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 ABSTRACT

~ This paper discusses lcast-squares estimation from the point of view of
‘a statistician. Much of the emphasis will be on problems encountered in
application and, more specifically, on questions involving assumptions -
what assumptmns are necded, when are they needed, what happens if they
are not valid, and if they are invalid, how can we detect that fact,

RESUME

Get article ost une discussion de l'uotimation des moindres
carrés du point de vue du btotisticicn. On mettrs surtout
l'accent sur lecs p:obleus rencantrds en pratique ot plus apiciu-
lement sur les questions impliquant des suppositions - quelles
suppogitions sont nécessaires, quand sont-cllps ndcessaires, ce
qui arrive si elles ne sont pos valides, et si slles sont inva-~

lides, comment pout-on deéceler ce fait.

KOHCLEKT

B STOM JOKNWIC OGCYXA@eTcs OUeNKa MO METOMY MHRUMeHbLEX
KBOJIPATOB C TOMKI 3PEUUSt CTATUCTUKA. AHOTO BRIUMBHMA OGpamaeTCs
HO 238HAYY BCTRCURKUMECT NPU GKPUMCHEHUY it P OCOGCHHOCTH HQ
BOTIPOCH 3ATPATUBAIYL.C UPCANOANKOUNA-KAKKE MPEIICHOKCHIA HQOSKO~

T HAMI, KOTNG "OHM HeoGXUNXMH, YTO cayuae7cfl CCJt olin HeneifcTpu-
‘TenbLi, K ecay OHK HenelleTBUTEnBHIU, KAK MH LOXCM ONPCICHLTH

2T0T (BaKr?.

s~ nap

JETV IR

. A D Ay M

FOUNDATIONS FOR ESTIMATION BY THE METHOD
OF LEAST SQUAR.ES

Walter W. Hapck,:.Jr;
1. INTRODUCTION
This paper' s the result of four seminars gi.ven to the Satellite Geo-
physics Group of the Smithsonian Astrophysical Ohservatory in August and
September 1970. The purpose of the seminars was to cbn;idcf methods of

applying least-squarcs estimation to satellite tracking.

The mecthod of lecast squares is widely used for estimation, although in

many applications little consideration is gwen to its strcngths and limitations. -

On the other hand, statisticians have done considerable work on the subject,
under the heading of regression, although not always on those questions that
are of thc most interest in application,

A knowledge of basic probability and statistics is required. For revicw,
tho necessary concepts arc explained in Section 2. The notation introduced
there is used consistently throughou{: the paper,- For reference, cspecially
for those not.reading the rest of the section, a glossary of notation is
included at the end of Section 2. A knowledge of basic matrix theory wil)
be assumed. ’ '

This work was supported in part by grant NGR 09-015-002 from the Nutional
Aerqnnuﬂcs and Spacc Admh\lutr:\ttom
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2. PROBABILITY AND STATISTICS

A knowledge of some probabilistic and statistical concepts is necessary
. for an understanding of the discussion that follows., The level of this cxplana-
tion will be that of a "quick refresher." For a more detalled explanation,
refer to an introductory probability and statistics text, such as that by Hogg
and Craig (1965).

2.1 Probability, Random Variablcs, and Distribution Theory

A n;tural first question is: What is probability? The currently popular
approach is to treat probabilitics as a particular class of mathematical
"measures. This approach is very rigorous and kecps mathematicians happy,
but it does not answer the question of intercst, To do that, we will usc the
relative frequency approach. * ’

Firat of all, it ir necessary to have some group or aggregate to study.
This group, whether of people, things, or events, will be called the popula-
tion, Next, therc is some property of this population that we are concerned
with, and there must be something about this property that is undetermined,
If everything is known about what is going on, therc are no probabilities to
determine.

This property must be able to be evaluated for each member of the
.. ~ population, and a numerical’ value assigned to that evaluation. A random
variable is a function of the members of the population; its value is the
numerical evaluation of the property for that member. We will use capital

An alternate approach, which 1 do not agree with, views probability theory
“as the atudy of human reasoning processes, and probabilmca as subjective
measures of degrees of certainty.

.«‘ -

Tho use of numerical hore ia meant to be very gcnoxjgl.
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letters to denote the random variable, the argument ol‘ which will acver be

explicitly stated, and small Ietters to deno..e the values taken on by a random
*

variable. . - .

For example, take the population to be all flips of a coin, and the prop-
erty to be whether it lands hcads or tails: Assuming the coin docs not have
two heads or two tails, it is not known beforo the flip on, which side the coin
will land. o ' o

One possible random variable, denoted’ by X, is an mdu-a.or varlable,
that is,

X =1 if heads, and
X = 0 if tails. ‘ - ' : S

The set of all possible values the random variable may take is called
the sample space, denoted by S.T In the example, S= {0;1}.

To derlve probabilities, it is necessary to distinguish between discrete
and continuous sample spaces. ’

S

Discrete Case. Let Xy Koy orey Xy (where N may be iv,xfinity) denote the
points of the sample space. Consjder taking some n members of the popula-
tion and recording the value of the random variable X for cach member., For -

[ SN

e

i=l,...,N, let f(in) be the proportion of these n member. for which X = % . Then,
take more and morc members of the population, rccord the values of X, a.nd D '
kecep updating (f n) )’_ . For a finite population, take all the members, "For an
infinite populatxon, take the limit as n~= w, The final {£, }‘_ obtained by this
method is the density function of the discrete random variable X, We can

then say that the probability that the property in question will be evaluated *
as ¢qual to X is [, or in shorthand, P[X = x] = f.. Usually Ii will be ' ' i
written as t(xl) : )

*Thcrc will be exceptions to this rult; in later scétlon«. o

Strictly speaking, "this is only nne representation of the sample, spuce, but
the more gcncral notlon is not necossary for our purposes.

el e et i+ ot St
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Continuous Case. Again consider the procedure of starting with n mem-
hcrs ..0f the populahon, recording the values of the random variable, and then

This

entire population,

be a sequence of points such that

X, - X, = Ax
i+l i ’

where Ax is’'some positive constant, Then, let fn(xi) Ax be the proportion of
values falling in the half-open interval (x; - Ax/2, x, + Ax/2). The limit-
ing process is now two simultaneous processes: while taking n — ¢, let
Ax— 0 in such a2 way as to avoid the occurrence of irregular frequencies,
The problem is that if Ax — 0 too quickly, there will be intervals where
nothing has occurred simply because the number of members taken is not
large cnough.

In the limit,

P[x-—-dx<X<x+-dx] f{x) dx

That is, the probability of observing a value in an infinitesimal interval

centered at x is given by {(x) dx. By taking the limit of sums, we have

b
*Pla<X = b =j1‘(x) dx ; ; g 5
| VAR
a ,

Rad: 2

e

£(*} is the density function of the continuous random variable X.

For both cascs, the diatribution function F is defined by

F(x) =nP[X s ,

that is, the probability of observing a value = x.

-‘..Qtet'i.-?:

« X vy N . -
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In introductory texts, the three properties of probability that are pre-
'sented as-defining it are consequences of this derivation.

These properties
are the following: :

If A and B are two subsets of S and if ¢ denotes the null set, then
N Py .

"2) ¥ ANB=4$, then P(A U B} = P(A) + P(B). -
3) P(S)=1, ' -

The approach in terms of measures, referred to carlier, defines a spe-
cific class of mathematical measures as probability measures.
ures correspond to the distribution function as developed here.

These meas- - .
The measures: . " .
are more general because the corresponding density function may not exist. I »
Proofs based on this method can become quite complicated beg:ausé of various
measure theoretic problems that must be considered. It is my cb_servatién
that a statistician will make as many meagure theorctic agsumptions as are
necessary to prove a theorem (for example, that a function ia measurable)
since, in practice, they will be true.

The concept of probability can be extended to the case where two or more
properties of the population are considered simultancously. A‘derivation
similar to that done here leads to bivariate and multiva'riat_c densities and

distributions. o . .

For example, consider the population of all men and their height (H) and
weight (W), Both height and weight will have individual densitics and, if
coneidered together, a bivariate density. Now restrict the population to all
men with a certain weight — say, W = Woe The density of H derived for this

restricted population is called the conditional dcnsxty of height givcn wcight
and is dencted by f(h| W = wy) or r(hlw

I( the random vartable is \mderstood, the notation 'P(D) wm. somectimes be \xsed
as shorthand for P[X € D], the probnbthty that the value of the random
vnriable X will lic Iin the set D.

«




) Two random variables X and Y are said to be (stochastically) independent
if Kxly) =
ing the value of Y does not provide any information about X. Two random

{(x} for all possible values y of Y. Intuitively, this says that know-

variables that are not independent are said to be dependent,

Before we go on, it is important to note that the population under con-
- sideration may be "ideal" - that is, a hypothetical population that satisfies
Most

distributions in use — for example, the normal and the Poisson— were {irst

certain properties and is used to approximate a real population.

derived for this type of population.

2.2 FExpectation

The expectation (or expected value) of any function g(-) of the random
variable X is a weighted average of the value of the function over all possible

values of X, the weights given by the density function,
X,

That is, for discrete

Elg(X)] =Y, tx,) glx;)

(femember that N may be infinity), and for continuous X,

' s

E[E(X)]

[=-]
f g(x) £(x} dx ,

'u;_h'cztc E(-) denotes expectation. Mathematically, E(:) is a lincar operator,

This concept can also be extended to multivariate and conditional cases

by substituting the appropriate denasity into the above formulas.
ditional case, the notation is E{g(X)|y].

In the con-

We wni be concerned with three particular functions, the third an exam-
ple of the bivariate case:

Zang b

et

AR

1) gx)=x. - - . Sk
Then E[g(X)] is the mean value of X, denoted by Hy Thla can be con-

sidered the average value of X. For a finite populat} on, it is exactly equal to .
the average. For an infinite population, it is commonly rc[erred to as the -

long-range average. . ol ST
2) glX) = (X - uy)?

E[g(x)],
below).

denoted by 6‘; or Var (X), is thc variance of X (see dxagram S »-l

The variance is a measure of dispersion, that is, a measure. of how

close to the mean the valuea of X are. For example,

009 -H3

fixd l LARGE o2 :
{0) ! i
! )
] Hx X
l .
f{x) ‘

SMALL o

Related to the variance is a well-known and somctimca very usel‘ul ‘regult . >t
known ae Tchebycheff's Inequality: B

P“x"px|2k°-x] = kz s

for any k > 0 and for any distribution, The approximntion ig very poor for
small k (for example, try nny k = l), but for large k (k = 3) the upper bo\md
can be very uue[ul ’

¢
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3) glX,Y)= (X - Ry N Y - py)
Efg(X,Y)] is the covariance of X and Y, denoted by Cov (X, Y) or «

XY
Two simple-properties of the covariarce are

Cov (X, Y) = Cov (Y, X), and

Cov (X, Y} = E[XY] - Byhy -

Covariance is a measure of association, but for that purposc it is not well
spited, since it is not invariant under a change of scale; that is,

Cov (aX, Y)y #Cov (X, Y) for any constant a #1.
+ moment) correlation cocffiicient:
. invariant.

What is used is the (product-
= Cov (X,Y)/u’x Ty which is scale

Pxy

Both covariance and correlation originate from studies of the multi-
variate normal distribution, where they have a specific meaning; that is, the
exact nature of the association being measured is clcar,

This is not true
for other distributions.

Some understanding of the nature of the association mcasurcd by Pyy
can be obtained by considering the following properties:

1) If Y= aX + b, where a and b are constants, then

1 if a>0 ,
pXYH sign (a)ﬂl 0 if a=0 ,
-1 if a<o0

2) If X and Y arc indcpendent, then
=0

2

Pxy

but the conversc is not true unless both X and Y are normally distributed. If
Pxy = 0, X and Y arc said to be uncorrelated.

B

When a set of n random variables Xl, e X

»

more convenient to work with the covariance matrix, X, defined by -
{Covix, xp) ir i#j . ‘ o
R )Var (x, i oi=3§
-

P

is a symmetric n X n matrix that will usually be positive definite. -

if
Xl Hy .

i 1

; X = and My = »

. kn tx

¢ n

then

;‘“ Z,, = E[(X WX !

x % E[X - 2 - ug)]
: where the subscript X now refers to the vector, and the prime denotes trans-
T
¢ pose. The expected value of a matrix is the matrix of expected values.,

2.3 Distributions of Interest

4
RS

)

2.3.1 Normal distribution

BETE T A,

The normal distribution is the most important in least-squares theory.
It can be derived for many different ideal,populations, For example, Maxwell
derived it as the distribution of velocitics of molecules. It was also derived

by Hagen as the distribution of errors under the following assumptions:

1) An error is the sum of a large number of infinitesimal errors, all
of cqual magnitude and all due to different causes.

2) The different components of errors are independent.

. 3) Each component of error has an equal chance of being positive or
) negative. '

n i8 being considered, it is - :

s ey o S et e g
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In our terminology and notation, this is saying

Error = X1+X .0,

2

where the X;'s are independent randem variables such that

P{X; = +¢] = P[X, = =] =

L
i 2

for some infinitcsimal ¢ and for all i,

These assumptions are very :estrictive but can be greatly rejaxed. We

will come back to this later.

The normal distribution 1s characterized by two parameters, p ard g,

If X is normally distributed, its density function is

! 1 (= - )2
eXp - 'E A
e @ T

f(xipn,0) =

It is then possible to derive that
E[X] = u
and
2
Var [X] = ¢
*
A shorthand notation 1s
X ~ Nip,o2)

which translates as "“the distribution of X ig normat vith miean g and variance
trz.“ A property of the normal distribution is that if X -~ N{y, 'JZ) and
Y = (X - p}/o, then

Y = N{G, {}

*’I‘h'xjoughout the paper, the symbol ~ will mear “is distributed as.
" When there rould be no confusion, the subscript X on py and cri can oe

,  dropped.

11

N(0, 1) is referred to as the gstandard normal and is the one tabulated in tables

of the normal distribution function. Because of the above property, it is pos-

sible to transform any normal randorr variable into the standard form.

Returning to the theory of errors, it is not Hagen's result that makes the

normat distribution important. His agsumptions are much too restrictive.
The result that is usually cited is the Central Limit Thearem,. which gives
conditions for convergence to normality, but its assumptions can also be
relaxed, The wsre nseful results are thecorems due to Liapunov and te

Lindeboerg and Feller,

Theorem ! (I iapunov’s Theorcin)

let Sn B )\'I . X“ be the sum of n independent random variz\blcs:.

with means l-Jinl 2 Hp, variances Var (Xi) = triz #0, and
v = EHX -0 Y et

H]
Syt Z By
o=l
e
k3
Lz

If
a ,
then
d
4 e~ N(0, 1)
Y one~ o

d PN
I—n-;:j: denotes convergence in distribution, that is, the distri{bution

ar 7 converges to N(0,1); and s, withcut the d, indicaten the -

ugual mathematical imit]. Then, under the conditions of the

n N .
theorem, the distmbution of S, ia approximately N ( My, 2 cri')
1 izl

for large n,

T a
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The assumption L :‘_._;" 0 is referrcd to as "negligibility in the

limit." A heuristic condumn for thia assumption to be valid is that no X,
dominates the others — that is, the random variables do not differ too much

in cither magnitude or variance.

Theorem 2 {(Lindeberg-Feller Theorem)

Let Sn = }'(l LI Xn be the sum of n independent random variables
with means E[Xil = p;, variances Var (X,) = o'? #0, and density func-
tiona l'i(-). Let

and

VA

n 8

(w-u.l)Z f(xdx=0 (1)

cthen

Candition (1) ig referced to ay Lindeberg's condition, Roughly apeaking,

L . 2

this condition requires that the varance N be due mainly to the density 1in an
interval whosr length s small 1n comparison with " Fellor (1966) shows
that in a certan senae, landeberg's condition in neceanary for conve rygence

to normality In addition, he provides examples of when it is satisficd

Both Lindeberg's condition and the condition in Liapunov's Theorem that
Ln - 0 are satisfied when the Xl‘n have the same distribution with finite
variance. In that case, the statement of the theorem can be aimplificd aa
follows:
o
fx-ppl> cuy

that satisfics la-p“> CH o

indicates that the integral {a taken ovor the set of x

%
Theorem 3 (Central Limic Theorem)

LetS m X, +... +X_ be the sum of n 1id (= independent and iden-

tically distributed) random variables with mean p and variance

0<n—z<oo. Lt

S - nu VF(—’,;S,,-M)
" 7

then

r —L e N0, 1)
n n-=-—

As in the previous two theorems, the distribution of Zn is approximately

N{0, 1) fov large n. How large n has to be for this approximation to bc good
depends on the distribution of the X.l s For example, if ‘( ~ N(p, o ), then
'/.n ~ N{0, |} exactly for any n. For other distributions, n = 20 or 25 is

usually larpe enough for the approximation to be good,

Fhe crucial assumption in all three theorems is that the random vari-
ables be independent. Only in a few spocial cases has it been possible to

prove convergence to normality when dependence is allowed.

The role that the correlation coefficient and covariance matrix play in

normal distribution theory can be scen by examining the maltivariate norma
density function: Let

X "xl\

b
n '\‘n

and £ = E[(X - p){(X - )], the covariance matrix. Then,

1 \-l
expl-5(X -2
Z")n72l ll 2

- ul] 2)
( .

“The previous two thcorems are also central limit theorems, but the rapital

letters on 'Central Limit" are usually resorved ror this result.

14
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is the multivariate normal density function. For two random variables, Xand

Y, with a bivariate norma! distribution, cquation (2) reducas to

: K _ s | {x - ux)z
f(x,y) = —— exp v - 5 3
| 2o-oh | &

.Zﬂo'xcl'Y i- pz

20(x - uylly - uy) - uy)® ]|
- +

%%y di, s '

¢ where p = Pxy: As can be seen, T and p are parameters of the distribution,
. Also, in the bivariate case, p satiafics Var [X]|y) = {1 - pz) crg(, which gives
p, or more correctly pz, a specific interpretation.

. 2.3.2 Other distributions

Three distributions will be nceded for making tests of significance A

discussion of cach follows.

1, Chi-Square Distribution
. 2 2 2 2
X, ..., X areiid N{0, 1), then Z‘ X{ ~ X, where x - denotes the
=
chi-square distribution with n degress of freedom; n is the parameter of the

distribution.
Two thecrems concerning this distribution are inorder

Theorem 4

' It X‘, N Xm are independent randon variables such thar

~ 2 0]
Xi X "i‘ then

m
2 m

E X, ~ x , where k=§ n,

i k =1

i=1

Theorem 5

X, ..., X_ ore itd Nn, %) and it o TN
n B
¥ =LY x
n n i
i=1
and
. 2
2_ 1 L%
ShnE¥0 -1 (xi xn) ’
i=1
then
- 2)
X ~N< '
and
2
eong e
2 Xn-1
o

ind pendent of Xo

Regardless of the distribution of the X.'s, as long as they are iid, fn is
called the sample mean and si is called the sample variance. If present, the

subncripts indicate the nurnber of observations,

2. Student's t Diatrihution*
If X ~ N(0,1) and Y ~ xi indcpendent of X, then
X )
—_—— ¢ , )
NTn n

where ty denotes the t distribution with n degrees of {reedom.

"It is called Student's t because William Goaset, who first derived this dis-
tribution, was prevented, by the brewery where he worked, ‘frem publishing
the result under his own name. So he published it under the pscudonym

"A Student." ’

16
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Theorem 6 o
.’":

R NOD

rany;

that is, the limit of the t distribution, as the number of degrees of

frcedom approaches infinity, is the standard normal distribution,

The following thecrem is an immediate result of Theorem 5,

Theorem 7
UX,, .., X_are iid N{i, ¢%), then
An (X - )
s n-1

3. F Distribution

IfX ~ Xlz‘ and Y ~ an independent of X, then

X

now
‘/m ¥(n,m) ,

the F distribution with n and m degrees of freedom.

It X ~t , then
n

x2

~ F{i,n)
The formula of the density functions of these three distributions is not
necessary. Most statistics books contain tables of their distribution function,

which is all that is ncedeqd

As prescnted in this section, the term degrecs of freedom is used only
to designate the pararneters of theae distributions. The reason for the

terminology is related to estimation, cspecially of variances. Ina very

17

general way, one degree of freedom is gained for qvery observation if the
observations are independent, and onc lost for every parameter estimated.

We will return to this subject in Section 5.1.1, which should clarify all that is

necessary for this paper.

2.4 Statistical Inference

2.4.1 Estimation

In almost all cases of interest, it is very difficult, if n;>t impossible (as
in the case of infinite populations), to determine exactly certain properties
of the population uncer consideration, For example, an exact dete rmination
of the mean height or weight of the world population would be a somewhat
difficult tasi.

The alternative is to take a sample (that is, some subset) of members
af the population and determine the value of the property for these members,
Some function of these obscrvations is then used to approximate {(estimate)
the value of the property for the entire population. (he very extensive prob-
lem of sampling theory — viz,, how the members of the sample should be
cheaer. — 15 extraneous to the purpose of this paper and so will not be

discussed,

The questiona that are of interest here and that keep many statisr.iclians
¢mployed, are the following:
usced? Or, more specifically, what characterizes a good estimate, and are
there general methods for finding them? Before we attack these qucstiox:ls,

some potation 18 necessary,

Let the density of the random variable X be denotad by f(x;0), wherc
18 the unknown parameter (corresponding to some property of the underlying

population) that we wish to estimate. Suppose that the sample is of size n

Which functions of the observations should be * .



2% 2T

2 mazomives

Ta

[P Sy

PRt T A R . - . ‘.

and that the observed values are Xps ovees X Denote an estimate of 8 by
g(xl. e xn), where g is some function. Note that, before the n observa-
tions are taken, g(X‘, e, X“) can be treated as a random variable with its
own distribution, which in theory can be derived from the distribution of X,
Now Xl' ey Xn are n identically distributed random varinbles, though not

necessarily independent.

Some properties that g may posscss are the following:
1) Consistency,
g is consistent if

N T

that is, the estimate converges to the true value as the sample approaches
the entire population. This is a miniraum condition to be placed on an
cgtimate,

2) Minimum mean-square errvor,

. . P . 2

g has this property if it minimizes E{!‘\(Xl, P An) - 0] } over all
possible functions of the observations h,

A problem here is that the quantity to be minimized depends on the
unknown 0. It is gratifying when one function minimizes the mean-square
error (MSE) for all 0. In practice, it is usually necessary to find the esti-
mate that minimizes the MSE on some interval that is thought to contain 0.

3) Unbiasedness.

g is unbiased if
Elg(X,, ..., X )] =0
When g is not unbiased, its bias is given by
Elg(X,, ., X)]-0

4) Minimum variance

g has this property if it minimizes

Var [h(Xl, N Xn)]
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over all functions h. This property is undecirable if g has a large bias, since
the distributicn of g would then be concentrated around the wrong value. A ’
desirable estimate would be the minimum-variance unbiased (MVU) estimate. " -
This property provides a criterion for choosing among unbiased estimates

when more than one exists, although there is the problem, as with MSE, that
the variance will usually depend on 0. In that case, an cstimate is MVU if it =
is unbiased and has minimum-variance among all unbiased estimates for some

value of Q.

it is generally desirable to find an unbiased or MVU estimate, but a word
of caution is in order. Even when such an estimate exists, it.does not aliavp.ys»
make sense  This can be especially troublesome for the MVU case, since -
for a large class of problems the MVU cstimate is unique.

As an example, supposc that f(xj\) = ™M ¥ , the Poisson densgity with
mean X (A >0), and that Ol = c')‘ is to be estimated on the basis of one observa-

tion. The only unbiased estimate, and hence the MVU estimate, is-

f1 if x=0

B ix) =
! Yo if x=1,2,... e

-2 ; . . .
If 0? =c¢ A is to be ¢stimated, the oniy MVU estimate is

-

gy () = (1%

g, may be acceptable in some cascs, but g, is plainly nonsensical. Among
other things, it docs not make sense to use a negative estimate of a param-

cter that 1s known to be positive,

In most cases, it is desirable 1o have an estimate of the variance of an
) 2. : R R
estimate. If 8 is an unbiased eatimate of t1, variance of g(Xl, e, Xn),

then sas called the standard error of g,

Only two of the many methoda for determining estimatos will be discyssed

here. The first is the method of least squares,

In general, g is chosen to minimize

n

A2
Z wily, = vi)"
im
20



where Y= h(0) for some function h,\ly\'i = h[g(xl, ey xn)], and (Wi)?ﬂ is a
sct of known constants or weights This method is the subject of the
remainder of the paper, so no more will be said about it here.

1-u The sccond is the method of maximum likelihood. If Xi, ., Xn are

iid with deneity {(x;0), then

n
flxy, oo x50) = TT i(x:0)

" i=1

4 called the likelihood function and denoted by L(O:xl, Ve xn). Itis a

function of the unknown 0 that treats the observations as known parameters.

o [y . . . s * H
" Thé maximum-likelihood estimate of 6, denoted by 6, is the estimate of 0
that maximizes L(O:xl, i, xn); that is,

A
LOx ), ..., x ) = Lih(x o oy x )i Xp,0ee, x,]

for all other functions of the vbservations,
The maximum-likelihood e¢stimate 15 usuzily found by seiting

d -
d—eL(O,xl,...,x)—O
1

or, cquivalently,

d
i) log L(O:xl, e, xn)= 0

This Jast cquation is referred to as the likelihood equation,

"%
6 will always denote an astimate of 0 regardiess of the method used to
obtain It,

. fAll logs in this paper are natural or basc e.

Theorem 9

If log l,(O-,xl,.. , n.) is differentiable in an interval including the
truc value, 00, let 0 be a root of the likelibood cquation; that is,
{d/d0) log L0~ , ..., xn)!(}' 4= O Then, under certain conditions .

on {({x;0},
A
i} 0 is a consistent estunate of 0, and

. ! .
2) Va0 - 0) —=— 0,7,

o

2
where 1, knowon as Fisher's mformation, equals E [(:}—0 log f(x;O)) ]

A result due to Cramér and Rao is that of T 1s an unbiased estimate of 0,

then

Var (0) -+ 3! _11_1 s

where noas the numiber of observations Combined with Theorem 9, this
means that, asymptotically, the maximum-likelihood estimate is a mimmum-

variance unbiascd estimate .

As with all asymptotic results, the question is: what happens for finite
n? Inthis case, n - 2515 usually sufficient l’or6 to be very close to a

minimume-variance unbiased estimate.

11 1t 18 known that 8 hes 10 some interval, 6 18 chosen to maximise the
hkehlwod funcuon on that interval, It is pussible that this maxunaim wall
not be a root of the hikelihood equation.  [» that case, the results of Theorem 9
will not, 1n general, hold, For example, 1f 0 = 0 and all roots of the likelhi-
hood equation are negative, the two boundary points, 0 = 0 and § = ., must

be checked to see wlach maximizes L.

Example
This illustrates how these results can be extended to estimate miore
than one parameter. Supposc X,, oy Xn are iid N(u,0), where

both g and 0 are unknowr:
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log L, 0:x;, .y )2 € -5 log 0 - 55 Nt XSy o
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where C is a constant  Then,
- A
i)lOng _Q(...’lii_\)
ou A b 6

>T >

0
Therefore, i = X. Note that ki an unbiased estimate of g for any n.
To obtain 0,

| n
9 lop L S T “\2‘nle+_r_\£5_0
o0 A ')[3 262 n 62 762 - ’
WEp e =1 -
Therefore, 0=
n
/4 ! <
Q== (~ - X .
n t
i=l

6 15 only asymptotically unbiased, since the unbiased estimate of

P

n
% ) l _L
0 for any nas T Z' (x, - ¥X)

2.4.2 Sizmificance tests

Suppose a hyputhesis about the property in question (trequently catled the
null hypothesis, denoted by HO) 19 to be checked as to whether ”0 is consist-

ent with some observations that have been or will be tiken. A test can be per-

formed by constructing some Tunctior of the data, y, «alled the test statistic,
that has a known distribution f the hypothesis s true and such that, of Hy is

false, an "cxtremce value' of thia cistribution would be expected,  Then, af

an extreme (that is, unhkely if “0 is true) value 18 observed

is "rejocted. " Otherwise, Hy s Maccepted. ”

, the hypothesis

. C e

The use of the terminology "accept” and "reject” can bc'misleading. A
test of & hypotliesis 1s very one-sided It only subjects the hypotheais to a
process of “"disconfirmation, " If 1]0 is rejecied, thts may be taken as evidence
agmnst the hvpothesis, If H“ 1s accepted, all that can be said is that it could

not be rejected.  Accepltance w not e udence for a bypothesis,

Samie clariwcation s needed as to what constitutes an extreme value,
Let Godenote the set o all possible values of v, and let A and B be two

disoonnt subsets of G osuch that theyr umon 1s G The test Qs
accopt H(‘ oy takes avalue i A,
rejedt li” 1y tares a value i B
B s deto rnaned, thoupl. not uniquely, by the requircment that, af HO is true,

]y takes avalve n B} = a2, (3}

wherea, celied the sipmOcance level or type Terrae, 18 a predetermined

constant  usaallv 0 05 or 6 01, a s the probability of rejecting the hypothesis

when 1t gs, an tact, Lrue Yo choose B subject to equation (3), consideration

In gave D o what swwould be true of .‘l() were false I'his 1» usually done by
choosmng B to pannmize the type llerror, P s the protability of accept-
e L errol

\(
g H” shenat as false. 1o« s called the power of the test,

Alternatine torpnnclogy, wheny takes o va'ue 1n B, 15 to say that the

tesudt s wapmitrcant at the @ devel  This roanslates as: the data differ signif-

yeatitly trons those taat woald be svpecaed af “0 were true, where the signif-

Ieance teve?l gaaa

Leats are frecuently named by the distribut:on of the test statistic when

Hoae true
"

Ixample

. . 2
'\I' ., .\n 1d N{u,0%)

P4
whe re poand 6% are unknown,

“ln generat, goas a function of the variwous alternatives to Hy. Ideally, Bis
then chosen o nunuze B for all the alternatives. If necessary, it is chosen
Lo mitumize P tor a chosen class of alternatives., '
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Suppose H() states that p= 0 By Theorem 7, when Ho is
true, ¥n X/s ~ tor Take Y(xl' N xn) s vn X/s

If 4 < 0, we would expect smaller values of y than if p= 0,
Similarly, it p > 0, we would expect larger values of y.

If it is possible that p may be any value, pick the constant C
so that

P[lyli’ Cl=a :

then A = (-C, C). Ifa= 0 05and n= 10, then C=2.634, from
a table of the ¢ distribution with 9 degrees of freedem,

If it is known that p *2 0, then pick C so that
PlyzCl=a ;

Now, A= (-w, C) Fora=0 05andn=10, Cm2 228. Cis
chosen differently 1n this case, since negative values of y cannot
be due to u < Q.

This test is called the t test, two-sided if all values of u are

possible, and onc-sided if only p = 0 (or p = 0) is possible,

As presented so tar, the hypothesis testing procedure leads one either
to accept or reject the null hypothesis, In practice, though, this is not what
is usually done. Instead, the tollowing 1s done: Collect the data, Xys coea X,
and calculate the value of the test statistic Yo © y(.\-l, PN xn). Then calcu-
late the probability of observing a miore exteeme value of y than Yo using the
digtrivution of vy for the casce wnen the null hypothesis 1> true.  This probabil-
ity, to ke denoted here Ly P 1® then a mcasure of the degree to which the
data are inconsistent with the null hypothesis or, vquivalently, of the sirength
of the cvidence agimst the null hypothesis, The smaller the vatue of Por the
greater the strengh of the evidence against ”0' Thercefore, it is usually best
simply to state Py a9 the result of the (est, although for large enough Py (for

most purposes, p, > 0.20 or 0.25 is considerced targe), 1t s safe to say that

there is no wignificant evidence against ”0' An alternative to stating Py

would be to say that the test result is significant at the 6% level, where 6 is
usually taken as 0.5, 1, 5, 10, or 20 and is such that §/100 Zpge A result
significant at the 6% level is also significant at the 8’ % level for any &’ > &,

Example

In the previous example, suppose n= 100, X = 0.8, and
2

~“ =16 0  Then,

vn X

\0=\(\|, ""\l00)= =2.0

Por the tvo-sided test,
Py * Py > 2.0] = 0,046,

by use ol the normal disiribution to approximate Student's t distri-

bution with 99 degrees ot freedom.  This result is significant at the

Volesels Forothe one-suded test,
Py Ply > 2.0] 20,023

ageann by use of the normal approximation.  This result is signif-

ycant at the 3% level and, hence, also at the 5% level.

It an acoept or reect decision s necessary, o5 when testing for outliers
{>cenon 8023, then an a must be chosen. How does one go about picking an
" that charee depends on the purtiose ot the teat and on the person dong the
te-ning. o choose a, one must decide how much protection is desired

ccaanst alsely rejeciing H“. Ihe simaller the value ol a1s, the more pro-

teetion, Lut for anven number of ohservations, reducing @ means thereas-

i the probability of talscly accepting ”l) (the type Il error}. The value of a
thust then be 4 personal decition for which there can be no general answer,
exceptto say that a = 0 0% and a = 0,01 are the most common choices,
Por the testas that appear an the temander of this paper, weo will indicate
the null hypothesis (usually just reterred to ay the hypo hesis), the test sta-
tistic, the distrmibution of that statistic when Hyas true, and what constitutes -

woextreme value of the tes? statistic. Co wocomplish the latter, we will say,

tor example, reect the hypothesis when the test statistic, ray 4, if too large, ¢

[his mcans that o 29 10 the obrerved value of Z, then Pg © Plz >

0]'




2.5 Glossary of Notation

Capital lcttcrs,:(
Small lcttcrs*
S
f(x)
F(x)
P(A)
: fx] y) or f(x]|Y = y)
- E{g(X))
E(g(X)ly]
Hx
i or Var (X)
7x

o or Cov (X, Y)

XY

Pxy

*Whh exceptions.

Random variables

Values taken on by random varlables
Sample space

Density function of X

Distribution function of X
Probability of A

Conditional density function of X given ¥ = y
Expected value of g{X)

Espected value of g(X) given Y = v
Mean of X

Variance of X

Standard deviation of X

Covariance of X and Y

Correlation between X and Y

Covariance matrix of the vector of randon

variables X
"is distributed ag"

Normal distribution with mean 4 and

: 2
variance o
Convergence in distribution
"independent and identically distribated”

Chi-square distribution with n degrees of

treedom
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F(n, m)

Sample mean ' s
Sample varlance
t distribution with n degrecs of freedom

F distributicn with n and m degrees ‘of
{recdom

Designates estirnotes
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Occasionally it is possible to transform to a lincar modei. For cxarﬁplc,

———

W= exp[ P’ ¢ ¢f can be transformed to

3, THE LEAST-SQUARES MODEL Yoo dop Weiz e

which 14 linear.,

The general mode! is R
Throughout this paper, assumptions wiil be made as nceded. Once made,

2, ¢)

| R p all assurmptions are to be carricd through unless it is otherwise stated.

for some function {, where Y is the "dependent variable,” that is, the varis
able that is to be predicted; Zl' .+, Z_are the "independent variables,” Agsumption |, The model is correct.
that is, the variable that will be uged to predict Y; and ¢ iy the error or

. A s Assumplion 2, The X '8 can he aobgerved without error,
residual term, This includes all errors — for example, in mecasurement — Adssumplios IR 8¢ ut

and all effects — that is, other variables — that are nut inclided in the model.
¢ is a random variable about which we want to make ae few assumptions as
possible. The form of the model is determined by physical considerations

(when known), judgment, and trial and error,

In most of this paper, we will consider a special easce called the lincar-

additive model:

Y=p,xl+... +pkxk4e R

where the Xi‘s are known functions of the Z.l‘s, and the Di‘s are constants,
presumably unknown. The term linear refers to the condition that the model

be linear in the coefficients and in the residual term.

Exampile -
. 1) Y =_¢I cos V3Z + pz exp [ZZ] + [33 T#Z' + (34 + ¢ is lincar, with '

=z cos \N3Z ,

! 2 Y =p] Z 2 + ¢ is not llncar unless pz ia known.

30
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4, THE PROBLEM AND ITS SOLUTION
Very simply, the problem is that ‘3‘, ey [3k arc unknown and sonic

estimate of them is nceded, Possible rcasons for needing the cstimates are
1) To test hypotheses about pl, cey isk.

2) To be able to predict Y from some future observation on xl, . Xk.
3) To test the correctness of tite model.
To estimate p], ey pk, two things are nceded, First, we must have
some data, Let us assume that we have n {n > k) observations of the
(k + 1)-component vector (Xl, ey Xk, Y). (If n =k, the problem is nct
statistical.}) Lower case letters will be used to denote the observed quantities,
and the subscript u will be used to denote the number of the observation. Note
that the distribution of the residual variable ¢ may be different for cach u.
Anything that is said about ¢ (without a subscript) is to be interpreted as true
for cach ¢ , where applicable.

Sccond, same criterion is needed. It should come as no surprise that
the criterion to be considered-here is to minimize the sum of the squarved

. & Cres
errors; that is, p], ey ék arc chosen to minimiz:

n
Z {yy - QU)Z ,
u=1

~

where

hatd

k
A
u- B *ui
i=1

Hence, the term least squares,

31

Why this criterion? The two main rcasons for using least squares
follow:

I
casy. © .
2} The estimates have some nice properties.

Unfortunately, these nice propertics sometimes break down, and sven when

they do not, they arce not always optimal,

To keep the notation manageable, we will use matrices:

Y1 Ay .
Y= | p= '.\
=X

Yn pk

c >
€
A
£ ¥
"
yn

1
n
1

=

n
<>
n

A
LR :

Primes denote transposes,

In matrix notaticn, the model is
Y=XB+e¢ ,

Al
and § is chosen to minimize !

~ A~ A
(Y - YY(Y - Y)

32

} The solution for the lincar case we are working with is t;\athematically~.




By taking derivatives and setting them equal to zero, we obtain the normal
equations

where S is & X X k symmetric matrix defined by
} n

= 5 = ’
sij E;xuixuj or b-.XX ,

u=1l
and SY is a k-component vector defined by
n

= = X'y
Syi Z ®up Yy OF Sy = XY
usl

Then, if S is invertible,

Aol
p=5""s,

is the least-squares estimate of B. It is important to note that X, and hence

S, have been treated as matrices of constants,
approach.

This is the traditional
In cffect, the problem is considered in terms of what can be said

about Y for given values of the X;'s. Because of this, all cxpectations that

follow ar¢ really conditional on X, although this will not be explicitly stated.
Assumption 3. S is nonsingular.
Assumption 4. E[e] = 0. As stated above, this assumption is
really E[cIX] = 0. Sincc this should be true for any value of X, it

is neccssary that ¢ be uncorrelated with the Xi's.

With Assumption 4, there is another way of looking at the model, since

E(lel,..., xk)=z:;3i X . (4)

Thiz meansg that for each {xi)ll;‘, Y has a distribution about the mean value
xi'l}i', ‘fhc distribution being that of the random variable ¢. The curve

33
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riven by formula (4) is called the regression curve (hence the term lincar
regression), and it is this curve that we wish to estimate.
Theorem 10

It E{e) = 0, then E [8] =p.

Assumption 5 E[Ci°|] = 02 sij’ where 0_2 is a constant and 6i) is
Kronecker's delta: 6§, = 1 Ef 12 That is, the restduals are

iy Y0ifi#]
uncorrelated and have constant variance

The assumption that the residuals are uncorrelated is less restrictive

than 1s an assumption of independence, but there is hittle practical difference.

This assumption makes the following threc theorems possible:

Theorem !
-1 2 2
Let C=S ;thenZjy=0" C Thats, Var (ﬁ\) =@ C.\.\, and
. _ 2
Cov (B, ﬁj) =% Cp
Theorem 12

n

= 5 : i L 2
Let du =Y, - Yo the obscrved residuals, ands® = — 2; du
Then, E[s?] = o2 u=

Using these two theorems, we have
- k 2
E|(y Z X, {s\) = E[(Zx,0, - B) + 0 = o?0 4 X Cx)
i=1 Vi

where X = (xl, h xn)' i&somc future observation. This quantity is the

variance of the prediction Z x.lﬁ.‘. The term cZX’ CX ia duc to our not
i=1
knowing 5, and o? is due to the residual term. The gtandard error of pre-

diction is sVl + X' CX.

Theorem 13 (Gauss-Markoff Theorem)

If we consider only estimates of lincar functions of the ﬂi's that
are

34
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1} unbiased and
2) lhinear functiions of the yu's,
then the least-squarcs method gives the estimate with minimum

variance (for all iincar functions of the Bl's).

This last theorem details the nice propertics that were promised carlier.
It says that the least-squares estimate is best (that is, mimimum variance
unbiased) in the class of ¢stimates that are lincar functions of the yu’s.
This is nice, but there 1s no reason for restricting onesclf to this class if a
better estimate can be found,

When the model contains a constant term, say ',5k, then an alternative

" method is available Smce the least-squares solution for pk is

k-1
o B =7 B. %
Lt k i
=1
‘ ‘the ¢stimates of ﬂl, P ﬁk ) can be obtained by considering the model
rewritten as
k-1 .
yuﬂ Y+ pi(\ui h xl) fey o
i=l
where
n
_ 1
= - x
n ut
u=1
and
n
.1
Y=q Ya
uzl

. If S and Sy arc modified to

n
R RO DN N AR DENENEEE S

e
and
n n
=S ks - Fly - T = X7
SYl = ("ui )\i)(yu -Y)= XYy~ D Xi Y , .
ux u=1
then
A
/"
-1
=5 Sy .
8

k! . .

The advantage of this procedure is that the matrix to be inverted is smaller.
its disadvantage is that it mav be ncither casy nor accurate to compute S and
Sy
means and then another pass to calculate S and SY or to run the risk of taking

It 1a necessary cither to make one pass through the data to calculate the o

the difference of two very large numbers, which could result in nonsense,
that 15, no remaining significant digits. These problems can be considerable, -.

especially with large quantities of data.

This alternative procedure will not be mentioned again, but there are
two points to note. First, the fitted curve goes through the point .
(3(-1, N Yk-l’ Y) Seccond, the standard error of prediction is now of the ' ~ R
form

s‘/l1—|-n-! X -RC(x-% ,

where X is the (k - 1)-~dimensional vector of means from the original sample. |

This shows very clearly the price paid for extrapolation in terms of large

standard ¢rrors

Note that 1t has not yet been necessary to assume a distribution for the
e s It has not ¢ven becen assumed that all the ¢,'s have the same distribu-
tion. Some assumption is required for us to be able to make any probability

f

statements about the solution, for example significance tests,
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Usually, the normal distribution 1s assumed. for two main recasons:
First, owing to results such as Theorems | to 3, the normal distribution
is frequently a very good approximation to the residual distribution. Sccond,
the normal distribution is the casiest to work with: that is, tests arc available
using test statistics with known and tabulated distributions. Intheory, it is
possible Lo find tests and the distributions of their test statistics for any

assumecd distribution of ¢. In practice, the effort is usually not worth it.

One additional point about normality is that if the cu's arc normally
distributed, then the maximume-likelihood cstimate is the same as the least-
squarcs estimate. This has two implications, First, the 'ecast-squares
estimate has, in this case, the additional nice property of being asymptotically
minimum-variance unbiased among all estimates, not just among those in the
restricted class considercd earlier. Sccond, if the distributions of the eu's
arc known and are not normal, it may be preferable to use maximum likeli-

+ hood rather than least squares,

T Example
' I f(c):z—l)\ exp (-Mel) (v>0)
' k
oy exp (MY - D B XD
I t=l

the double exponential distribution,

ey

- 3

then, maximum likelihood says to choose ﬁ to minimize

! ' n

n k
, Z Idu|=z Iyu'zﬁixuil
. u=1 u=1 i=]
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Use of maximum hikelihood should especially be considered if the dis-
tribution of ¢ is not symmetric. Least squares treats a deviation (du) of
-athe same as one of ta If the dietribution of ¢ were not symmetric, one
of these deviations would be more unlibely than the other (Ple = -a} < Ple = +a}

would mean that -a was the more unlikely)

Example
Suppose f(c¢) looks like:

009-113

— e ——e A e d I P [
-a -8 ~a

In this case, -a 15 morse unhikely than ta

What 1s desired s that equally probable deviations be treated alike. In
the above example, 1f Pie = -b] = Ple = ta) , then -8 and +a are equally
Likely deviations, The quantity to be minimized should take this into account,

Least squares docs not,

Assumption 6, Cls ooes € are iid N(O,az).
This assumption will be used only for the significance tests that are to

follow, unless otherwise stated, Results not connected to a test do not require

this assumption.
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Theorem 14
1f €, ..., € are iid N{0, crz'), then

B, ~ N0 Cyy

Also, 1f Pand R are two k-dimensional vectors of constants, then

P ~N(P'B, P'E, P)

B

and
Cov (PR, R'fy= BTy R

(Remember: 26 = % C.]
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5. A SECOND LOOK AT THE ASSUMPTIONS

The presentation so far haa been of the standard statistical approach,
Before completing this approach, let us o back and discuss the varions -

aszumptions. The' questions to be censidered are

1} ftow ran it be detected whether the asaumptions are valid?

2} What ¢flect docs a false asaumption have?

3) Can the assumptiony be avoided?

Because of therr complexity, two toptes will be left to the end of the
paper: regression whaen the Xi‘s are observed with error, and nenlincar
regression  Inthis section, we will work with the linear-additive modal

and assume that the Xl's arc observed without error,

5 1_The Madel
k
The mode) 15 ¥ = ) Xlﬁi t ¢, where ¢ contains all errors in the meas-
urement of Y and the oﬁcct of all the variables not included in the model,
Assumption | was that this madel is correct, All the results that have been
given and that will follow depend on this assumption, so this assumption is
an important one te check.  Fortunately, however, all the results remain ‘

very nearly valid as Jong as the model is close to being corroct,

What would it tzke for the model to be incorrect? An incorrect model
can be characterized by a correlation between the d's and one of the variables.
This correlation can be causced by the following:

1} The X{'s being used are the wrong functions of the Z,'s

¢) A variable, corrclated with those being used, has been left awt of the
model. ‘

3) The truc regression cquation is not lincar.
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A lack of fit due to the nonlincarity of the true regression can sometimes

be eliminated by restricting the X:'s to a range on which the lincar mode! is
- a-better approximation. If this cannot be done, it 18 nezessary to use a non-
linear procedure.

. The two principal me .0ds for checking this assumption follow,
5,1.1 A test for goodness of it

This test assumes that for each (xul, .

of Y have been taken: Yait o Yun - Then, for cach u
u

where

will always be an unbiascd estiraate of 02, whether the model is correct or

not, By combinming over u,

n Py

-2
2 _ u§) v§1 Wy =Vl
82————n-——-—————-
Z(nu- I}
u=l

will be an unbiased estimate of o2, By Theorem 12,
n

noy2

2 gy, - ¥y
_u=l

6y = —

n-k

42

., X n_(n_ > !} observatiors
'uk)’ u(u } observations

will be an unbiased estimate of o if the model is correct. If the model is
wrong, s? will be inflated by the difference between the fitted regression
line and the truc regression line, 5‘:' is called the lack-of-fit term and is

obtaincd by treating ;u as the observation of Y corresponding to

"\'ul’ .y xuk) and then weighting inversely te the variance (which will be
covered later) Also, 8| is independent of sg.
complete proof, but to sec that s]2 and sg are independent, consider

This docs not constitute a

n 4} n nu
442 2 - A2
Z Z (yu" y") _Z Z (yuv - )’u A yu - yu)
u=l v=| u=l =l
n nu n n\.I
— -
= ), Wy =¥ -2 Z Vuy - Yy - W
usl v=1 u=l v=1
n
n u n
25 F -5 . }" R
2)  bymyy Yy = Y H n vy, - ¥
u=! v=1l u= L
a n.l n
I 2 A2
b 24 SAVER A § : Py - Yy .
u=l v=1 us=l
and usc the following lemma:
Lemma
gy, ...,g,tid N(O,UZ) and v € n, then
v
_ 2 .2
T == Z By T Xy
[t .
izl
N N
S 2.2
T3 Z 8 “Xp.y ¢
o .
i=vil

and Tl and T2 arce independent.
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Before the test is stated, a discussion of the degrees of frecedom of
vanance cstlm.,tcs is necessary. In general, a variancc estimate is of the

form S T g , where g) is some function of the j th obgervation and

m= 4, ! 1sja constant equal to the number of independent observations

minus the numbcr of parameters estimated by those shservations. As an
cgamp\c, for s , the {Vu]u_ T
paramcters havc been estimated ([31, N ﬁk), sof{=n - k. Inthat case,

arc n independent observations and k

= ~n, (y - y ). fis the number of degress of frecedom of the variance
csumnlc Il‘ the chslrlbuuon of g, 's is N{O, o ), as is the case for 52 when

the model is correct and A%aumpnon 6 holds, then

-2
2 ZEJ
S g EL L oy
z FJ ¢
2 a

{The number of degrees of freedom of the XZ distribution is f not m, as might

at first be expected, because the gJ's are dependent.)

By this result and the lemma,

2 n

3y

— ~F n-k,E(nu-l)
%2 =1

if the model is correct, if the model is wrong, a large value of the test
statistic is expected, The test is to reject the hypothesi. that the mode! is

correct if

=n
w
9]

0
™~ N

n
where C is obtained (rom a table of the (n - k,Z(nu - l)) distribution for

the chosen significance level. u=l

If the result of the test is not significant, there is little nced to worry

about a lack of fit. All reaults will at least be very close to being completely

valid, If the result is significant, aome other procedure must be used to

_d'ctermlne the causc of the lack of fit so that it can be corrected,
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If multiple observations are not available, an estimate of o‘z from another
n . N
sct of data can be used as the denominator of the F test replacing z (nu -~ 1)
u=1 -
by the appropriate number of degrece of frcedom. The only requirements
that this estimate must satisfy arc that it be unbiased, whether the model is ~

correct or not, and that it be independent of s‘:'
5.1.2 Residual analysis

Residual analysis will be used to check goodness of fit if the F test
cannot be performed or to try to discover the cause of the lack of fit if the
test result was significant. Residual analysis bhas other uses, so it is best
to start with a general overvicw of the procedure before going into the

specifics of this application, . ‘

The basic idea behind residual analysis is that if the assurnptions are
correct, the {eu}2=) are n uncorrelated random variables (possibly normally
distributec) with mean 0 ard variance o2, The {d )u " being estimates of -

{e )u L’ should then look like a samplc with Lhosc propcr;ics. In fact, the S
d 's have the covariance matrix o (I - X(X' X) X’) (#¢71) and so are .
corrclalcd but this effect 18 negligible unless the ratio (n - k)/n is very small
Therefore, the du's should appear to be uncorrelated, to have constant variance,

and to be uncorrelated with any of the variables in the model.

Usually, a residual analysis will give some idea of which assumptions,
if any, are not valid and how, if necessary, the cstimates can be corrected,
The procedurc is to examine plots of residuals, first overall (for example,

as a histogram), and then against
1) Time, if known. e
N .
2) Y
H X G=0, 0 e Lo

4) Anything clse that makes sense for a particular problem. For v - |
example, if the observations cume from three different stations, the rcslduals

for cach station could be plotted separately, \
5
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_ When the residuals arc being examined for goodness of fit, the following
should be looked for:

o A
1) -Plog against ¥ or Xj G=1, ...

"The'residuals should lie in a horizontal band:

, k). o ?

0091y

_ If they do not, something is wrong. For example,
00%~-us

uu, :

e L7 | / - M

{ Yu ¥

3

M

f

A i

. If this occurs in a plct against Y, 1t indicates that a cunstant term was left - n -
out, In a plot against some Xj' it indicates an error in the calculations, =R
R

1’- .'

4 oas -u3y ‘e s o ‘:

. ¥

r

\

}\i this is a plot against Xi, it indicates that an %2 term is necded; if against
Y, that some variable needs to be added to the model,

2R L

21 As an example nf other possiblz plots, for the plot of the residuals

by station, all three plots should ook alike.

If something like the following

happens,
009-013
STATION A l
| Mo X XXX d,

TAT
STATION 8 b a9y
STATION C }

Homei X l dy

it would indicate systematic differences between the observations from the

three stations This could be corrected by introducing,
variables, an additional constant term for cach station:

‘ 1 uﬂ

X ® ) 0

h . .
obscrvation from station A

.
otherwise

and simijlarly for qu and qu'
2) Plot against time.

Again, the residuale should lie in a horizontal band.

scmething not in the model is changing over time.
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It is possaible to test the randomness of the pattern of the sign of the

residuals. The test is called the sign test and does not require the normality

. asgumptlon,

Start by counting the number of runs., For example,

O A S A R

“has four runs. The test is to reject the hypothesis of randomness if there

are too few runs. For small n, a special table (such as in Draper and Smith,
1966) must be referred to for the distribution of the ‘est statistic. For large
n, the following normal approximation can be used. Let

n, = number of positive signs,

n, = number of negative signs and
w

number of runs.

Then, if n, > 10 and n, > 10,

’

z e Wopt /2 0_+ e N(0, 1) (approximately)

where

and

2 _ annz('dnlnl -np - nZ)

¢ 2
(n1+n2) (nl+n2-l)

Reject the hypothesis if Z is too small.

A significant result could possibly be due to some uncontrolled variable

qhahglp'g values. In particular, the magnitude ~f a systematic error may be

_ changing.
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5,2 The Solution

The assumption that S is ncnsingular is not generally a problem. S will
be singular 1f there are some linear relations among the X's. In that case,
the normal cquations will have an infinite number of selutions, all of which
arc cquivalent in the sensc that they give cxactly the same predicting equa-

tion.  There are two ways of handling this problem.

First, if there are £ lincar relations among the Xi's, you can either drop

£ of the )\'l's or introduce £ constraints on the ﬂi's.

Example (Cochran, 1969)

Let n= 4, supposc %3S M2t Xgp0 wE i, 4, and let

4 39 25
S= (3'} 158 119

25 119 94

and

72
Sy= (234
162

Solution I: Put ﬁ3 = 0 and solve for ﬁl and 62 {this is equivalent
to dropping X3).

Y , -1 2250
. (n .30> (72) . £
62 39 158 234 168

691

Then,

A 1 . X
Yo T 59T (2250 X4l 4+ 468 xuz)
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Solution 2: Put 61 + [3‘2 + 63 = 0. Eliminate any onc of them from
the normal cquations and solve:
§ o= ok (- 468 x_, + 3196 2716 x )
Yu~ 891 1" *ul *uz ° *a3
= .
= o1 (2250 Xyt 468 xuz)
The sccond method is to find a generalized inverse of S, that is, a
. matrix, Sg, that satisfics

55%s=s
At least one generalized inverse exists for any matrix. If 58 can be found,
ﬁ =8%s
y

is the least-squares solution. Rao (1965) and Graybill (1969) discuss
methods for finding S8, Note that $8 = 57! ir 57! exists.
The function P’'fH of the ﬂi's is said to be estimable if there exists an

n-component vector R such that
~
E(R'Y] = P'§ ,
that is, if therc exists a linear combination of the yu’s that is an unbiascd csti-
mate of P'3. If there are lincar eelations among the Xi's, not all linear com-

binations of the ﬁi‘s are cstimable, in contrast to the case of no linear rela-

tions, where all lincar combinations of the Qi's arc estimable.

Theorem 15

1} P'B is estimable if and only if P'(I - $83§) = 0, where S8 ia
any generalized tnverse of 8

2) If there exists an £ ¥ k (£ < k) matrix G such that G X' = @,
then PP ia estimable if and only if G P = 0. (G is the matrix
of the cocfficients of the f linecar relations among the Xi'a.)

3) 1(6 is any solution ot the normal cquations and P’ is

estimabie, then its unique estimate is P’ﬁ. This means that if

PP is e¢stimable, there is exactly one linecar combination of the
. )
yu's that is an unbiased estimate of P', namely P,

I

Example

In the previous example, G=(1, -1, 1), so Plﬂj + Pzﬁz +F‘3ﬁ3 18 esti-
mablc tf and only 1f P3= PZ - Pl. For instance, |3l +]32 and bl -ﬂ3
arc estimable, but Bl - B, 1= not. Note also that, in this case,

neither ﬁl, [52, nor [)3 15 estimable!

A more common problem is that S may be ill-conditioned, that is, nearly

. e a=1 : s .
singular. Finding S° 1s then a problem in numerical analysis.

One possible method, due to Houscholder, uses orthogonal transforma-
tions. The problem is to find an n ¥ n orthogonal matrix Q such that

.. (R
QX :R= (0) ,

where R is a k X k upper triangular matrix. Then,

I ~_]
B=R "X ,

where Y, is the vertor consisting of the first k components of QY. An iterative
procedure for findingﬁ based on this method 1s detailed in two papers (Golub,
1965: Golub and Businger, 19¢5) Golub claims that his procedure will also
hndﬁ when S is singular

Since 51s a symmetric, positive-definite matrix, another possible method
would be to use the Cholesky decomposition of S:
S=R'R ,
where Ris an upper triangular, k > k matrix. Then,

sV ety

Once R is found, S'l is casy to find since it is simple to invert triangular
matrices. Golub (1969) discusses this method and others, including the
modificd Gram-Schmidt orthogonalization procedure. Golub also provides a-

good ibliography on this topic,
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Vamonde t mw o

*
can be transformed to
Some work has been done on comparing various methods for inverting S
i 2 Rice, 1966, W: . - o - . -
(sec Jordan, 1968: Rice, 1966, Wampler, 1969) E(_' /2 Y- Eel /2 Xp 4 :‘.l/Z .

5.3 The Residuals

or
W= Z3 + g
Assumption 4 was that E[e] = 0. 1f the model contains a constant term,
this assumption will always be effectively valid. Suppose that E[e] = Re 0 Then,
and that g, is the constant term. Then, N
‘ : ¥ = E[gg’] = E{Z 1z (('Z-l/z] =1
kel e e [
Y=inpi”’k*° (5) So,
i=1 -
" Elge) =0
2 .
_ . and the g 's satis{y Assumption § with ¢“ = 1, Then, by minimizing
-Z xiﬁi * “;k * "c) e - “c) &y A @
& (W -y w- ), '
kel =yt zw
=E X P 4By + e ) sty x ozl ¥ o
.liik" =(XTTOXyX'E Y, ‘
. . . Zg = (X" z; x!
s kS B
where ﬁk = ﬁk + M, ande =¢ - He Since E[e’] = 0, the model has been
) transformed so as to satis{y the required condition. The least-squares and -
procedure will go ahcad as if (6) were the correct model instead of (5), and 5[52] =1, -
all the estimates except for the constant term will be unbiased, This could ' . .
be taken as an argument for always including a constant term in the model, where
since if there is no constant term and if H, # 0, all the estimates will be N 1 A A 1 A i Q ;
% ' S - W) (W - = —— -Y)y »” . T
biased by some unknown amount, The estimate of [ik will have mean A $ n -k W-W)yw-w n -k (y-Y) )"c 04 ) .

R .
E[ﬁk] = pk L The Gauss-Markoff Theorem applies tua obtained this way. Inthe cane

where £ is diagonal 'that is, where there are uncorrelated errurs), thin is

The assumption that E[eiuj] = 0'26 called weighting inversely to the variance, Since if Var (cu) = o'lzl, then ) '

i is unnccessary. Suppose that Zc is

the covariance nratrix of the cu's'

Zc = E[¢e’]

Then,

AESE—

w17 A-172 e
*E' 2 is the unique positive definite square root of Ze, and Lc / is its . .
inverse. .

?-"Xﬂ-{—l

LTl

St

53
52

A,
2 el

Ta
&

K

R

. oo e e ]



and the quantity to

n
1 A2
7 Wy - )u)
[
u=t "u .
Unfortunately, this requires oither that ‘_"c be known or that an estimate

of it is available.

known, cspecially in the diagonal case.

b arrZ(;
¢

2 : .
where 07 1s an unknown constant and G 1s a known symmetric positive-

definite matris,

A . - B
p=ixa'x!xe!¥ :
2 o= da ot
and
2
E{s%] = 0%,
where '
"
2 by Syl S "
R Y-V G Y -Y) i
What happens if the weight matrix is not used when it should be? Con- ‘

sistont unbiased estimates of the 9i‘s will still be obtained, but they will not

‘be the minimum-variance estimates and 32

2/

of ¢, This cffect is small, however, if the correlations between the cu's

arc very small and

~

By transforming with ol 2

be minumized is

Even when not known, the relative magnitudes may be

Then,

, {

, we¢ obtain

will not be an unbiased estimate

if the o'i's do not vary greatly.
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Two methods can be used to detect that the variances are not constant,

The first s residual analysis. Deviations from constant variance are charac-
terized by deviations from the horizontal band that are symmetric about the
A

Y, (or tume) an1s. For cxample,

009 -n*

— 9\, {or time)

This 1ndicates that “‘21 increases with /)}u' The following is also evidence of

nonceonstant variance.

d 009-u3

In n¥any cases, » nonconstant variance indicates that another variable

should be included in the model. If it is possible to determine what that

variable should ke, it would be preferable to include it in the model rather
than trying to estimate the 1'-0 matrix,

An approximation that is available if needed is

vi « g{ ’)\ru) (approximately), S

2 . .
% « g (thne) , . )
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L4

where g is some function and @ means proportional to. In the first example

above,
2 A
[:3 o
u - Yu
This would require two lecast-squares solutions: the first to determine ¢

from unweighted estimates of B, and the second to determine the weighted

‘estimates of B using this approximation to the G matrix.

If multiple observations on Y are available fot at least some of the

(xul' TN xuk)’ it is possible to make Bartlett's test for homogencity of
variances.
Suppose that for uB 1, ..., m =n, thcre are n, > ! observations on Y
corresponding to (xul s oees X ). Let
n
u
.1 2
5-"_[2:()’\”')'“) '
u
v=1
m My m
-2 2
2 Ly, -v) Dn -
2 _uslem WO W e u
s = m = m !
i, - 1) Y, -1
u=l =)
m m
M= (n_ -1) iog_s-z- [(n -l)logsZ]
u u u '
) u=1l u= |
and
m
~ 1 1 1
C =14 -
3{m - 1) Z n_~1 m
u=1 u Z (nu - 1)

u=1
~'+ ¢+ Then, if the hypothesis of equal variances is correct,

.M

SENMX

T (approximately) ,

m-1
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and the test is to reject the hypothesis if M/C is too large. This will test’
only the equality of variances at those points for which the multiple observa-

tions were available,

There are two problems with this test:
1) It is very sensitive to departures from normality.

2) The x 2 approximation is not very good it n, = 6, although special

tables of the distributior dc exist for that case.

5.4 Normality

The effcct of any departure {rom normality is that the actual significance
levels of any tests used arc different from the stated values. For the F and
t tests, if the departure from normality is not large, when a 5% test is stated,
the real significance level will be on the order of 7 to 10%. As a general rule,
F and two-sided t tcsts are less affected by departures from normality than
is the one-sided t test. The one-sided test is strongly affected by axm

skewness {that is, departure from symmetry) of the ¢ distribution

There are two reasonable methods for checking normality. The first is
to construct a histogram of the obscrved residuatls d. This is then compared
to the histogram that would be expected if the e, were normally distributed,
with the estimated variznce 52 being used. There are two methods of making

2
this comparison. The first is the x” goodness-of-fit test. Let

m (Oi _ Ei)z
G 'Z E, :
i=1
H

where m is the number of classces in the histogram, G.l is the numbe> .

observed in the ith class, and Ei is the number cxpected in the ith cl;\l_sé.-; ,1"5

Then, approximately,
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and the test is to reject the hypothesis of normality if G is too large, * For
the xz approximation to be good, the distribution of ¢ should be near normal
and the classcs ghould be chosen so that Ei =1 (i=1, ..., m). ) . '

The second method of comparison is the Freeman-Tukey test. Let

m
v=§:(~/o_i +~!oi 1 - ~I4Ei + 1)2 )
i=1

using the same notation as above. The approximate distribution of V is the
same as for G. The testis to reject if V is too large. This test does not
require that the distribution of e be near normal and is also much less sensi-
tive to small values of Ei' (When any Ei is small, a small change in that

E.l can result in a very large change in G.)

The sccond method for checking normality is a normal plot. Let @

denote the standard normal distribution function; that is, if W ~ N(0, 1), then

-
|
N
o

P[W = w] = @®(w). Suppose the residuals dl, ey dn are ordered from
smallest to largest. Then, plot d“ versus w'l (u/(n + 1)). 1 A sample from

B
B2
e == 5

=3

s s s

=
o go
e B

N(u,cz) will lie on the line through (y, 0) with slope 1/0. Special paper is

l, 80
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available (for example, from Keuffel § Esser) that takes care of the &
that only du versus u/{n + 1) {or (3u -~ 1)/(3n + 1)) need be plotted.

rr
H
fe

Unfortunately, this plot is not very sensitive to amall departures from

normality, but it should show if something really horrible is happening, as
in the following sketches:

MICROCOPY RESOLUTION TEST CHART
nt 0y

£l
In general, G ~ xlz, where £ = (number of classes) - (number of cstimated
paramcters) - (number of constraints on the E;). In this case, ¢ is

estimated and the E; are constrained by Ei=n
i=1 ’

t

Anscombe and Tukey (1963) recommend the usc of ¢! E3u -1)/(3n + l].

DS
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_Am—‘_. ——— hg it - ..‘ .. . . st - %

009-113

NORMAL

ACTUAL

&6/t

dy
2
—
This implies large tails, that is,
Q09-113
tle)
NORMAL
ACTUAL
NORMAL 009-U3

@ (u/(nﬂ))%!ACTUAL

fle)

This implies skewnecss:

009-13

NORMAL
ACTUAL

D N . s
- N v e ——.“.-———L‘--h\v‘“ [Pl Sy —--Q“-— - —

e

7

IS PR

Another possible test for normality, which is not so casy, is to test for’
skewneas and kurtosis. Supposc W is a random variable with mean g and .
standard deviation ¢. Let Yy, = (1/0'3)E[(W - p)3] and y, = (1/04)E[(W- 9)4]- 3
Then Yy is a measure of the skewness, that is, the departure from aymmetry,
of the distribution of W:

. erepaye

009-113

]
%<0 %0 79

FOR EXAMPLE,
NORMAL DISTRIBUTION

R R

Y2 is a measure of the kurtosis, that is, the flatness or peakedness, of the
distribution of W: .
003-113

(/N nN

72<O Yz )’2>0

FOR EXAMPLE,
NORMAL DISTRIBUTION

e RIS T AN P -

With the sample estimates of these mecasures, a test for equality to zero
could be made.* A significant result would imply nonnormality. The calcu~
lations, especially of the standard errors, are quitc complicated. Sce
Anscombe (1961) for details.

El
The rcader should be warned that there arc two definitions of kurtosis.
They differ by the constant 3, so some references may give 3 as the
kurtosis for the normal diatribution,

ey
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!
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Theorem 16 . . R S

. { It pk-gﬂ: :pk=0, then, . - A .’ -
v 6. TESTING HYPOTHESES ABOUT THE REGRESSION COEFFICIENTS % 1) /cr‘")(l"(k - Rk-g) ~ X:.- ) . A
2 2 S .

2
2) (e )Zy? - R = (n-k)sPe? ~x .
Now that the problems with the assumptions have been considered, we n-

will again make all six assumptions; that is, 3) they are independent.

k 2 Therefore,
yu=2xui[3i+cu (u=1, ..., n , R Ry - ae . -
=1 2 8. : S
gs . 1
iid N(0,02) ‘ !
€ls -er0 Epare 1 (0,0 The statistic Rk is called the reduction in the sum of squares due to regres- ) .. 2
3

sion. The subscript indicates the number of independent parameters esti-
The three most frequent hypotheses are

AT A e

L :
R & Jo bl N s S G AR

n .
R e s 2 2
mated. A useful identity is Rk =uZ= Yu -~ gdu' .

1) pi m W (for some 1)

2) By =W An equivalent methad for testing a hypothesis of the form 3) when g = 1

is the following. Let the hypothesis be that P/ = W. By Theorem 14, .

r+l"""3k= w,
wlﬁl'lr...+wik(3k=wi (i=1!, ....g=k ,
a 2
P'p ~ N(P'B, ¢ P'CP)

where the wij's and Wi's are known.

The procedure for testing 3), aad hence 1) and 2), is the following: So, if the hypothesia is true,

n
1) Fit the regression without the conditions and calculate Rk = Z 92

= u 0 -
and o, vl N, A=EB-W .
1 sNP'CP n-

R

2) Refit the regression subject to the conditions to be tested and calculate

n k A A . . .
= 5 §‘zl &u - E Xy 6{‘ where the Bil" are the estimates of the ﬂ"a The test is to reject the hypothesis if |A] s too large (a two-sided test).
u=l i=1

subject to the g conditions.) Then if the hypothesis ia true, This is exactly equivalent to the F teat, as can be shown by provlng that

2 .
R, -R = (R }/8% and using Thoorem 8. L "

H=—k——z—k-3~l-‘(g,n-k), kl e .

g8 .

. . A test we will he using later is that of B, = 0 for somv i. lIn that case,
and the test is to reject the null hypothesis if H is too large. The distribution i il

of H is the result of the following theorem (by redefining the ﬁi'a): 2 8% R -R

A =

F] ' .

8 CH L] ' .
If the null hypothesis fiy = 0 is rejected by this test, the corrospondlng
variable, X will be aaid to be significant,

:‘j’:;f} e - -
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"a‘nmgle corrclation between two variables, V and W, is given by

7. CHOOSING A REGRESSION EQUATION

The two questions to be considercd in this section are
1) Which of two or more competing cquations (models} is best?

2) I the model must be simplified because of limitations on cost and
space, which variables are to be dropped?

The criteria to be considered are conflicting:

1) As many variables as possible are wanted so that the predictions are
good.

2) As few variables as possible are wanted so that cost and space

problems can be avoided.

It is easier to answer the sccond question first, so we will begin there,

Assurne that there exists a list of variables X .., X _ from which some

|
number (not necessarily decided on in advance) need to be gelected for use in
a regression cquation, A number of procedures have been developed to solve

this problem. Unfortunately, they do not always lead to the same solution.

Before these methods are discussed, two more statistics must be intro-
duced. Let

n n A 2

L3 -a T(9,-D i
r2=“=l = b=l

a2 2 2 72

v, -nY Ziy,-Y)

u=l =1

Tho squarc of the sample multiple-correlation cocfficient is rz, which is

equal to the square of the sample correlation between Y and Xﬁ It is
interpreted as the percentage of the variation in the sample that is cxplained

by the fitted regression. In goneral, it is deasirable to maximize rz. [The

e TR A et

[PPSO

SR RWE L S .

uZ=:l(vu - Viw, - W)
Tvw=Ta n iz
Z {v. - -\7)2 Z (w - W)z
u=l 9 =1 Y

where n is the number of observations. ]

The mecthods are as follows:

1) All possible regressions,

Compute all posgible regressions. For cach number of variables used
in the regression, pick the one that maximizes rz. This gives the following
curve: 009-u3 '

,——

S | 1 1 ) I}
NUMBER OF VARIABLES
You must then decide where on this curve you would like to be, a nonstatistical
decision,

This method can be too much work to be feasible, capecially for a large
number of variables. (k variables imply Zl< different regressions.) On the
other hand, it is the only method guarantced to give the best regression (in
terms of maximum rz) for the number of variables used.

2) Backward elimination. :
Start by computing the regression with all variables and then auccegsivély
eliminate them, calculating the new regression after cach climination. The
criterion for elimination is to pick the one with the amallest value of
BZ/s% C,; (the teat statistic for the F test that B, = 0). Stop when all ramalning
variables test as being significant at some chosen significance level.

This is a good procedurc if the regrossion with all varlables c'nnl.'bc" S
handled. . RS
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*For j = 1, the formula for the partial correlation between X

3) Forward selection.

Start with the variable that is the most highly correlated (in absolute
value) with Y in the sample. Then insert other variables in turn. The
criterion for choosing the next variable to be entered is a bit complicated.
Sugpposc that XI, ey xj bhave already been entered. The next variable to
be entered is the one that maximizes the square of the partial-correlation
coefficient with Y while controlling for Xiv voes Xj {we will return to this).
This is cquivalent to finding the variable that maximizes Rj+l - Rj and
hence causes the largest increase in rz. This procedure is stopped when the
lust variable cntered tests as not being significant, or when a satisfactory
value of rz is obtained.

This procedure is usually more economical than backward elimination,

but it can be improved upon.

4) Stepwise regression.

This is the same as forward selection except that after fitting a new
regression, look back at the variables that had been included. If any of them
test as not being significant, throw out the one that is least significant
(smallest F value).

The partial-correlation coefficient mentioned carlier can be very
difficult to compute, especially for j > l.# Draper and Smith (1966) present
an algorithm for stepwise regression that grea‘ly simplifies the computational
problems.

For most problems, this is the best method. It is an improvement over
forward selection since it does not retain variables that are no longer
significant.

2 and Y, con-
trolling {or XI, is

T -r T
X, Y YX) X, X,

r =

X, ¥+ X '

2 ¥ X z 2
Wl-rxly) hrxx,)
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For whatever method employed, it is uscful first to compute: the regres-
sion with all the variables (if possible). This will tel)l how large rz can
become. It is also a good idea to use a large a for the tests. This forces
more variables into the equation and hence leaves some leeway to thrbw out
particularly bothersome variables,

Turning now to the first question, it is not one that can be answered _ )
entirely by statistics. The only thing that can be said atatistically is'to pick _
the cquation that maximizes rz. However, this does not take into account
the number of variables used. A better procedure, egpecially for small n,
would be to pick the one that maximizes

A

2 -
R s e B

A

where k is the number of variables. RZ is the unbiased estimate of the popu-
lation multiple-regression cocfficient RZ. R2 is the portion of the variation in
Y that can be explained by the true regression and is equal to the square -of

the correlation between Y and ) Xipi' Of course, owing to sampling
variation, maximizing R dceslitl')t necesgsarily maximize RZ, but there is -
nothing that can be done about that,

Still, maximizing r2 or R” does not take into.account various costs,
such as that of obtaining data. Tradecoff between cost and the number of
variables must be decided by the user.
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8. OTHER TOPICS

8. ! Constraints

In many cases, it may be known that the ﬁi'a must satisfy certain con-
straints. For example, if the k Bi'a are functions of £ v.'s (£ < k), which
are the quantitics of interest, there will be k - £ constraints on the B.l's.

If the 5 8 are to satlafy the same constraints as the p 8, or if constraints
are to be lmposed on the B 's in order to test a hypothesis, the ordinary least-
squarcs solution will not work. Suppose the constraints are consistent and
linear; that is, they can be written in the form G = D, where Gisan r X k
matrix of rank r, D ig an r X 1 vector, and both G and D are known. The
assumption that G has rank r eliminates redundant constraints, Two methods
of handling this problem will be considered. If the constraints are not linear,
some nonlinear procedure must be used.

1) Lagrange multipliers. N
This method finds thcﬁ that minimizes Z (y - y ) subject to GB = D,

The solution. assuming without loss of gcncrahty thar. 2 =1, is obtained by
minimiziag

(7 - XB)'(Y - XP) + 2(GB - D)’ A,

where M is the r X | vector of Lagrange multipliers. The factor of 2 {s used

only to aimplify the calculations. The normal equations then become
(290 ()
G o/ \4 D
and the solution ig

4 B RS
B =B,-s"c'R
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where
ﬁo = st Sy (the usual least-squares estimate)
f=w@slants
and
A
6= G[io -D ,

assuming that (G S~ G’)'l exists. This assumption is rcasonable since .
GS " G'isanr X r matrix, G is of rank r, and S is assumed to be of rank

k > r. 1If the inverase does not cxist, a generalized inverse, (G s G')8, can
be used.

Theorem 17
If Gp = D is true, then
n Ef =8,

2) s[————— (Zd )] = o,

N2y = 2s5-'1-cicstenBasy .
L

2) Weights,

This method does not give an estimate that satisfies Gﬁ = D. What it does
is make it posaible to ""give up" a little on the constraints in order to obtain a
smaller sum-of-squares of residuals. The method is widely used because it
can be handled without modifying an existing least-squares program.

The procedure is to treat the constraint as an "observation equntion"-
that is, the model is considered as being of the form

()= (@) () -

where [ is the 'residual variable' for the conatraint equations, Let

W=(z> , Z= (’é) , and h= (‘f) ;




W=28+h

and the usual least-squares procedure can be followed. Find ﬁ to mninimize

w - zBy Ihw - zfy

<2c 0
.=
h 0 H)

The off-diagonal matrices are taken to be 0 because it does not make sense

where

to talk of a “'covariance" between a random variable and a constraint. F is
an rxr positive-definite diagonal matrix with very small diagonal elements,
and H'l, also diagonal, is the matrix of weights. I will again be taken equal
' to I without loss cf generality. The solution is then
A - - -
By=B,-ts+amlartamls |
A - -
where 60 and 6 are defined as for BL and where it is assumed that (S+G'H 1G) 1

exists, which will be the case when s cxists,

Theorem 18
i A
D p o By =BLe
2) 1£GB = D is true, then E[B,,] = p.

The first statement of this thcorem is a result that docs not seem to be
-’ available in the literaturc, so some explanation is in order, In effect, it
says that by use of large enough weights, a good approximation to the Lagrange
estimate can be obtained. The proof is a straightforward application of a
matrix identity known as the matrix inversion lemma or Woodbury's Theorem.
For this case, it gives

s+arutoyl=s!.slam+astanlas!
a8 long as 5™ oxtats.

. «

e LR NN P .

8.2 Outlicrs

An outlier is an observation whose residual is far larger than the others,
that is, 4 or 5 standard deviations from the mean. It may be duc to gross
errors, for example, a mistake in recording an observation, in which case,
it is desirable to remove that observation [rom the data. On the other hand, .
the outlicr may be duc to an unusual combination of circumstances and is
therefore providing information that the other observations do not.  Auto-
matic rejection of outlicrs — that is, removal of the corresponding observa-
tions {rom the data — is not very wise, because of the risk of losing this
information. Rejection of pointa that are not gross errors lcads to an under-
estimate of rrz. In gencral, it is valuable to investigate outliers carefully to
determine their cause. Any outliers that are rejected should be reported on
separately.

The most general rule for rejecting outliers is the following: Pick the
largest residual (in absolute valur), remove the corresponding point ~ say,
(xo, yo) —~ from the data, and thea redo the analysis. (As uced here, Xg is a

k component vector.) Using sz, C, and/ﬂ\ from the redone analysis, let

’
Vo"‘oé\
s'\ll+x10Cx0

Ve

The test is to reject the hypothesis that (xo, yo) is not a gross error if Wz
is too large (WZ ~ F(I, n -k - 1) if the hypothesis is true). By Theorems 7
and 8, a good approximation for large n is

W~ N(0,1)

It is a good idea to use a very small significance level in order to minimize

the possibility of rejecting a point that is not a gross error,




It is also nccessary to take into account the fact that the largest residual

has been picked, If the actual significance level of the test is to be ag than
hd . iad

as= uoln should be used in the followinrg manner. Reject the hypothesis if

WZ > d, where d is determined by P[V > d) =q, with V ~ F(l,n-k-1). Then,

P[Wz >dl=aq.

Example

Letn = 20 and suppose o = 0.05 is used. Then, a, = 0. 64

(=1 - (0.95)?‘0), so it should not be a surprise if the largest resid-
ual is rejected. If a,= 0.05 js wanted, thana = 0.05/20 = 0,0025
would have to be used. For n= 1000, with the normal apprexima-
tion, rejecting tie hyporhesis for jwi>4.058 m

gives a 5% test; for |W| > 4.4 sm gives a 1% test.

o " -P‘ a . "
e _"‘This is an approximation valid for small an The exact relationship is

honi-(l-nﬁ
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¢. REGRESSION WHEN ALL VARIABLES ARE SUBJECT TO ERROR

In this section, it will be ncecssary to distinguish between two types of
rclations, regression and functional: -

I} A regression expresses a relation between the axpected value of one
variable, Y, and another set of variables, Xl, PN Xk. For example,

ElY] =a+pX or Y=a+pPX2re

where ¢ is the usual residual term Note that the relation X = (Y - a)/p docs
not make any sonse,

2} A functional relationship expresces an exact relationship among a set
of variables. In this case, if the variables could be observed without crror,
there would be no statistical problem and the unknown coofficients conld be
calculated directly. For example,

Y=a+pXx

,
or, cquivalently,

Y -a
X =2 ——
p
which now makes sense.

These two types are not mutually exclusive, A functioual rcelation with
onc and only one variable subject to error is the same as a regressfen rela-
tion with the residual term being the arror, '

The notation for this scction will be the following: The mndol‘l igr' ;

YeXB+e , X=(Xl, AN
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where ¢ ia the cther-effects term, which will be fdentically sero for a voh Sd o are k-dimonsional vectors thr? . S |
functional relation. The observed variables are B N i
3 (ach’i = ”chi ‘ . . i
VeX+h ' and ) b
“and il ® ofhi . . : ’ j
W=Y+! (v: 0% Ton, © 0 for the case of a functional relation between X and Y. ) - 1
The effect of the crrors of obscrvation in the Mindependent! varlablea is an {
where h = (h]. e hk) and ( are random variables representing the errora increase in the residual variance. 3
of obacrvation, For n observations, the model in matrix notation becomes ) . . g
’i Before we go on, there are three points to conaider. First, 6 is not- '
Wz (V-Hpretr I A

nsceasarily unblased, nor lor that matter, even consistent. For predictions,

i
!
]
oot
. this should not matter. However, there are conditions for unbiasedness that }
where p will be mentioned later. Also, 8% is not always an unblascd estimate of 9-2. i
h h ¢ . It will be, though, if the same conditions hold that are accessary to guarantee ’ haiN
w v e v . »
! - i 1k 1 k ! : the unbiasedness of § and it E[gu gv] = 0foru#v, )
Wl @ ), V=1 ¢ : , H=| : : , and f=}: . . ;
¥n Val Ynk hnl hnk fn

Sccond, since vi depends on B, weighting inversely to the varfance by ;
minimizing é

Suppose W is to be predicted {rom seme future obacrvation on V. Far 1 Z (v ~ W ﬁ)z
this case, the least-squares asolution (Q " ('\7'7’)'l V'W) (or the regreanion a': m v "

of Won V works, since W and V are observed without error. The model &s

- carg .
R S o N g

! ' '; lcade to a different solution [Wu = ‘wul‘ R \vuk)] . That solution can be {
W=Vpt+tg , obtained by solving k simultancous cubic cquations or by using a direct i g
where : : l; minimization technique. Even if it i8 feasible to find this.solutibon, there is V
gre+f-1p : no guarantee that the solution will be unbiased under any can‘ditions, or even ,
unique,

. It ia neceasary, though, to assume that E{g] = €. If all the variances and
covarlances are constant, then The real problem is the assumption tha: E[g] = 0. As explgincd in Scction )

5.3, Efe] # 0 and E[f] # 0 can be taken care of if we lncludc;b:.qoxl{St':xxii'ierm

in the medel. This does not generally work for E{h] #'0, To ”s‘ce where the |

problem is, remember that the X;'s arc rcally‘runc:lqns‘ of some othér set

2.2, 2. ., :
TgT T PO P RIEL P20, - 2pe b ey)

of variables Z,, ..., Z_, which are observed with error.’ If the X's.are
not linear functions of the Z's, then excopt.in very spocial cases, E(h) 20




even if the erroras on the Zi‘s have mecan zero, and E[h“] may be different
for cach u.

Example
- Suppose you make n obscrvations on Z and obscrve z, ¢ k, for
-
w= 1, ..., n, where k is the error term. If x = ¢ Y, then
zuH(u ku
[ =X © H
u
therefore,
ku
hu B xu(e - 1)

and

k
E[h]) = x (E[e "] - 1)

k
Unless E[c Y} = 1, E[h“] will not be zero and will be different
for cach u, since it depends on X

"The only way I know to handle this problem is to avoid it; that is, when-
ever possible, observe directly those variables, or lincar functions of them,
to be used in the regression cquation.

Another difficulty is that E{g] = 0 requires that g be uncorrelated with the
V"s (or x.“a, depending on which is taken ae fixed — cf. Soction-4). This, in
turn, will generally require that the V"s (X"a,‘, be uncorrelated with e, f, and
the h"a. Of these, the most unreasonable is that V, (X;) be uncorrelated with
h., l.e., that the observation (truc value) be uncorrelated with the error in
that observation.

Because of theae difficulties, there ia no doubt but that the assumption
E[gj = 0 is, at least, queationzble. Unfortunately, it is a necessary assumption
if aﬁyihiné is able to be said about what happens to lcast squares in the presence
‘of 6bierv11§l%m errors in the x‘-:. So, from now on, wc will ignore the difficul-
ties and riake the assumption.

0
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To determine whenﬁ will be unbiased, consldqi'ntlon must be given to
how the data were obtained, As a clarifying example, suppose that obaerva-
tions of some sort are made on Y at different values of X (Ol;lc independent
variable), that the equipment can be adjusted to obtain dif[c:rqné, ‘but unknown,
valucs of X, and that there is at hand a metor from which the values of
V(= X + h) are rcad. Then, the data can be obtained in two ways:

1} Controlled experiment. The values of V at which observations are
to be made arc sct beforchand; that is, when the experiment is being run,
the equipment is adjusted until the meter reading agrees with the values .
chosen. The result is that V can be considered as fixed — that ig, not
random — and X, the true value, is a randem variable, With E{h] = 0, this
means that X (= V - h) has a distribution with E{X] = V as shown: .~

009-13

fx} |

< bm———

If the experiment is repcated, the true value may be different, but the
expected value of both true valuea will be the same, namely, cqual to V.

2) Random experiment. The values of V are not act beforehand, They -
arc determined by "spinning the dial, " that is, in some random manner.

Here, X is fixed and V is random. If E[h] = 0, then V has the following
distribution with E[V] = X: .

fHv)

n
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If the experiment is repeated — that is, if a duplicate observation for the
same value of V {s made ~ the distribution will be different, as shown:

0ng-u3

f{x)
N

When the experiment is first run, the truc value is x,, say, but Yo is

observed. Wheon the experiment is repeated, v, is observed, but the

0
expected value of the second true calue is not Ko except in very rare

circumatances.

fa)
Returning to the general case of k X;'s, consider p:
A s L]
Ba@Wh ! VW,
=p+ (@0 Ty,
where
W = ? ry¥

If V is fixed, E(a] = B since E{g] = 0. I{ V is not {ixed,
’ -l t
Eff] =g+ E[{(X+ 1) X+ H) (X + B g)
The last term is definitely not cqual to zero unless H = 0, since it contains
terms in hi(. The situsation is also complicated by the fact that X is unknown,
R nb’ﬁ has an unknown bias.

Rolated to this is the following interesting result. If the model ia

Yepy P Xt +p X be
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with V= X + h, E[h) = 0, and V considered to be fixed as in the controlled-
A . '
experiment case, then Bk and 6k—l will be the only unbiased estimates.

If the parameters of a functional relation-ship are to be estimated with T
data from a random experiment, there are some additional problems. :
Consider the functional relationship . : ) T

Y=o+ pX c (
N

with k=1 and let the observed variables be W(= Y 4+ f}and V(= X +h), where
E[f}] = E[h) = 0. Now suppogse a and B are to be estimated from n observa-

tions,

One set of estimates would be that obtained by least squares for the
regression of W on V, that is, for

W=(:|l+(31V+gl R

where g = f - Sl h. Then,

and

2>
"
4
1
hod
—
<l

Another possible set of estimates could be found by considering the
regression of V on W, that is, '

Vea, tBy Wtg, S

where g, = h - B, f. Then, S

%




): (v - V)(w -Ww)

B Lu=l
27 —
¥ (o, - VP
u
u=1

and

A A

a, = - pz w
The four unknown parameters are related by ﬂlﬂz =1 anda, = -nzb but

the estimates do not satisfy these rclations,
different lines:

The estimates lead to two

003-113
A
w
vea, + 8,
wra + B,
/Wh-_
1
. v
ki

Is cither one of these lincs the estimate of Y = o + $X? In gencral, no; the
true line lies somewhere between the two. The special case, as mentioned
carlier, is where one of the variables can be considered fixed. Then, there
is only one regression line to be estimated and E[ﬁ] = f. For the random-
experiment case, lcast squares breaks down because it considers crrors only

) in one direction, while there are errors in both dircctions that must be taken

into account. Lindley (1947) and Madansky (1959) claim that minhuizing
o oa . 2
(reg ) Tfwy - &2 Buy

takes both errors into account. (Remember that

- o depends on B.), This procedurc requires knowledge of, or estimates of,
" all the'variances and covariances. Also, the solution is not necessarily
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ﬁniquc. A good’ justification for using this cstimatc in the case o'? o'ﬁ 1

A
and o =0is t.hat minimizing this quannty, ‘now [l/ 1+ ﬁz)] z (w, -a- (3\' ) ,
minimizes the sum of aquarcs of !he dxstances between the obscrvcd points
(vu, wu) and the fitted line.

An alternative to least squares would be to use the. maximum-likelihood
estimate. This would require a knowledge of the joint distribution of all the
errors. As an cxample, let k=1 and suppose { and h have a bivariate normal )
distribution. It turns out that for there to be a solution to the maximum-l_ikcl‘i-
hood equation, some assumptions must be made about '-’-12" n‘:, and o, but if
they are all assumed to be known, there will be more equations than unknowns
and the solution will not be unique. If no zesumptions are made, the solution
will depend on the unknown variances and covariances.

Examples of assump-
tions that result ip a unique solution are :

1) oy = 0 and ﬂ'?/o’i: A known,

2) u': and a'? known; Th unknown,

Madansky (1959) gives the estimates in these two and several other cases.

Maximum likelihood can be a problem, since it may not always be
desirable to assume that the errors have a multivariate normal distrlbutibn,
or any other distribution for that matter. Also, cnough may not be known

about the variances and covariances for it to be possible to get a solution.

Malinvaud (1966) and Madansky discuss some other methods that do not
require knowledge of the various covariances and variances.  Each involves
some particular assumptions about the true values and errors,

Onc of these is the method of instrumental variables. This requires
knowledge of other variables, which are observed wlthoui e;rror, that aro
uncorrelawed with the h"s and, ideally, highly correlated with the Vi's:
For the cadge k = 1, P is cstimated by
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where R is the instrumental variable. Given the assumption that R i5 observed
\'v_ithout .error, B will be unbiased. The problem is that it is not yet known what
happens when the assumption is not true but is still a reasonable approxima-
tion, the most likely situation to be encountered in practice.

Another method is that of grouping. This involves claasifying the obser-
vations into groups and fitting the group means. This method yields consis-

tent estimates under certain rather stringent assumptions about the observations
and errors.

In summary, if what is wanted are estimates for prediction purposes,
least squares can be uexd without worrying about the problems. If unbiaged
estimates of the parameters are wanted, then the independent variables
should be controlled. If that is not possible, try to use maximum-likelihood
estimates that arc at least asymptotically unbiased, or use Lindley's method.
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10, NONLINEAR REGRESSION'

In practice, it is rot always poussible to use the lincar additive model,
The application of least squares then almost always implies the use of an
iterative minimization technique. :

For nonlinear regression, our model is

YSHUZyy ooy 2o By ey Bd b e

wherc ¢ is the residual term and pl, ++., B_are the coefficients to be-
estimated, * Note that even with the nonlincar model, we must assume that
the rcsidual term is additive. Given the obucr\-ations (zul' e, zup' yu) for
u=1l, ..., n, the problem is to find 61, e ék to minimize

n
sB=Y (v, - 5% .
u=1

Al A 7A) ~ A ~
where Y, = [(zul, Cees z“p. Gl, ey {ik) = ((Zu.ﬁ), and Zu- (zul"' vey zup).
The assumptions nceded here are essentially the same as in the linear case:

!} The madel is correct.
2) The Zl's are observed without error,
3) Efe, = 0.

4) E[cucV] = o'zauv, foru, v=1, ..., n, which can be satisfied by using
Ee if necessary, as in Section 5. 3.

*The use of Zi's instcad of Xi's is deliberate. Thera ig no longer any recason
to uae functions of the Z,'s in the modnl. E .

' . .




Before we consider the methods for solving this probiem, three points
that are true in general must be stated:

. 1) Thcre is no gunrantec that the [1' 's will be unbiased.

z) In general, E[s ] # oZ.

. 3) Hcl' <y € are iid N(0O, u'z), then the least-squares estimates are
also the maximum-likelihood astimates.

The most conimonly used methods are discussed in the following subsections
10. | Lincarization

By Taylor's theorem,
3(Z ;B)

] i
i1 p=dy

(Z;:p) = (2 5y + (8, - By

is approximately truc for ﬂo neat B, Then, the model i8 approximately

r
¥y - [(Z:8) =Z 65'1 vt e, o
i=l

where
6pi = pi = pOi *
and
8z o 8
Wui = B

B=p,

This jy d lincar model, and lcast squares can bo uged to estimate

6By ol , 6By, where B is an initial guess at the value of . f, is then

roplaced by fio + ﬂl where 6{: 2 (6,;3‘, cees ghk) , and the process is

repeated. This cnntmuou unti) the lmprovemont, as measured by the
docruaac in S, bornmes smull.

.
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Three problems may l;:c encountered when this method is used:

1) 1t may converge very slowly. ’
~2) It may osclllate wildly, -

3) It may diverge.

To n\lnim{ze theae problemns, use 6[!/2 lnstead of g[i H

SIB, + 6B > S(B,)

v

It is always a good ldea to calculate S(po + ﬂ‘) after cach step to be nblg to
keep track of what is happening.,

When this methed i3 used, approximate tests of significance can be
obtained by assuming that the lincarized form of ths modsl is valid around
ﬁ. the final estimatec of 3. Then 8% can be uscd as an approximation for

u-z, although it {8 not unkiased, and the {inal (W’W)'l matrix can be used for
the standard errovs of ﬁ

10.2 Steepest Descent

The basic tdea of all the steepest descent (gradient} methoda is that from
any point g, the vector «VS(B)| , o points in the direction of the grcnt;:st
decrease in 8. Many modifications of this 1dea hove beén developed, the best
of which scerns to be that by Fletcher and Pawell (1963). The basic stops' of
their procadurc arce the following, whon. subscripts dcnotc the iteration num-
bor. At the nt! atep, you begin with At n By = VS(S hand H. (H,

ie chosen
to be positive cefinite, and p( } is any m\thl estimate, ) Th:-n,

1) p,=-Hg.

2) Find a, to minimize S(# n) + ap, ) with respcct toa.,
) Q(n'rl) =

‘+a o,
npr_ . N 4

4 fn T Bngy T by :

5) H‘nH = Hn+ Axl_‘ﬁ- B, ‘whlevr‘c'. ‘ . ‘ .
. ’. - -
- 9y Pn Py
n (A

.
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I*lntnf;uﬂn
Bn= .
. ninn

Stracter and Hogge (1970} say that this procesure is casy to implement
for general problems, but it does require an accurate lncar minimization
technique lsto;i 2). For least-aquarcs problems, thoy prefer the {ollowing
{\\e‘thn.d, which has 0 much faster rate of convergence in terms of function
evaluations,

10.3 Marquardt's Compromlsc“

Marquardt (1963) found that for a number of the lcast-squares problems
he worked with, the directions of imprevoment (in the k-dimenajonal param-
cter space) obtained by lincarization and steepest deascent were nearly 90°
apart. His algorithm provides a method for interpolating between the two
dircctione.

Baginning with an estimate 6, let

aBy=ty, - §10 - oos vy - §,)° and 8B = (8B, ..., 5B .

Then dofine Qd(ﬁ) to be a k X k matrix given by

(Y‘ - ’)\")

af.

J
The basic idea is tc find 5p to minimize

(aadiy, =

¢ = [a(F) + aath spy [ab) + aa) s8) = siB + 8p) - S(B)

L

Sometlmcn re[crrod ‘to"as the Levenberg-Marquardt or Armatrong-
Mnrqunrdt‘ algorithm. .

- ma

e a2 a TS

subject Lo the conatraints that (68)’ (6p) < y, for som: v, and that C< 0, The
correction vector is given by ‘

R waadir igady « 07 gadn oy

where, in practice, \ is chosen so that S(ﬁ + &8p) < S(ﬂ) and the matrix
i[Q..d(ﬂ)]' [.éd(fi)]{')dl is invertible. Armstrong discusses approaches for
spocifying A (Arrr.atrong, 1970) and has shown (Armntrong, 1968) that ac
\ = «, §p gocs toward the direction of tho negative gradient and that as
A\ - 0, 5§ approaches the correction vector that would be obtained using
lincarizatiun, :

Brown and Dennis (1970) have derived a derivative-free analogue of this
mothod. According to their papor, this analogue compares favorably with
the original algorithm. '
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NOTICE

. This scrics of Spccial Reports was instituted under the supervision
of Dr. F. L. Whipple, Director of the Astrophysical Observatory of the
Smithsonian Institution, shortly after thelaunching of the first artificial
carth satellite on October 4, 1957. Contributions come from. the Staff
of the Observatory,

First issuedto ensurc the immediate dissemination of data for satel-
lite tracking, the reports have continuedto provide a rapid distribution
of catalogs of satellite observations, orbital information, and prelimi-
nary results of data analyses prior to formal publication in the appro-
priate journals. The Reporta arc also used extensively for the rapid
publication of preliminary’ or special results in other ficlds of astro-
physics. .o .

The Reports are regularly distributed to all institutions partici-

pating in the U. S, space rescarch program and to individual scicntists
who requestthem {rom the Publications Division, Distribution Section,
Smithsonian Astrophysical Obacrvatory, Cambridge, Massachusetts
02138,
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