes such
as those given in references 2, 3, 4 or 5 would pose an obvious
solution to this problem. Assuming that an unsteady verision
could be developed for finite wings, it might be assumed that
about 30 to 60 minutes on an IBM 360/65 would be required for a
single aerodynamic solution (ref. 4). A single solution would,
however, refer to one Mach-altitude- a -frequency-mode condition.
Thus for a single 10 frequency, 4 mode flutter solution for a
simple cantilever wing, 20 to 40 hours of computer time would be



required., Expanding this to two Mach numbers, two altitudes, and
two a's, the total cost would be 160 to 320 hours of computer
time. This cost is on the order of magnitude of a flutter model
test program and the same cost would be encountered for redesign
evaluations. Since one of the primary objectives for using theo-
retical flutter methods is to reduce costs by minimizing the
requirement of flutter model tests, then the use of the finite
difference approach would defeat its intended purpose,

Although linear theory methods cannot solve the highly non-
linear mean flow problem, they can solve the small perturbation
problem about the mean flow., Thus, a more realistic and yet
economical approach would be to use the elaborate schemes to
predict the mean flow fields and linear ''transonic'" theory to
perform the flutter analysis at each Mach-altitude- @ point.

The cost of using linear theory methods is primarily a function
of the number of frequencies and is practically independent of

the number of modes. Also, once the aerodynamic matrices are
calculated, they may be used repeatedly to evaluate design changes
at very little cost.

Returning to the cantilevered wing, for a linear theory
solution of about 1 minute per frequency, the cost for flutter
analysis would be 10 minutes per Mach-altitude-a point, For the
total, 4 to 8 hours would be required for the steady mean flow
calculations and 1.33 hours for flutter analyses. Comparing 5.33
to 9.33 hours against 160 to 320 hours, it is clear that the
hybrid approach would be economically very attractive. The re-
sults in this report will also demonstrate that the use of linear
theory would not degrade the accuracy.

THE TRANSONIC KERNEL FUNCTION METHOD

The fundamental problem to be treated in this report is the
development of a technique to solve the integral equation that
relates the normal velocity imposed by boundary conditions with
the load distribution on an arbitrary array of planar lifting
surfaces in a subsonic, supersonic or mixed transonic flow.

The equation may be written as

;ﬂ-p(x,y,z) = 1
U 4rpU2

Q
z Joq Apq (6,7, £ K(x=t,y-m,2-L K, 10ds (1)




for Q total surfaces. The downwash Wp(x,y,z) is the velocity
normal to the pth lifting surface at control point (x,y,z).

The function APq( £ ,m, { ) is the normal lift distribution on

the qth 1ifting surface at load (or integration) point (¢, 7, ).
The kernel function K( ) is the influence function which is
actually the velocity field due to an elemental normal load at
point (€ ,7M, () on the qth surface. The unknown quantity is
Ap(€¢,m,L) and Wp(x,y,z) is prescribed by the boundary condi-
tions on the lifting surface due to surface slope and motion.

The method used to solve equation (1) in this report is based
on a collocation technique., The unknown pressure function is
assumed to be composed of a series of polynomials weighted by a
user selected weighting function that is characteristic of each
lifting surface. The non-planar kernel function is used for which
the Mach number and reduced frequency are determined by those
values at the downwash control point, x,y,z. The necessary equa-
tions for evaluating equation (1) are given in the Appendix.

The algorithm for linking subsonic and supersonic linear
theory solutions together is based on the following two assump-
tions:

1. The appropriate Mach number for computing downwash
at a point is the Mach number of that point.

bREF
2, The reduced frequency, k., =€iU5§£, is modified

according to the local velocity such that w
is held constant. This is approximated as

u M
ki = k., =~ ~ k_ 2.
L "1 * ML

The first assumption is justified by the fact that, for any
given pressure distribution, the integrated kernel function-
pressure function product rapidly becomes independent of Mach
number as distance increases either upstream or downstream from
a loaded region. The second assumption is mandatory since the
physical frequency, w, must be held constant. The use of the
Mach number ratio rather than velocity ratio will result in a
small overestimate (typically about 3% to 4%) of the effect of
velocity change,



With the two basic assumptions, the computational algorithm
becomes a simple problem of testing the Mach number of the down-

wash point.

If the downwash point is supersonic, then the self-

induced downwash as well as all interference effects at that point
are computed with the supersonic kernel function regardless of the

interfering surface's Mach number,

Likewise, if the downwash

point is subsonic, the subsonic kernel function at that Mach

number is used.

The value of k in the kernmel function is also

determined by the local Mach number since the downwash surface
sees the same value of w regardless of what surface the distur-

bance is emitted from.

The correct form of the downwash-pressure function integral
equation which embodies the above assumptions can be derived from
the nonlinear partial differential equation that governs the flow

potential, The equation in vector form is
2% -
1 a¢ 2 - aﬁ_ =2~ 1 - - A
-, —_— + — . -V¢-— . [ .v ]
22 atz 22 q ot 2 4 (@-v)3
where
al = ao2 - ZEL q2 . a, = stagnation speed of sound
i=v9o
~_-= O - 0 ~ 0
= = —_— 2 —_— et 3 —
VT iy ox Jy 87  Jz 6%
Let
and $1
U
= X _ Yxy _
My = El T & Mxy
xy Defined at the
= @ - w - downwash point
ky ZFliEF = @DREF - Ky
X Xy -

where Uxy

is the mean flow field velocity parallel to the lifting
surface at the downwash point location, (x,y).

The first of the

two basic assumptions imples that the derivatives of the mean
flow field velocity components are small relative to velocity

component ¢lx’ i.e.

10




(d)lXX’ d’lxy; d)]_xz) ~ (d)]_yx: d)]_yy: d)lyz)

(2)
(e b1, 81,0 ~ < 41

Employing equation (2), it is possible to reduce the nonlinear
equation to the following first order nondimensional form for ¢

2
V2¢ - M12 (bxx + klz M]_zd) - 2ikiMy d>x =0
where
é
b=
¢1x bReF
V= bREF%'
by = P
x = T
(blx

It should be noted that all equations have been defined at the
downwash point.

Next, the acceleration potential equations are developed
also at the downwash point with one exception. The acceleration
potential for harmonic motion is defined as

Y= iwp+ ¢1x¢x

It is desired to non-dimensionalize ¥ with a flow field variable
at the integration point since it is directly related to the
pressure difference. Hence,

¥ ¢1x> .
lIJ = = lk ¢ + ¢
%_2 <¢y: (ta x)

where ¢7, is the mean flow velocity component at the integration
point. %he governing differential equation for ¥ can thus be
written as

11



Vi - Mgy + k2 MTY - 21kgM %0, = O (4)

for which the well known solution is

A i_l_ M 1
where
B]Z_=1 -Mlz

12 _
Rl—

| 5
(x-&) + B2 | (v-m? + (2-0)?] l
The strength factor A is determined from the relationship
~  Ap Ap +4aCp
=2 = = - £
v Pg v 2PE¢1E 2

Since flow can be assumed as nearly two dimensional in the
vicinity of the downwash point, the relation

$1 .
gio = ?}ﬁ = Y= 24 A Cp,,
& 91 1¢

is approximately valid where q, and q, are the dynamic pressures
at infinity and the integration point, and ACp, is the integration
point 1lift amplitude divided by q,. As a result, the solution to
equation (3) is

. x-£
1 %le e-lkl(x-f)j’ ﬁlf_

%= 3 F1x J. Fie ACP (€,m,¢)

where ACp_(£,7,{) is the lifting coefficient at the integration
point. Defining the downwash as

12




The downwash-pressure integral equation becomes

-i%z (g‘?-+1klz =—ff—§-AC (¢;,m,¢)

K (X-f, y-=mn, Z-C, k1:~M1) dfdﬂ
where the kernel function is defined as

K (X-f, y-m, z-{, ki, Ml)

-iky (x-£) .2 X7
= e 0 l -lkl)\
o2 & FXF |1 -z[Ml" ‘R1|‘ ax

The only difference between the above formulation of the kernel
function and the classical form is that the kj and M; vary with
downwash point location. They are constant over the region of
integration, however, for any given downwash point. These
definitions are consistent with the two basic assumptions.

The presence of the term (¢1 /¢1x) in the integral in
equation (5) violates the first assumptlon that the downwash
point Mach number dominates the influence functions. Likewise
as the integration points approached the downwash point, this
term would approach unity, therefore its influence could be
negligible. For the purposes of the study summarized in this
report, it has been set equal to unity. The effect could be
significant, however, for integration points in a supersonic
region nearly upstream of a subsonic downwash point. The use
of ($1¢£/41x) # 1.0 should be investigated in future studies to
determfne its importance. Also, rather than use (¢14/¢31.) in
equation (5),
b1 x/ 61 = Myey /M

is used which will introduce a small error as previously discussed.

13



As a result of the above discussion, the integral equation
that is actually solved by the transonic algorithm is

_(8 My o 1

(£+ ikyy 2) 2L g?.j:facpw(e,n) :
K(x=¢, y=-n, 2-{, kyxy, Myxy)dédn

(6)

where ACp_( ¢, 7 ) 1is the pressure difference at (¢ ,7 ) divided
by q . Since the algorithm permits Mxy and kyy to be used in
computing the kernel function, thereby permitting the kernel
function to change at each downwash point, it is possible to
account for leading edge regions where the flow is continuously
accelerated from subsonic to supersonic.

Shown in figure 1 is a flow diagram of the current transonic
flow algorithm for unsteady flow. The same logic is applicable
to steady flow. The key ingredient is. the common set of surface
types and pressure function types for both subsonic and supersonic
flow as shown in figure 2. The integration schemes are also
compatible with two exceptions., The difference in the chordwise
integration is that in supersonic flow, the limits are from Mach
cone to leading edge whereas in subsonic flow they are from trail-
ing edge to leading edge. 1In the spanwise integration, both
techniques are identical.

The pressure functions are given as a set of chordwise and
spanwise varying polynomials with a weighting function which is
constructed according to the pressure. type shown in figure 2,
The form is

4pU2

4pq(§,n) = EETE) Soq

h(£)4(1)[8oq (MEo ()

ECROETORESN
(7)

where all items are defined in the "Symbols'" section except for
gmq(1), fa(£), h(§) and /(). The coordinates, ¢, 7, are

14




1s=0

IS=IS+1 I

v (Mo
k-k.,(MIC)
Mic<1l.0 ” Mlczl.o
¥ N ¥
COMPUTE SUBSONIC COMPUTE SUPERSONIC
UNSTEADY AERO UNSTEADY AERO
MATRIX BAND FOR MATRIX BAND FOR
DOWNWASH POINT "IC" DOWNWASH POINT "IC"
ON SURFACE "IS" FOR ON SURFACE "IS" FOR
ALL SURFACES ALL SURFACES
ICP(IS)=NUMBER OF IC < ICP(IS)
‘ DOWNWASH POINTS IC
(1} 1)
ON SURFACE "IS Tem1C(1S)
NSURF=TOTAL NUMBER Is IS < NSURF
OF SURFACES
IS=NSURF

. COMPUTE UNSTEADY AIRLOADS,
PRESSURE DISTRIBUTIONS OR
GENERALIZED FORCES

Figure 1. - Flow Diagram For Computing Unsteady Aerodynamics
in Mixed Transonic Flow
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TYPE 1 TYPE 2 TYPE 3

o

SURFACE TYPES

LD h(§)
1 -
| 1 1 -1 1 1+
m
- l - —
: 2 2
' | 1 : L——~§\\\\\ -¢
- l - —_
' 3 J1 -1 3 __l_.
] I L~_ . 1+ ¢
4 y1+1 4 N
= I
|
SPANWISE LOADINGS ’ CHORDWISE LOADINGS

Figure 2, - Surface and Loading Types for the General
Aerodynamic Lifting Surface Element
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defined in the transformed plane of the surfaces shown in figure 3.
The chordwise functions, h({), are defined as

h(4) -/}_—EE , Type 1 )

h(§) = /1 -4 , Type 2

o1 > (8)
h(§) T oy » Type 3

h(§) = 1 , Type & J

in relation to figure 2, The spanwise functions, £(7), are
defined as

L = J1 -1 , Type 1, surface 1 only
m =1 , Type 2, surfaces 1, 2, 3
r (9)
L(m) = /1 -1 , Type 3, surfaces 2, 3
= b 4, f 2, 3
£(n) ‘11 +1 Type surfaces ]
The chordwise functions, fh( £ ), are simply
fO(é) = Uo(é) = ]
£108) = Up(§) + U (8) =26+ 1
(10)

£a(8) = Un(8) + U__, (&)

There are Eﬁ total chordwise functions corresponding to m total
downwash points in the chordwise direction for the qth surface.

17
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The spanwise functions, gmq( 1), contain the unknown coefficients
in the form

8mq(1) = [amquo(ﬂ) + am1qU1(Q) + ...] (11)
where Un( 7 ) are the Tschebychev polynomials of the second kind,
UO(H) =1
=21

U1 (1)

Up (D) = Up_1 (1) = 27U, _9(n)

There are Hq total spanwise functions corresponding to nq total
downwash chords.

These pressure functions are used regardless of Mach number
for subsonic or transonic solutions. For supersonic flow, these
functions may be used or the supersonic weighting function may be
used instead.

If the supersonic weighting function is used, the form is

8pq(£:1) = 4pU?R(E, 1) [g0q(m) £5 (£)

+81g(0) £ (§) + ... ] 12

where P( £,% ) is the weighting function, The gnq(7) and £h( §)
are identical to those given for the regular function in -
equation (7).

The supersonic weighting function is based on conical flow
theory solutions to the lift distributions on flat swept wings
(ref. 8 ). Some liberty has been taken to simplify the expres-
sions and yet maintain the basic characteristics. The function
has been developed only for simple trapezoidal wings in this
program, The following derivations provide the equations
necessary for wings with or without clipped tips and with sub-
sonic or supersonic leading and trailing edges. No secondary
reflections of the Mach lines are accounted for since they tend
to be of second order effect and can be adequately accounted for
in the collocation solution,
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The basic equation for leading edge and root characteristics
is the delta wing distribution. For a subsonic leading edge,

- <
tan Ajg

we have

1

P(%,%) = T"Tzﬂ s (13)

where
B(7-¥1) N . ,
===, X1,¥1 = Location of leading
§-%1 edge vertex

o]

thus

_ (7T-¥1) tan A1E
%1

For a supersonic leading edge, m >1.0,

a
m

1 - 5(a)L(m)l-a

P(%,7) (14)

where u(a) =1, a<1

=0, a1
L(m) = 1 - sz-l [ 7.0
4m 1.754+1/m

7.0
The term<1,75 + %)which appears in the expression for L(m)
is the approximation used for the exact function

Ap = 41}101 =~ '7aq
ROOT ~RBE'(m) (1.75+1/m)

where E'(m) is thg complete elliptic integral of the second kind
of modulus (1-m2)%,
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A tip correction is included for clipped tips. For a sub-
sonic leading edge, m<1.0, the lift distribution behind the tip
Mach line is constant in the streamwise direction. The amplitude,
a function of span only, is given as

1 (l+a') (m+a') %
PCET =glil@y? |1 -] =T (15)
m

where

B

== = o = value of "a'" along the tip
Xprp” Fprp~ )8 Mach line at span station

m]

For a supersonic leading edge, m >1.0, the lift distribution
behind the tip Mach line is given as

o ~ -1 =
P(E,7T) = P(E,W I:L in a"]
(§,7) (&, )DELTA ~ S (16)
where
P(&,7) = Delta wing distribution given

DELTA by equation (14).
e yTIP-ﬁ nzn :
a’ =p === = value of "a" relative

Xprp~§ to forward wing tip.

The functions given above in equations (15) and (16) are exact
shapes as required by conical flow theory.

A final correction to the delta wing distribution is the
subsonic trailing edge term. This term is approximated as a

multiplicative function applied to the delta plus tip term.
The function is

Ry = _2- . =1 =W
P(£,M) P(E;ﬁ)DELTA+TIP [;T sin" "/ @ ] (17)
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for 0.0<a™ < 1.0 where

_ F-%rg
a AR — ~ -
Ry AD Fpgy
Xrg = ‘n(tan Apg) + Xy = X position of trailing edge

Xrgy = X position of the trailing edge vertex

thus
-~ AL m'
2 ﬁ' (f"xTEv) E
7(l-m")
m' = -———é——— <1
tan ATE

The form of this approximation is not exactly correct, however,
it seems to be close enough for practical purposes as experience
has shown.

Three examples are shown in figures 4, 5 and 6 for the
supersonic weighting function. The magnitude of the weighting
function is adjusted uniformly in each case so that the shapes
can be compared with other theories or experiment. The first
example in figure 4 is for a rectangular wing, AR=2,0, in steady
flow at M=1,2 and « =1,0 rad. The solid line is the weighting
function evaluated at the span stations 2=0,1, 0.5 and 0.9 with
the equations given in this section. The Mach lines are shown
for clarity. The symbols are values computed by the AFFDL Mach
box program for wing-tail configurations (ref. 9). The second
example in figure 5 is a swept tapered wing of the standard AGARD
wing-tail configuration (the true planform is shown). The con-
ditions are steady flow, M=l.2 and a=1.0 rad. The solid line
is again the weighting function. The symbols are results from
the Woodward finite element method (ref,10). The disagreement at
the Mach line discontinuities is due to the inability of the
finite element representation to conform to such characteristics
with a reasonable number of elements. The third example shown in
figure 6 is a trapezoidal wing with a supersonic leading edge.

In this case, the leading edge vertex Mach cone intersects the
tip cone. Comparison with the Woodward method and experiment
clearly illustrates the validity of the function.
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o WOODWARD METHOD (REF. 10)
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aC °
p S
7n=0.9
3 n
2 n- 0.5
1 TRUE PLANFORM
0 n-0.05 (AGARD WING)

Figure 5. - Supersonic Weighting Function
for a-Trapezoidal Wing with
Subsonic Leading and Trailing Edges
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M, = 2.01 o EXPERIMENT (REF, 11)
a = 6,0° SUPERSONIC WEIGHTING
AR = 1.34 FUNCTION

---- WOODWARD (REF. 10)

Figure 6., - Supersonic Weighting Function for
a Trapezoidal Wing with
Supersonic Leading and Trailing Edges
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METHODOLOGY FOR INCLUSION OF IMBEDDED SHOCKS

This section summarizes how the presence of normal shocks in
the flow is accounted for in the linearized model. The mean flow
field may be non-linear but the perturbations must be small enough
such that their non-linearities are second order effects.

Normal Shock Boundary Conditions
and the Shock Model

In the calculation of unsteady aerodynamic pressures induced
by surface motion in mixed transonic flows, the influence of
imbedded shocks must be accounted for by satisfying the proper
boundary conditions across the shocks on the flow perturbation
potential. The boundary conditions are the Rankine-Hugoniot
relation and the equality of total potential in front of and
behind the shock. The constraint is that the shock movement
necessary to satisfy Rankine-Hugoniot is equal to that necessary
to maintain equality of potential. Thé resulting boundary con-
dition in steady flow as derived in Appendix D is

+ + - -
¢ = Kb =-ug -K¢ (18)
where
+ -
+
K = ¢ixx ¢lxx
= = -
¢ix ¢&x
_r-1 2
=3 T o
¢ = Perturbation potential
¢; = Mean flow potential with shock
0
¢, = (—9% , etc,
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The superscripts, + and -, refer to conditions just downstream
or upstream of the shock, respectively, as shown in figure 7.
Since the right hand side of equation (18) is determined only by
upstream perturbations and mean flow conditions, the equation
serves simply as an additional constraint on the downstream
perturbations.

Considering equation (18) for a case of downstream excitation
only, such as a control surface deflection, it can be shown that
the existing lifting surface representation must be changed. For
such a case, ¢~ =¢x = 0, and since the downstream region is sub-
sonic, ¢+ = 0. Thus, in order to satisfy equation (18), ¢x must
be zero; however, this is not the case as shown by experiment.

In order for ¢x" # 0, then ¢+ # 0, thus another potential must be
added to the multiple surface model for mixed transonic flow with
shocks.,

The finite potential ¢+ can be achieved by placing a lifting
line (or line doublet) between the upstream and downstream sur-
faces along the shock location. In reality, this lifting line
represents the lift due to shock movement which is otherwise not
accounted for in the multiple surface model. Without the "shock
doublet'", the solution yields a peak in pressures at the leading
edge of the subsonic surface by satisfying the flow tangency
conditions, This peak, however, violates the shock boundary
conditions since ¢t = 0, or else it requires that K = 0 in
equation (18). If ¢t = 0, the shock movement, A, (shown in
Appendix D, equation (Dll)) becomes

¢t ¢
+ -
¢1x' ¢1x

since ¢ = 0. Thus, for the case of downstream excitation,
the shock does not move which is contrary to experimental
observations., Also, for K=0, it is implied that

+ -

¢1xx + ”Q.Slxx =0

}\=- =0

which is inadmissible since the shock movement would be infinite
as given by

+ - + -

A= = ¢x+ﬂ¢x = - ¢X+IJ¢X = o0
e 0
¢1xx+ﬂ¢1xx
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Figure 7. - Mean and Perturbation Flow Potentials
About an Idealized Normal Shock
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(shown in Appendix D, equation (D13)). The final conclusion is
that if the constraint

Ké = 0

is imposed, satisfaction of the shock boundary conditions becomes
an indeterminant problem. Thus, for the case of mixed flow with
imbedded shocks, these boundary conditions must be satisfied in
order to properly represent the flow fields. They can be satis-
fied only by inclusion of the shock doublet.

The normal shock boundary conditions for oscillatory flow
perturbations are similar to those given in equation (18) for
steady flow. They are also derived in Appendix D and are
expressed as

+ * 4+ - * - . -
¢ - K ¢ = -yéx -K ¢ - ivd (19)
where
_ 2k (7-1
T+l
¢ - 2
K¥ =K + iv | 1x 7-1
+ -
¢lx ¢ix

It can be seen that as k or v goes to zero, the oscillatory
condition reduces to the steady flow condition. This property
is not present in Landahl's boundary condition (equation 10.11,
ref. 12); however, for

+ - - 2
+ ~ —
¢1xx ¢1xx ¢lx<< y-1
and
k~1.0

the above reduces to Landahl's equation. These conditions are
rather restrictive and are not suitable for cases which involve

flutter or dynamic response analysis.
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The shock doublet is used in the unsteady case in the same
manner as is used in the steady case. The same rationale for its
inclusion is applicable to unsteady flow.

The form of the shock doublet strength is similar to that of
a lifting line. In order to be compatible with the pressure
functions, it is expressed as

2

4pU
+ b1 Uy (n + ] (20)

where /(1) is the spanwise weighting function given in
equation (9). The unknown coefficients, bp, are real for
steady flow and complex for unsteady flow.

Solution Process with Imbedded Shocks

For the solution to be rigorous, the upper and lower surface
solutions for mixed transonic flow should be coupled together
along the edge boundaries of the wing. Such an undertaking was
felt to be too ambitious for the current study, hence, the assump-
tion of decoupled upper and lower surface solutions was retained.
This assumption was justified through examination of experimental
data which indicated that the trailing edge pressure coefficient
does approach zero for small perturbations and it is not too large
for large perturbations. Thus, the trailing edge and tip pressure
coefficients were set to zero as is usually done in lifting sur-
face methods. The leading edge was left alone which resulted in
some problems in the prediction of large perturbations in steady
flow. The adequacy of the decoupled assumption will be discussed
further in the next section on application of the method.

The potentials, ¢+ and ¢~ in equations (18) or (19), are
calculated as shown in Appendix E for both the lifting surface
distributions and the shock doublets. Since the change across
the shock of potential due to interfering surfaces is small,
its effect is neglected. Hence, ¢* and ¢~ are calculated only
from the two surfaces adjacent (upstream and downstream) to the
shock. The potential derivatives are calculated with the pressure
coefficient. As shown in Appendix E, the boundary conditions are
satisfied in steady flow according to the expression
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+ -
Cp(%s,¥) = 3 Gp(y,y) + #Cp(xs,y) = O

and in unsteady flow with
+ o - : -
Cp(xs,y) - I;— Gp(y,y) + uCp(xs,y) + 321 G (y,y) =0

The Cg (xs,y) and Cﬁ(xs,y) are the pressure coefficient values
just aft of and forward of the shock. The G (x,y) and Gp(y,y)
are the chordwise integrals of the supersonic and shock doublet
products with the kernel function along the downwash chord at
span station, y. These are the same integrals given in
Appendix B.

The downwash induced by the shock doublets is calculated in
the same manner as is done for surface 1ift distributions. The
equations given in Appendices B and C are directly applicable
where the chordwise integration is simplified to a one-point
evaluation along the shock doublet. The spanwise integrals are
identical.

The physical problem for a wing in mixed transonic flow is
represented with a "transonic pair" of lifting surfaces as shown
in figure 8. The upstream surface may have all supersonic flow
or a subsonic leading edge with accelerating flow to supersonic
at the trailing edge just forward of the shock. The downstream
surface must have a leading edge Mach number of less than 1.0
as well as the remainder of the surface, The shock doublet is
located between the upstream and downstream surfaces. The
potential ¢t is calculated only from the shock doublet since the
potential at the leading edge of the subsonic surface is always
zero for linear theory.

The aerodynamic matrix construction for a "transonic pair"
is shown in figure 9. The downwash submatrices Ajj, A12, A2
and A22 are calculated in the manner discussed in Appendices B
and C. The matrix A1p is the downwash induced on the supersonic
surface by the shock doublet and is all zeros as is the matrix
Al12. The A2p matrix is finite and is the downwash induced on the
subsonic surface by the shock doublet, This matrix is calculated
as discussed above. The Bg] and Bg2? matrices are the contribu-
tions due to the supersonic and subsonic surfaces, respectively,
to the shock boundary conditions. The Bgp matrix is the -K¢t
term in the boundary conditions due to the shock doublet. The ai
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and a2 vectors are the usual pressure series coefficients for
both surfaces which are unknown. The bp vector is the shock
doublet strength series coefficients. The W1 and W2 vectors

are the known downwash boundary conditions on the two surfaces,
The matrix equation as shown in the figure is solved to obtain
the full vector of unknown coefficients, aj}, a2 and bp., 1If
surfaces 1 and 2 are not a transonic pair, then the shock doublet
and boundary conditions are removed which leaves the usual inter-
ference matrix form

A1 Aol |3 Wy

Ax1 Ao |3 Wy

The effect of using the two different solutions on the same
problem will be discussed in the next section on application
of the method.

APPLICATION TO TRANSONIC PROBLEMS

The computer program was applied to a variety of problems
involving mixed transonic flow over stationary and oscillating
lifting surfaces. The steady flow application demonstrated the
capability of the method for predicting incremental changes to
the steady mean flow lift distribution. The unsteady flow
applications included rectangular and swept trapezoidal planforms
oscillating in both elastic and rigid body motions. The frequency
variation ranged from near steady flow to moderately unsteady flow.
Comparisons were made between theory and experiment for uniform
flow, transonic flow without shocks and transonic flow with shocks.
In addition, a case was considered in which theoretical wall
interference effects were accounted for which led to an improve-
ment in agreement with experiment. Where shocks were used in the
solution, shock movement was shown as 2% of the local chord in
order to illustrate the resulting 1lift increment.
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Rectangular Wing in Steady Flow

The transonic method was applied to a case for an aspect
ratio 3.0 rectangular wing in steady flow at M, =1.0 (ref. 13).
The lift change was predicted for an increment in angle of attack,
Aa=a2 - a] where a2 = 5% and aj = 0°, Predictions were com-
pared with the sum of the change in 1ift on the upper and lower
surfaces obtained from experiment as

U
ACpAa = Acpda - ACpAa
where
U _ U U
ACPA - Cpaz Cpal
Aa =0, - o
. 2 1
ack =¢l _ L
Pa paz pal

Such a definition of incremental 1lift eliminated error due to non
zero lift at «a=0 and was consistent with a piecewise linear
representation of transonic flow problems.

Comparison of prediction and experiment is shown in figure 10.
The first solution shown (solid line) is obtained by using the
average of the predicted pressure changes due to Aa=5° for the
local Mach number distributions, My, at both «a=0° and a=5°,
For «a=0°, the incremental pressures were the same on the upper
and lower surfaces since My, was about the same on each (symmetric
biconvex airfoil). At «=5°, separate solutions were run on the
upper and lower surfaces. The need for three solutions stemmed
from the large variation in Mp, at o=0° and at «a=5°. At a=0°,
M, varied at midspan from about 0.85 at the leading edge to 1.38
at the trailing edge, At «a=5°, the variation was from about 1.28
to 1.39 on the upper surface and from about 0.68 to 1.30 on the
lower surface. In all cases, the control points used were 4 chord-
wise and 6 spanwise. The problem run time was about 12 seconds
of CPU time on the CDC 6600 or a total cost of 36 seconds.
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Figure 10, - Results for an AR 3.0 Rectangular
Wing in Steady Flow at M, = 1.0
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A second solution is shown (dashed line) obtained with the
same computer program for a uniform M;=0.98 distribution. Com-
parison of the two solutions with experiment clearly demonstrates
the superiority of the transonic solution.

Shown in figure 11 is a comparison of prediction and experi-
ment for the same configuration as considered in figure 10 but for
M, =0.9. 1In this case a shock existed at about 70% chord on the
upper and lower surfaces at «a=0°., Again, three solutions were
run for the transonic case in the same manner described previously.
The control points used were 4 chordwise and 6 spanwise in the
supersonic regionand 3 chordwise and 6 spanwise in the subsonic
region. The total number of unknowns was 42 surface pressure
function coefficients and 6 shock doublet function coefficients.
The CPU was 20 seconds on the CDC 6600 or a total of 60 seconds
for the three solutions.

Again, the transonic solution is clearly superior to the
uniform flow solution. Not only that, but the results agree
remarkably well with experiment.

Rectangular Wing Oscillating in Bending

The aspect ratio 3 rectangular wing was treated in the same
manner as in reference 6 with only a change in the aerodynamic
method. The Mach number distribution and control point arrays
are shown in figure 12 along with the results for the (ref, 13)
case of «a=0°, Mz0.9, and k., =0.13 (based on semi-chord). The
solutions shown are for the transonic method with and without a
shock and a uniform flow solution. The Mach number distribution
as shown was assumed to be constant in the spanwise direction.

In this case, the presence of the shock oscillation is clearly
evident in the real part of the solution. Comparison with the
transonic solution in reference 6 shows a significant improvement
in the real part forward of the shock and in the imaginary part
aft of the shock. The use of shock boundary conditions and down-
wash point Mach number in the kernel function resulted in correct-
ing the discrepancies noted in reference 6.
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Figure 11. - Results for an AR 3.0 Rectangular
‘Wing in Steady Flow at M, = 0.90
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Swept Trapezoidal Wing With Roll Excitation

This case consisted of a swept trapezoidal wing oscillating
in a roll mode at 100 Hz in an experimental study conducted by
Becker (ref. 14). The actual mode included some bending and
twisting motion which was somewhat difficult to determine from
the data available in reference 14. This problem was discussed
in reference 6 due to the fact that the mode shape used would not
produce a uniform flow solution that would agree with a solution
given by Becker. As a result, a study was made to determine the
mode that would produce a solution that would show satisfactory
agreement with Becker's data at M, =0.8. These results are shown
in figure 13 with a tabulation of the mode used. The slopes were
all assumed constant in the chordwise direction which probably has
some influence on the results to be given.

The first transonic case for M, =0.937 and k., =0.61 (based on
semi-span) was solved with the downwash point array and shock
geometry shown in figure 14, The results are shown in figure 15
where the solid line is the transonic solution with a shock and a
dashed line is the uniform flow solution. The solution given in
reference 6 agreed better with experiment aft of the shock for
both real and imaginary parts; however, those results were ob-
tained with the questionable mode shape as was illustrated by a
gross overprediction of the imaginary part forward of the shock.
As was discussed in reference 6, the experimental data were felt
to be strongly affected by wind tunnel wall interference. These
effects would be stronger aft of the shock and weaker forward of
the shock. Thus, the improved agreement forward of the shock
indicates that the mode shown in figure 13 is more correct. If
the Mach number increases so as to move the shock further aft and
increase its strength, the interference effects should decrease.

The next case for M, =0.997 and k., =0.58 was solved with the
downwash point array and shock geometry shown in figure 14, The
results in figure 16 show a significant improvement over those of
reference 6 which supports the suspicion that wall interference
effects are present in the data. These results also exhibit a
reasonable progression for the change in Mach number from 0.8
to 0.937 to 0.997.
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Figure 13, - Uniform Flow Solution and Mode Shape for a
Trapezoidal Wing Oscillating in M, =0.8 Flow
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Swept Trapezoidal Wing With an Oscillating Aileron

A low aspect ratio swept trapezoidal wing with an oscillating
inboard aileron in mixed flow was considered as the next case in
reference 6. The conditions were M, =0.942 and k., =0.591 (based
on semi-span) and the experimental data was obtained by Bergh,
Tijdeman, and Zwaan (refs. 14 and 15). The configuration and
control point arrays are shown in figure 17. In this case, it
was felt that wall interference effects would not be so signifi-
cant,

The solutions shown in figure 18 include those obtained from
the transonic method with and without shocks and uniform flow
theory. The uniform flow solution agrees quite well with experi-
ment for points on the aileron. Over the remainder of the wing,
however, both transonic solutions are far superior. The most
notable point is the large negative value in the imaginary part
of the measured data at 7=0.55 which is predicted by the theory.
Comparison with the results of reference 6 shows that the improved
method is more realistic at all span stations. Inclusion of the
shock boundary conditions has the greatest effect outboard of the
aileron.

Wall Interference Effects in Oscillatory Flow

The aspect ratio 3 rectangular wing of reference 13 for
M., =1.0 and k., =0.12 was chosen to determine if the transonic
theory could be used to predict wall interference effects.
These results are shown in figure 19 at mid-span. The first set
of solutions shows comparison with the AFFDL sonic box method
(ref. 1), the uniform flow kernel function solution at M, =0.98,
and experiment. With exception of the real part near the leading
edge, the solutions essentially agree. The next set shows how
the theory changes when non-uniform flow is accounted for.
(The Mach number varies from 0.80 at the leading edge to 1.39
at the trailing edge.) The last set shows the effect of includ-
ing the first reflection images above and below the wing for non-
uniform flow (assuming 1007 reflection).

The solution is most improved over the aft two-thirds when
non-uniform flow effects are included and over the forward third
when wall intereference effects are added. Since the forward
third corresponds roughly to the subsonic region, it is expected
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that in cases where shocks are present, the subsonic region
aft of the shock would be greatly influenced by interference.
This is felt to be the case for the experimental data given in
figure 15. It also appears that the transonic results in
figure 12 would be improved by including wall interference.

CONCLUSION

An improved kernel function method has been presented in
this report that is applicable to multiple lifting surface
problems in subsonic, transonic and supersonic flow. The method
yields solutions for steady and oscillatory perturbations about
linear or non-linear steady mean flows. Results have shown that
the use of the local Mach number to calculate the kernmel function
leads to significantly improved solutions. The oscillatory normal
shock boundary conditions as derived have shown the correct limit-
ing properties as the frequency approaches zero or infinity. For
cases with shocks imbedded in the flow, inclusion of the shock
boundary conditions also led to improved solutions. Inclusion of
an image to approximate wind tunnel wall interference was found
to improve the agreement with experiment for a case involving a
rectangular wing oscillating in M, =1.0 flow. The comparison of
transonic solutions with linear theory results and experiment
indicated that the effect of using transonic aerodynamics in
flutter and dynamic response analyses could be significant.

General Dynamics Corporation
P. 0. Box 748
Fort Worth, Texas 76101, September 30, 1976
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APPENDIX A

THE NONPLANAR KERNEL FUNCTION

The nonplanar kernel function is expressed as

~ikxg KoTo
K(xosYQ’zo’k,M) = - %2—' [KlTl +—IT‘—J s RZZO (Ala)

, R%< 0

(Alb)

where (see figure 3 for definitions of 6p and fq)

Xog = x-§
Yo = ¥=7
z2y = 2={
r? = yo2 + zoz

R2 xo2 + ﬂzrz

32 - 1 - MZ

Ty = cos(8p-6q)

Ty = (zocosep-yosinop)(zocoseq-yosineq)
which is valid for either subsonic or supersonic flow,
The k and M values are those at the downwash point,
The distinction between subsonic and supersonic flow is

embodied in the K; and Ko terms,

For supersonic flow (or supersonic downwash points),
the K; term is defined.as

Kl = Kll + K12 (A2)

49



where

X -ikru
K11=—R()-+1)e 1-I11
Kjg=(g-De + 119

%
R = (xZ+ B%r?)
ul S - XO _ m
B2r
1.12 - _ Xo + MR
B%r
For 1.112 0,
e 11 g0
o s =1ikruy an £
111 ikre ; nc+ikr
or for u; <0,
epg, L .
-ikru
I;7 = ikre IZ anE]
n=1 nc-ikr
" 11
-ikru
+ 2 I:e * 1L _

and

112

11 .
-ik
= ikre Hert2 Z

n=1

én
2 2 :
1 + (kr) ] (nc)2+(kr)2]
n=

ank2

nc+ikr
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where
-Cju
El = e ' 1‘
= 0,372
-cu2
E2 = e

For the K2 term, the following expressions are used for

supersonic flow:
Ky = Ky1 + K3

where

R R

- X 2 [ g2x
=31y - I -[2<§.°.+1>+£5[B 0 4

(A4)
ik rM2 } e ikruy
(1+u§? (Aka)

K22 = =3I12 - Ipg - 2(xo -1) + r B2Xo - _ikrM? e-lkruz
R2 R (1+u22)1é (ALD)
For u; 20,
11 2n
. =ikruy bpEl
I21 = ikre ZnctHikr :
=l (A5a)
or for u;<0,
N 11 b E 2n
-ikrug
Ip; = ikre E 2nc - 1kr
. n=1
. 11 5
-1kruq 2 s}
+2 e -1+ (kr) J A5b
[ ~ (2nc)2+(kr)2 (45b)

51



and

-ik rup b E2
I = ikre
22 Z Inc+ikr

(A5c)

The ap and bp coefficients in the series summations in
equations (A3) and (A5) are given in table Al., The ap set
are those given originally by Laschka (ref. 17) for the
approximation

11
u =Nncu
eadys "1 Zl 2n e
n=

The b, set are those given by Cunningham (ref. 6) for the
approximation

u -2ncu
———————7 - 1= E by e

n=1

The expressions for Kj and K2 in subsonic flow (or at sub-
sonic downwash points) are similar to but simpler than those for
supersonic flow. The terms are

K1 =Knp (A6)
and

Ko =K
21 (A7)

where K11 and K21 are defined for supersonic flow in
equations (A2a) and (A4a), respectively,
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TABLE Al. APPROXIMATION COEFFICIENTS USED IN THE
KERNEL FUNCTION INTEGRALS Kj AND Kj

an

0.24186198
-2.7968027
24.991079

-111.59196
271.43549

-305.75288
-41.183630
545.98537

-644,78155
328.72755

-64.279511
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bp

3.509407
-57.17120
624,7548

-3830,151
14538.51
-35718.32
57824.14
-61303.92
40969.58
-15660.04

2610.093



APPENDIX B

CALCULATION OF SELF INDUCED DOWNWASH

Evaluation of the integral given by equation (1) is performed
in two steps. First the chordwise integration is performed in a
manner which varies according to whether the Mach number is sub-
sonic or supersonic., The spanwise integration is then performed
independently of whether the flow is subsonic or supersonic.
This appendix summarizes the manner in which these integrations
are accomplished for equation (1) for q=p, the case of self
induced downwash, A special treatment is given to chordwise
integration in the vicinity of the downwash point,

Chordwise Integration

For steady supersonic flow, the integral equation may be
cast in the form

T e
W(xX,y) = -2 4T (4,m) Zo b(m)dédn
" ;; !1 D g so(g-1)2 (B1)
where _
a(x’y) = Hié}.ﬂ

R = x 2 + g2r2

émc = Mach cone boundary in the
transformed coordinate system

Since the kernel function is_singular along the Mach cone
boundary, £ = £pc, as (E )% for E~0, a new chordwise
variable of integration, §, will be defined as

- 1'§mc+2§
1+éme

and

2a¢
S v
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where
éme= Br, Mach cone boundary in the physical coordinate system.

Substltutlgg 0 for ¢ and multiplying and dividing the integrand
by (1- 9§ ) equation (Bl) becomes

77 1
— 1+
(%) = - Sz—o [ (i) f (1-6%) %[(1 2 (s, n)] =t
Na
b(m)dn (B2a)
§me< 1
_ 2 ’ 2me
o n (-1 1
Jb
_ X d
w(x,) =:§—og( [ - a- £%) %[(15) Acp(fn)} : l :
Ja -
b(n)dn
qp? 1 (B20)

It should be noted that regardless of whether the Mach cone is
forward ( émc<1l) or aft (£mc=21) of the trailing edge, the
chordwise weighting function, (1+ § )'!5 or (1- {2)"']5, is the
same. As a result, the same chordwise integration scheme can
be applied.

The Tschebychev-Gaussian quadrature integration formula,
which is applicable to the chordwise integral in equations (B2)
is

1 J
S a-7% ewrag =2 2 ety
-1 j=1
where
§j = - CcoSs 2-%—3_-]:77) , j=1,2,...J

and £(£) is expressible as a polynomial of (2J-1) degree or less.
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Now, the chordwise integrals in equations (B2) may be evaluated

in steady or unsteady flow as

J
G(y,m = 2(’7) (1+éme) I Zl (1-85%) ACp(§J,'7)

2
(Y'n) K(x'gj:Y'n,O,k’M)s -1< .§mc< 1

=0 > Sme<-1

where

= - 2j-1 .
é_] COS( 23 7T), J 192:'0“1

& = % | (1+4me) g5 + (¢me-1) |

5 = 450 + dm()
and as
J .
m
G(y,n) = 5= 72 (1-4;7) Acp<§3,n>

(=M %K (x-£5,5-7,0,k,M), &me>1

where

2i-1 :
2 = = —J—— =
§J COS( 2J =7T)’ J l,zgaooJ
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The value for J varies according to the downwash point location
as follows:

J=4+i, 1 = 1,2,...mq

where i is the chordwise downwash point number starting with
i=1l at the leading edge and 1-mq at the trailing edge. Thus,
as an example for mq=5, J varies as

J =441 =5 (leading edge downwash point)
J = 4+mq = 9 (trailing edge downwash point)

The same value of J is used in equations (B3) at all integration
chords with exception of those near the downwash point for any
given downwash point. When the Mach cone falls forward of the
leading edge, the value of G(y,7n) is set to zero as shown in
equation (B3a).

The chordwise integration for subsonic flow is similar to
that presented above. The integral is of the form

_ b(n)dédn
w(x,y) = f f ACP(§ ) [l+ ] So(y- ;7)2 (B4)

The most notable difference between equations (B1l) and (B4) is
the limits of integration. The chordwise integration formula
is also changed to

J
ff; £(8)d¢ = ; (1-£)£(4;) (5)

where

§j = - cos n) j=1,2,...J

2J+l

The 1ntegrat10n is performed by multiplying and dividing by
(1- §)2/(1+-£)% and using equation (B5). The result for steady
or unsteady flow is
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J

b(n) 2 —
G(y,7) = ~5g 2;11 :E; (l'ijz)%ACp(fjag) .
j=

(v-m K (x=¢5,5-1,0,k,M) (86)
The value of J is constant at
Jéﬁq

for all integration chords except those near the downwash point.

Spanwise Integration

In supersonic flow, the spanwise integral is of the form

Tp
Aa

where the limits of integration, 74 and 7y, are the locations
of the intersection of the Mach fore cone with ghe wing leading
edge. Except for a weighting function, (1- 32) , and the limits
Na and 7Mp, equation (B7) is identical to the equation for
subsonic flow developed in reference 7. Since equation (B7) is
more general, it is the form used in this report for subsonic

as well as supersonic flow.

(B7)

Let

G(¥,M) = G(y,y) + (-PC' (v, 1) + (126" (3,y)

+ .. (B8)
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Adding and subtracting equation (B8) from (B7) yields
Tp

I(y) = ~[

-a

ey, m - |6lg,y) + (196" (z,y)

dn
+ (Q-z)zG"(Zsz) + -~-] ] (y-m)2

Tp
2 dn
+ f | 6z.0) + (196" (1.y) + (=P E" (7)) + ... (7-m2
Na B
(B9)

where the first integral may be evaluated with numerical quadra-

ture integration techniques and the second integral evaluated
analytically.

The quadrature integration is performed with a formula
derived from the equations for function approximation with
Tschebychev polynomials of the first kind. The approximation
to a function g(1') over the interval (-1< 7'< 1) is

s'-1

C
g() = 5 + ;1 Ck Tk (7'")

(B10)
where
Sl
2 (B11)
SR R
S=
1 _ 25~ . =
Mg = = cos( SS}'") , s=1,2,...8'

Sl

total integration chords in the
range -1 <7 < 1
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1f g(7n') is expressible as a polynomial of degree (S'-1) or less
over the interval (-1 < 7'< 1), the approximation is exact. The
quadrature 1ntegrat10n formula is derived by integrating equa-
tion (B10) from %'= -1 to 7'= 41 and inserting equation (Bll).
The result is

1 s’
{ g(n)dn ' =23 Z; 8(7g) h (7g) (B12)
- S=
where
S'-1
b =2 20 meal T
k=0
and
Jo = 1.0

0, k=1,3,5,...
1

- -2
31<= f T(1')47 = oDy (k+D) » k=2,4,...

T
i

The only difference in the quadrature integration formula above
and that used in the subsonic spanwise integral of reference 6
is the definition of h(7y).

In order to achieve a more optimum distribution of spanwise
integration points, a coordinate transformation is made such that
the greatest density of integration points is next to the down-
wash chord. This step is particularly necessary for downwash
points near the leading edge in supersonic flow. The transforma-
tion is

Mg = yr + (ng+l), Mg<- yr
g = yr + (Ng=1), Mg>- yr
where
yr = cos(m‘") r=1,2,...n , n=1,3,5,... (B13)
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and

S =8S' = n(2n+l) type 1 wing in figure 2 (Bl4a)
S = 28' = 2n(7+1) type 2 wing in figure 2 (B14b)
S =S' =n(m+l) type 3 wing in figure 2 (Bl4c)

The yr defined in equation (B13) are the same as used in subsonic
flow™and are interdigitated with the ng points by the relationship
between n and S in equations (B14).

Returning to equation (B9), the integral is evaluated with
equation (B12) as

S
_n G(YysMg)
I(Zr) '§"‘ ; W (ns) + Q(Yr) (315)
where
Q(¥r) = G(yr,¥r) Eo(yy) + G'(¥Yr,¥yr) Ey (¥r)
+ G"(yrsyr) Eo(yr)
(B16)

The En(yr) terms are the differences between the quadrature and
analytic integral evaluations

S
1 1 - h(ng)d(7g)
= - - - (Bl7a)
Fo(¥r) [(Pa"Yr) (nb'Yr)] S EE; (ns'Yr)z
| ey | w h(7)d (2s) 17b
E1(zn) = & l Ta=yr |~ S Z (s-¥r) (BL70)
S
Ea(yr) = (Mb-713) - -S”— El h(ng)d(1g) (B17c)
e
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for
d(Ms) =1, 1a<1s<M
=0, 75< 1 or 7g>7p (B17d)

where in the Eo term the Mangler formula was used (ref. 18).
No terms higher than E2 (yr) have been found necessary, hence,
the series was truncated at that point.

The same equations are used in subsonic flow by simply
setting the limits at

1’3,:'1
Ilb=+l

which maintains continuity from subsonic flow to supersonic flow.

Shown in figure Bl are examples of the relationships between
yrs Mg»> Ma and Mp._Also shown are hypothetical distributions
of G(yr, % )/(yr-ng)? which are being integrated. The two
examples illustrate the differences between the treatment of
type 1, type 2 and type 3 planforms shown in figure B2. The
differences are embodied in the definition of the spanwise
functions and 7 :

n = 1So type 1 surface (B18a)
n= %? (1+7) type 2 and 3 surfaces (B18b)
n= - %? (1+7) type 2 surface (B18c)

For equation (Bl8a), there are S'total integration chords on the
wing and n = (S'/n-1)/2 downwash chords on the right hand wing.
For equations (Bl8b) and (B18c), there are 2S'and S' total inte-
gration chords for type 2 and 3 surfaces, respectively, and

n = (S'/n-1) downwash chords on the right hand wing.

The G, G' and G" terms are simply calculated as the
coefficients of a quadratic curve fit of the chordwise integrals
at G(yr, ns", G(fr,zr), and G(zr, n1). The relationship between
these integrals is also shown in figure Bl. 1In unsteady flow,
these terms will have real and imaginary parts.
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Figure Bl, - Geometric Relationships in the
Spanwise Integration Scheme

64



Chordwise Integration Near and
Including the Downwash Chord

Because of the close spacing of the adjacent integration
chords with the downwash chord in the spanwise integration scheme,
the chordwise integrations must be extremely accurate in this
region, Thus, all chordwise integrations within a small spanwise
distance of the downwash chord, yr, are evaluated more precisely
than for those chords outside of this distance. The distance is
taken as +(l-yj) where y1 is defined by equation (B13). Thus,
for all 7, defined as

(Yr=4) < 15 < (yr+4)

where

the number of chordwise integration points, J, are defined as

J'
Jl

3J+1 subsonic integration
3J

supersonic integration

The terms G(yr,7g), G(yr,yr) and G(yr, 11) are always included
within this region which results in very accurate estimates of

the G, G' and G" terms required for equation (B16) for subsonic
flow., For supersonic flow some additional manipulation is needed.

Because the chordwise integrand is singular at § = {nc
forn # yr, and is non-singular for 7= yr, & difficulty arises
in the calculation of a value for G(yr,yr) that is continuous
with G(yr,n ) as W —syr. As a result, a simple but devious means
for calculating G(yr,yr) as a function of G(yr,n ) was developed
as follows. For simp{icity, let T

Gs = G(yr>ng) G, = G(yr,Mm)
Gr

G(Xr ,_}_’r)

As a first approximation, Gro, to the value of Gy without actually
calculating the integral, an average value is used

- GstGy

Gr, 5

(B19)
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Since the streamwise variation of the kernel function becomes
rapidly independent of ¢ for % =yr, the Gr, approximation
actually represents a chordwise integral of the form

&
-

= Zﬁﬁgl Jf ACp (£,yr) (%-€) (x-f)2 + (1-M2)(A')2 d¢
LEp

Grg (B20)

where
§A' = X-BA'

A' = Yr-ns = nl-Yr
and ¢1Er is the leading edge location at yr.

The exact value required for Gy is
X

_(ﬂl fACp(f yr)dé

Thus, a correction must be made to Gro. The first correction is
made by removing the singularity portion at ¢mpc without disturb-
ing the leading edge sweep effect as given by §pg. Since the
error in equation (B20) is near the aft limit, & the next

level of approximation, Gri, is A
Gry; = Gr, + —ELQLACp(gd »Yr) 5{2 dé
r
&' .

- ff (x-f)[(x-§)2+(1‘M2)(A')2] a¢

LEg 2

&4’ )

. (x-f)[(x-f)2 + (17M2>(A')2] d¢ ]
gLEl . 2

which becomes

Grl’ = GrO +

2b (1)
s

o

A-ap( .§A' ’_Y]’.') { (fA'-gLEr) - % [(x-fLEs)z

2 ?
¥ “'Mz)(“')z] - %[@-fml)z + (1-M2)(A')2] \
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Now, Grj is approximately

£y’

_ 2b(m -
6ry = 22D [ sTote,ye)de
So ELE
Completing the integral from ¢y to x yields the final approxi-
mation to Gr

Gs*tG1  2b —
Gr 82 + SinACP(ﬁA"Xr)I (€a'-¢15,)

3 5
-3 [<x-fLEs>2 ¥ <1-M2><A')2] - %[(x-sml)z + <1-M2><A'>2] }
bMpA [ . _
So ACp(£4'»yyp) + ACP(§,Xr)}
(B21)
The use of equation (B2l) in place of (B3a) to obtain Gy in

supersonic flow results in the desired continuity in the chord-
wise integrals used in the spanwise correction terms.
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APPENDIX C

CALCULATION OF INTERFERENCE EFFECTS

The equations presented in Appendix B are used to evaluate
the self-induced downwash in equation (1) when q=p. This Appendix
summarizes the equations for calculating interference downwash in
equation (1) when q#p for which the procedure is essentially the
same as given in Appendix B. The chordwise integration is per-
formed first which for supersonic flow requires a special treat-
ment for a 3/2 power singularity in the integrand along the Mach
hyperbola. The spanwise integral follows which requires treament
of the non-planar kernel function such that the integral converges
to the coplanar case as (z -¢) -+ 0.

Chordwise Integration

The form of the integral equation for parallel non-planar
surfaces in steady supersonic flow is

T fme 2 2,2
v (%,¥ 1 - 2x 2z z o
2ED L f f g 221 - B 2
U 4mpUs  w, B r<R r R (c1)

where %4 and %p are the left and right hand limits of integra-
tion defined by wing geometry and the Mach hyperbola. If the
chordwise integration is carried out to the Mach hyperbola,

a 3/2 singularity is encountered of the form

LM [(x-f)z-ﬁzrz ] 2
§>éme
Hence, the finite value of the improper integral must be taken.
In order to determine the finite value of the integral,
the differentiation of the potential equation for the downwash

must be considered. Let the downwash be expressed as the
following simplified form:

b $me
w(x,y) = 5‘%— f f ACp(€,M)d(x,£,¥,m,2,0)dédn
Ma §€LE
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where @#( ) is the potential at point (x,y,z) due to a point
load at (¢, n, 0). Since the differential operator is outside

the integral sign, Leibnitz's rule must be used to perform the
operation

b(t) :
S S exnax=glbe),c] 2O
a(t)
b(t)
'g[a(t)’tla_gg)”“ ;{t) é%lg(x’t)ldx (C2)

The limits a(t) and b(t) are constant in subsonic and coplanar
supersonic flow; thus, their derivatives are zero. For the
supersonic non-coplanar case, however, the derivatives are not
zero. Since the chordwise term is of much greater importance
for interference effects, only the derivatives resulting from
the variation of ¢pc with z will be accounted for.

For the chordwise integral, H(y, 7 ), a constant pressure
distribution, ACp, will be assumed for simplicity. The integral
may then be expressed as

fmc

H(y,m) = ACp 5@2.! b(x, €,7,1,2,0)dE
LE

which, with the application of equation (C2), becomes

0
H(y,n) = ACp ¢(XsfmCastazs°) ;Em
§ﬂ'l('.:
+ 'g/‘ '5‘22- |¢(x,§,y.n,z,0)]d§] (C3)
LE
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For

o
d(x,£,¥,1,2,0) = - brp r2R y Xg2 Br

it can be shown (after some algebraic manipulations given in
reference 6) that the following is true

2.2
O¢mc 20 20°B 1
b (X,€mc>Y>M52,0) B2 = " G ) [Lflffmc(_R) ]

(C4)

The differentiation inside the integral in equation (C3) is the
kernel function

o Y _2U %o 2202 20232
Oz ny,st,z’O) - T 47Tp rZR =

r2 R2
= 2 K(x,£,5,7,2,0)
47Tp ’ 3 ’ ’ ’
(C5)
Combining equations (C3), (C4) and (C5) and removing the
singularity yields
£me
ACpU| 2z 252 2x,2 %32
_4vp ) LIM 1 0%o d
H(y,m) = 47Tp r2 [ f"fmc R>] + E{E r2R3 ¢
éme
2x,z 232
+ f [K(x,g,y,*r),z,o) = ———'—'0203 ] df‘
£LE R (C6)
But
éme
j( 2x020%82 de = 220282 [ LM (l o1

71



Thus, equation (C6) becomes

. fmc
ACLU 225242 2x020%82
H(y,n) = z;g; [- g T ;{E R(x,£,y,7,2,0) - — 53— |d¢

which is the final form for the chordwise integral with a
constant pressure distribution. For a variable ACp( £,1),
the singularity is treated at the Mach hyperbola, hence,

2z 232
H(y,m) =zg—p - rZRLE ACp (£mc,7M)
éme
2,2
+ ~§/ [ACp(§,y)K(x,§,y,n,z,0) -z—x?-;—;{i-ACp(émc,ﬂ)]dfl
LE r

Thus, for steady or unsteady interference of non-planar surfaces
the quadrature integration of the chordwise integral becomes

J
%
b 1 _
Hq(Zle) = %ill ﬁﬁzw —Z],’-— Z (1-6§) ACpq(gJ ,'Q)K(x'fj,)""),z"i,kaM)
j=1 ]
(-2
— x - ]
= Ty ACp, (éme,7) %;ﬁ {%LE + b(n) Llizﬂljﬂ- > _0_1{-—3_‘1_ ], e < 1
j=1 Rj

where Ty is defined for equation (Al) and

RS = (x-g)° - pr°

65 = - cos (3-%1-77) §=1,2,...0
& =% | (+émc) 85 + (fme-D) |

& = [P0 + & (|
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For the case of the Mach hyperbola falling aft of the trailing
edge, the 3/2 singularity need not be considered. Hence, the
chordwise integral takes on the form given in Appendix B

J

| W .
Ho(rs) = 252 T D 1-€)) KBpq (g5 -
5=1

K(X'fj,}""),z"i,k,M) ) §mc21 (C7)

where

2j-1 .
& = - cos(-%-J— ) , §=1,2,...J

For subsonic flow, the chordwise integral is similar to
equations (B6) and (C7)

J

(1) % _
Hq(y,1) = bso 22'J ) Zﬂ-é) ACpq (£51) -
i=1

K(x-£5,y-1,2=(,k,M) (c8)

where J = mq and

gj E - COS(-%'J,:-j—i 77) ’ j=1,2,o.nJ
For 7 =y,
J = 3mg+l

as discussed in Appendix B.
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Spanwise Integration

The spanwise integral for non-planar interfering surfaces
may be written as

b

T1 2T2 ]
I = J[ Gy, | =5 - —— | d
q(¥) e 17 [ 2k

where the sign.j( denotes a ""Pseudo Mangler" evaluation of the
integral as discussed in reference 6, The Gq(y, n) function is
the modified chordwise integral

Hq(y,m)

Ty - 2T9
r2 r4

Gq(}_”n) =

which will be expanded as

Cq(¥:1) = Gq(F,3) + (1-9)GY(F,¥) + ...

Following the developments of Appendix B, the spanwise integral
is evaluated as

S

Tq(yx) = 4D h(18)Gq(yr:1s) + QS (¥r)

s=1

where h( ng) and 1s are defined in Appendix B

Qg(Zr) = Gq(Zr’Zr)[Fl(Zr) cos (85-64)
+ F3(Zr) sin(Qp-Gq)]

+ G&(Yr:Yr)[FZ(Zr) cos(Op-Qq)l
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and

F1(¥r) = [Zf%ﬂk - 25%25 }
r

r
ra

922
- = Z h(2g) [ r2 - r2 Jd(I’s)

2
- Irb 2l 1 1
Fo(yr) 2’6“ r%a [r 5 'r—z-]
rb ra
S
1 222
- F 2 0@ sy |5 - E |ac)
s=1 rs rs

1 1
F3(Yr) =z [rz 22 ]
rb ra

S

"7SL E h(7s) ﬂ%ﬁl d(7s)
s=1 rs

where

]
-
-

d(7s)

d(7s)

Na< Ms<Mb

[
o

Ts< Ma, 1s<Mb
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The variables (y, 7 ,z) are all measured relative to the surface
over which the integration is being performed as shown in
figure 3. The perpendicular distance from the surface to the
downwash point is z and it is measured at span station y. The
terms rrp,, rph, Lpg are

2 2 2
ra = (Yyr-Ma)~ + z
rgb = (Zr'?b)z + &2

2
Frs = (Yr‘ﬂs)z + §2

For subsonic flow,
My = -1

Ip = +1

This completes the equations necessary to perform the spanwise
integration for interference effects due to a streamwise planar
surface of arbitrary orientation in steady flow.

For unsteady flow, it is necessary to include additional
terms which account for the logarithmic singularity in the
spanwise integrand, k%£n|r|. This singularity is relatively
weak for most problems, i.e,, k<1l. The correction terms
developed in subsonic flow (ref. 7) are applicable in this case.
The spanwise integration function, h( Ms), is given in Appendix B,
equation (B12). The form for the unsteady correction terms
becomes

QA (yy) = Q° 4+ K2 8p-8q) { G J1(y¢)
q\Jr Qq(Zr) 2 cos (6p-8q) q(¥r>¥r) 1(yr

M w

Q(ﬂs)h(ﬂs)/emrgs} + G&(Zr,Zr)[Jz(Zr)

I
S

]
'—l

S

S

-5 :E: d(ﬂs)h(ﬂs)(HS'Xr)-e%-r%s]

/)]
(=]
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where

J1(¥r) = (yr-ma) £n rlz»a = (Yr-7b) *e"rf-b

+ Zlgol[tan-l(zfég?) + tan-l(g%éff)] -4

1
Ja(yr) = - 3 [rga‘éh r%a - r%b'e“'r%b] * Ja+lb-2yr

which completes the equations for unsteady flow,
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APPENDIX D

THE NORMAL SHOCK BOUNDARY CONDITIONS
ON SMALL FLOW PERTURBATIONS

For a mean flow in which strong shocks are imbedded, special
boundary conditions must be satisfied across the shocks on small
perturbations to the mean flow., This Appendix presents the deri-
vation of the shock boundary conditions first for steady and then
for unsteady flow perturbations. These boundary conditions
satisfy the Rankine-Hugoniot condition and continuity of potential
across the shock.

Normal Shock Boundary Conditions for Steady Flow
Referring to figure D1, the upstream conditions are M~, ¢~
and U™ (referring to Mach, total potential, and velocity normal

to the shock) and the downstream conditions are M+, ¢+ and Ut.

Beginning with the Rankine-Hugoniot relation as given
by Pai (ref. 19):

Uyl 2 .

UT Y+l (MT)2(¥+1) (D1)
or

T+ (M) 2(y+1)
The velocity change is obtained
= 1~_1t = 2U° 1 2U" c=\2
AU = - = - om——— S e = | cm—
u-u Y+l [1 (M-)Z] v+1 [1 (U') } (D2)

Now, let

UT =1 + ¢y
From which

1,2 -
(ﬁ:> =1=-2d, 4+ ... (D3)
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Figure Dl.- Flow Variables in the Vicinity of an
Idealized Normal Shock
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From Landahl (ref. 12, equation (1.4)), c2 can be expressed as

2 1
cT = S'I_z' - (‘y-l)(bx

oC
for first order effects. Thus,

(%:>2 = o5 - O-Dag |[1 - 26,4 .|

from which the first order terms are

- 2
(£-) = 1\_14 1-]2 + ¥ (v-1) |0}
oC
For
vt = 1+¢§

the velocity change is

AU = (L+4)) - (+6}) = o) -6]

Substituting equations (D3), (D4) and (D5) into (D2) yields

1 - {142 |1 - (24M2(7-1)) 45 |

s

by - d% = 7J2'r—1 (1+d>;)

from which the first order terms are

by - ;z.&% (1 -§%>+(i§ +7)d>;|

Letting

Y+l (Y+1)ME

M
equation (D6) becomes

+ -
by + by =7~2r]_-.(1%.4%°- l)

which differs from the derivation of Landahl by the presence
of u. For M=l, u=1l, then equation (D8) would correspond to
Landahl's equation (equation (10.9), ref. 12).
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The total potentials,.¢' and ¢*, are the sum of the mean
potential, ¢}, plus the perturbed potentials, ¢,

¢ = ¢]’_ + )\cb;x + ¢ (D9a)

$f = 67 w8+ 6 (D9b)

where A is the shock displacement as shown in figure DI.
From the condition of equality of potential across the shock,

¢~ =¢" (D10)

The following relation between A and ¢

N = - BT - ¢
df{x- . (D11)
since
8 = 4

The fundamental assumption which underlies equation (D9) is that
the potential ¢] is analytically continuous on both sides of the
shock, and that it can be expanded in a Taylor series forward
and aft of the shock. Equations (D9) contain only first order
variation of ¢ due to a perturbation ¢, therefore, equation (D1l)
is the first order movement of the shock due to ¢ that is
necessary to maintain equality of potential.

Another relationship can be obtained between A and ¢ by
differentiating equations (D9)

R

b4
+ + + +
¢x B ¢ix + A¢lxx + ¢x

and substituting into equation (D8). Thus,

(6 +ab  + b)+ald + b+ 6) =2 (L 1)
1x . 1x X A P M) xx X (

X
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which separates into the following for the zero order terms

+ - 2 1
Sly * Ab], == (=5 - 1
1x 1x  y+1 (M& > (D12)
and the perturbation terms
+ -
r e - ¢ + uod
+ -
+
d)lxy 'ud)lxx (D13)
Equation (D13) is the first order shock movement due to ¢
that is necessary to satisfy the Rankine-Hugoniot relation.
With equations (D1l) and (D13), can be eliminated
to obtain
¢t - ¢~ - bt + pby”
+ _d)- + + -
¢1x 1x ¢1xx #¢1xx
which may be simplified to
+ + - -
-~ K = - -
b = KO b, - Ko (D14)
where
+ -
K = ¢lxx + “¢1xx
¢T - @7
1x 1x (D15)

Since the constant K is a function of the mean flow potential
and ¢~ is unaffected by conditions downstream of the shock,
equation (Dl4) represents a constraint on the downstream
perturbation ¢¥, '
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Normal Shock Boundary Conditions for Unsteady Flow

The Rankine-Hugoniot relation as given in equation (D2) is
also used for unsteady flow. The velocities, U~ and U, are
expressed as

_ _ ikt
U =1+ ¢ - ikhe (Dl6a)
+ + . ikt
which includes the shock velocity in the exponential terms.
Landahl has given an expression for the speed of sound in
unsteady flow (equation 1.4, ref, 12) as
2=l - )by + )
¢ = v/ X t (D17)

=

With equations (D16) and (D17), the expression for (1/M"')2
becomes '

- \2 - - - ... ikt

<%_> ={.;.];[2 = (r=1) (P4 + th)][l - 2(dy - ikre ) + ...]
oC

from which the first order terms are

3-2~1 1-(2+M27-1 S+ ME(Y-1)é. + 2ik ikt
- =~ ;Igo o ( )) d’x (Y= )d)t ikhe (D18)

Substituting equation (D18) into (D2) yields

- + - .., ikt -
(¢x-¢x)=7i_l.[l+¢x-lk)\el } 1—%{2[1-(2+M§,(7-1))¢X

- ikt |
- M2(v-1) b, + 2ikne ]
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from which the first order terms are

YA

+ - - 4ikr  qkt  _2 (1
¢, + no + b - e (52 - 1)

Y+l Tyl M2 T (D19)
where
re 2 (y- 1)
Y+l
Except for the exponential and é¢ terms, equation (D19) is
identical to (D8).
Following the development for steady flow, the total
potentials due to an unsteady perturbation are
- - ikt - - Likt
¢ = ¢ + e ¢1x + ¢ e (D20a)
+ + ikt + ikt
¢ = b +Ae ¢ix + ¢ e (D20b)

The equality of potential condition for unsteady flow yields

equation (D11) for the shock movement necessary to maintain
this condition.

Next, the derivative terms for equation (D19) are obtained
from equation (D20)

- - ikt - - ikt
by = bt AE b+ b € (D21a)
+ + ikt + + ikt
% T P P P T © (D21b)

b = ike™E (X o7+ &) (D21c)
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Substitution of equations (D21) into (D19) yields

ikt + ikt - ikt - - i
(b1, + AeTo F 4 by €°0) + p(drx + Ae  Plxx + ¢, e

oo ikt - e A1k pe 2 01
+Iike (A<!>1x +é) - y+1 € 251 <M2 - 1)

from which the first order terms obtained are

e+ it = g 2 - 1)
and
o 4:;'{' +udg + ivd”
¢Ixx +Mbixx + iv¢]-.x'£;—ilf
where

2(7v-1)

v= Tk = y-1 k

Equation (D22) differs from its counterpart in steady flow,
equation (D13), by the terms containing iv .

With equations (D11) and (D22), A can be eliminated
to obtain

¢t - ¢ _ b% 4 udx + ivd
¥ - 4- = s o s
P T Pk Ade ¥ HO T LVE %ﬁ%

which may be simplified to

Ok - k¥t = -udy - K¥S - ivd”
where

+ - . - 4ik
brx T Hb ey iV - YET

T -
b1x - ¢1x

. K?'f =
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or

2
fox s iy[M}
P1% - %1k

(D25)

which completes the normal shock boundary conditions for
unsteady flow.

Comparison of equation (D24) with the boundary conditions
derived by Landahl (equation 10,11, ref. 12) shows a significant
discrepancy. However, with the restrictions

k~1
and
2 - + -
Y1 > b1 ~ (d1xx + nb1xx)

equation (D24) reduces to

Lik¢T _ - 4ik 2ik(v-1) | .~
+ = - pd, + + ¢
R TR A S I ooy el 1
1x 1x 1x 1x
or
4 4ikeT _ Likd~ 1
o+ 1) (- ¢: ) Bt G 1) ($7, - ¢ )
y-1

-7 ¥, - ¢>1fx)

which is identical to Landahl's equation. Thus, Landahl's
boundary conditions are valid only for high frequency
oscillations and weak shocks as is implied by the restrictions.
Equation (D24) is therefore more general and is necessary for
use with a method which will be used in flutter and dynamic
response analysis.,
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APPENDIX E

CALCULATION OF POTENTIALS FOR THE
SHOCK BOUNDARY CONDITIONS

The potentials needed for the shock boundary conditions are
the supersonic potential just forward of the shock, ¢~, due to
the upstream surface and the subsonic potential aft of the shock,
¢+, due to the doublet. Also needed are the potential derivatives,

b5 and o3,

The supersonic potential at point x,y,z due to a doublet
sheet lying in the ¢-7 plane is the integral over the sheet:

UEL'= 2 rbimc, x-¢
S
br P na}/;Er J (x-£)2 + g2 x2

Ap(¢,m) dédn

(ELD)

The nature of the term

z
(y-m? + 2
in the integrand is such that

Lim Z\= 0
)

=

z
2 2

y¥n
and
Lim Z\ _ Lim (l) = o0
Z-»=0 2 Z
r Z—+»0
y=1
Let

. me
G( P ) = - . A (f:n)d
" ”—Jzaff J(x-f)i F B ‘ (E2)
"LE
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Thus,

i)
f £, G (v, 7)dn
r

N3 (E3)

1
Uby 8w

where G(y, n ) has the same definition as given in Appendix B.

In order to treat the singularity in equation (E3), the integrand
is modified as follows:

¢ 1 2
Ubr=--8—7r.[ ;z[G(ynD -G(y,y)]dn
a
U
1 b zdm
-8, 6 (s y){ 2z

a

The first integral can be evaluated numerically and the second
analytically as

Y
b y - y =7
[t - e () - (152)

m (7 -m2 + 22
a

Taking the limit z-+0 for both integrals leaves

¢ 1
_— = - G ] b} n <y<n
The same equation is applicable for the doublet line.
The potential derivatives are directly related to the
pressure coefficient forward and aft of the shock. For ¢y,
the derivative is taken with respect to the aft limit of
integration, hence
dx _ 1
T % e V) (E5)

where xg is the shock location. Equation (E5) is applicable to
either the supersonic or subsonic regions. Since the shock
boundary conditions are satisfied aft of the shock, the value
of Cp for the shock doublet is zero.
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The normal shock boundary conditions are satisfied with the

following terms in steady flow:

¢ = - L C- (X<, y) pressure coefficient at the

X 4 P s trailing edge of the super-
sonic region at y.

¢; = - % G~ (v, y) chordwise integral directly
upstream of the shock boundary
condition point, (xg,y).

6+ C+ (x., ¥) pressure coefficient at the

X T4 S leading edge of the subsonic

g

region at y.

¢+ = - % [G'(y, y) + Gp(y, y)] total potential just aft of

the shock due to the supersonic
region and the shock doublet,

Substituting these quantities into equation (18) or (D14) yields

1 K
- Z;Ci'{ (xg, ¥) + 5|6 (y, ¥y) +6p (v, y)l
- K .
=’ZLCP (25, ¥) + g G (v, ¥)
or
K
(XS, y) - 3 G‘D (y, ¥) +,U~Cp (xs! y) =0

It should be noted that in steady flow, the G (y,y) term is
cancelled.

For unsteady flow, all of the above terms are the same
except they are complex., Substitution into equation (19)
or (D24) yields

-% +(x,y)+£(" G~ (y, )+GD(y, y)]

B 1 L\ e
=4 Cp (x50 y) +5 (R¥ +1v) G (v, ¥)

N

or
+ K - iv .- -
Cp (XS, Y) - 2 GD (Y, Y) + ,U'Cp (xsx Y) + 2 G (Y: Y) =0

For unsteady flow, the G (y,y) term is retained.
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APPENDIX F

CALCULATION OF LOCAL MACH NUMBER

The local Mach number, M, is used extensively in the tran-
sonic algorithm, As a result, it must be inexpensive and simple
to calculate. The input data from which the local Mach number
is obtained must be simple and flexible in format. These require-
ments are satisfied through a two-step procedure which starts with
input values of My, given at even spaced points over the planform
and ends up with a function for My, in the form of Tschebychev
polynomials.

The input data is given at even spaced chordwise intervals,
A¢ , starting at the leading edge and ending at the trailing
edge. The chordwise distributions are given also at even spaced
spanwise intervals, A¢ , starting at the inboard tip and ending
at the outboard tip. The intervals are tied to the total number
of chordwise, m, and spanwise, T, downwash points as follows:

1
Af= = (chord fraction)
An = % (semi-span fraction)
i
There are
m + 1 values of My, input chordwise at
n + 1 spanwise stations.

The locations are the sets

12

§1 = (0) I-Il’ ITI’ 1) (Fla)
-¢o L 2 1 b
O ) (F1b)

It is possible to input a single chordwise distribution into the
program which is used at all span stations if desired.
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Next, the input M, are fit with the surface spline procedure
described in Appendix G that is used for structural mode inter-
polation. The surface spline is used to calculate Mp2 values at
the optimum fitting points for Tschebychev polynomials of the
first kind, Tn.

The Tn polynomials are defined as

Tp x) =1

T1(x) = x

T2(x) = 2x2-1

T;(x) = 2x Tp.1(x) = Thop(x)

over the interval
-1 <x<1

From reference 20, an arbitrary function of x can be expressed
as an N term expansion of Tpn(x) as follows:

N-1
Co
£(x) = 5+ D Cn Tp (%)
n=1 (F2)
The coefficients, Cp, can be obtained by a simple vector
multiplication
5
Ch =% £f (x:) T, (x:)
N i/ *n ‘i
i=1 (F3)
where the xj are roots of the Tn41(xX) polynomial,
xi = cos <-2-’2'—;,lw> i=1,2, ... N (F4)
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Thus, the new values of Mp, are calculated at

xi = (x1, X925 «o. Xfitl) (F5a)

where the xj and yj; are calculated with equation (F4) for

N = (m+1l) and (5413, respectively. The relationships between

the (£,7 ) in equation (F1l) and (x,y) in equation (F5) are
x+]1

2
y+l
2
Since 0 < ¢ <1 and 0 < < 1.
Once the Cp are calculated from equation (F4) with the new

values of Mj2, the value of Mp, at any point on the planform can
be obtained with equation (F2).
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APPENDIX G

STRUCTURAL MODE INTERPOLATION

The structural modes are interpolated in the program with a
surface spline fit (ref. 21) which simulates the deflected shape
of an infinite plate pinned at the points which are being inter-
polated from. The scheme is one of the more dependable methods
that is currently available, It has some disadvantages, however,
in that it does not extrapolate well under certain conditions and
it tends to '"'sag'" in cases where there are large spaces between
fitting point groups.

The spline equation is
N

= 2 2
“ﬁ a; + a2xj + a3y; +-}£:bn(rnj) lnl(rnj) | 1)
n=1

For n=1,2,...N where wj is the function value at point (x3,53)
and

2 _ - 2 - vs
rnj = (x%q XJ) + (¥n ¥j

)2

The points (xp,yn) are the fitting points, The coefficients
[al,az,a3,bl,...bN] are determined by equating the wj to the
known deflections at points (%3,¥3) = (*n,yn) for n=1,2,...N.
Three other equations are also satisfied,

N N N
an = anbn = Zynbn =0
n=1 n=1 n=1

to give the necessary N+3 equations to solve for the N+3 unknown
coefficients. With the coefficients known, deflections can then
be calculated at any point desired within the planform.

A scaling and coordinate transformation is performed such
that the (x,y) values never exceed 1.0. A structural surface
is defined in different ways as shown in figure Dl1. For the
corner points, xIj, XIp, y1 and X015 Xo9, Yo, & point (x,y)
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within the structural surface is transformed to (&€,7m) as
X~Xm
b(y)

Y=Y
S

where

+
XI]_ sz y - I < x01 + XOZ

T X1 T XD,
¥m = 2 T

2

X[, ~ x]:1 y - Y1 [ %oz~ Xop - X179 + %1,
b(Y) = 2 + 2S 2

_ Y1 + Yo
Ym = —

S=yo+yI
2

As can be seen in the figure, use of a square structural surface
simply scales the (x,y) to ( ¢, m ) which are geometrically similar
but less than unity in magnitude. The trapezoidal structural
surface skews the structural points into a square plane which is
sometimes desired. Skewing is not recommended for delta or other
pointed tip planforms.
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(b) Trapezoidal Structural Surface

Figure Gl, - Coordinate Transformation
For Structural Surfaces
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APPENDIX H

PROGRAM UTILIZATION AND
INPUT DATA ORGANIZATION

The program is applicable to steady and unsteady flow in all
Mach number ranges, subsonic, transonic and supersonic. It can
be used to obtain uniform flow solutions in both subsonic and
supersonic flow., Non-uniform flow solutions can be obtained for
all Mach ranges including mixed transonic flow with imbedded
shocks. 1In order to use the non-uniform flow capability, the
Mach number distributions and shock locations are input and must
be obtained from an outside source such as experiment or a finite
difference solution.

Interference effects can be calculated for coplanar, non-
coplanar, and intersecting planar surfaces. The aerodynamic
geometry data format permits the input of arbitrarily arrayed
surfaces which are constrained only to being streamwise, Each
surface may or may not have an image surface, hence, asymmetric
configurations may be constructed.

The program can be used to calculate generalized forces in
unsteady flow and pressure distributions in either steady or
unsteady flow. The solutions obtained are essentially independent
in computer cost of the number of modes or downwash vectors input.
Once computed, inverted, and saved on a magnetic tape, the aero-
dynamic matrices can be used on subsequent problems for very
little cost as long as Mach number, reduced frequencies, and
aerodynamic geometry remain unchanged. Thus, the method is
tailored for design applications where the structural mode shapes
change continually for structure changes and payload variations
while aerodynamic parameters remain constant,

Presented in the following sections are the detailed instruc-
tions for providing input data to the program. The first section
describes the general arrangement of the data and the second
describes the specific items in the data.
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Deck Arrangement

The major input data classifications are: (1) the library
data which contains structural geometry data and the mode shapes
and (2) the problem data which includes all aerodynamic geometry
and option data. The program can be used to calculate generalized
forces or pressure distributions. The generalized forces can be
obtained only for unsteady flow whereas the pressure distributions
can be obtained for steady or unsteady flow.

Library data orgdnization.- The library data organization
presented below is in the form of card sets, L-N, where L refers
to library data and N is a sequence number corresponding to a
specific function as described. The cards sets may be composed
of one or more cards and their contents are described in the
following section. All card sets are required if library data
is used with exception of L-6 and L-7 which are optional as noted.

Card Set Function

L-1 "LIBR" card

L-2 option data

L-3 cons tants

L-4 structural point locations
L-5(1)

structural surface data for ''NSUR"
total surfaces

L-5 (NSUR)

L-6 zero deflextion points - supplied if
option L3#0 on card L-2

L-7 mass data - supplied if L2#0 on card L-2

L-8 mode deflection data
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Problem data organization.- The problem data organization is

presented below in a format similar to that of the library data.

The sets denoted as P-N are mandatory for all problem decks
Those
denoted as P(L)~N are used only when the library is used and
P(P)-N are used only when no library is used.

regardless of whether or not library decks are used,

the library data.

Card Set
pP-1

pP-2

P-3

P-4

P-5(1)
P-6(1)
P-7(1)
P(L)-8(1)

P-9(1)

P-5 (NSURF)
P-6(NSURF)

P-7 (NSURF)

P(L)-8 (NSURF)

P-9 (NSURF)

Function
title data

major options

Specific contents
of each card set are described in the section following that for

general aerodynamic data, integer

general aerodynamic data, real

integer control data
geometric data
structural surface used

if "LIBR" data is input

Mach distribution data
if ITRANS#0 on card P-5(1)
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Data for

aerodynamic
surface no.

Data for

aerodynamic

surface

no.

NSURF

1



P(P)~-10(1)

P(P) -10 (NSURF)

"END'" card

Structural and Mode Shape Data Library

downwash vector data for

all surfaces if "LIBR" data
is not supplied

Input Format Description for

In order to have an input library which contains the struc-
tural and mode data for all the following aerodynamic problems,
the first card, L-1, must have the four characters "LIBR" in
Anything else may follow on that

cols,

1-4 on the first card.

card, for example:

Cols.
1-4 5-80 .
LIBR ARY FOR F-111 MODES, SWEEP=26 DEG

Card L-1

It is recommended that the cards be sequenced, however, it is
not mandatory.

which contain the following:

The second card set, L-2, is 'two cards in a 6I10 format

Card L-2

Cols. (right adjust all data) 6I10 format
1-10 | 11-20 | 21-30 | 31-40 | 41-50 | 51-60
NF NSUR NMODES | N1=0 N2=0 Ll
L2 L3 L4
where
NF = total number of structural points at which
mode deflections are given, NF< 200.
NSUR = total number of structural surface spline fits

to be used for mode interpolation, NSUR<Z 10,
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NMODES = total number of mode shapes supplied,
NMODES < 20,
N1=N2=0 = wunused constants which must be zero.
L1l = 0, a comment card of any format will be expected
at the beginning of each mode shape deck.
# 0, no comment card is expected,
L2 = 0, no mass data will be input for computing
the generalized masses.
# 0, mass data will be input (see Card L-7).
L3 = 0, no structural points will be modified to
have zero deflection in each mode.
# 0, "L3" total structural points will be modified
(see Card L-6), L3<NF,
L4 = (0, pitch and roll modes will not be added.

# 0, (a) the pitch mode will be added as mode
"NMODES" + 1 with deflections (XF(I),
I=1, NF). (see Card L-4)

(b) the roll mode will be added as mode
"NMODES'" + 2 with deflections (YF(I),
I=1, NF). (see Card L-4)

The third card set, L-3, is also two cards in a 6F10.0
format which contains the following:

Cols., (use decimal or right adjust all data) 6F10.0 format

1-10 11-20 | 21-30 | 31-40 | 41-50 | 51-60
XMODE | XMASS DH DW1l Dw2 BREF Card L-3
RHO
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where

XMODE

XMASS

DH

DW1

DW2

BREF

RHO

uniform mode deflection multiplier. All mode
deflections are multiplied by this quantity
which is normally

XMODE=1.0

uniform mass multiplier, normally
XMASS=1.0

uniform multiplier for all deflections
calculated with the spline interpolation.
(These are usually the deflections used to
calculate generalized forces and masses.)
Normally, DH=1.0

uniform multiplier for all slopes calculated
with the spline interpolation. (These are "a"
values in steady flow or the real part of the
downwash in unsteady flow.) Normally,

DW1=1.0

uniform multiplier for all deflections
calculated with the spline interpolation
as the imaginary term in the unsteady
downwash, Normally,

. DW2=1.0

reference length in same dimensions as other
geometric data. This value must be the same
as that used in the problem data.

density, slugs/ft3. If RHO=0, the default
value at sea level is used.
RHO=0,0023769 slugs/ft3

NOTE: for geometric data input in units

other than inches, a conversion factor
must be input through either RHO or XMASS.
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The next card set, L-4, is composed of as many cards as are
necessary to contain the NF structural point locations in the
following form:

read FORMAT

8A10 format

(input according to—%ORMAT)

S S

XF (1)

YF(1) |

XF (2)

YF (2)

XF(3)

i

YF(3)

LR N J

XF(NF-1)

YF(NF-1)

XF (NF)

YF (NF)

where

XF(I),YF(I) = X,Y coordinates of the Ith structural point.

The XF(I) are used to compute the pitch mode for L4#0
and YF(I) are used for the roll mode.

The next card set, L-5, is composed of NSUR subsets,
each of which contains the following descriptive information
for each structural surface:

Card

L-5N,

N=1,
NSUR

Cols. (right adjust all data) 6I10 and 6F10.0 formats
1-10 11-20 21-30 31-40 41-50 51-60
NFS(N) | TF(L,N) | IF(2, )] ...
IF (NFS (N),N)
XIS (1,N)| XIs(2,N)|YCcs(1,N)|x0s (1,N)| x0s (2,N) | YCS (2,N)
where
NFS(N) = total number of structural points out of the
NF set that correspond to the Nth structural
surface, NFS(N) <100.
IF(I,N) = the structural point number assigned to the
Ith point in the Nth surface.
XIS(1,N) = x coordinate of the inboard leading edge
of the Nth structural surface area.
XIS(2,N) = x coordinate of the inboard trailing edge.
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X0S(I,N) = x coordinate of the leading and trailing edges
at the outboard tip.

YCS(I,N) y coordinates of the inboard and outboard

stations.

Referring to figure Hl, the spline interpolation scheme
can be used to fit discontinuous structures. The structural
points assigned to each surface may be used in one or more
surfaces. Also, it is not necessary to use all of the NF points.
The structural surface boundary coordinates XIS, X0S and YCS are
used to bound the structural point sets. Normally, they are at
the corners of a square as shown in the figure. Since the corners
are transformed to the corners of a square, the boundary coordi-
nates can also be used to skew or distort the physical coordinate
system as shown in figure H2, The transformed plane is the plane
in which the spline fit is made, hence, the decision to distort
the physical coordinate system should be carefully considered
since the result may be to introduce errors into the interpolation.
As an example, if the corner points of a delta wing are used, then
a simple pitch mode will appear in the ‘transformed plane as a
twisted mode with the pitch angle slope at the root and no pitch
at the wing tip. Spline interpolation will not usually yield a
uniform slope distribution in the physical coordinate system for
such cases,

If option L3#0 in card set L-2, the following data is now
input. Card set L-6 contains the data for modifying several
structural points such that they have zero deflections for all
modes with exception of the pitch and roll modes calculated for
option L4 not zero. The data is input as follows:

Cols. (right adjust all data) 6I10 format

1-10 11-20 21-30 31-40 41-50 51-60
e o 0 IF2(L3)
where
NF2 = number of structural point deflections

to be given in the mass and mode data
following this card set. (NOTE: for
L3=0, NF2=NF)
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IF2(I) = structural point which will have zero
deflection for all modes input,

This deck permits setting zero deflections at points in addition
to those input with the mode shapes. As a result, NF2 will
usually be smaller than NF and the (XF(I),YF(I)) data given in
card set L-4 will include the locations of the additional L3
points as well as the NF2 points. If desired, NF2 can be the
same as NF and the modal deflections will be zeroed at the IF2(I)
points in place of the values read as input.

If option L2#0, the mass data is read next in card set L-7:

read FORMAT 8A10 format
(input according to FORMAT)
AMASS (1) AMASS(2)] ... Card L-7

ee. | AMASS(NF2)

where
AMASS(I) = mass, mjy, assigned to the I1th structural point.

The generalized masses, Myg, are computed as

Mrs

NF2
— XMASS*XMODE*XMODE*232.0 % :E: mihy ohyg
32. 2%RHO* (BREF*%3) ~

where hj,, hjg = modal deflections at the jth point for
modes r and s, respectively,

and XMASS and XMODE are input in card set L-3.
The deflections are those to be input in the following set.

Card set L-8 completes the structural library by supplying
the mode shapes. The form is as follows:

110



1eaInjoniig YlIM We3ISLg 93BUIPIOO) TBOISAYJ 94yl JO uOT3a03sIQ - "¢H 2an31g

aueid
pawxojsuea],

aueld
Teo1s4yq

sa1aepunog aoejang

111



(input according to FORMAT on CARD L-7)

Comment Card for L1=0
H(1,1) H(2,1) ces
ceo H(NF2,1)

Comment Card for L1=0
H(1,NMODES)| H(2,NMODES)| ...

coe H(NF2 ,NMODES)

Card L-8
where

H(I,J) = modal deflection at the Ith point for the Jth mode.

Input Format Description for
Aerodynamic Option and Geometric Data
Problem Decks

The problem decks contain all aerodynamic data and the
structural surfaces used by each aerodynamic surface if the
library is used. If no library is supplied, the downwash is
input in the problem decks. 1In order to distinguish cards that
are input only when a library is used, these will be denoted as
P(L)-N where N is the problem card set number. For cards used
only when no library is used, the designation will be P(P)-N.
Regardless of how many problem decks are used in a single
computer run, the format which follows will always be used.

If a library is used, all problems following must be set up
for use with a library.

The first card set, P-l, is a two card title set which is
printed at the beginning of each problem in the output. The
format is

Cols.
1-64

TITLE 1 Card P-1
TITLE 2
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Like the library data, it is recommended that the problem decks
also be sequenced.

The next card set, P-2, contains the major aerodynamic
option data as follows:

Cols. (right adjust all data) 6I10 format
1-10 11-20 21-30 31-40 41-50 51-60
I0Pl I0P2 I0P3 I0P4 IQT IOPLU

Card pP-2

where, referring to figure H3,

I0P1<0, the aerodynamic matrices will be computed
for all frequencies.

<0, the matrices will also be written on
tape unit "|IOP1|".

>0, the matrices will be read from tape
unit '"'IOP1",

I0P2 O, aerodynamic results will be obtained in
the form of pressure distributions,
ClLa p»> Ycp and spanwise distributions
of 11ft and cgordwise center of pressure.

=0, generalized forces will be computed for
'""NMODES" total pressure distributions and
""NMODES" total integration modes.
IOP3=10P4=0, dummy options not used.

IQT =0, generalized forces will not be written
on output tape,

>0, generalized forces will be written on
tape '"'IQT" if IOP2=0,

IOPLU=0, aerodynamic matrices written or read from
tape "|IOP1|'" are in the inverted form.

#0, aerodynamic matrices on tape "|IOP1|"
are in the uninverted form.
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The next card set, P-3,

contains integer data which are

common to all aerodynamic surfaces,

The format is

Card P-3

Cols. (right adjust all data) 6I10 format
1-10 11-20 21-30 31-40 41-50 51-60
NSURF LS NALP NK NW IDUMP
IDNWSH| JSUROP
where
NSURF = number of aerodynamic surfaces
NSURF< 10,
LS = symmetry option,
= 0, symmetric flow,
# 0, antisymmetric flow.
NALP = number of alpha or downwash vectors to be 1nput
If "LIBR" data is input, NALP=NMODES< 20.
NK = number of reduced frequencies. NK 50.
NW = total number of aerodynamic control points
and shock load functions for all surfaces
(see card P-5)
NW< 100, steady flow: NW< 70, unsteady flow.
IDUMP # 0, various intermediate printout is provided
. such as the downwash and integration point
locations, the uninverted aerodynamic matrlces,
and the pressure series coefficients,
IDNWSH = 0, downwash vectors are read if "LIBR" data
is not used.
'# 0, angle of attack in all downwash vectors

is set uniformly to ALPO(IS) (given in set P-6N)
for the ISth surface if "LIBR" data is not used.
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JSUROP = 0, regular pressure functions are used
on all surfaces.

# 0, supersonic weighting function is used for
totally supersonic flow problems. This cannot
be used for transonic or subsonic problems,
however, the Mach number distribution may be
non-uniform as long as no subsonic regions
are present,

The next card set contains the real data which are common
to all aerodynamic surfaces. The format is

Cols. (right adjust all data or use decimal) 6F10.0 format

1-10 11-20 21-30 31-40 | 41-50 | 51-60
XMACH | BREF RK (1) ces Card P-4
® e 0 RK(NK)
where
XMACH = M_ , free stream Mach number,

BREF = bp.f, reference length in same dimensions
as all geometric data.

_ wbref

T , reduced frequency.
o0

RK(I) = k.
which completes the data common to all aerodynamic surfaces.

The following sets are repeated "NSURF" times and they
begin with card set P-5N given as follows:

Cols., (right adjust all data) 6I10 format

1-10 11-20 |21-30 31-40 41-50 51-60
NC(IS) NS(IS) |NJ(IS) | NSI(IS) | ITRANS(IS) | NLE(IS)
NTE (IS) | ICHORD(IS)| IXI(IS)|LSPAN(IS)| LSYM(IS) | ISTYPE(IS)

KSURF (IS,1) |...
cee KSURF (IS ,NSURF)
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where, for the ISth surface,

NC(IS) = number of chordwise pressure functions
or downwash points, NC(IS)< 10
NS(IS) = number of spanwise pressure functions

or downwash chords, and shock load functions
if KSURF(IS,IS)<0, NS(IS)<15

I

, *% For steady flow,

NTR NSURF
NS (JS) + NC(IS)*NS(IS) = NW< 100
Js=1 Is=1
For unsteady flow,
NTR NSURF
NS(JS) + NC(IS)*NS(IS) = W< 70
JS=1 IS=1
JS = surface for which KSURF(IS,IS)<O0 (transonic solution)
NTR = total number of JS surfaces

NJ(IS) = number of chordwise integration points:
NJ(IS) = 0, standard points are used
NJ(IS) > 0, the input number is used
as described below for the option IXI(IS).
NJ(IS)< 15

NJ(IS) = 0 is recommended for all cases

NSI(IS)= number of integration chords on both the
ISth surface and its image.
NSI(IS) =0, standard chords are used
NSI(IS) >0, the input number is used
as described in table Hl below for the
option ISTYPE(IS).
NSI(IS)< 31
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ITRANS (IS)

NLE(IS)

NTE (IS)

ICHORD(IS)

IXI(1S)

LSPAN(IS)

LSYM(IS)

ISTYPE(IS)

0, the Mach number distribution over the
ISth surface is uniform and equal to XMACH
(card P-4).

0, the chordwise Mach number distribution
is read from card P-9N and is used at all
span stations.

0, the chordwise and spanwise Mach number
distribution is read from card P-9N.

number of x,y coordinate pairs to be read
for defining the leading edge.
NLE(IS) <10

number of points for defining the trailing

edge.
NIE(IS) <10

1,2,3,4, the type of chordwise pressure
distribution to be used for the ISth surface
as shown in figure H4.

1,2,3,4, the type of chordwise downwash
point distribution used and since the chord-
wise integration points are interdigitated,
this option also determines their distri-
bution as well. Table H2 summarizes the
distributions,

IXI(IS)=1 is recommended
for almost all cases

1,2,3,4, the type of spanwise loading
to be used for the ISth surface as shown
in figure H4.

0, symmetric flow.
0, antisymmetric flow.

1,2,3, the type of surface and image

to be used, Type 1 has continuous
functions across the centerline whereas
types 2 and 3 are independent. The

type 2 spanwise loading can be used with
all three surface types.
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N ¢

o

TYPE 1 TYPE 2 TYPE 3
SURFACE TYPES
ISTYPE (IS)
Ji¢)) h($)
1 -
|1 1 -1 _ 1 1+
TN
- : - —
H 2 2
: 1 \ 'y
_ i - -
3 1
1-7 3
( | ; [—~_ N\\‘-~__ﬂ__ 1+¢
4 Ji+1 4 N
B N e ~

SPANWISE LOADINGS
LSPAN (IS)

CHORDWISE LOADINGS

ICHORD (IS)

Figure H4, - Surface and Loading Types in the
Aerodynamic Program

120



oacnﬂaNaH = U m = Hmz
(1H3)u = § 1+ = S 7 Se sweg 7 Se oaues§ €
98ewT s3T pue aoejyans
ayz yyoq xoy jeadsa
telefzfr=ul sz = ISN STtz =8 ERREE AR SR
Y4 T+ =
(1+¥)uz = S 1+ = S (& H+vawoon = S[ (53)so° = IK z
couamnmnH = U m = Hmz w-..nN-H = S MO..aN..H = I
ST = 1+42 z
(1+97) =S THiZ = S (2 Tesz) 500 = St (7800 = XL 1
S=ISN ¥0d 0=ISN ¥0d Si ‘@IOHD X ‘@IOH) FdALST
LAdNI LINva3aa NOIIVYOEINI HSVMNMOd

((1)SN=¥) SMIOHD NOILVUOFINI ANV HSYMNMOd °*TH TI9VL

121



KSURF (1S,KS) = interference calculation option as described
below and illustrated in figure H5.

For IS = KS:
KSURF(IS,IS) = 0, surface IS is not a transonic surface.

KSURF(IS,IS) > 0, surface IS is the upstream surface in a
transonic pair with a shock along its
trailing edge. The other surface in the
pair is the value of KSURF(IS,IS).

(see figure H5)

KSURF (IS,IS) < 0, surface IS is the downstream surface
in a transonic pair with a shock at its
leading edge. The other surface is the
absolute value of KSURF(IS,IS).

(see figure H5)

For IS # KS,

i

0, interference of surface KS on IS will be
calculated but spanwise integration correc-
tion terms will not be calculated. This
option is usually taken if KS is downstream
of or parallel to IS.

KSURF (IS ,KS)

< 0, no interference is calculated for
KS on IS.

> 0, interference is calculated with the
spanwise integral correction terms.,

The next card set in the NSURF decks is P-6N which contains
the following real data:
Cols, (right adjust all data or use decimal) 6F10.0 format

1-10 11-20 | 21-30 | 31-40 | 41-50 [51-60
ALPO(IS)| XV(IS) | YW(IS)| ZV(IS) | THETA(IS)

Card P-6N
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KSURF (IS,KS)
KS= 1 2 3

Surface 1
= +2
Surface 2
\J‘*% Is=2 | @ | -1 |6

Surface 3 IS=3 @@ |+
Shocy
Surface 4 __ IS=4 @ | @ ®

Figure H5, KSURF(IS,KS) For Transonic Flow Over
Interfering Surfaces
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where

ALPO(1S) = uniform angle of attack, in radians,
which is always added to all downwash
vectors for all control pvints that fall
on the ISth surface.

§g§%gg X,y,2 coordinates of the leading edge

= inboard tip of the fac ee figure H6).
ZV(1S) o p o surface (see fig )
THETA (IS) = inclination of the surface relative to

the y-axis (see figure H6).

The planform geometry data is given next in card set P-7N
as follows:

Cols. (right adjust all data or use decimal) 6F10.0 format

1-10 - | 11-20 | 21-30 | 31-40 [41-50  51-60
XLE(L) | YLE(l) | XLE(2) | YLE(2). | ...
.o XLE(NLE)| YLE(NLE) Card P-7N
XTE(L) | YTE(L) | XTE(2) | YTE(2) | ...
.. XTE (NTE)| YTE (NTE)
where

XLE(I),YLE(I) = x,y coordinates of the Ith leading edge
break point. It is not necessary for
XLE(1)=XV(IS) and YLE(l)=W(IS).

XTE(I),YTE(I) = x,y coordinates of the Ith trailing
edge break point,

The dimensions of XLE, YLE, XTE, YIE are the same as all other
input geometric data.

If the structural and.mode shape library is used, the
following card must be supplied:

Cols. (right adjust) I10 format
1-10

INST(IS)

Card P(L)-8N
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where

NST(IS) = the structural surface given in the library
from which deflections and downwash are
calculated for the mode shapes.

If library data is not supplied then this card must be omitted.
If ITRANS(IS)#0, then the Mach number distribution data is

supplied in card set P-9N. For ITRANS(IS) >0, the chordwise

distribution is assumed constant along the span and the data is

given as

Cols. (right adjust or use decimal) 6F10.0 format

1-10 11-20 21-30 31-40 | 41-50 | 51-60
GMACH(1,1) |GMACH(2,1)| ...
ceo GMACH(Mc, 1)
Card P-9N
(ITRANS > 0)
where
GMACH(I,l) = input Mach number at constant percent

chord line (I-l )
Mc-1

Mc NC(IS) + 1

Note that the data is input at constant chord fraction increments
from the leading to the trailing edge. For ITRANS(IS) <0, the
distribution is input at (NS(IS)+l) span stations as follows:

Cols. (right adjust or use decimal) 6F10.0 format
1-10 11-20 21-30 | 31-40 | 41-50 51-60
GMACH(1,1) | GMACH(2,1) coe «es | GMACH(Mc,1)

GMACH(1,MS)| GMACH(2,MS)| ... ... | GMACH(Mc,MS)

Card P-9N
(ITRANS < 0)
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where

GMACH(I,J) = input Mach number at the (;;}1) chordwise
J-1 . .
d .
and ( _1) spanwise locations
MS = NS(IS) + 1

Again, the spanwise distribution is uniformly spaced starting
from the inboardmost station to and including the tip at ( 1 )
increments. MS-1

This completes the input aerodynamic geometry and option
data and the problem data if the structural library is used.
If the library is not used then the downwash must be input after
all aerodynamic data for all surfaces, if the IDNWSH option in

card P-3 is not used. For steady flow, the data are input as
follows:

Cols. (right adjust or use decimal) 6F10,0 format
1-10 11-20 21-30 | 31-40 41-50 51-60
ALP(1,1,1S) ALP(2,1,IS) oo ... |ALP(NI,1,IS)

ALP(1,NALP,IS)|ALP(2,NALP,IS)| ... ... |ALP(NI,NALP,IS)

Card P(P)-10NN

k=0
where

ALP(I,K,IS) = slope (radians) at the Ith downwash point
in the Kth downwash vector on the ISth
surface, from LE to TE, outbd to inbd.

NALP = total number of downwash vectors as input
on card P-3, NALP<20.

NI = NC(IS)*NS(IS), total number of downwash

points on the ISth surface.
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For unsteady flow, the only change is the addition of deflections:
Cols. (right adjust or use decimal) 6F10.0 format
1-10 11-20 21-30 | 31-40 41-50 51-60,
ALP(1,1,1IS) ALP(2,1,1IS) soe ..+ |ALP(NI,1,IS)
H(1,1,IS) H(2,1,IS) cee eos |H(NI,1,IS) i
ALP(1,NALP,IS)|ALP(2,NALP,IS)| ... «+s |ALP(NI,NALP,IS)
H(1,NALP,IS) |H(2,NALP,IS) cooe .o |H(NI,NALP,IS)
Card P(P)-10NN
where k#0
H(I,K,IS) = deflection (same dimensions as the
geometric data) at the Ith downwash
point in the Kth downwash vector on
the ISth surface.
In both cases, the downwash data are given only after all of the

aerodynamic geometry and option data are completed for all
surfaces, Then, as the format shows, all modal data is input
for each surface together,

The last card in a problem deck signals the program to
continue to the next problem or terminate the job, This is
the "END" card which terminates the job.

Cols.

1-4 5-60 Card
IIENDH

ENDb (JOB WILL BE TERMINATED)

where b is a blank space. For continuation, the characters
in Cols. 1-4 may be anything but ENDb, for example

Cols.
1-4 5-60 Card

11) "
PROB | LEM 1 END (CONT. ON TO NEXT PROBLEM) END

which will continue the job.
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