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FOUNDATIONS  FOR,ESTIMATION B Y  THE METHOD 

_ .  . ~ ' O F  LEAST SQUARES 

Waltcr W. Hauck,r.Jr; 
, .  

I .  INTRODUCTION ' . . _  

. .  
. .  . .  

Thin  papcr '  is thc  rcsult  of four  seminars  given  to  the  Satcll i tc Geo- 

physics  Group of thc  Smithsonian  Astrophysical  Ohscrvatory  in  August  and 
Scptcmbor 1970. Thc  purpose of thc  Rcminars  was  to  considcr  mcthods of 
applying  Icast-squarcs   cs t imat ion  to   satcl l i tc   t racking.  

. .  
Thc  mctlrod of lcast   squarcs   is   widely uRcd for  cstimation,  al though-in 

many  applications  littlc  considcration  is  given,to  its  strcngths  and  limitations. 

On  the  other  hand,  statisticians  have  done  considerable  work  on  the  subject, 

undcr  the  heading of regression,  al though  not  always on thosc  guestions  that  
a r c  of thc  most   interest  in  appllcatlon. 

. .  

A  knowlcdgc of b a s k  probability  and  statistics Is rcqui rcd .   For   rcv lcw,  , 

tho' ncccssary  conccpta  a x  cxplalncd  in  Scctio-2 2. Thc.notation  introduccd 
thcrc  l a  used  conslstcntly  throughout  thc  paper.   For  rcfcrcnce,  espccia!ly 

for   thosc  not . rcading  the  res t  of thc  scction, a g lossa ry  of notation is 
includcd et thc   cnd of Scctlon 2. A knowlCdgC of bnnic   matr ix   thcory will 

. i  

- .  

I 



2. PROBABILITY AND STATISTICS 

. A  knowlcdgc of somc  probabilistic  and  statistlcal  conccpts is ncccssa ry  

for  an  undcrstanding of thc  discussion  that  follows.  Thc  lcvcl of thIa  cxplana- 

' tion  will bc that of  a "quick  rcfrcshcr.  'I F o r  a more  dctailcd  cxplanation, 
' ' rcfcr  to  an  introductory  probablli ty  and  statist ics  tcxt,   such as that by Hogg 

' and  Craig (1965). 

- 2. 1 Probability.  Random  Variablcs.  and  Dlstribution  Theory 

A  natural  first  question is: What is probability?  The  currcntly  popular 
approach is to  trcat   probabili t ies as a part lcular   c lass  of mathcmatlcal  

'measures .   This   approach  is   vcry  r igorous nnd kecps  mathcrnaticians  happy, 

' but it docs  not  answcr  thc  question of Intcrcat.   To  do  that ,  wc will  usc  the 
relative  frequency  approach. ' 

F i r s t  of all, it i r   ncccssary  to   have  some  group  or   aggregotc   to   s tudy.  
This  group,  whcthcr of pcople,  things,  or  cvcnts,  will bc callcd  thc Dopule- - tion.  Next,  thcrc  is  somc  propcrty of this  population  that wc arc   conccrncd 

with,  and  thcrc  must be somcthing  about  this  propcrty  that is undctcrmined. 

If cvcrythlnp  is known  about  what is going  on,  thcrc  arc  no  probabliitics  to 
dctcrminc.  

This  propcrty  must  bc  able  to bc cvaluatcd for ctlch  nlcmbcr of the . populetlon, and a numcrical'  valuc  aaslgncd  to  that  evaluation. A random - variable  is  a  functlon of thc   mcmbcrs  of the  populatlon;  its  vnluc  is  thc 

numcrical  cvaluation of thc  propcrty for that   mcmbcr.  Wc will usc capltal . ,  

"'An altcrnatc  approach,  which 1 do  not  agrec  with,  vicws  Probability  thcory 
. as thc  atudy of hunlan  rcasoninp,  proccuaca,  and  probabilitlcs as subjcctlvc 

'Tho  usc of numcrlcal   horc\ is   meant   to  bc vcry  gcnoral: , , . 

measures  of dcgrCc.3 of ccrtninty. . ;? 
* .- 

. .  

. .  

3 

lc t tcrs   to   dcnotc   thc  random  var iable ,   thc   argument  of which  will  ncvcr  be 
explicitly  stated,  and small lcttcrs to  denotc  the  values  taken on by a random 

variablc. * . I  
, .. 

I _.  : ...& 

For   cxmplc ,   t akc   t hc   popu la t ion   t o  bc a11 flips of a coin,  and  the  prop- , ' ,I , I -, . -, ... +',.,I , 

cr ty   to   be   whcthcr  it lands   hcads  or tails. Assuming  the  coin docs not  have .:.I .-, : . ' , y  ,, . ,,,; 

two  hcads  or   two tails, it la  not  known  bcforo  thc  flip on which  sidc  the  coin . .' '-:. "". ' A  

;. . , ,I.' . 
., . . .  . ' . .  

will  land. 

. , .. 
, . , I _ /  

. -  , I ) .  . 

. .  I . 

.. . 
. .  ... , 

/ .  ,., . .._._ . .  , . . .  
1/ !., . I ;' 

One  possiblc r indon  var iab le ,   dcnotcd 'by  X, io yl indicator   var iablc;  , , , , . .  ~, . -t 1. 

that  is, > , .,.. 
j !  

X = 1 if hcads,  and 

X = 0 if ta i ls .  

. - .  . .  , . I  
6 '.I . .  

', , 

1 1 ' .  . i( 
I 

T h e   s e t  of all   possible  values  the  random  variable  may  takc is called 

thc   samplc  apace, denotcd by S.+ In   thc  cxamplc,  S = {K i}. . .  

To  dcr lvc  probabi l i t ics , .   i t  is ncccssary  to  dist inguish  between  discrete 
and  continuous  samplc spaces. 

Discrc tc   Case .   Lc t  xl, 3, , . . , xN (where  N  may  bc  Lfinity)  dcnotc  thc 

points of thc   samplc  spacc.   Considcr   taking  somc  n   mcmbcrs  of the  popula- 
t ion  and  recording  thc  vniuc of the  random  variable X f o r   c a c h   m e m b e r .   F o r  

i = l ,  I . . , N, le t  (n) bc thc  proportion of these  n   mcmber,   for   which X = x... Then, 
takc morc and   more   mcmbcrs  of the  populntion,  rccord  the  values of X, and ' 

kccp  updating (fin)): F o r  a finltc  population,  t9kc  all   the  mcmbcrs.  'Fbr  M 

inflnltc  population,  takc  thc l h l t  a a  n - w. The final {fi}EI  obtained by this ' 

method is thc  dcnsity  function of the   dlecrctc   random  var iablc  X. We con 

thcn  say  that  the  probability  that  the  propcr,ty  in  qucstion  wtll bo cvatuated 
as cqual t o  xi is fi,  or in  shorthand, p[X = xi] .= fi.  Usually f I  will bc 
wrl t tcn aa [(xl). . .  . .  I )  

1 '. , 
I 

*Thcrc  will bc cxccptions to thls  rulc  in  latcr  scctlonrt. . , 

'Strictly,  spcaklng,.thls la oniy.onc  rcprcscntation of tile  s;urlplc,  spncc,  but 
' 

. .  ! 
tho rnorc  gcncral   aotlon i n  not  noceesary for our  purposes. 

I -  
I 
I 
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. .  

xi+l - xi = Ax , 

wher,e A x  ii ' iome  positive  constant.  Then,  let  f (x ) Ax be the  proportion  of 
values  fall ing In the  half-open  interval  (xi - Ax/2, x. t Aa/Z].  The  l imit-  
ing  proces's  is  now  two  simultaneous  processes:  while  taking  n - cq let  
A x -  0 in  such a way as to  avoid  the  occurrence of irrcgdlar  frcqucnclcs.  

The  problem  is   that  if Ax - 0 too  quickly,  there will bc intervals  where 
nothing  has  occurred  simply  bccausc  the  number of members  tr.:;ch is  not 

large  enough. 

n i  

In  the  limit, 

p [ x  - + dx < X 5 x t + dx] = f(x) dx , 

That is, the  probability of observing a value  in  an  infinitesimal  interval 

centered  nt  x is  given by f(x)  dx. By taking  the  limit of sums, we have 

b 

" P[a < X d b] = f(x)  dx ; 

a 

f ( - )  is the  density  function of the  continuous  random  variable X. 

For both cases,   the  Zstribution  function F is defined by 

F ( x )  P[X 5 x] , 

that  is,  thc  probability of observing  a  value 5 x. 
, , .. 

. 2. . . .  . . I  

. .  

* I f  tho  random  varlahle is understood, :he notation P(D) 
as shorthand  for  P[X € Dl, the  probpbility  that  the  val, 
var iable  X will  lie  in  tho  set D. ,. 

6 
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. .  . .  , . 
whhrc  E(.)  denotes  expectation.  Mathematically, E(.) is   a   l inear   operator .  

This  concept  can  also be extondcd  to  multivariate  and  conditional  catlcs 
by  substituting  the  appropriate  density  into  the  above formalas. In the  con- 

ditional  caso,  the  notation  is  E[g(X)ly]. 

We will  be  concerned  with  three  particular  functions,  the  third an exam- 
plo  of.the  bivqriatc  caso: 

) .  

. .  . ,  
I . .  

..- 

0^09-113 

. . .  ': ' ',, ; * i .  . . .  ~ . *  
( ;.. .:. 

>..I '. 
. ' : < .  

. .  

1 )  g(xj = x. 
., 

Then E[g(X)] is the- value of X, denoted  by px. Th i s  can be con- . , . . _  . .  
sidered  the  average  value of X. F o r  a finite populat:on,'. it is exactly  equal  to .: . 
the  average.  For  an  infinite  population, I t  is commonly   re fer red  t o  as- the  . ' . 
long-range  average. , .  , .  . .  . : : . .  

I 

A commonly  ueed  quantity  is  the  standard  deviation ux, equal   to  u;.::;:,. d" :-,?. 

for  any k > 0 and  for  any  distrlbution.  The  approximation io very  poor  ior , 

s m a l l  k (for  oxample,   try nny k d 1). 'but   for  1Lrgo k (k 2'3) the  upper  bound 
can  be,   very useful. , 1 .  .' . I  . '  , . .  . ,  

, .  . .  

. -  

/ .  

7 ,  
8 
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I 5 )  g(X.Y) = (X - Px)(Y - PLY). 
E[g(X.Y)] is thc  covariance of X  and Y ,  denoted by Cov  (X, Y) or uXy. 

TWO  simple-properties of the  covariarce .+re 

Cov (X, Y) = Cov (Y.X), and 

Cov,(X, Y) = E[XY] - pXpy . 
Covariance is a measure  of association,  but for  that  purposc it i s  not  wcll 
suited,  since  it  is  not  invariant  undcr a chapgc of scale;  that  is, 
Cov  (aX,Y)'fCov (X, Y )  for any  constant a f I .  What i s  used is  thc  (product- 

moment)  correlation  cocfficicnt: pxy  = Cov (X,Y) /sx  uy, which i s   sca le  
invariant. 

Both  covariance  and  corrclation  originate  from  studies of the  multi-  
. variate  normal  distribution,  whcre  thcy  havc a specific  meaning;  that  is,  the 

exact  nature of the  association  being  measured  is   clcar.  Thi,s i s  not t r u e  
for other  distributions. 

Somc  understanding oi  the  naturc of thc  association  rneasurcd by p 

can be obtained  by  considcring  thc  follu.uing  propcrtics: 

1) If Y = aX + b, where  a  and b a r c  constants,  then 

XY 

1 if a > O  , 
pxy s ign (a) ' 0 if a = 0 , 

1 - 1  it a < O  . 

2)  If X and Y arc  indcpcndcnt,  thcn 

Pxy- 0 I . 
but  thc  convcrsc  is  not truc  unless both  X  and Y arc  normally  distributcd. If 

pxy = 0, X and Y arc sa id   to  bc uncorrclatcg. 

9 

. . .. 
When a s c t  of n  random  variablcs  XI,  . . . , X, is  bcing  considered,  i t  is . 

morc  convcnicnt  to  work  with  thc  covariance  matrix, 2, defined  by 

\ cov (xi, xj) if i'f; j , 

' i j= ) V a r  (xi) if i =  j ; 

. .  
. .  

2' is a symmctr ic   n  X 11 matrix  that  will  usually  bc  positivc  definite. - 

then 

' X = E[(X - P X H X  - Px,'] , 
. .  

whcrc  thc subscript X now rcfc ls  to   thc  vcctor .   and  the  pr imc  c lcnotcs   t rans-  
pose. The  cxpcctcd  vahrc of a ma t r ix   i s   t hc   ma t r ix  of cxpccted  values. 

2 .  3 Distributions of Intcrcst  

2. 3.  I Normal   dis t r ibut ion 

Thc  normal  distrlbution is thc   most   important   in   least-squares   theory.  , 

It  can be dcrivcd for many  diffcrenl  idcal.populations. For cxamplc,  Maxwell - .. 
dcrivcd i t  as  thc  distribution of vuloci t ics  of molecules. It was  a lso  dcr ivcd 

by Hagen a~ t l ~ c  tlistribtltion of errors   undcr   thc  fol lowing  assumptions:  

I )  An e r r o r  is the  sum of a l a rgc   numbcr  o l  inf ini tcs imal  crrors, all 
of cqual magnitudc  and  all duc to   d i f fc rcn t  CGUBCS. 

2 )  Thc  dlffcrcnt  componcnts of crrors  arc Indcpcndcnt. 

3) Each  componcnt of crror has  an  cqual   chance of bcing  positive or 

ncgativc. 

t '  

10 



. . . . . . . .  - ... . "" . 

.. . . . . . . . . .  
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i r  ..... 

. ,  

-% 
In our terminology  and  notation.  this  is Raying 

Error= X t X t . . . .  1 2  

whcrc  thc Xi ' s  arc indcpcndcnt  random  variablcs  such  that 

Pixi = +t ]  = q x ,  = - t  ] = 2 I 

for  some  infinitcsirnal  and  for all  i. 
. ^  

Thcse  a t isurnpi ions  arc   vcry  : rs t r ic t ivc but can bc grcacly rclaxcd. 'Ne 

will  comc back to   this  later.  

'Thc no rma l   t l i s t r i l~ t ion  1s characterized by two  psramctcrs ,  p and u. 
If X is  nornlally  distribrltcd; its density  function is 

1 1  

3 .  . 

. :+ N(0, I )  i s  rcfcrrcd to os tlw Ltandard normnl  and is thc  one  tabulatcd  in tablts 
of the normal disrributlon  function.  Dccausc of tbc  abovc property, it i s  pos- 
siblc to t r a n s f o r m  any  normal rmdo:r variablc   into thc standard  Iorm.  . I 

I 

, -  
I<ctllrning I O  t l w  thcory of crrors ,  i t   i s  not Hagcn's  rcnult   that   nlakcs  thc 

normol distriblltion  important. H i n  assumptions arc much  too  rcs t r ic t ivc.  
Thr rc-snk that is unnally citcd is the   Central   Limit  Thcorcm,. whlclr gives 
conditions  (or  c-onvcrgrncr ! o  normalily,  IIUL i ta  assumptions  cnn  a lso bc 

reInxrd.  Thc II,Z:C meful rcs111Ls arc  thcoretna the to Liapunov  and t o  

I.indrl;rrp an41 1~'oI l t~r .  1 -  

, . I ,  ' 

. .  -. + 

I f  

I2 

"" """ , . . , 
. .  

,.+. . - - 
_. - ~ "- 
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Thcorcm 3 ( C e n t r a l   L i m i t   T l l c o r c m t  

L c t  S XI t t Xn bc thc sum of n lid (= indcpcndcnt  andidcn- 

t ical ly   i is t r ibutcd)   ranionl   var iables   with  mcnn  p .and  var iance 

. .  

- .  . . -; . . . .  
. .  

0 < lrz < 4 I,ct 

Thc  assumpt ion   Ln  0 i s   re fe r red   to  as  "negligibility  in  the 

limit." A hcuristic  condition for thia  assumption  to bc valid  is  that  no Xi 
dominstcs  the  othcrs - that   is ,   thc  random  variablcs  do  not  drffcr  too  much 
in  cithcr  magnitudc  or  variancc.  I 

I 
Thcorcnl 2 (L indcbc rpFc l l c r   Thcorcm)  

L c t  Sn = X I  t . . .  c X I)c thc  sum of n indcpcndcnt  random  variables 

with  mcans  E[Xil = pi: varianccs V a r  ( X i )  = uf # 0, and  density  func- 
tiona f i ( . ) .  Lct 

I "  

t hc n 

A s  in Lhc prcvious   tuo  tl1corcnl.s.  the  distribution of Z is approximntcly 

N(U, I )  f o r  largc n. I.low largc  n h a s  t o  I)c for this  approximation  to bc good 

dcpcnds  on  thc  distribution of thc X . ' Y  F o r  cxamplc, if X i  - N(p, 0 2 ) ,  thcn 
% n  - N(n, I )  esact ly  (or  any n. For   other   dis t r ibut ions,  n 2 20 or 25 i s  

usually IarKr cnough  lor  thc  approxinlati,Jn to  bc  good. 

I'llr crucial   assumption i n  a l l  th r rc   t l l cor rn ls   i s   tha t  thc random  var i -  
al)lc.s be Indc~pcndc*nt.  Only in a fc\\ s v c l a l   rase^ has   i t   bccn  possiblc   to  
p r m ' c .  convc.rpc*nrr I O  normality whcn dcpcndcncc  is  allowcd. 

and 
n 

sn - c Pi 
i_ I 

rilr n 
' T h  role  that   t l lc  corrclation  rorfficicn:  2nd  covariancc  matrix  play  in 

nornlal  distribution thcory  can bc  sccn by (*xamininl:   thc  multivarintc  normal I 

density  function: 1.ct 

and 22 = E[(X - p)(X - p ) ' l ,  thc  covarlaucc  matrix.  Thcn, 

'Thu  prcvlous  two  thcorcms  nrc nlso ccnt ra l  limit thcorcms, but thc   cap i ta l  ' 
. _a. 

l c t tcrs   on  'Ccntrnl   Llmit"  arc usual ly  rcscrvcd for thls  result. 

14  
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is   thc  mul~ivzriatc  normal  density  function. For twrr random  varinblcs,  Xand 

Y, with a bivariate  norma!  distribution,  cquation (2) rcducsrr to 

u c  X Y  

wherc p : pxy. A s  can bc sccn,  C and p arc paramctcrs  of the  distribution. 

Also, in  the  bivariate  casc,  p snt isf ics  V a r  [Xly]  E ( 1  - p z )  u',, which givcs 

p. or more cbrrcc t ly  p' ,  a npccgic  intcrprctation. 

2. 3. 2 Othcr  distributions 

Thrce  distributions will bc: nrccled for   making tes ts  of significancc A 

discussion of each follows. 

1 .  Chi-square  Distribution 

If X I ,  . . . , X n  arc iicl N(0 ,  I ) ,  thcn f X: - yn,   whcrc  y t  clcnotcr  ths 

chi-squarc  distribution  with n drgrcns  of frccclom; n is thc parametcr of thc 

distribution. 

2 

iz I 

Two  thcr rcms  conccrn inx   th i s   d in t r ih t ion   a rc  ~n o r d r r  

Thcorcm 4 

If XI, . . . , X arc inrlcpcndcnt  randon  variables  such  that 

Xi - x  n,, then 2 

" 

1 

. .  

n 
" x n h ; C X i  

i= 1 
and 

t!lr n 

. .  

. .  . 
' 0 .  

inA ;:rndcnt of X,. 

! lcpardlcss  af thc   dis t r ibut ion of thc X.'s. as long a s  thcy are ild, En i s  

" 

. . .  . 

cnl1t.d the sarrtplc mean and s2 is called th: samplc variance.  If prcsont ,   the  

nub~.cripta  indicate  thc  nurnbcr of obscrvat ions.  

2. Studcnt's t Distribution' 

I f  X - N ( 0 .  I i and Y - x indcpcndcnt of X, then 

where t n  dcnotcs  thc t dietribution  with n d e g r e e s  01 frccdom. 

' lt  is   cal lcd  Studcnt 's  t bccausc  Will iam  Co~lsct ,  who f i r s t  dcrlvcd this die- 
. .  

tribution.  was  prcvcntcd, by thc  brewery  wherc  hc  worked, .frc.n pub11811lng 
thc  rcault  under hls  own namc. So he  puhlishcd  it  undcr  thc  pseudonym 
"A Student. " 

15 
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T h e o r e m  6 

tn= N(O.1)  ; 

that   is ,   thc  l imit  of  the t diatribution, a8 thc  nunlbcr ol dcgrccs  of 

frccdom  approaches  infinity,   is  :he standard  normal  distribution. 

The  following  thcorcm  is  an  immcdiatc rcsu!t of   Thcorcm 5. 

Thcorcm 7 

11 X I ,  . . , X2 a r c  iid N ( p ,  w2),  thcn 

.I;;@ - )l) -n- 
'n 'n-1 

3. F DistTibution 

If X - ~f and Y * indcpcndcnt of X, thcn 

e- C(n.m) , 

thc  F distribution  with n and m dcgrccs  of frccdom. 

T l ~ e o r c m  8 

IC X - tn, :hen 

X* .- F(1.n) . 

Thc  formula  of the  density  functions of these  thtcc  dis t r ibut ions  is  not 

ncccssory.  ,Mont slatistics  books  contain  tablcs of thcir  distribution  function. 

which i s  all that  is  nccdcd 

As prcscntod  In  this  section,  thc  term dcurccs of f reedom is u8cd  only 

to  designotc  thc  pnrorrictcrs of  LhcRC distributions.  Tlic  reason  for  the 

tcrmlnology  is   rclatcd  to  cstimotion,  cnpcclnlly of vorlanccs.   In a very 

general  way,  one degree  of f rccdom  is   gained  for   qvery  obacrvat ion if thc 

obscrvations arc independent,  and onc lost   for   cvcry  paramctcr   cs t imatcd.  

W e  will   return  to  thie  subject  in  Section 5.1.1, which  should  clarify all that  is 
ncccssary  for  this  paper.  . .  

2 .  4 :;!atistical I d c r c n c c  

2.  4 .  I Estimation 

!n almost all :ases of  interest .   i t  is very  difficult, if not  impossible (as ' 

..-. 

in t t c  case of lnfinitc  popuintlons),  to  dctcrminc  exactly  certain  propertics ? .  
of 111c poplllallon  unccr'  consideration. For rxamplc,   an  exact   determinat ion 

of thc   mean   hc~gh t   o r  weight of the world population  would be a somewhat . 
difficult  task. 

Thc alt*:rnativc  is  to  takc n samplc (that  is ,   gomc  suboct) of m c m b c r s  

o f  1 h c  population and dctcrminc  thc  valuc  of  the  propcrty for these members .  
Sonw function of thcsc  obscrvat ions  is   thrn  used  to   approximate  (cs t imatc)  

i k x  valuc- of the  propcrty  for  the  cntirc  population.  rhc  vcry  cxtcnsivc  prob- . 
Icnl o[ sa~npl ing   theory  - viz . ,  how t h e   m e m b e r s  of the  samplc  should'bc 

c h c a r ~ .  - I S  cxtrancous  to  the  purposc of this  paper  and so will not  bc 

disrusacd.  .. , 

The  quest ions  that   arc  of in te rcu t   here  and that   kccp  many  s ta t is t ic ians  

cnlployccl. a:c the following:  Which  functions of thc  obscrvntions Ghould bc 
used? Or,   n\orc   npccif ical ly ,   what   charzctcr izcs  a good cstimatc, and   e r e  

there  gencral   ~r~ctl~ocls  for  i inrl ing them? Dcforc we attack  thcsc  questions,  
8onw I!olation In nercasury.  

1 . ~ 1  the clcnsity of the  ranrlom  vsriable X bc  denoted by f ( s ; O ) ,  whcrc 0 
I S  1 1 1 ~  unknown  paramctcr  (rorrcsponding t o  sonic property of thc  undcrlying 

population) that we wish to cs:inlatc.  Supposc  that  the snmplc la of I?& 11 

17 
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and  that  the  observed  values are xI, . , . , xn. Denote  an  estimate of e by 
E(%,, .... x ), where g is  somc  function.  Note  that,  before  the n observa- 
tions are taken, g(X, ,  . . . .  X ) can  be  trcatcd as a random  variable with i ts  
own distributioq,  which in theory  can be dcrivcd  from  thc  distribution of X. 
NOW XI, . . . .  Xn a r e  n idcntically  distributed  random  vari+.blcs,  though  not 
necessarily  independent. 

Some  propcrtics  that  g mny  posscss arc  the  following: 

I )  Consistency. 

g i s   cons is t rn t  if 

d X I ,  . . . .  "JC 0 : 

that   is ,   the  estimate  convcrgca  to thv true  value as the  sample  approachcs 

th r   cn t i r c  popu1a:ion. This is a minimum  condition to be placed on an 
est imate .  

2 )  Mininun:   mean-square  crror .  
g has this  property i f  it minimizcs E~!4(Xl, . . . .  XIl) . O J 2 )  uvcr a l l  

povsiblc  functioeu of thc  obscrvationh 11, 

A problcm  iicrc  is  that  the  quantity  to  bc  minimized  dcpcnds on the  
unknown 0. It is  aratifying  whcn  one  function  lninimizes  the mean-aquarc 

c r r o r  (MSE) for  al l  0. In pract ice ,   i t   i s   usual ly   necessary  to  f i n d  the  esti-  
mate that  minimizes  the MSE o n  somc  interval that is tlionglrt to contain 0 .  

3 )  Unhiascdncus. 

g is  unbiascd i f  

E[g(X, .  . . . .  X,)] = 0 . 
When g is not unbiasrd.   i ts  bins is given by 

E I g ( X I ,  . I X,,)] - 0 . 
4 )  Minimum  variance 
g has  this  property i f  it minimizes 

Var  [h(X1. ... X n ) l  

-__. . . . . . . .  

over  all   functions  h.   This  property  is   undctirable if g h a s  a large  bias ,   s ince 

che distribution oi 6 would  then  be  concentrated  around the wrong  value. A .  
des i rab le   es t imate  would bc the  minimum-variance  unbiased (MVU) cstim'ate. ' 

This property  providcs a cr i tc r ion  for choosing  among  unbiased  estimates 

whcn  more  than  one  exists,  although  there  is  the  problcm, as with MSE, that  

the  variance  will  usually  depend on 0 .  In that   case,  an es t imate  is "JU i f  it ' 
i s  unbiased  and has minimum-variance  among all unbiased es t imates  for some . -  
value 5f 0 .  

. - ._ 

. I .  

i t   i s   gcncrdly  desirable   to   f ind  hn  unbiascd or MVU cst imatc ,   but  a word 

of caution  is in ordcr .   Evcn  whcn such  an  estimate  exists,   i t .does  nut  albays.  

makc  scnsc 'L'his can be cspccially  troublesome Cor the  MVU case, since 
for a largc class of problems  thc M V U  ea t imate  i n  unique. 

. .  

A s  an cxanlplc,  suppose  that f(x;X) = e-' Xx:x!, the  Poisson  density  with 
1 i r ~ a 1 1  X ( X  > O ) ,  and that O l  c is t o  be cstlmarcd  on  the  basis of one  observa-  

t l o n .  'I hc o n l y  unb,ascd  vstlniatc,  and  hence t h e  MVU est imate ,   i s  

+,) = I I if = 0 
1 0  if s = 1 , 2 .  . . .  , 1 .. 

- 2 k  If 0 = c i v  to  bc  cstimatcd,  the  oniy M V U  e s t i m a t e   i s  2. 
-1 

g may be acceplahlc in somr   cascn ,  but g2 is  plainly  nonsensical.  Among 
other  things,  it does not  nlakc- sense l o  use a negative  estimate of a param-  

c t c r  t l ~ a t  I S  known t o  be positive. 

I 

Only  two o f  thc  many  nwtllodn  for  determining  estimatos  will  be  discvsscd 
hare.   The  f irnt  i n  the  nwtltod of lcnut Rquaws. 

In  Rcnornl, g in chosen lo nilnimlzu 

b I 
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.... - 

whcro  yi  = h(0)  for  somc  function h,.qi = h[g(xl, . . . , x,)], and  (wi)yz I is a 
s c t  of known  constanls or weights  This  mcthod is the  subjcct of thc 

rcmaindcr of the   papcr ,   so  no nrorc  will bc said  about  it  hcrc. 

Thc  accond is thc  mcrhod of maximum  I~kclihood. If X i ,  , , Xn arc. 
;x;, ' iid  with  dcnsity C(x:Ol, thcn 

1 t r : . '  !d!..- ,> ' Thd  maximum-likclihood  cstimAc of 8 ,  dcnotcd by 8 ,*  is thc csiimatc of 0 

.. . that   maximizes L(O;xl , .  , . , x,,): that is, 

L ( 8 ; x 1 , .  . . , xn) k L ( h ( x l . .  . , x,,): x l , .  . . , x,,] 

for   a l l  other functionn of the  observations.  

Thc  maximum-likclihood  cstimate 1 6  uuuzily found by sclling 

L(0;x1. . . . , sn) = 0 d 

or ,  cquivalcntly. t 
d x lop L ( 0 : x 1 ,  . . . , X n )  = 0 . 

This  lairt equation  is   rcfcrrcrl   to n s  thc  likclihood cq)Et&. 

"- .. . 
"8 will always  dcnotc  an  cstimatc or 0 rcgard lcss  of thc  mcthot! U S C C I  t o  

'All logs in  Ihia  papcr arc  natural  or basc c. 

obtnln It. 

2 2  
2 1  



. . .. .__ "" ."__L 

n 

wllcrc C i s  a rnnstant  Thcn, 
i= I 
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Supposc Y o  sta tes  that p = 0 By Thcorcnl i ,  \<lrcn i40 is 

truc, \KF/s - t n -  I. T ~ k c  y ( x l ,  . . . , x ) \G 3 1 s  
If i.r < 0, wc would c s p r < t  smal lc r  va!ucs of y than  if p = 0. 

Similar ly ,  ii p > 0, wc would cxpcct Ia rgcr  valucs of y. 

If it i s  possiblc that p !nay bc any value. pick the  constant C 

so that 

P[lyl t C] = n : 

then A = (-C, C). If n = 0. 05 and n = 10, tllcn C = 2 .  634, from 
a tablc of the c distributlon  with 0 dcgrces of frcrdcm. 

if it is known that 11 '1 0, Lhcn p i L k  C 5 0  that 

q y Z C ] : a  : 

Now, A = (-io, C) F o r  n = 0 05 and n = I O ,  C 2 228. C is 

choscn  differcnt!y In this case ,  sincc  ncgativc valucs of y cannot 
bc tluc to p < 0. 

This  t cs t  is called thc t t r s t ,  two-s lded  if  a l l  va!ucs of p are 
possiblc, a n d  onc-sided if  only 11 2 0 (o r  11 5 0) is possiblc. 
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Elg(X)l 

E[B(X) I Y1 

VX 
2 ux or Var (X)  

OX 

oxy or  Cov ( X ,  Y )  

PXY 

=X 

d - 
iid 

Xn 
2 

Random variablca 

Valucs takcn on by rmdorn  vurialrlus 

Sample space  

Density  function of X 

Distribution  function of X 

Probability of A 

Conditional  density  function of X given Y = y 

Expcctcd  valuc of g(X) 

Expected  valuc of g(X) givcn Y = y 

Mcan of X 

Variance of X 

Standard clcviation of X 

Covariance of X and Y 

Corrciation  bctwccn X and Y 

Covariarlcc  matrix of the  vcctor of randon 
var iables  X 

"is dis t r ibuted as" 

Normal  distribution  with  meon 9 and 
variance u2 

Convcrgcncc in distribution 

"indcpcndcnt  and  idcntically distributed" 

Chi-squarr  distribution  with n clcgrccs of 
lrccdorn 

*with exceptions. 

- 
X 
'! 

Smlplc   vor iancc  

t dietribution  with n dcgrccs  of frccdom 

Ilcaignatcs estimates . .I 
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3. m s  LEAST-SQUARES MGI)EL 

Thc  general  modcl i s  

Y = f!Z ] ,  . . . , ZP' c )  

for somc function I, where Y is  thc  "dcpcndcnt  variable," that is ,   thc vari -  

able that   i s  to  be prcdictcd: Z I ,  . . , , Z l r r l  thc "indcpcndcnt  variables," 
that  is,  thc  variablc  that  will bc uecd to predict  Y; and c i s   t h c   c r r o r  s r  

rcsidua!  tcrm.  This  inclodcs all  e r r o r s  - for  cxumplc, in  nrcasurcmcnt - 
and a!l cffccts - that   is ,   othcr  variablcs - that arc not inchdcd  in thc modcl. 

c in a random  variablc  about  which wc want  to makc ae fcw assumptions an  
possiblc.  Thc form of thc modal is dctcrmincd by physicol  conyidcration8 

(whcn  known),  judgment, and trial  and c r r o r .  

P 

:n m o s t  of this   papcr ,  wc will  corrsidcr a spccial  case called the l incar-  

additive modcl: 

Y = P I X l  t , . . + P,Xk + c , 

whcrc  the X . ' s  a r c  known functions of thc Z i ' s .  and  the p i ' s  =:c constants. 
presumably unl;nown. Thc t c rm l inear  re fers  to  the  condition  that thr: nrodri 

bc l incar  in  thc  coefticicntc and  in  thc  rcsidual  tcrm. 

Examplc 

XI = cos J5i , 

x2 = CXP [ Z  I I 

xg = I/log 2 , 

2 

x = I  * 4 

2 )  Y = P I  Zp2 t e Is not l lncnr  unlcas p2 In known. 

2 9  

Orrnsionnlly i t  I S  p u ~ s i b l e  to t ransfornr  t o  a l incar modal. For cxamplc, 
\V F e x p [  p. '  I v i  can bc t ransformcd to  

. .  
'Shroughout 1111s papcr ,   assumptions wiil bc made a s  nccdcd. Oncn madc, ' . 

. .  

a l l  ilHsul-sptlonR a r c  LO i ~ c  carried  through  unlcss i t  is othcrwisc  s ta ted.  , 

,' ' , 

. .  
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4. THE 5ROBLEM AND ITS SOLGTION 

Vcry  simply,  thc  pro1)lcm is that 1 3 , .  , . . , 13, a r c  unknown  and sonlc 

cst inlatc  of them  is  nccdccl.  Possible  rcasons  for  needing  the  cstimatcs  arc 

1 )  TO tcst   hypothcscs about P I ,  . , . , 8,. 

2)  TO bc able to predict  Y from sonlc futurc  ohscrvation  on X I ,  . . . , Xk. 

3) To tcs t   thc   cor rcc tncss  of tRc modcl. 

To cs t imatc  P I ,  . . . , p,. two  things arc  ncedcd.  Firnt ,  wc mGst havc 

6omc  data.  Lct us asswnc that wc have n (n > k) ohscrvations  of  the 
(k t I)-componcnt  vcctor ( X  I ,  . . . , X k ,  Y). ( I f  n 5 k ,  thc  probicm  is  nct 
s ta t is t ical .  ) Lowcr  casc  lc t tcrs  will bc uscd : o  dcnotc  thc  observed  quantities, 
and the subscr ipt  u will I I C  used to dcnotc thc numbcr  of  the  obscrvation.  Note 

that  thc  distributiorr of the  residual  variable c may bc different  for cach u. 4 . I  Anything  that  is  said  about e (without a subscr ipt)   i s   to  be intcrprctcd as t rue . .. 
for   cach cu, whcrc  applicablc. 

Sccond, sonw criterion  is   nccdcd. It  should  come as no surpr ise   that  
the  cr i ter ion  to  bc considcrcd,hcrc   is   to   minimize  thc  sum of the squared 

e r r o r s ;   t h a t   i s ,  8 , .  . . . , $, arc   choscn  to   minimizt  

n 

u= I .. 
whcrc  

Hcncc,   thc   term  lcast   squares .  

31 
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Why this   cr i ter ion?  Thc two main   rcasons   for   us ing  lcast s q u a r e s  
~ O I I O W :  

I ) 'She solution  for t h  l incar   ranc wc arc   working  with is mathemat ica l ly .  

casy .  

2 )  Thc  cs t imatca have nome nice  propcrtics.  

Unfortunately,   thcsc  nicc  propcrticn  swnetinws  brcak  down,  and  evcn when . 
thcy rlo not,  thcy a r r  not always o p t i n d .  

'So kccp thc Rotation  managcablc. we will  use  matrices: 

Y =  

Yn 

Primcs  dcnotc  transposes. 

In  matrix  notatirn,   the  modcl  is  

y"=xpt  < , 
A 

and P is   choscn to minimizc 

r r h  
(Y - Y ) l ( Y  - $) . 

32 
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By taking  derivatives and sc:ting thcrn  cqual  to zero, we obtain  thc  normal 

equations 

h 
SP = SY , 

whcre S is  i 4 X k syrnmctr ic   matr ix  dcfincrl hy 
. n  

u= 1 

and Sy i s  a k-cornponcnt  vector  dcfincd by 

n 

sYi=  xui  yu or sY = X I ?  . 
U' 1 

i s  thc  Icast-squares  estimate o r a .  It is   Important LO note  that X, and  hcncc 

S, have  bccn  treated as matr iccs  of constants.  This  is  thc  traditional 

approach.  In  cficct,  the  problem is considcrcd i n  t e rms  of what  can be said 

about Y l o r  givcn  valucs o i  thc  Xi's.  Because of thls ,  a l l  cxpcctations  that 
follow arc  really  condltlonal on X, although  this  will not bc cxplicilly  stated. 

Assumption 3 .  S is  nonsingular. 

Assumption 4 .  E[c] = 0. As  stated  above,  this  assumption  is 

real ly   E[c)X] = 0 .  Sincc  this  should bc trllc lor  any value of X,  it 
is   ncccseary  that  e bc uncorrclatcd  aith  thc  X.'s. 

With  Assulnption 4, Lhcrc is   anothcr way of looking at  the modcl ,  aincc 

i- 1 

mcans t h a t   f o r   o a c h   ( x i ) i l ,  Y has  a distribution  about  thc  mean  valuc 
dht r ibu t ion  being  that of thc  random  variablc e .  Thc  curve 

" 

v\.-: , . , . . 

pivcn  by  formula (4) i s  cal lcd  thc   rccrcssion  curve  (hcncc  thr   tcrm  l inear  
r c g r r s s ~ o n ) ,  and  it is t h i s  curve  that we wish to c s t ~ m a ~ c .  

'l'hcorunr IO 

It E ( c )  = 0 .  Lhcn E [ p ]  = f3. 
Ir 

Assuml,t~on 5 E[c.c 1 = u2 6 . .  where u2 is B constant  and 6 .  i s  

K r o n r r k c r ' s  dclta: 6 .  ', e if i f  i =  j. That is ,   the   rcs iduals   arc  

u n c o r v l a t c d  and  have  constant  variance 

! . I  1 J '  1J 

- ~ h c  a s s t ~ m p t ~ o n   t h a t  thc rcsiduals   arc   unrorrclatecl   i s  less rcs t r ic t ivc  

t l ~ a n  1 5  an assumption of inrlcpcndcncc, but there  is lrttlc  practical  diffcrcncc. 

This  assumption makcs thc  following  thrcc  thcorcms  possible:  

"I_ 

Thc?rcm I I 

Lct c = S - I :  thcn ~b = u' c  hat IS, ~ a r  (6,) i- u' cii, and 
c o v  (6,. 6 . )  = 2 c...  

J ' J  

Thcorcm I2 

Let d u  = yu - thc  observed  rcsiduals,  and sL 5 1- 
Thcn. E[s2\ = u2 u= I 

n - k  dt 
Using  thcsc two theorems,  we have 

whcrc X = (xI, . . , x j ' izsornc  futurc  observation.  This  quontity  is   the 
variance of thc  prcdictyon  xiEi  The  tcrm u 2 X '  CX iH due  to  our nor 

knowng p, and u2 is   due  to   thc  res idual   tcrm.   Thc  e tnndard e r r o r  of pre- 

(liction i s  s d m .  
i= I 

Thcorcm 13 (Gauss-Markoff  Thcorcrn) 

If wc consider only cs t imatce  of l inear  functions of thc p . ' s  that 
a r c  
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and 
I )  unbiased and 

2 )  I ~ n c a r  ft1nc:ions of  thc y I s ,  

then the  \cast-squarcs  n~ethocl  givcs  thc  cstimatc with  minimum 

variancc ( for  a l l  i incar  funrtions of thc B , ' s ) .  

This last throrcnl  clctails  the I I I C C  p'opcrtics  that  wcre  pronlisod  rarlicr. 

It says that   thr  Icast-squnrcs  vstinlatc is bes t  ( t h a t  is, 1nin11nun1  variancc 
unbiasctl) in t!rc clanti 3 f  esti11mtc.s t!.at arc l incar  Iunct'ons of thc y '3. 

T l 1 i s . i ~  nicc:.  I,ut t iwrc IS no rcason  fur  rcstricting  oncsclf   to  this clasu i f  a 

bcttcr c ~ t ~ m a l c  ran  Iw found. 

Whcn thc. 1nodu1  rontains a ronstdnt  tcrnl,  s a y  p,, then a n  al tcrnat ivc 
mcthod is available Smcr thc Icast -squares  solutlon ior p is k 

k. I 

, ..*, i -_ 
. ' i. 'thc cs t imntcs  of I . . , , P k m l  can I)c obtained by consldcring  thc modcl 

. .  . ,.', 
I 

rcwri t tcn a s  

two points  to  notc.   Flrst ,   thc f i t tcd curvc gocs through  the  point 
" 

This YhOws w r y   c l e a r l y   t h c   p r i c c  paid for cxtrapolation in  t c r m s  of large 
s t anda rd   c r ro ry  

N o t c  that 1 1  has 1101 yet  b~.e11  ncccssary to assu lnr  a dist r ibnl ion  for  thc 

stateIncnts  about  the  solullon.  for  cxanrplc  significance tests. 

.. . . 

k- I 

yu Y +x Pi(SUi - X ] )  + cu , 
- 

is I 

' whcrc 

" 

57, = X U I  

u= 1 

e~ ' and 

u= I 

' ' If S and S arc modified  to 
Y 

n n 

,. a 

J '  . .  

n 
V) = 2 ;  xui y, - n xi Y , " 

u= I 

?'his al tcrnat ivc proccrlurc will  not bc lncntioncd  again,  but  thcrc arc 

36 
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Usually,  thc  normal  distribution I S  assumcd.   lo r  two main  reasons: 

F i r s t ,  owing to   rcsul ts   such as  Thcorcnrs I t o  3,  thc  nornral  distribution 

is frcqucnrly J very good approsirnation to thc  rcsirlual  distribution.  Sccond. 
thc normal  distribution is tllc eas ies t  t o  \vork  with:  that  is,  tests  arc  availablc 

using  tcst   statist ics with known and  tabulntcd  distributions.  In  thcory,  it  is 
possiblc Lo find  tcsts  and  thc  distributions of thc i r   t cs t   s ta t i s t ics   for  any 
assumcd  dis t r ibut ion of e .  111 practicc,   the  cffort   is  usually not  worth  it. 

Onc additional p w n t  al,out normality is that i f  thc c 's arc   normal ly  

dislributcd,  lhcn tlrc ~ i ~ a s i n r r ~ ~ ~ ~ - l i k c l ~ l , o o d  cstimatc is thc   samc a s  thc Icast- 

squares   cs t imatc .  This has t\vo  inlplications.  Flrst,  thc  'cast-squarcs 
cstimatc has ,  In this  rasc,  thc  additional  nicc  propcrty of bcing  asymptotically 

minimunr-variance  unl~iascd  among a l l  cs t imatcs ,  not lust  ;m;ong thosc in thc 

rcs t r ic tcd  c l a s s  ~ o n s ~ c l ~ * r c c I   c a r l i c r .  Sccond. i f  thc d i s t r i l ~ ~ ~ t i o n s  of thc c ' s  

a r c  known  and a r c  not normal.  it may  bc  prcfcrablc to usc  maximum  likcli- 
lrood lather than  l ras t   squares .  

tlicn.  nlaxinium  likclihood sayn t o  thoosc fi t o  nlinirllizc 

n " 
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What I S  d ~ ~ l r c * ( l  I S  that   equally  probablc  dcv~ations be t rcatcd  a l ike.  In 
the a b o w  esample,  I f  IJjc : = P I C  2 to] , thcn -6 and +a arc   cq twl ly  

Ilkcly  dcvlatlons. The quantity  to bc nlinimiscd  should takc this  into  account. 

Least squarca d o c s  n o t .  

Assumption 6. PI ,  . . . , c a r c  iid N(0.o 2 1. 

This  assumption will bc uscd 3 for  thc slpnificancc tes ts  that arc  to  

follow, unlcss  othcrwisc  statctl.  Results not  conrrcctcd  to a tes t  do not rcquira  
this assurnptlon. 



. .  

Thcorcrn 14 

If c I ,  . , . , c arc  iid N(O,r") ,  then 

bi  - N(pi, cr2 Cii) . 
Also, I (  P and R a r c  two  k-dimensional  vcctors of constants, :hcn 

P$ - N(P'P,  

and 

[Rcmcrnbcr: C - r2 C. ] 0 -  

. .  - 

paper :   repr rss ion  whcl: thc X . ' s  arc   obsr rvc l l  with e r ror ,   and   ncnl incar  

r r e r c s s i o n  In  this  acrtlon, we will  work  wrth  the  linear-additive  modcl 
and assume that thv X ' s  a rc   ohsc r \~cd  without c r r o r .  

-" 5 I ':Ill> hlodc I 

k 
Thr n~oclcl I S  Y = X (3. I c ,  wI:crc c' contains all  e r r o r s  in  the  mcas- 

. F ;  I I 
r~r<.mcr~f  of Y and t11c c ) fcct  of a l l  t h c  var iab les  not  included in Ll?c nrodcl. 
Assun\ptlon I was th.tt thia model   i s   cor rcc t .  A l l  the r c s u l t s  tbat have  bccn 

p ~ \ c n  and  that w i l l  fo!lou, dcpcnd on this  assumption, no thln  ansurnptlon  is 
an  Important o m  tc chvch. r"ortunatcly,  howcvcr,  all  the results remain  ' : 
very  ncarl)  valid a:( long a s  tlw model in close tn  bcirrg cor rcc t .  

Wlmt would  it t;.kc for  the rnoclcl to  br: incor rec t?  An incorrcct   nrodcl  

can bc charac tc r izcd  by a correlation  bctwccn  thc du's  and  onc of thc  variables.  
This 1.orrclation  can be causccl by the  following: 

I )  Thc X i ' s  bcina usad a r c  tlrc wror\g funct ions of the Z . ' s .  

i) A var iab le .   cor re la ted  with thoac bcing uscd. has  bccn left 0t.t o l  the  
Inotlcl. 

3 )  Thc true  rcKrcssion  cquation  is   not  l inear.  

I .  

I 
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A lack of fi t   duc  to  thc  nonlinearity of the   t ruc   rcgrcss ion   can   somet imes  

bc  eliminated by restricting  thc Xi 's  t o  a rangc on  which khc l i n r a r  model i s  
a-bct ter   approximation.  If this  cannot I w  done.  it is ncccssary  to  u6c a nnn- 

l inear   proccdurc.  

I Thc  two  principal n7c nods for  checking  this  assumption  follow. 

5. 1. 1 A tcst   lor  goodness of  lit 

This   t es t   assumcs   tha t   for   cach  ( x u l ,  . . . , x u k ) ,  nu  (nu .> ! )  ohwrvat ions  
.of Y havc  bccn  takcn: y U I ,  . . . , yun . Then. (or cach u 

U 

where 

will  always bc an  unbiascd  cstl l .utc of 0 2 ,  whcthcr  thr  model is cor rec t  o r  
not, By conlbinlng  ovcr u.  

will be an  unbiascd  estimate of u2 .  By Thcorcrn 12. 

numu - EJ7. 
, , 2 u-1 fil = - 

n -  k 

42 

will bc an  unbiased  cstirnatc of u2 if thc  model  is   correct.  If the   model  is 
wrong, sf will  be inflated by thc   d i f fc rcncc   I>r twrn   thc   f i t t ed   regress ion  . .  
l ~ n c  and  thc truc rcgrcssion  l inc.  s t  is callcd  the  lack-of-fi t   term  and is 
obta lwd I,y l rcal lng y, as  thc  observation of Y correspoxiding LO . <  

( x I l I ,  , , , and  thcn  weighting  invcrscly tc. thc  variance  (which  will bc - 

covr r rd   l a t c r )  .llso. s: is  indcpcndcnt of sf. T h i s  docs not  constitute a 

rwnplctc proof ,  but to scc that s 2  and si a r c  indcpcndcnt,  consider 

- 

I * . .  ! 
n n 11 

n n u  

(Yu, ,  - =x (Yuv - YU + Y,, - 9,) 2 

\1= I v- I \..= 1 r- I 

n n u  n n u  

u-I v=! u-l v - I  

n n 

u-1 G I  u- I 

and usc thc following  Icmmn: 

L e m m a  

1; g,. . . , gn i i d  N ( 0 . u  ) and v c n, thcn 
2 

" 

and T I  and  T2 arc independent. 

43  
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Bcrorc  thc  test  is stated. a discusaion of thc  dcgrccs of frccdom of 

variance  cs t imatcs  is ncccssary.  In gcncral ,  a variancc  cstimatc is of thc 
f o r m  S2 e f 65,  whcrc  g.  is somc function ol thc  jth  observation  and 

m 2 1 .  P i?:<cmstant equal  to  thc  numbcr of indcpcndcnt  observations 
minus  the  nwnbcr of paramctcrs   cs t imatcd  by those  ohservations.  As  an 

cxamplc, lor s:, thc  (yu):=l arc n indcpcndcnt  obscrvalions  and k 
paramctcrs   havc  bccn  cs t i tnatcd ( P I ,  . . . , bk) ,  so 1 = n - k. In that  casc.  
g. = (7. - $ . ) .  I is thc  numbcr of dcgrcss  of frccdom of thc  variance 

cstimatc. I f  UIC distribution 31 g i ' s  i a  N(0 , f f2 ) ,  a s  is thc casc for  sf whcn 
Lhc modcl  is  corrcct  and  Assumpiion 6 holds,  then 

m 

._ I J 

A 

J J J  J 

m 
r . 2  

(Thc numbcr ol degrccs of frccdom of rhc X' disrribution  is  I not m, a s  might 
a t   f i r s t  bc cxpcctcd, bccansc Lhc g ' s  arc   dcpcndent . )  

J 

By this  result  and  thc  Icnlma, 

2 

"r 2 F( I I  - k, e ( n u  - I ) )  
sz u= I 

if thc  modcl is cor rec t .  i f  the  modcl  is  wrong, a Iargc valuc of the  test  
statist ic  is   cxpcctcd. Tire t c s t   i s  t o  rcjcct  thc  hypothcsi..  that tI:c modc! is 
cor rec t  if 

9. 2 
. I s  2 - c  I 

' 2  

whcrc C is obtaincd  from a tablc of thc F 
thc  choncn  signifirancc  Icvcl. 

If thc rcsult of thc  test  is not significant,  thcrc  is  littlc  nced  to  worry 

about a lack of fit.  All  rcsultn  will at lcast  IK. vcry  closc to  bcing  conlplctcly 
vnlld. If thc  rcsult  ia signiflcnnt,  sonlc  othcr  proccdurc  must  be uscd t o  

determine tho CJUHC of thc  lack of lit so that  it   can bc corrcctod.  

Ii mult iple   obscrvat ions  arc   not   avai lable ,  an es t imate  of g2 from another 

set  of data   can be uscd as  the  denominator of the F test   replacing  (nu - 1 ) '  : 
by thc  appropriate  numbcr of dcgrccc of frcedom.  Thc  only  rcquircmcnts 
that   th is   es t imate   must   sat isfy  arc   that   i t  bc unblascd,  whether  thc  model is " 

c o r r e c t  or  not,  and  that  it bc indcpcndcnt of s 

n 

u=l . , 

. .  

2 
I '  

5 .  I .  2 Rcsidual  analysis 

Rcsidual  analysis  will bc uscd to  check  goodness of f i t  if the F tes t  
cannot bc p c r f o m x c l   o r  to   t ry   to   d i scover   thc   causc  of the  lack uf f i t  if the  
tcs t   rcsu l t  was significant.   l lcsidual  analysis  has  other uses. s o  i t   is   best  ' 

t o   s t a r t  with a gcncral   ovcr \ icw of thc  proccdurc  beforc  going  into  the 
spccif ics  of this  applicatior,. I 

Thc basic  idca behind  rcsidual  analysis  is  that  if  the  r\ssumptions  are 
, .  

corrcct,   thc {eu):=l a r c  n uncorrclatcd  random  variables  (possibly  normally , . .. 
dist r ibutco)  with mcan 0 ar.d variance u2, Thc ( ~ l , , ) : = ~ ,  bcing  cstimates of 
( c ~ ) : , ~ ,   s h o ~ l d   t h e n  look  likc a samplc  with those propcrt ics .   In   fact ,   thc  ' 

d ' s  have Lhc covariancc  matrix m2(I - X(x' X)-' X ' )  (do21)  and so a r c  
cor rc la tcd .  but this  cffcct 1 8  ncgligtblc  unlcss Lhc rat lo  (n - k ) / n  is very   smal l .  . , ; . 
Thcrcfore ,   the  d 's should  appcar to be uncorrclatcd.  to  have  constant  variance, 

and to DC uncorrelatcd  wlth  any of the   var iables  in thc  modcl. 

. .  , I  

< .  

Usually, a rcsidual  analysis  will  give  sornc  idca of which  assumptions, . 
i f   any ,   a rc  not valid  and  how, i f  ncccssary ,   thc   es t imates   can  be corrected.  . .  
Thc  proccdurc is t o  cxaminc  plots of residuals,   f irst   ovurall  ([or uxamplc. 
a s  a histogram),  and  thcn  against 

. .  
I )  Timc,  if known. 

A 

2 )  y 

4 )  Anything clsc t h a t   m n k c s   a c m e   f o r  a part icular   problem.  For  , '  , , , . . I  

example, if thc  obscrvations  cumc  fro:n  thrce  diffcrcnt  stations,  thc  residuals 
lor cach  station  could bc plottccl scporatcly.  I .  

; ' .. 

4 4  
4 5  
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When  the  residuals a r c  baizg rxa-ninctl for goodners of fit,  the  following 

shou1dpc:looked  for: 
A 

I )  .Plot agi ins t  Y or X .  ( j  = 1 ,  . . . , k) . ,,.: .:. ' 

J 
Thc:rc&duals  should  lic in a horizontal band: 

. 
. .  . , 

< *  
no*.ro) 

.. ' I 
I 

If t k y  do not,  something  is  wrong. For example, 
0>9-11J , .  

. If thin  occurs in a plct  against 9 ,  I t  indicates  that a cunstant  term was left 

out.  In a plot  against scme Xi, it indicates   an  error  in tho calculations. 

Jf ' th is  Is a plot  against Xi, i t   indicates  that  an X2 term  ie  needed; I f  against c, that  some variable  nccds  to be added  to  the  model. 
J 

8 

. .I ..: 
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It i b  possiblc  to  test  thc  randomncss of thc pattern of the  sign of thc 

rcsidualu. Thc tes t  is callcd thc sign  test  and  docs  not  rcquirc  thc  normality 

assumptlon. 

S ta r t  by counting thc numbcr of runs .   For  cxamplc,  

i t - t t b 1 " -  

has  four runs. Thc t c s t  is   to  rcjcct   thc  hypothesis of randonlncss if  thcrc  

a r c   t o o  le\\, runs. For 5 m a ) i  n, a spccial   tablc  (such as  in  Drapcr  and  Smith, 
1966) m u a t  I)c. rc fcr rcd  1 1 1  for thc distribution of the ' e s t  stat is t ic .  FG: Large 
n, UIC fo l lo \ r lng   norm.~l   a l~pr~~xi~n;~t ion   can  bc uscd. Lct 

n = numbcr of positive  signs, 

n = nunlbcr of ncgativc  signs  and 

W = number of runs. 

I 

2 

Thcn. if n1 > IO and nz > I O ,  

z = w -  put I "  - N ( O ,  I )  (approximately) , 

whcrc 

, , = " E +  I 
2n n 

n I  + n 2 

and 

Reject  the  hypothcsis if 2 ie  too  small 

.. 5 .  2 Thc Solution 

Thc  assurnption  that S is   ncnsingular  is   not  gcncrally a problem.  Swil l  
bc  singu!ar I f  thorr a r c  somc  l incar   re la t ions  among  thc X . ' s .  In that  cam, 

Lllc normal  equations  will  havc  an  infinite  numbcr o l  so:utions, all of whlch 
arc   ccpivnlcnt   in  thc scnsc  that  thcy  givc  cxactly  thc  samc  predicting cqua- 

tlnn.  'l 'hcrc  arc  two  ways of handling  this  problcm. 

First, i f  Lhcrc a r c  P l incar  rclations  among thc Xi's,  you  can  cithcr  drop 
I of the S ' s  or  introrlucc P constraints  on  thc (3, 's. 

Exanlplc  (Cochran, 1969) 

Lct I1 = 4 ,  suppos': x u 3  = hu2 - X U l ,  11 = I, . . ., .I, and let 

I 4  39 25 
s =  (;; ;;; 

S Y '  (2YJ 
and 

Solution I :  Put fi3 1 0 and s o 1 t ~  f o r  ft, and ft, (this  is  cqulvalcnt 
to   dropping X ) 3 '  

39 i58 
\ 

Then. 

A I  yu = (2250 sUI 

A eipif icnnt   rcsul t   could  poeaibly be cluc to eomc uncontrolled  variable 

changine valucs. In  particular,  thc.rnngnitudc c f  n sys temat ic   e r ror  rrlay bc 

changing., 

48 
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Solution 2: Put 6 i p', t 0 = 0. Eliminatc any onc of thcnl  from 
1 3 

. .  thc normal  cquhtions  and  solvc: 

A I  y,,= 611 ( -  468 x,2! t 3186 xu2 - 2716 X ) 
\I 3 

= &-J (2250 x u l  t 468 x uz) 

Thc  ~ c c o n t l  mcthod 1s to  find a gcncralizcd  inverse 3f  S, that   i s ,  a 

matrix.  Sg, that   saflsfics 

.c,sss= s 
At  lcast  OIW grncralizcd  lnvcrsc  exists  for .Iny rnatrix. I f  S 6  can bc found, 

fs z s' sy 

. is the  Icast-squares  solution. Ran (1965) and Graybill  (1969)  discuss 
methods f o r  finding SR. Notc  that S6 = S-' i f  S-' cxis ts .  

The  (unction P'p of tlw P . ' s  i s   sa id   to  bc estimable if thcrc  cxists  an 
n-comporacnt  vector R such  thst 

E(R' ?] = P'p , 

that is, if thcrc   cxis ts  a linear  combination of the y, ' s  that i s  an  unbiascd cst i -  

nlatc of P'P. I f  thcrc  a r c  ] incar  rrlatlons among the x.'s. not  a l l  ] incar   com- 
bina!ions of Lhc p . ' ~  arc  cslimable, in contrast  to  thc case  nf no l inoar  rcla- 

tionu, w l ~ c r e  a l l  l incar  crrmb~nations of thc 0,'s a rc   e s t imab le .  

Theorem 1 5  

I )  P'p is   cstirnablc if and only if  P'(1 - Sg S) = 0, \vhr.rc S6 is 

any  gcncralizcd  rnvcrsc of 8. 
2)  If thcrc   cxis ts   an I Y k ( I  < k) matr ix  G auch  that G X' = 0 ,  

thcn P'p is cntimablc i f  and  only if G P = 0. (G is rhc matrix 

of the cocfficicnts of thc I linear  rclntions  among  thc  Xi's, ) 

3 )  If 6 is any  solution 01 the  normal  equations  and P'p i s  
. cst1mnb:c. thcn  ita  uniquc estimrtr is P'P. This  mcane  that  il  

P'P is cstirnable, thcrc i s  exactly one  lincnr  combination of the 
yu's that i s  an unbinecd  cstimatc of P'P, nirmcly PI$. 

. . ,  50 
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Assumption 4 \vas that Elcl E 0. If thc  mock1  contains a constant  term, 

this   assumption will aI\ways  bc cffcctivcly  valid.  Supposc that E[c] = pc # 0 
and  that p is  thc  constant  Lcrnl.  Thcn, k 

k-1 

Y =x XiPi i P, t c 
i= I 

k- I 
= XiPi  t P,* t c y  , 

i= I 

whcrc P i  = Pk t pc and c':: = c - pc.  Sincc  E[c"J = 0, tllc n:odcl has  bccn 

t ransformcd s o  a s  to  satisfy  the  required  condition. Thc Icas t - squar ra  
proccdurc will &:o ahcad   as  i i  (6) wcrc   thc   cor rcc t  model instead of (5) .  and 

all the  cstinnteti  cxccpt for the  constant  tcrm  will bc unbiased.  This coilld 

bc takcn a s  an  argument  lor always  including a constant   tcrm in the modcl,  
since  if   thcrc  is  no constant  tcrm  and if p # 0. all  thc  cstimatcs  will be 
biased by somc unknown amount.   Thc  estimate of p *  will h a w  mean 

k 

Thc assunrption  that E[e 12.1 = u261j  is   unncccssary.  Suppose that Z:, is 

the  covariance  n-atrix of thc c ' s :  
1 J  

Thcn, 

. .  , . .  ? . x p t t  

52 
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. 
T h c  Causa-hlarkofl   Thcorcnl  appl ics  to p^ obtained  this  way.  In  the c.Il1c ' .  

where x is   diagonal  ' that   is ,   whcrr  there  are  uncorrclatcd crr. ,rs) ,  thil! i s  
called  weighting  invcruc!y to  tbe variance. Sir;cc if  Vxr (eu) = u:, :hen ' 

v i e c  uniquc  positlvc  dcfinltc  squarc Toot of Z and X;'''' i s  i t s  ' ' ' ' 

in%crsc. 

- .. - 
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2: i2 c; , 

whcrc 

\i'hat happens  if  the  wcixht  matrix  is  not  uscd when  it  should bc?  Con- 

sistunt  unbiascd  cstimnlcs o f  the p i ' s  will  still bc obtaincd, but they  ail1 not 
bo thc  rninimum-variance  cstinlatcs  and s z  w i l l  not be an  unbiascd  cstinrntc 

of u2: 'Chis c l f c ~ t   i s   s n l a l l ,   h o w c v c r .   i f  thc  corrclations  bctwccn  thc e ' s  

aro vcry s k a ~ l  and if the m:ts (10 not  vary  grcatly. 

'. 
... 

54 
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Two  mcthods can bc uscd to  dctcct  that  thc  variances  arc  not  constant. , 

T h c   f i r s t  1s rusldual  analysis.  Dcviat lons  f rom  constant   var iance are charac-  
LcrlLed by dcvlations  from  thc ho:izonral band that a rc   symmct r i c   abou t   t he  
A 
y,, (o r  Llmc) axis. For  oxnmplc,  

009 . , o  

This  lndicatcs Lhat cr', tncrcases  with ^yu. The  following is   a lso  cvi  

nonconsLanL varzancc. 

"- i- Yu 

In many cases ,  2 nonconstant  variancr:  indicates  that  anothc 

dcncc of 

r var iable  
should bc included  in  thc modcl. If it  is  possiblc to dctcrminc  what  that  

variable  should be, it  would bc prefrrnblc  to  include it in  thc  modcl  rather 
than  trying  to  cstimatc  the X matr ix .  

An  approximation  that is availnblc if nccdcd i s  

5 5  
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where is somc  function  and Q mcans  proportional  to. In thc f i r s t  cxamplc 
abovc, 

This  would rcquirc  two  Icast-squares  solutions: thc f i rs t   to   dctcrminc 0 
from  unwcightcd  cstiniatcs of p ,  and  thc  second  to  dctcrminc  thc  weighted 

.cs t imatcs  of p using  this  approximation  to  thc G matrix.  

11 multiplc  obscrvations  on Y arc  available  Iot   at   lcaot  scmc oC thc 
( x u l ,  . . . .  xuk), it is   possiblc  to make Bart lc t t ' s   tes t   for  hornozcnc- 
var ianccs .  

Suppose  that  for u 1 ,  . . . .  rn C n, t h c r c   a r e  n > I obscrvations  on y 

coi rcsponding   to   (xu l ,  . . , , xuk). ~ c t  

and 

r m 1 m 

r m, 1 

L u= 1 J 

Thcn, I f  tllc hypothesle of equnl varlnncce Is correc t ,  

. . .  

and  the  tcs t  is to  rcject   thc  hypothesis if M / C  is   too  largc.   This  will   test '  
only  thc  equality of variances  at   thosc  points Cor which  thc  multiple  obscrva- 

t ions wcrr availnhlc. 

Thc rc   a r c   two  pro!>lcrns  with  this  test: 

I )  It i s   vcry   scns i t ivc   to   dcpar turcs   f rom  normal i ty .  

2 )  Thc x '  approximation is not  vcry  good it  n 5 6 ,  although  special  

tnblcs of Lhc r l l s ~ r i b u ~ i o r  dc cxist   for  that   case.  

5 .  -I N o r m n l l t y  

Thc  r f fcct  of any  dcparturc  from  normality is that  the  actual  significnncc 
lcvcls of a n y  L P S L S  uscd arc   different   f rom  thc  s tared  values .  For the F and 

t tcs ls ,  i f  thc departure  from  normality  is   not  large,   whcn a 5% tes t  i8 stated. 
Lhe rcal  skgniflchncc  luvcl  will be on  thc  ordcr  of  7 to  10%. As a general  rule, 
F and  two-sided t t r s t s   a r c  l ess  affcctcd by dcpar turcs   f rom  normal i ty   than  

is  thc  one-sided t tcs t .  TI:c one-sided  test   is   strongly nfCcctcd by azy 
skcwncss   ( that   i s ,   dcparturc   f rom  symmctry)  of thc c dis t r ibu t ion  

Thcrc  are   two  rcasonnhlc   mcthods  for   checking  normali ty .   The  f i rs t  is 
to  construct a histogram of thc  obscrvcd  rcsiduals du. This   is   then  comparcd 

to  thc  histogram  that would br! cxpcctcd if thc e wcrc  normally  distributed, 

with chc cstimntcrl  vari;ncc s2 bcinfi used.  Th:rc a r c  two mcthods of making 
this  ccmpariuon.  Thc  f irst  is tllc x '  goodness-of-ftt tes t .  Lct ""- 

I .  . 

whcrc m is   thc  numbcr of c l a s s c s  in :hu histogram, Gi is   the  numbcr 

obscrvcd  in  thc  i th  class,   and  Ei  is   thc  numbcr  cxpcctcd  in  thc  i th  class;;  ;..' ' ' .  

Thcn.  approximately, 

, .  

, '  
. .  , .  
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and  the  test  is to   re ject   the   hypothesis  of normali ty  if  G ia too large.  * For . 

the x' approximation  to  be  good,  the  distribution of e should be nea r   no rma l  
and  the  classes  should be chosen s o  that   E.  2 1 (i = I ,  . . . , m). 

The  second  method of compar ison   i s  the F reeman-Tukey   t e s t .   Le t  

using the same  notation as  above.  The  approximate  distribution of V i s  the 

sanw 8s for G. The  test is to  reject  if V is too  large.   This  test   docs  not 
require  that  the  distribution of e be near   normal   and   i s   a l so   much  less   scns i -  

tive to small   values  of Ei .  (When  any  E.  is  small,  a  small  change  in  that 

E. can  result   in  a  very  large  change  in G.) 

The  second  method  for  checking  normality is a  normal   plot .   Let  @ 

denote the standard  normal  distribution  function;  that   is ,  if W - N(0, 1 ) .  then 

P[W 5 w] = O(w). Suppose the r e s idua l s   d   dn   a r e   o rde red   f rom 
smallest   to  largest .   Then,  plot   dU  versus O (U/ ( I I  t 1) ) .  A  sample   f rom ' 

N(p.0') will  lie on  the  line  through (p, 0) with  slope  l /u.   Special   paper i s  

available  (for  example,  from  Keuffel 6 Esser )   tha t   t akes   care  of the @-', so 

that  only  dU  versus  u/(n t 1 )  (or  (3u - l ) / ( 3 n  t 1))  need  be  plotted. 

l ' - i " '  

Unfortunately,  this  plot  is  not  very  sensitive  to  small  departures  from 

normality, but it  should  show if something  really  horrible  is  happening, as 
in  thc  following  sketches: 

*In general, C - x;, where 1 = (number  of   c lasses)  - (number of es t ima ted  
pa lame te r s )  - (number of constraints  on  the  Ei).  In  thls  case, u2 i s  
es t imated  and  the  E(   are   constrained by E E i  = n. 

I= 1 

'Anscornbe  and  Tukey ( 1 9 6 3 )  rccommcnd  the  use of @ - I  E34 -1) / (3n  t 1 % .  , : 
' . , .  

58 
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"- 
This  implies  large  tai ls ,   that  is, 

009-113 
, f ( e )  

NORMAL 

ACTUAL 

NORMAL 009-113 

This  implies  skewness: 
009-113 

NORhlAL 

ACCTUAL 

Another  possible  test   for  normality,   which is not so e a s y ,   i s   t o   t e s t   f o r '  ' 

skcwncss  and  kurtosis.   Suppose W i s  a random  variable  with  mean p and . 
standard  deviation u. Let  y 1  = (l/(r3)E[(W - p)3] and y2 = (1/u4)E[(W- d 4 ]  - 3.. 
Then y is a   measure  of the  skewness .   that   i s .   the   departure   f rom  symmetry,  
of the  distribution of W: 

I 

009-113 

Y, < 0 Y, = o  
FOR EXAMPLE, 

NORMAL OlSTRlBUTlON 

y2 i s  a measure  of the  kurtosis,  that  is,  the  flatness or peakedness, of the 
distribution of  W: 

009-ll3 

Yz < 0 Y2 = 0 

NORMAL DISTRIBUTION 
FOR EXAMPLE, 

With  the  s.unplc e s t i m a t e s  of t hese   measu res ,  n t es t   for   equa l i ty   to  ecro 
could be made? A significant  result  would imply nonnornrality.  The calcu- ' 

lat ions,   cspccially of the  standard  errors.   arc  qultc  complicntcd.  See 

Anacombe (1961) for  details .  

'The reader   should bc warned  that   there  arc  two  definit ions of kurtosis .  
Thcy  differ by tho  constant 3, so somo  rc fcrcnccs  may give 3 as the 
kurtosis  for the  normal  distribution. 

I 
. .  
. r  . 
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' ' 6.  TESTING  HYPOTHESES ABOUT THE REGRESSION COEFFICIENTS 

Now that  the  problems  with  the  assumptions  have  beon  considcred, we 

will   again  make  all   six  assumptione;  that  is, 

1. 

e l ,  . . . , en  arc   i id  N(0.c') . 

Thc  three  most   f requent   hypotheses   are  

1 )  p. W (for some 1) . 
2 )  P r t l  = WYtI, . . . I  P,= Wk . 
3)  wi, P,  t . . .  t w. p = W. ( I =  :, ..., g'k)  , rk k I 

where  the  w.. 's  and W i t s  a r e  known. 
IJ 

The  procedure for testing 3). and  hence I )  and  2). is the  following: - 
1 )  Fit  the  regression  wlthout  thc  condltlons  and  calculatc R k  = 

and 8 . 2 

T h e o r e m  16 
" 

Thercfore ,  

. .  

The  s ta t i s t ic  R k  is   called  the  reduction  in  the o m  of squares   due  to r e p r c s -  

- sion.  The  sybscript   indicates  the  numbcr of independent  parameters  eatl-  i 
mated.  A useful identity is Rk =e y i  - Ed:. .I i 

u= I u=l  . ,  
An equivalent tncthod Cor test:ng B hypothesis of the form 3 )  when g = 1 ' ! 

is the  following. Lct &e hypothcais  be h a t  P'p :: W .  By  Theorem 14, . ,  

PI; - N(P'p, r2 P ' C P )  . 

So, if the  hypothcsis  is   true,  

The  trrst   is   to  reject   thc  hypothesis if ( A I  Is too   l a rge  (a two-sidod test). 
., , 

3 ,  

- 1  

T h i s  is exactly  equivalent  to  the F test, as can bo shown by proving  that  

A' = (Rk - Rk-]) /a2  and using T h c o r c m  8 .  -. 
1 '  . ' 

A t es t  we will he us lng   la te r  is that  of p i  = 0 for  somw 1. In that  case, 
I I  , 

* 2 = L -  82 'k Rk.] . . .  

S2C11 - 2  a . .  . i  . 

If the  null  hypothcsis pi  u 0 is rejected  by  this  toot,   thc  corrcsponding , ' 

vzriable .  Xi, will ba said to b e   s i g n l k a n t .  



7. CHOOSING A REGRESSION  EQUATION 

Thc  two  questions  to bc considered  in  this  section  arc 

1 )  Which of two or  more  competing  cquations  (models)  is   hcst? 

2 )  If the  model  must be simplified  bccause of !imitations  on  cost  and 

space,   which  var iables   arc   to  be dropped? 

The   c r i te r ia   to  be considered  are  conflicting: 

- .  I )  As  many  var iables  as possible   arc  wanted so that  the  predictions  arc 
good. 

2 )  As  few  var iable8  as   possible   ere   wantcd so that   cost   and  space 

problems  can bc avoided. 

I t   is   easier  to  answer  the  second  question  f irst ,  so wc will  begin  there. 

Assume  that   therc   exis ts  a l ist  of var iables  XI, . . . , X from  whlch  some 

number  (nat  ncccssarily  decided on  in  advance)  necd  to bc eclcctcd  for  use  in 
a regression  equation.  A  number of proC6dUrcb  have  been  developed  to  solve 

this  problem.  Unfortunately,  they  do  not  always  lead  to  the samc solution. 

9 

Before  these  methods  arc  discusscd,  two  more  statist ics  must bc intro- 

duced.  Lct 

Tho  squnrc of thc  sample  multiple-correlation  cocfficlcnt Is r2,  whlch i s  

equal  to  thc  squorc of thc  sample  correlation  bctwccn Y and 4. It is 

" by  tho  flttcd  rcgrceslon. In gonural, It la deairablc  to  maximlzc  r2.   [Thc 
' . . lntcrprctcd  as   the  porcentago of the  varlntlon  in  thc  sumplc  that Is cxplolned 

- .  
. . .  "snm~la   cor rc la t ion   bc twccn  two  varhblcs ,  V and W, Is glvcn by 

6 3  

. .  , .  

where n is the  numbcr of obscrvat ions.]  . .  ! 

. i  

The  methods  arc   as   fol lows:  1 

I )  All  possible  rcgrcsslon9. 
Computc  all   possible  rcgrcssions.  For each  numbcr of variables  used , 

in  the  regression,  pick  the  onc  that  maximizes  r2. This  gives  the  following 
curvc: 009-113 

k . 1  I I , I 

NUMBER OF VARIABLES 
You must  thcn  decidc  where on thls   curvc you  would  llke  to  be,  a  nonstatlotlcal 
decision. 

!i 
This  method  can be  too  much  work  to bc feas ib le .   espec ia l ly   for   a   l a rge  . .. . 

number of variables .  (k variables  Imply Zk d i f f e ren t   r cg rees ions . )  On the  

other  hand,  i t   is   the  only  method  guaranteed  to  give  the  best   rcgreaslon  ( in 
t e r m s  of maximum rZ) for  the  numbcr of var iables   used.  

. .  ., 2 

1. 
. $ 

. - 3  

2 )  Backward  elimination. 
S ta r t  by computing  the  regression  with a11 var lab lce  and thcn  successively .; 1, 

eliminate  them,  calculating  the  ncw  regrcselon aftcr each  c l imlnnt ion.   The 
cr i tcr ion  for   c l iminnt lon is t o  pick  thc  onc  wlth  thc  amalleat  value of 1: 

Cli  (thc  teat s:atirrtic lor the F tcst  thot p, = 0 ) .  Stop  when  all ramaln1,ng . - 9  
$, 

var iab les   t cs t  as being  significant  at some choecn  slgniflcanco  level. ; ' ,' : , ' , ,: - 
Thitr i s   a  good proccdurc if  the r eg resa lon   w l th   a l l   va r l ab lc s   cbn ,bc  .,' ' 

handled. 
.. . . . .  . . .  

, .  . .  
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3) Forward  Selection. 
Start   with  the  variable  that   is   the  most  highly  correlated  ( in  absolute 

value)  with Y in  the  sample.  Then  insert  other  variables  in  turn.  The 
criterion  for  choosing  the  next  variable  to  be  entered  is  a  bit  complicated. 

SUF~OSC that  X I ,  . . . , X.  have  already  bcen  cntcrcd.  The  next  variable  to 
be entered is the  one  that  maximizes  the  square of the  partial-correlation 
coefficient  with Y while  controlling  for  XI, . . . , X. (we will  return  to  this). 
This  is equivalent  to  finding  the  variable  that  maximizes R. - R . and 

hence  causes  the  largest   increase  in r2. This  procedure is stopped  when  the 
las t   var iable   entered  tes ts   as  not  being  significant, o r  when  a  satisfactory 
value of r2 is obtained. 

J 

J 
J+1 J 

This  procedure is usually  more  economical  than  backward  elimination, 
but it  can be improved upon. 

4 )  Stepwise  repression. 
This  is the same as  iorward  selection  except  that   after  f i t t ing  a  new 

regression.  look  back  at  the  variables  that  had  been  included. If any of them 

t e s t   a s  not  being  significant,  throw  out  the  one  that is least   significant 
(smallest  F value). 

The  par t ia l -correlat ion  coeff ic ient   ment ioned  ear l ier   can be ve ry  

difficult  to  compute,  especially  for j > I . *  Draper  and  Smith (1966)  present  
an  algorithm  for  stepwisc  regression  that  grea'ly  simplifies  the  computational 

problems. 

For   mos t   p roblems,   th i s  is the  best  method.  It is an improvement  ovcr 
forward  selection  aince  it  dorlr not re ta in   var iables   that   are   no  longor  

significant. 

trolling fQr XI, is 
'For j = I ,  the  formula  for  the  partinl  correlation  between X and  Y,  con- 2 

'XZY - 'YXI rXZXl 

'X2,Y. x, - 

. ,  
65 

For  whatever  method  employed, it is useful first to computc, . the  rcprcs- 
sion with all  the  variables  (if  possiblc).  This  will  tell how l a rge  r' can 

become.  It is also  a  good  idea t o  use a  large a for  the tests. Th i s   fo rces  
more  variablcs  into  the  cquation  and  hence  leaves  some leeway t o   t h row put 
par t icular ly   bothrrsomc  var iables .  

I 
I 

Turning now to  thc  first  question.  it  is not  one  that  can  be  answered , 

ent i re ly  by s ta t is t ics .   The only  thing  that  can be sa id   s ta t in t ica l ly   i s - to   p ick  
the  cquation  that  maximizes r2. However,  this  does  not  take  into  account 

'.he number of variables  used. A better  proccdurc,   especially  for  small  n, 
would be to  pick  thc one that   maximizes 

R 2  = 1 - ( 1  - r2) & 
n - k - I  ' 

h 

where k is the  number of variables. Rz is   the  unbiased  estimate of the  popu- 
lation  multiple-regression  cocfficient R 2 ,  R2 is the  portion of the  variation  in . 
Y that   can be explained by the   t rue   regress ion   and  is equa l   t o   t he   squa re  of 

the  correlation  between Y and Xi pi. Of course,  owing  to  sampling 

variation,  maximizing R ?! dcesi:it necessar i ly   maximize  R2, but there  is. 
nothing  that  can  be  done  about  that. 

Still,   maximizing r2 or  R does not  take  into.account  various  coats, 
such as that  of obtaining  data.  Tradcoff  between  cost  and  the  number of 
v7.riables must  be  dccidcd by  the  user. 

?? 



a.  OTHER TOPICS 

8. 1 Constraints 

In   many  cases ,  it may be known that  the p . ' a  must  satisfy  certain  con- 

s t ra in ts .  For example, if the k Di's are  functions of 1 y . ' ~  (1 < k), which 
are   the  quant i t ies   of   interest ,   there   wil l  be k - 1 constraints  on the Pi's. 

1 

h 
I f  the P . ' s  are   to   sat isfy  the  same  constraints   as   the Pi's. o r  if constraints  

are  to  be  imposed on  the Bins in o r d e r  to  test  a  hypothesis,  the  ordinary  least- 

sqmres  solution  will  not  work.  Suppose  the  constraints  arc  consistent  and 
l inear ;   that   i s ,   they  can be  written  in  the form Gg = D, where G i n  an  r  X k 
m a t r i x  of r ank   r ,  D i s   an  r X 1 vector,  and  both G and D a r e  known.  The 

assumption  that  G has  rank r eliminates  redundant  constraints.  Two  methods 
of handling  this  problem  will bc considered. If the  constraints   arc  not  linear, 

some  nonlinear  procedure  must bc used. 

I )  Lagrange  multipliers. 
This  method  finds  the 0 that   minimizes 2 (y, - ^vu)' subject  to G$ = D. 

The solution.  aseurnmg  without 1038 of gencrall ty  that  re= I, is obtained  by 

minimizing 

u=, 1 

(-7 - xp)'(Y" - Xp) t Z(GP - D)' ). , 
where X is  the r X 1 vector of Lagrange  mult ipl iers .   The  factor  of 2 Is used 

only  to  simplify  thc  calculations.  The  normnl  equations  then  become 

and  the  solution  is 

whc re 

8, = S" S ( the  usual   least-squares   es t imate)  , Y 

$ = (G S-' G')" 6 , 

and 

6 = G f i , - D  , 

assuming  that  (G S-' G'1-l exints .   This   assumption  is   reasonable   s ince ., 

G S-I G' is a n  r X r matrix.  G is of rank r. and S i s   a s sumed  to  be of rank 



then 

W : Z p t h  , 

and  the  usual   least-squares   procedure  can be followed.  Find 6 to   minimize 

where 

c h =  (5 ;j . 

The  off-diagonal  matrices  are  taken  to be 0 because  it  docs  not  make  sense 

to  talk of a "covariance"  between a random  variable  and a constraint. is 

an  r X  r positive-definite  diagonal  matrix  with  very  small  diagonal  element?r, 
and H-', also  diagonal,   is   the  matrix of weights. Ze will  again  be  taken  equal 
to I without  losa zf ;zncraliLy.  The  solution  is  then 

8, = 6, - ( S t  G ' H - l C ) - l  G ' H - '  6 , 

where fi0 and 6 a re   def ined  as for phL and  where  i t   i s   assumed  that   (St  G'H-' G)- '  

exists,  which  will  be  the  case when S-' exis ts .  

Theorem 18 

The  f i rs t   s ta tement  of this   theorem  is  a result   that   docs not seem  to  bc 

available  in  the  l i terature,  so some  cxplnrlation is in  order.  In effect,  it 
says  that  by uae of large  enough  weights, a good approximation to the  Lagrangc 

estimate  can  be  obtained.  The proof i s  a straightforward  applicJtion of a 

mntrlx  identity known a s  the  matrix  inversion  lemma or Woodbury's  Theorern. 

For this  cane.  it   gives 

' ,  

8. 2 Outl icrs  

An out l ier  is an  observat ion  whose  res idual   is  for l a rgcr   than   the   o thers ,  

that is, 4 or 5 standard  deviations  from  the  mean.  I t   may be due to g r o s s  . 
e r r o r s ,  for example,  a mistakc  in  recording  an  observation. 111 which  casc, 

it is desirable   to   remove  that   observat ion from the  data.  On the  other  hand, 
thc  outl icr  may br: duc  to  an  unusual  combination of c i rcumstances   and   i s  

therefore  providing  infsrmation  that   the  other  ohscrvations  do not. Auto- 

matic   re ject ion of outl icrs  - that   i s ,   removal  of the  corresponding  obecrva- 
tions  from  the  data - is not very  wise,   because of :he r isk of losing  this 

inIormation.  Rejection sf pointa   that   are   not   gross   errors   leads  to  an undcr- 
estimate of m2. In gcncrd,   i t   i s   valuable   to   invest igate   out l iers   careful ly  to 
determ:nc  their   causc.  Any out l iers   that   are   re jected  should be reported  on 

separately. 

The   mos t   genera l   ru le   for   re jec t ing   ou t l ie rs   i s   the  fo!lowing: Pick  thc 
largest   residual  ( in  absolute  valur),   remove  the  corresponding  point - say,  

(Xo. Y o )  - f r o m  Lhc data.  and  then  redo the analysis .  (As w e d   h e r e ,  x i s  a . 
k component  vector.)  Using s , C, and p^ from the  redone  analysis,   Icy 2 0 

Yo - x; 6 
s d  1 t X b C  x. 

V! - 

The  test   is   to  reject   the  hypothesis  that  ( xo, y ) i s  a g r o s s   e r r o r  if W 2  
i s  too  large (W2 - F(1,  n - k - I )  if the   hypothesis   is   t rue) .  By T h e o r e m s  7 .  

and 8, a good approximation for l a rge  n i s  

0 

W- N ( 0 ,  I )  . 

It  is a good idea  to   use a very  small   s ignif icance  level   in   order   to   minimize ' 

thc  possibility of re ject ing a point  that  is  not a g r o s s  e r ror .  

, .  
I \  . 

* 'I 

. .  

I .  . .  

. .: 

. ,  
. I  
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7. 1lEGRESSION \ W E N  ALL VhRiADLES ARE SUBJECT TO ERROR . .  
In  thio  section, It will bc ncccnsary  to dtst ingutsh bctwccn two-typcs of 

relations,  rcnrcselon  and  lunctlonal: 

I )  A r cg rcsa ion   cxprcs scs  a relation  bctwccn  the  oxpcctcd  valuc d o n o  
. .  

verinblc .  Y ,  nnci nnothrr k c t  of variablc6,  XI,  . . . , Xk. For   cxanrplc , .  

d w r c  c is the usual  res idua l   t c rm Note that  the  relation X = (Y - a)@ docs 

lloL lllnkc  any HtBIIUc. 

2 )  A lunrtional  rclationahip  cxprcsccs  an  cxact  rclatlonshtp among a sct 

o f  vnriablrn.  In thia r a s e ,  i f  thc  varloblcn  could be obscrvcd  without error, 
thcre  woulcl bc no Htatist lcd  problanl nncl the unknown  coafficicnts  could bc 
calculated clircctly.  For  cxamplc. 

Y : : a T p X  , 

0: .  cquivalcntly, 

* , Y - n  
P *  

\Aich  now  mnkns  scnsc.  

I .  

Thcsc  two  types arc  not mutually  cxclusivc. A functioidal  rclation  with 
I .  

one and  only  one  variable  mbjcct to  error i s  thc same a s  a rcgrcsslGn rcla- 
tion with  the  rcsidual term bcing  thc (qrror. , .  

I ,  ,. , . 
Thc  notation for thia  section  will bc the following:  The  modo1 Isr' ; , , 

, .  .. . 

' r. . .  
Y xp t c , x = (X,, , . . , Xk) , 

. .  
. .  

. .  . 

"". . -- -. 
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\vlmrc c I s  thc  a thcr-cffccts  tprm, whlch wlll be  IdcntIcally =cro for a 

functlonal  tclatlon Thc nbacrvcd  vatlablea arc 

V = X t h  

whcrc 11 = ( h l ,  . . . , 11 ) and I nrc   random  var inblcs   rcproscnt lng   thc   e r rors  

of obscrvntion.  For  n  obscrvatlons,  thc rnodcl In matrlx  notatloa  bccomcs 
k 

whorc 

Supposc Vf La t o  bc prcdictcd from aamc  luturc   obscrvnt lcn an V. For 
thla   casc.  tlln Icast-squnrcs  oolutlon (0 u (?''"vi" ? '%)for  tho  rcgrorrnlon 

of Won V works, alncc \V and V nrc  obscrvcd  wlthour   error .   Tho model Cr 

\ v =  v a t  R , 

whctc  

g = c t f - k @  , 

, It is noccosary, though, to asaumc  thn t  El#) I: C. If nll  the  vnrlnncun nnd 

covnrlnncos .\ro constant,  then 
i 



cvcn  if thc errors on  thc 2 's havc mcnn zcro,  and  E(hU]  may bc dlffcrcnt 

for cach u. 
i 

Example 

Supposc you makc  n  obscrvntioras on 2 and  obacrvc  xu 4 k u  for 

u =  I ,  . . . , n,  whore  k I s  thc c r r o r   t c r m .  if xu = cxu,  thcn 

thcreforc ,  

and 

E[hu]  = xU(E[c '1 - 1 )  . 
k 

k 
Unlcss El c u] E 1 ,  E [ h d  will  not  be zcro a-d  will  bc  dlffcrcnt 

for cach u. since  it   depends  on  xu. 

The  only  way I know to  handle  thls  problcm Is to  avold  it;  that Is, whcn- 
cvcr  poasiblc,   obncrvc  dlrcctly  thosc  vsriabics,  or linear  functions Of them. 

to  bc: used  in  the  resrcssion  cquation. 

Another  difficulty is that Ebj e 0 rcquircs  that  g bc uncorrolatcd  with  tho 

vi's (or  Xila,  depending  on  which is tnkcn as fixed - cf. Soction4).   This,   in 

turn.   will   gcncrally  rcquirr   that   thc Vi'' ( X , ' s )  bc  uncorrblatcd  with c.  f. and 

thc  hlls. Of tllcsc,  the  most  unraaaonablc is chat V (X ) bc uncorrclatcd wit11 
h i . c . ,  thot  tho  obscrvatlon  (truc  value) bo uncorrclatcd with the error in 

that   observatlon. 

1 j  
j' 

Bc:cnosc of thrsc  dllf lcuit iee.   thcrc Is no doubt  but  that  tho  assumption 
~ b j  e o is, at lcast,  pucatIonsblc. Unfortunately, It is  4 nrccssary  assumption 

, . if anything is able  to  be said  about  what  happens to Ioast   squarcs  In thc  prcsencc 

ol obicrv&ion errors in  thc  XI'^. So. from now on,  we  will  Ignore  thc  dlfflcul- 
tlea  and makc thc,assumptlon. 

I .  

' I  

To dctcrmlnc  whcn 6 will bc unbtascd,  considcrntion must be glvcn  to 
how  the  data  wcrc  obtalncd. As a, clarilyhg.axamplo,  suppoac  that .obscrva- 
tlons of some s o r t   a r c   m a d c  on Y at dlflqrpnt  valuca of X (one  Lndcpcndcnt 

varlablc),   that   the  cquipmcnt  can  bc  adjustod  to  obtain  dlffcrent,   but unknown, 
valucs of X, and  that   them Is at hand a motor.   from  which  thc 'values of 
V(= X t h)  arc  rcad.  Tltcn,  tllc data   can bc obtalncd  in  two  ways: 

1 )  Controllcd  cxpcrlmant.   The  values or V at which  observations arc 
to bc mndc arc act  bcforehnnd:  that Is, when  thc  cxperimcnt Is bcing  run, 

the  cquiprncnt is adjusted  unti l   the  meter  reading  agrcco  with  thc  valucs 
choucn.  Thc  result  ie  that V can  bo consldercd a s  l l x c d -  that  is, not 

rnndom - and X, the  true  valuc. is a random  variablc.  With E[h] = 0,  this 
mcana that X (= V - h)  haa J. dist r ibut ion with E[X] = V 88 ehwn: ' 

009-113 

I 

If the  cxpcriment is repcatcd,  the  truc  valce  may be diffcrcnt,  but  tho 

cxpcctcd  valuc of both t ruc  va!uca wlli bc the s m c ,  naniely,  equal  to v. 
2 )  Random  cxpcrlmcnt.  The  valucs of V arc  not  act   bcforchand:  Thcy 

a re   dc t c rmincd  by "epinning  the  dial, ' I that 1s. in  some  random  rnanncr.  

Hcrc ,  X Is flxod  and V la random. If E[h] 5 0, thcn V has the  following 

dlstrlbutlon  with E [ V  = X: 

, -  
.009-113 . ' ,  ' 
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If the   exper iment   i s   rcpca ted  - that  I s ,  if a duplicate  obaervation  for  the 

same  valuc of V Is made  -the  dlstributlon u*lll be diffcrcnt. as shown: 

0*9-113 

- , When the  cxpcrlment  is   f irst   run,   the  true  value Is xo, say,  but v,, is 
observed. Whon the  cxperimrnt i 8  repeated, vo is observed,  but  the 
expected  value of the  second  true :ahc i s  not xD' exccpt  In  very  rare 

, circumatanccs.  

A 
Rcrurnlng  to  the  general  case 01 k X i ' s ,  consider  P :  

F; ("V'"v)" "VG , 

= p t ("v7)" 7'* , 

whcrc - 
w = ? + g  . 

I[ V la fixed. E[$] 5 f.l since E[g] = 0 .  If V is not  fixed. 

E& : p 4 E[{(X t €])'(X t H))"(X t H)'g] . 

Thc  lnst   term  is   def ini te ly   not   equal   to   zero  unless  H = 0, since it contalns 

t e r m s  In huI.   Tho  altustlon  is   also  complicated by  the  fact  that X is unknown, 2 

,, so 6 hns nn  unknown  bias. 

, , , Rcl i t cd  l o  this 1s tho  following  interesting  r6sult. If thc  modnl 1s 

, .  

Y = P o ' +  PIX t . , . t PkXk t e , 

, .  

70 : . .  
. _ .  . '  

I '. 

. . .  

1 
.- 1 

k .  - .  . . . .  

: ~ 

L I .  

If the   parameters  of a functional  relationship  are  to  be  estimated  with 
r 

*.. 
- .  

data   f rom a random  experlment,   there are some,  additional  problems. 
Consider  the  functional  relationship 

. .  

Y = a  t PX : I  
' I  

with k s  1 and  let   the  observed  variables  bc W(= Y +f )andV(=   X th ) ,   where  

E [ f l  = E[h]  = 0. Now suppose a and p a r e   t o  be es t imated   f rom n observa-  

One s e t  o[ e s t i m a t e s  would be :hat obtaincd by least squa res   fo r   t he  

r eg res s ion  of W on V, that   i s ,   for  

I 

n 

Another  possible  set  of cstimatcs  could be found by considering  the 
r eg res s ion  of V on W, that   is ,  

V = a t + P 2 W + g 2  , 

where g2 = h - B, f. Than, . .  

I . , .  

. .  . .  

. , .  - 
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" - 

and 

I ' The  four unknown pa rame te r s   a r c   r e l a t ed  by P I P ,  E 1 and a = -a2p1, but 

~ 

the   es t imatcs  do  not satisfy  these  relations.   Thc  estimatcs  lead  to two 
diffcrcnt  lincs: 

I 

I 

009-1Il 

Is cithcr  one of these  l inca  the  estimate of Y = a t pX? In general, no: thc 
' . truc  linc  Ilcs  somewhcrc  between  thc  two.  The  spccial case. as  mentioned 

c a r l i c r ,  is where  onc of thc  variablcs  can bc considcrcd  fixed.  Then,  thcrc 

Is only  onc  rcgrcsslon  linc  to bc eotimatcd nnd E[B] = p.  For thc  random- 
cxpcrlmcnt  casc, lenst   nqunres  breaks down bccausc i t  considcrs  e r r o r s  only 

' , ' tn  onc  directton.  whitc  there arc c r r o r s  tn  both  directions  that must be takcn 
. .  ' into nccqunt. Llndlcy (1947) and  Madanaky ( 1 9 5 9 )  clnlm that  mlninlizing 

. .  
'n I 

' ) C , ( w u , -  a ; 6vu)' takca  both errors  into  account.   (Rcmcnlbcr thnl 
A .  

' . c2 dcpcndn  on  p.),.This  procedure  ruquircs  knowlodgc of, or cs l ima tcs  I l l ,  
4 u=l 

, . a l l  thd'Gariancos ;nd covarlnncoa. Also, tho solution ip not nCCC8Unrlty 
g 

. . ,: 
' . .  , . .  

' .  . 
I .  . I .  
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where R is the instrumcntal   variable.   Given  the  assumption  that  R is   observcd 
without e r r o r ,  0 will  be  unbiased.  The  problem  is  that  it  is  not  yct known  what 

happens  when  the  assumption  is not t rue but is still   a  reasonable  approxima- 

tion,  the  most  likely  situation  to be encountered  in  practice. 

Another  mcthod  is  that of grouping.  This  involves  classifying  the  obser- 

vations  into  groups  and  fitting  the  group  means.  This  ncthod  yields  consis- 
tent  estimates  under  ccrtain  rather  str ingent  assumptions  about  the  obscrvations 

and e r r o r s .  

In  summary. if what i s  wal:ted a re   e s t ima tes  for prediction  purposes, 

l ea l t   squares   can  be u?:2 without  worrying  about  the  problems. If unbiased 
e s t ima tes  of the  parameters  a r e  wanted,  then  the  indcpcndcnt  variables 

should be controlled. If that is not possible.  try  to  use  maximum-likelihood 
estimates  that   arc  at   least   asymptotically  unbiased,  or  use  Lindlcy's  method. 

. 

. _I- .- 
_""I 

10. ' NDNLINEAR  REGRESSION 

In pract icc ,  I t  i n  co t   c lwaya   pss ib lc   to   usc   thc   l inear ' addi t ive   modcl ,  

Thc  application of l eas t   squwes   thcn   a lmost   a lways  1m.plies thc use of an 
itcrativc  minimization  tcchniquc. 

For nonlinear   rcgrcssion,  OUT modc l  is 

Y = f ( Z I ,  . . . , z p ;  P I ,  . . . I P,) + e , 

wherc e is   the  residual  term  and P I ,  . . . , 8, are  the  coeffisicnts. to be- 
estimated. * Note  that  even  with  the  nonlinear  model,  we  must assume that  

the   res idua l   t e rm is additive.   Given  fnc  obscr\-ations (zul,  . . . , zup, Yu) f o r  
u = I ,  . . . , 11, the  problcm is t o  I'ind 8,. . . . , i;, to  minimize 

UD 1 

: 1 The  model is cor rcc t .  

2 )  The   Zi t s   a re   observed   wi thout   e r ror .  

3)  E [ r ;  = 0.  

4) E[cuc$  = 02611v, for u,  v = 1 ,  . . . , n, which  can be aatlsfied by using 
if neccssn ry ,   a s  in  Section 5. 3. 

*Thc  usc of Zi's  Instcad of X i ' s  is   dcl iberntc .   Thcro  idno  longer   any  rcason 
to  u3u functions of tho Z l ' s  in  tho  modol. , , , .: .. 8 , 

" , . . .  
,' ,, , . ' 
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Thrcc   p rob lems   may  &c cncountcrcd whcrr this mcthod in  uscxl: 

1 )  i t   may  convcrgc vc'ry s l ~ ~ l g .  

2 )  It may  oscil latc \r.ildly. ' ' . -  

3 )  It tnny  dlv.crgc. 

. .  , .  , . -  
. .  

To  n*ln in l l rc   thew  problc lns ,  UHC &$/Z Instcad of @ if 
. -  

. . .  
. .  

S(P,  r Q) > SCP,). . . .  
, .. ' ' I  - . . '  . 

.. I 

I t  is  alweys n geofl idcn  to  colculotc S(p, + h) af te r   chch   s tcp  to  bi. ably to 
lmep  track of what is happening. 

Wlcn   t h i s   mc t l ld  l a  uaccl, npproxlnlatn  testy of sir,nlIi.cancc  can bc 
ol,t&Lncd by aasuming  that the l lncar l rcd   form of tho modal  is valld  around 

0. tho  final  c*ntlnlatc of p. Then s2 can bc  uscd a8 an  nppruximntion lor 
r2, nlthouph  it ( a  not unbiased, and  thc  final. (\V'\V)-'  m a t r i x   c a n  bc u s c d  tor 
the  btnndnrci errors  of 8. 

The  bas ic  idea of al l  tlrc stccpcat  dcsccnt  (yrad1cr.t)  mcthoda l n  that  from 
any point 6,. t'nc vector -VS(fi)I polntn in  thc  direction of thc  grcatcst 
dt .c rcasr  it: 5. Many modlficatione of thio ldca 'navc bccn dcvclopad,  thc  bcst 

of which  dccrp.8 t o  bc zhat b; Flc tchcr  and Pa\vcll (1963). Thc  basic s t o p s  of 
t h s i r  procndurc ore thc lollowlnp,  whctc  subscrlpts  dcnotc  thc  i tcratlon  num- 

ber. At  the t t h  stcp,  you k a l n  with $n!, 6, = VS@)], and Hn. (H1 is choscn 
1.0 bc positivc  tcfinicc, a id  $(I1 is any init izl  cstImstu.) Tlyn; 

Pap 0 

I ) Pn = - l Q n .  
. .  

2 )  E ind an   t o   rn ln in r i zc  S($") t ap,) with  rcspcct   to  0.' 

3) p+')  5 p t anp,. 
, . . .  

, .  . .  . . .  ' . .  1 4) I n =  .. . .  , 
, .  ' 

&!,+I - Pn. ., . 

5) kI?+, = €In t A t Bn, where ' !  ' , ' '  - ' . '  . 
r! , . ... . .  . .  

: ,  . 
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and 

St rac tc r   and  Hogga (1970) say  that   this  proccr 'urc Is cnsy   t o  Lmp1cn:cnt 

for   gtncral   problcms,  but I t  dcca  rcquirc   an  accuratc   l lnaar   nl inlmlznt ion 

, t cchn iqw ls tcp2) .  For   ha t -aquar .cn   p roblcn ls ,   thcy   prc la r  tho lollowing 

mctlmd,  which  has a much  fas tc r   ra tc  of convcrgcncc In t c rmu  o l  functinn 

cvaluations. 

10.3 M l r q u a r d t ' s   C o l n p r o m l L  

Mnrquardt (1963) round  that lor a numbcr of thc  lcast-squarcn  problonls 

hc  workcd  with,  thc  dircctiona o l  imprcvcmcnt  ( in  thc 1c-di:ncnnlonal parnm- 

ctcr spacc)  obtained  by  1inc.wlzation  and  stccpcst  deocent  nvrc  ncarly 90' 

apart .  His algorlthm  provldcs a nlcthod  lor  intcrpolatlng  bctwcn tho  two 

dlrcct ions.  

Thc  basic  ldon Is tc flnd 6 g  to  mlnlrnlzo 

. ,  . .  
. I  

, . .  , ,., . , , 

'Somctimca"rccIcrrod'to~as tho  Lovcnbcrg-hfprquardt or Armatrang-  
Marqunrdt 'a lgcr l thm..  , , , 

. .  ., . . ' .  

,'W = !!&&If [ g d ( h I  + XI)"[&U@)l d d )  , 

whcrc, in prnct lcc ,  Is chosen so that  S((z + fip) < Sfb) and  thc rr1atrI.x .. 
npccifylng \ (Artxstrcny,  1970) and has shown  (Armstrong, 1968) that  no ' .  

\ - m, b p  sots toward  thc  dircrl ion or tho  ncgativc  gradient  and  that as 

1 - 0.  611 approaches  tho  corrcctlor.   vcctor  that  would be obtalncd  using 

1lncarizatl.m. 

~[$tl&)]' [hd(fi)] +AI\ is lnvcrr lblc .   Armstrong  dlscusaca  approachcn  for  , _  
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NOTICE 

Th i s   s c r i c s  of Special  Reports  was  instituted  undcr  the  aupcrviaion 
or Dr. F. L. Whipplc. D i x c t o r  of the  Astrophysical  Observatory of the 
Smithsoninn  Institution.  sho-tly  aftcr  thclaunching  ofthc  first  artificial 

of thc  Obscrvptory. 
carth  satcll i tc  on  October 4, 1957. Contributions  come  from  tho  Staff 

. .  . .  
First i s sucd tocnsu rc  thc i rnmcdiate   disscminat ionof   dataforsatcl-  

l i te  tracking,  the  rcports  havc  continncdto  providc a' rapid  distribution 
of catalogs of satcllitc  observations.  o'rbital  information,  and  prclimi- 
nary   resu l t s  of data  analyses  prior  to  formal  publication  in  the  appro- 
priate  Journals.   The  Reports  arc  also  uscd  extcnaivcly  for  tho  rapid 
publication of prcl iminary '   or ' spccial   resul ts   in   other   f ie lds  of as t ro-  
physics. 1 .  

. I  

Thc  Repor ts   a re   regular ly   d i s t r ibu ted  t o  all insti tutions  partiai-  
pating  in  thc U. S. space  rcscarch  program  and  to   individual   scicnt ie ts  

Smithsonian  Astrophysical  Observatory,  Cambridgc.  Massachusetts 
who rcqucstthcm  from  the  Publications  Division,  Distribution  Section, 

021 38. 
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