REPORT NO. GDC-DBB70-002

SPACE SHUTTLE SYNTHESIS PROGRAM (SSSP)

VOLUME II • WEIGHT VOLUME HANDBOOK FINAL REPORT

i

The second s

December 1970

Prepared Under Contract NAS9-11193

Submitted to National Aeronautics and Space Administration MANNED SPACECRAFT CENTER Houston, Texas

Prepared by CONVAIR AEROSPACE DIVISION OF GENERAL DYNAMICS San Diego, California

171

REPORT NC. GDC-DBB70-002 CONTRACT NAS 9-11193

CR 114987

SPACE SHUTTLE SYNTHESIS PROGRAM (SSSP)

.

<u>,</u>r •

à.

VOLUME II • WEIGHT VOLUME HANDBOOK FINAL REPORT

GENERAL DYNAMICS

Convair Aerospace Division

1171-24526-(ACCESSION NUMBER) FACILITY FORM 602 (THRU) 2 (CODE) 62 (PA JES) (FK-114724) (NASA CR OR IMX OR AD NUMBER) 31 (CATEGORY)

FOREWORD

Volume II: Weight/Volume Handbook

The SSSP documentation is presented in two volumes. Volume I contains the basic user's manual text and all of the simulation input and output. Volume I is divided into three parts. Part 1 contains the engineering and programming discussion, Part 2 provides the program operating instructions and Part 3 describes the program output and includes all of the appendices for Volume I. Volume I contains a compilation of statistical data on previous aircraft, missiles and space systems to serve as background information and program inputs to the weight/volume portion of the program.

i

.

SUMMARY

The Space Shuttle Synthesis Program (SSSP) automates the trajectory, weights and performance computations essential to predesign of the Space Shuttle system for earth-to-orbit operations. The two-stage Space Shuttle system is a completely reusable space transportation system consisting of a booster and an orbiter element. The SSSP's major parts are a detailed weight/volume routine, a precision three-dimensional trajectory simulation, and the iteration and synthesis logic necessary to satisfy the hardware and trajectory constraints.

The SSSP is a highly useful tool in conceptual design studies where the effects of various trajectory configuration and shuttle subsystem parameters must be evaluated relatively rapidly and economically. The program furnishes sensitivity and tradeoff data for proper selection of configuration and trajectory predesign parameters. Emphasis is placed upon predesign simplicity and minimum input preparation. Characteristic equations for describing aerodynamic and propulsion models and for computing weights and volumes are kept relatively simple. The synthesis program is designed for a relatively large number of two-stage Space Shuttle configurations and mission types, but avoids the complexity of a completely generalized computer program that would be unwieldy to use and/or modify.

CONTENTS

.

.

,

5

.8

.

				Page No.
	FORE	WORD		i
	SUM	MARY		-
	TABI	E OF CON	TENTS	11
	LIST			iii
		Or FIGURE		vi
	LIST	OF TABLE	S	vii
	INTR	ODUCTION		1
1.0	AERO	DYNAMIC	SURFACES	3
	1.1	AFRODY	NAMIC SURFACES - SPACE SHUTTLE	0
		11.	Wing	3
		1,1,1	Wing Vertical Fin	3
		1 1 3	Vertical Fin	6
		1.1.4	Fairing Shroudo and Annadate L St.	10
0.0			runnigs, shrouds and Associated Structure	13
2.0	EODY	STRUCTUR	λĒ.	17
	2.1	BODY ST	TRUCTURE - SPACE SHUTTLE	17
		2.1.1	Integral Fuel Tanks	17
		2.1.2	Integral Oxidizer Tanks	21
		2.1.3	Basic Body Structure	23
		2.1.4	Secondary Structure	26
		2.1.5	Thrust Structure	27
3.0	INDUC	ED ENVIRC	ONMENT PROTECTION	29
	3.1	INDUCED	DENVIRONMENT PROTECTION - SPACE SHUTTLE	29
4.0	LAUNC	CH AND RE	COVERY	33
	4.1	LAUNCH	AND RECOVERY - SPACE SHUTTLE	33
		4.1.1	Launch Gear	33
		4.1.2	Landing Gear	33
		4.1.3	Deployable Aerodynamic Devices	34
		4.1.4	Docking Structure	36

GDC-DBB70-002

1

11

CONTENTS (CONT)

5	.0 M	AIN DRODU		Page No.
Ū		AIN PROPU	LSION	37
	5.	1 MAIN	PROPULSION - SPACE SHUTTLE	0.7
		5.1.1	Engines	37
		5.1.2	Engine Mounts	37
		5.1.3	Non-Structural Propellant Tank	43
		5.1.4	Secondary Tankage and System	45
		5.1.5	Propellant Tank Insulation	48
		5.1.6	Main Fuel System	51
		5.1.7	Main Oxidizer System	55
		5.1.8	Propellant Pressurization and Durse Surt	57
		5.1.9	Nacelle, Pods and Pylons	59
		5.1.10	Airbreathing Propulsion Tankage 1 a	62
6.	0 OR	IENTA TION	CONTROL & NUM	63
			CONTROLS AND SEPARATION	60
	6.1	ORIEN	TATION CONTROLS AND SEDARATION	09
		611	CLASS SET ARATION - SPACE SHUT	TLE 69
		612	Gimbal System	69
		613	Spatial Attitude Control System	72
		614	Attitude Control System Tankage	73
		615	Aerodynamic Controls	76
	_	0.4.0	Separation System	79
7.0	POW	ER SUPPLY	(, CONVERSION AND DISTRIBUTION	10
	7.1	POWER	SUPPLY, CONVERSION AND DISTRIBUTE	81
		SHUTTI	LE	
		7 1 1		81
		7.1.1	Electrical System	01
		11.2	Hydraulic/Pneumatic System	81
8.0	AVIC	NICS		85
	8 1	AMONIC	10.010	87
		2 A LOMIC	S SYSTEMS - SPACE SHUTTLE	97
		8.1.1	Guidance and Navigation System	01
		8.1.2	Instrumentation System	87
		8.1.3	Communication System	87
9.0	PERS	ONNEL PRO	WISIONS	88
	0.1		12101/2	89
	9.1	PERSONI	NEL PROVISIONS - SPACE SHUTTLE	
		9.1.1	Personnel Proviniere	89
10.0	DESIG	N PECEDUR		89
		I RESERVE		02
	10.1	DESIGN R	ESERVE - SPACE SHUTTLE	53
		10 1 1		93
		10.1.1	Contingency and Growth	0.2
				30

•

CONTENTS(CONT)

1.7 1.10

.

11.0	PERSO	NNEL		95
	11.1	PERSOIT	NEL - SPACE SHUTTLE	35
				95
		11.1.1	Crew and Crew Life Support	95
12.0	PAYLO	AD		97
	12.1	PAYLOAI	D - SPACE SHUTTLE	97
		12.1.1	Cargo	97
13.0	PROPE	LLANTS		99
	13.1	PROPEL	LANTS - SPACE SHUTTLE	99
		13.1.1	Residual Propellants and Service Item	s 99
		13.1.2	Reserve Propellants and Service Items	103
		13.1.3	In-flight Losses	107
		13.1.4	Thrust Decay Propellants	111
		13.1.5	Main Impulse Propellants	112
		13.1.0	Dra Janidia T	113
		13.1.7	Pre-ignition Losses	114
		13.1.8	Secondary Propellant Weights	115
		13.1.9	Stage Weight Conditions	116
		13.1.10	Stage Performance Weights	116
		13.1.11	Jettison Weights	117
14.0	GEOME	ſRY		121
	14.1	GEOMETE	RY - SPACE SHUTTLE	121
		14.1.1	Geometry Scaling Coefficients	122
		14.1.2	Vehicle Geometry	124
		14.1.3	Geometry Up-date	133
	COEFFICIENT AND TERM DEFINITIONS			141
	REFERE	NCES		153

۷

. .

• •

GDC_DBB70-062

Page No.

1.

SUG

d.

LIST OF FIGURES

Figure	No.
--------	-----

;

1.1-1	Wing Weight Versus a	Page N
1.1-2	Vertical Fin Weight Versus Fin Di	4
1.1-3	Vertical Fin Weight Versus Fin Planform Area (Straight Wing A/C)	7
1.1-4	Horizontal Stabilizer Weight Versus fin Planform Area (Delta Wing A/C)	8
1.1-5	Dynamic Pressure Fouling Versus A	11
1.1-6	Temperature Factor Versus Dynamic Pressure	15
	remperature ractor versus Temperature	16
2.1-1	Fuel Tank Weight Versus Fuel Tech v. 1	10
2.1-2	Fuel Tank Weight Versus Fuel Tank Volume (LH)	18
2.1-3	Oxidizer Tank Weight Vorme Oct 1	19
	on and the stand weight versus Oxidizer Tank Volume	22
3.1-1	External Institution Unit Weight Versus Surface Temperature	
4 1 1		31
4.1-1	Landing Gear and Control Weight Versus Maximum Landing Weight	0.7
5 1 1	To (the method of the second o	35
5 1 2	LO ₂ /LH ₂ Rocket Engine Weight/Engine Versus Vacuum Thrust	0.6
5 1 9	2/RP-1 Rocket Engine Weight/Engine Versus Vacuum Thrust	39
0,1 , 3	Non-structural Fuel or Oxidizer Tank Weight Versus Fuel or Oxidizer Tank Volume	40
5.1-4	Secondary Fuel or Oxidizer Tankage and System With here	46
	Secondary Fuel or Oxidizer Tank Volume	
5.1 - 5	Fuel or Oxidizer Tank Insulation Unit Weight Vorenze D. U.	49
	Temperature	
5.1-6	Fuel or Oxidizer Tank Insulation Time Correction Rest.	53
	Time Duration	
5.1-7	Pressurization and Purge Coefficients Versus Storage Th	5.1
	and Main Tank Pressure	
_		60
6.1-1	Gimpal Weight/Engine Versus Delivered Torque	
6.1-2	Gimbal Weight/Engine Versus Delivered Torque	71
6.1-3	Attitude Control System Weight Versus Initial Orbit Weight	7 2
6.1-4	Aerodynamic Controls Weight Versus Δ	74
		77
7.1-1	Electrical System Weight Versus O	
7.1-2	Hydraulic/Pneumatic System Weight Versue //	83
		86
14.1-1	Total Body Volume Versus Main Propellant Volume (Sample Only)	132

vi

GDC-DBB80-002

LIST OF TABLES

1

こうしゃ しょうかん ひょうしん 大学のない 読ます

2

į

ł

Table No) .	Page No.
1.1.1	Typical Fairing Weights	14
2.1.1 2.1.2	Body Unit Weight Data Thrust Structure Data	24 28
5.1.1	Airbreathing Engine Data	44
9.1.1	Typical Personnal Provisions Input	92
11.1.1	Typical Inputs for Crew and Crew Life Support	96
14.1.2	TPS Areas	137

INTRODUCTION

This document contains the results of the technical effort expended during a study to provide a weight/volume handbook required by Contract NAS-9-11193 "Space Shuttle Synthesis Program". Because of the wide range of design parameters, and the many possible design solutions in any area of vehicle design, the program equations of necessity are required to be in general terms. Although the equations are in general terms, the inputs are often the results of quite extensive study of a specific design application.

This volume also attempts to ensure that an input or a procedure for obtaining an input is available for every equation contained within the weight and sizing subroutines. These inputs are not intended to be absolute but a guide to the magnitude of the input to ensure answers of the right magnitude for the item being considered. The ideal input will always be obtained when a study of the specific design conditions for the item being considered is made, and the results of this study put in terms of the program equation input. The program contains equations for separate items or systems and it is the responsibility of the user to select those items which comprise his specific design application.

Section I of this volume contains the description and input data for the weight equations. Section II contains the description and input data for the geometry equations. Section III contains the description of terms used in the weight/volume subroutine.

GDC-DBB70-002

•

.

SECTION I DESCRIPTION AND INPUT FOR WEICHT EQUATIONS

a second a second a

en an earlier an an

and the second second

1.0 AERODYNAMIC SURFACES

UNUTING

1.1 AERODYNAMIC SURFACES - SPACE SHUTTLE

1.1.1 WING -- The wing weight equation, as defined within this study, is based on the theoretical area and calculates an installed structural wing weight that includes control surfaces and carry-through, where applicable. The weight is calculated as a function of load and geometry.

The weight equation in the program for total structural wing weight is:

WWING =
$$C(1) \cdot \left[(WWAIT(6) \cdot LF \cdot CSPAN \cdot SWING) / TROOT \cdot 10^9 \right]$$

+ $C(12) \cdot C(2) \cdot SWING \cdot C(3)$

WWING		Total Structural Wing Weight, Ibs
WWALT(6)	Ξ	Vehicle Entry Weight, lbs
LF	-	Ultimate Load Factor
CSPAN	=	Structural Span (along.5 chord), ft
SWING	.1	Gross Wing Area, ft ²
TROOT	=	Theoretical Root Thickness, ft
C(1)	Ξ	Wing Weight Coefficient (intercept)
C(12)	=	Wing Weight Coefficient (slope)
C(2)	Ŧ	Wing Weight Coefficient f(gross wing area), lbs/ft^2
C(3)	=	Fixed Wing Weight, ibs

The wing weight coefficients C(1) and C(12) represent the intercept and slope, respectively, of the logarithmic data shown in Figure 1.1-1. The data used to derive the empirical equation and the coefficients C(1) and C(12) is based on actual wing weights of many types of aircraft. However, the airplane wings used in this analysis are representative of straight, swept and delta wing designs.

 \propto

Figure 1.1-1

For variable sweep wing designs the various wing input terms should be based on the fully swept position. The C(1) coefficient should then be increased by 15-20% to account for the structural penalty for sweeping the wing forward.

The coefficient C(2) is multiplied by the gross wing area so the user has an option of adding or removing a wing weight penalty on the basic wing calculation. An example would be to add a fixed weight per square foot for thermal protection system structure or high temperature resistant coatings. This coefficient is initialized at zero, so the option is not exercised unless C(2) has an input value other than zero.

The coefficient C(3) is to input a fixed weight to the wing calculation. This input may be positive or negative. An example of C(3) usage would be to input a fixed wing weight when wing scaling is not desired. When C(3) is used for this purpose the coefficient C(1) must be set to zero. The coefficient C(3) is initialized at zero and will not be used unless a value (+ or -) is input.

GDC-DBB70-002

1.1.2 VERTICAL FIN — The vertical fin weight includes the weight of the control surface. The weight may be scaled as a logarithm's function of fin planform area, as a constant function of fin planform area, or input as a non-scaling fixed weight. The equation for vertical fin weight is:

WVERT = C(4) * SVERT ** C(135) + C(2.) * SVERT + C(5)

WVERT	=	Total Vertical Fin Weight, 1bs
SVERT	=	Vertical Fin Planform Area, Ft ²
C(4)	:1	Vertical Fin Weight Coefficient (Intercept)
C(135)	=	Vertical Fin Weight Coefficient (Slope)
C(24)	=	Vertical Fin Weight Coefficient f(Fin Area), lbs/ft ²
C(5)	=	Fixed Vertical Fin Weight, lbs

The vertical fin coefficients C(4) and C(135) represent the intercept and slope, respectively, of the logarithmic data shown in Figures 1.1-2 and 1.1-3 the data in Figure 1.1-2 is representative of vertical fins for straight and swept wing aircraft. The data in Figure 1.1-3 is representative of vertical fins for delta wing aircraft. The vertical fin data for delta wing aircraft was separated from the straight and swept wing data in order to correlate the input data closer with the existing aircraft data used for substantiation. The user should also use caution when inputting the C(4) and C(135) coefficients in the respect that a straight or swept wing design with a short tail arm may have a vertical fin that sizes like a delta.

The coefficient C(24) may be used to add or remove fin weight penalty on the basic calculation. An example would be to add a fixed weight per square foot for thermal protection system structure or high temperature resistant coatings. This coefficient may also be used to scale the fin as a function of unit weight. If C(24) is used for this purpose the coefficient C(4) must be set to zero. The coefficient C(24) is initialized at zero, so this option is not exercised unless a value (+ or -) is input.

. . .

VERTICAL FIN PLANFORM AREA (SVERT ~ FT[~])

Figure 1, 1-2

VERTICAL FIN PLANFORM AREA (SVERT - FT^2)

Figure 1, 1-3

The coefficient C(5) is a fixed input weight to the vertical fin calculation. This input may be positive or negative. The coefficient C(5) may also be used to input a fixed vertical fin weight when scaling is not desired. When C(5) is used for this purpose the coefficients C(4) and C(24) must be set to zero. The coefficient C(5) is initialized at zero and will not be used unless a value (+ or -) is input.

1.1.3 HORIZONTAL STABILIZER — The horizontal stabilizer weight includes the weight of the control surface. The weight may be scaled as a combined function of wing loading, stabilizer planform area and dynamic pressure; it may be scaled as a constant function of stabilizer planform area; or input as a non-scaling fixed weight. The equation for horizontal stabilizer weight is:

WHORZ C(6) * (WOVERS ** 1.21 * SHORZ ** 0.814 * Q ** 0.467) ** C(17b) + C(25) * SHORZ + C(7)

- WHORZ = Total Horizontal Stabilizer Weight, lbs
- WOVERS = Wing Loading, lbs/ft^2
- SHORZ = Horizontal Stabilizer Planform Area, ft^2
- $Q = Maximum Dynamic Pressure, lbs/ft^2$
- C(6) Horizontal Stabilizer Weight Coefficient (Intercept)
- C(176) = Horizontal Stabilizer Weight Coefficient (Slope)
- $C(25) = Horizontal Stabilizer Weight Coefficient f(Stabilizer area), <math>lbs/ft^2$
- C(7) = Fixed Horizontal Stabilizer Weight, lbs

The horizontal stabilizer coefficients C(6) and C(176) represent the intercept and slope, respectively, of the logarithmic data shown in Figure 1.1-3. The horizontal stabilizer weight is directly proportional to Λ . Therefore, the input value for the coefficient C(176) will be 1.0 unless the user desires to change the line slope.

The coefficient C(25) may be used to add or remove stabilizer weight penalty on the basic calculation. An example would be to add a fixed weight per square foot for thermal protection system structure or high temperature resistant coatings. This coefficient may also be used to scale the stabilizer as a function of unit weight. If C(25) is used for this purpose the coefficient C(6) must be set to zero. The coefficient C(25) is initialized at zero, so this option is not exercised unless a value (+ or -) is input.

Figure 1, 1-4

GDC-DBB70-002

'i

The coefficient C(7) is a fixed input weight to the horizontal stabilizer calculation. This input may be positive or negative. The coefficient C(7) may also be used to input a fixed horizontal stabilizer weight when scaling is not desired. When C(7) is used for this purpose the coefficients C(6) and C(25) must be set to zero. The coefficient C(7) is initialized at zero and will not be used unless a value (+ or -) is input.

ىرىدىن ھەربارد بەت مۇلاردىك <u>مەن لاركىتى</u>

1.1.4 FAIRINGS, SHROUDS AND ASSOCIATED STRUCTURE - The type of aerodynamic structures included in this section are aerodynamic shrouds, equipment, dorsal, landing gear and canopy fairings. The canopy fairing is the structure aft of the canopy that is required to fair the canopy to the body. The weight of the canopy proper is included in Section 2.2. Wing to body fairings are included in the wing weights. Horizontal or vertical surface to body fairings are included in either the horizontal or vertical surface weight.

Fairing and shroud weight may be determined from their surface area and the operating environment and is given in the program as:

WFAIR = C(8) * SFAIR + C(9)
WFAIR = Total Weight of Fairings or Shrouds, lbs
SFAIR = Total Fairing or Shroud Surface Area, ft²
C(8) = Unit Weight of Fairing or Shroud, lb/ft²
C(9) = Fixed Weight of Fairing or Shroud, lbs

As most of the fairings are design and mission dependent and only one input coefficient C(8) is used to cover many types of fairings, some judgment is required to determine the value of this coefficient.

If the design loads and the fairing geometry is known, the weight in lbs/ft^2 ; i.e., the coefficient C(8) can obviously be best found by calculation. In most cases, however, empirical or statistical data has to be used. The coefficient C(8) can be found by multiplying the empirical unit weight WF by a factor to account for dynamic pressures different than that used to determine the empirical weight and then multiplying by a factor to account for temperature differences. Then C(8) can be determined by:

 $C(8) = WF \cdot KQ \cdot KT$

a second bearing

The factor KQ is shown plotted against dynamic pressure in Figure 1.1-5. This factor is 1.0 at a dynamic pressure of 400 lbs/ft². The factor KT is shown plotted versus temperature in Figure 1.1-6 The factor is 1.0 at a temperature of 400° F.

The unit weight of typical fairings WF is shown in Table 1.1.1. These unit weights have been normalized to a Q of 400 lbs/ft² and 400[°]F. In addition, this table shows a recommended C(8) input for different types of fairings at a Q of 1000 lbs/ft² and a temperature of 800° F.

The coefficient C(9) is used for those portions of the fairings that have weight not dependent on fairing sizing or it may be used either as a contingency or for a fixed input weight for the fairings.

Fairing Type	WF at Q = 400 lbs/ft^2 and T = $400^{\circ}F$	C(8) at Q = 1000 lbs/ft ² and T = 800° F
Aerodynamic Shroud	4.80	6.6
Canopy Fairing	4.00	5.5
Equipment Fairing	1.50	2.06
Dorsal Fairing	2.00	2.75
Cable Fairing	1.50	2.06
Landing Gear Fairing	2.00	2.75

Table 1.1.1. Typical Fairing Weights.

The total weight of the aerodynamic surface group is summed by the equation:

WSURF = WWING + WVERT + WHORZ + WFAIR

:

GDC-DBB70-002

16

્રિટ

2.0 BODY STRUCTURE

2.1 BODY STRUCTURE - SPACE SHUTTLE

2.1.1 INTEGRAL FUEL TANKS — The integral fuel tanks are sized as a function of total tank volume, including ullage and residual volume. The input coefficients are based on historical data from Atlas, Centaur and Saturn vehicles. The equation for integral fuel tank weight is:

WINFUT = C(10) * VFUTK + C(11)

WINFUT	=	Weight of Integral Fuel Tank, lbs
VFUTK	=	Total Volume of Fuel Tank, ft ³
C(10)	=	Integral Fuel Tank Weight Coefficient, lbs/ft
C(11)	Ŧ	Fixed Integral Fuel Tank Weight, lbs

Input data is provided for LH_2 and RP-1 fuel tanks. The equation for integral fuel tank weight is the same for both types of fuel. The difference in weight is accounted for by the input coefficients C(10) and C(11). The coefficient C(10) represents that portion of the tank weight that is scaled with size and C(11) is a fixed tank weight input. The input value for C(10) with LH_2 fuel is obtained from Figure 2.1-1. The input value for C(10) with RP-1 fuel is obtained from Figure 2.1-2. The value of C(10) shown on Figures 2.1-1 and 2.1-2 does not include weight penalties for special bulkheads (wing, landing gear, etc.). If this weight penalty is required, the user may modify the C(10) coefficient to account for it or he may incorporate it into the fixed weight coefficient C(11).

The broken line on Figures 2.1-1 and 2.1-2 is representative of Saturn technology. The solid lines, from which the C(10) input values are obtained, are representative of current Space Shuttle design criteria. The primary differences in the slope of the lines are due to (1) the current fracture mechanics utilized in designing Space Shuttle vehicles for multiple landing capability; and (2) increased bending moments during up-flight maneuvers resulting from a piggy-back orbiter/booster arrangement.

Hive B 、 ·

51. 8.

21749-761

:

The coefficient C(11) is the fixed weight input to the fuel tank calculation. This coefficient may be positive or negative. An example of a C(11) input would be to add a fixed weight penalty to the fuel tank calculation for special bulkheads (wing, landing gear, etc.). The coefficient C(11) may also be used to input a fixed integral fuel tank weight when scaling is not desired. When C(11) is used for this purpose the coefficient C(10) must be set to zero. The coefficient C(11) is initialized at zero and will not be used unless a value (+ or -) is input.

2.1.2 INTEGRAL OXIDIZER TANKS — The integral oxidizer tanks are sized as a function of total tank volume, including ullage and residual volume. The input coefficients are based on historical data from the Atlas and Saturn vehicles. The equation for integral oxidizer tank weight is:

WINOXT =	C(138) *	VOXTK	+ C(139)	ì
----------	----------	-------	----------	---

WINOXT	=	Weight of Integral Oxidizer Tank, lbs
VOXTK	=	Total Volume of Oxidizer Tank, ft ³
C(138)	=	Integral Oxidizer Tank Weight Coefficient. lbs/ft ³
C(139)	=	Fixed Integral Oxidizer Tank Weight, lbs

The coefficient C(138) represents that portion of the tank that is scaled with size and C(139) is a fixed tank weight input. The input value for the coefficient C(138) is obtained from Figure 2.1-3.

The broken line on Figure 2.1-3 is representative of Saturn technology. The solid line, from which the C(138) input value is obtained, is representative of current Space Shuttle design criteria. The slope of the solid line is less since the LO_2 tank does not have to absorb the high axial loads due to in-line upper stages, the axial thrust during up-flight is limited to 3g and the tank is designed for a lower flight pressure. The Space Shuttle is designed for recoverability and a piggy-back second stage arrangement. However, the major portion of these load penalties are absorbed in the fuel tank weight.

The coefficient C(139) is a fixed input weight to the integral oxidizer tank calculation. This input may be positive or negative. The coefficient C(139) may also be used to input a fixed integral oxidizer tank weight when scaling is not desired. When C(139) is used for this purpose the coefficient C(138) must be set to zero. The coefficient C(139) is initialized at zero and will not be used unless a value (+ or -) is input.

GDC-DBB70-002 赴 1. ł 11 : 411 \cdot .1. . 1 1 • ł -÷... ----11 11 ΞĪ 1. H + \mathbb{E} i 11 -1. ;... . -..... . : . .1 Ŧ : • • • • NOTE. NO. VEHICLE LO2 PROPELLANT .<u>µ</u> 1. ÷ 1 ∷‡ S-IV 2 S-IVB I. 1 3 S-II E. : ÷ ::: . 4 ATLAS SLV-3A 11 -.:I 5 S-! +---្ន H 6 S-IC (LBS × -ł -10 VEIGHT H. ÷. Ę 6 ÷ Ţ, THE PARTY OF ------OXDIZER TANK W : Ţ 1 . . *** : | Γ F -12 11. Ŧ f. .1 -1: 王 F 4 T 1111 : :::: R Ŀ न मि - C(138) Æ WTNOXT = 0.534 (VOXTK) **田15** 1..... ÷ 1 3 Г. Ц T ž 1 F 1:** : ŧ 10 = + LE: 即 40 ii.iir :-1 11 -**:**P: . 11 OXIDIZER TANK VOLUME (FT³ x 10³) 22

4

2.1.3 BASIC BODY STRUCTURE — The basic body weight includes the structure forward, aft and in-between the integral tanks on and integral tank design and it includes the basic shell weight on a non-structural tank design. The basic body weight does not include the secondary structure (access doors, non-structural fairings, tunnels, etc.) or the thrust structure weight.

Based on the data shown in Table 2.1.1, the basic body weight may vary from 2.23 to 5.45 lbs/ft^2 with the nominal being about 4.0 lbs/ft². However, the basic body weight equation is a function of total body wetted area which includes the integral tank cylinder areas. Therefore, on an integral tank design, the unit weight must be adjusted by a wetted area ratio. The calculation of C(13) is:

If the vehicle does not have integral tanks the ratio will be 1.0 and C(13) = 4.0. The user also has the option of inputting a value of C(13) from the data in Table 2.1.1 that best fits a specific design condition.

The equation for basic body structure weight is:

WBASIC = C(13) * SBODY + C(14) * VBODY + C(15)

WBASIC	=	Total Weight of Basic Body, lbs	
--------	---	---------------------------------	--

- SBODY = Total Body Wetted Area, ft^2
- VBODY = Total Body Volume, ft³
- C(13) = Basic Budy Weight Coefficient f(Area), lbs/ft²
- C(14) = Basic Body Weight Coefficient f(Volume), lbs/ft³
- C(15) = Fixed Basic Body Weight, lbs

VEHICLE	BODY UNIT WEIGHT - LBS/FT²
G-159	3.06
440	2.23
C-118A	2.38
C-130A	3.78
880	3.78
CL44-D4	5.41
990	4.25
C-135A	4.68
C-133A	4.89
C-141A	5.39
B-66A	4.05
B-58A	3.77
B-47B	4.91
B–36 H	3.39
B-52B	5.14
S-IC(Fwd. of Tanks)	4.89
S-IC (Inter Tanks)	3.77
S-IC/S-II (Interstage)	5.45
S-II (Fwd. of Tanks)	3.16
S-II/S-IVB (Interstage)	3.32
Centaur (Interstage)	2.54
C-5A	4.94
DC-10	4.02

Table 2.1.1. Body Unit Weight Data.

GDC-DBB70-002

The basic body weight equation is programmed to accept a coefficient input as a function of wetted area or volume. The coefficient C(13) is a function of area and is derived as previously described or input from Table 2.1.1. The coefficient C(14) is a function of volume. This portion of the equation is included for future expansion only and input data has not been derived for this report.

The coefficient C(15) is a fixed input weight to the basic body weight calculation. The input may be positive or negative. An example would be to add a fixed weight to body structure

for special bulkheads (wing, landing gear, fin, stabilizer, etc.). The coefficient C(15) may also be used to input a fixed basic body weight when scaling is not desired. When C(15) is used for this purpose the coefficients C(13) and C(14) must be set to zero. The coefficients C(14) and C(15) are initialized at zero and will not be used unless a value (+ or -) is input.

23

t the sti

2.1.4 SECONDARY STRUCTURE — The secondary structure includes access doors, non-structural fairings, cockpit-to-payload bay tunnel, etc. The secondary structure is minimal for the Space Shuttle design since most of the major penalties are incorporated into the integral tank and basic body weights. The equation for secondary structure weight is:

WSECST = C(23) * SBODY + C(169)

WSE CST	=	Total Weight of Body Secondary Structure, lbs
SBODY	=-	Total Body Wetted Area, ft ²
C(23)	÷	Secondary Structure Weight Coefficient, lbs/ft ²
C(169)	=	Fixed Secondary Structure Weight, lbs

The weight coefficient C(23) is used to scale the secondary structure weight as a function of body wetted area. When possible the coefficient should be derived from design data. However, during the early phase of a study this is not always practical. A first cut value of 0.10 to 0.20 may be used for C(23) until design data is available.

The coefficient C(169) is a fixed input weight to the secondary structure calculation. This input may be positive or negative. An example of this coefficient would be to input a fixed weight for the cockpit-to-payload bay tunnel, crew catwalks and ladder or any secondary item that does not scale with size. The coefficient C(169) may also be used to input a fixed secondary structure weight when scaling is not desired. When C(169) is used for this purpose the coefficient C(23) must be set to zero. The coefficient C(169) is initialized at zero and will not be used unless a value (+ or -) is input.

2.1.5 THRUST STRUCTURE — The weight of the main engine thrust structure is a function of total thrust and includes the attachment structure and thrust beams but does not include the aft skirt. The equation for total stage vacuum thrust is:

TTOT	=	CTHRST * WWAIT(2) + C(129) * NENGS
TTOT	=	Total Stage Vacuum Thrust, lbs
CTHEST		Vacuum Thrust to Take-Off Weight Ratio
WWAIT(2)	=	Take-off Weight, lbs
NENGS	=	Total Number of Engines Per Stage
C(129)	=	Fixed Main Thrust Per Engine

The method used and the inputs required to calculate the total stage vacuum thrust (TTOT) depends on the program option being used for any given configuration. These options and the input requirements (CTHRST or C(129)) are discussed in the basic synthesis options, Section 2.3.2, Volume 1 of the user's manual.

The equation for thrust structure weight is:

WTUDer

	-	C(168) * 1TOT + C(163)
WTHRST	=	Total Weight of Thrun Suructure, Ibs
TTOT	z	Total Stage Vacuum Thrust, lbs
C(168)	=	Thrust Structure Weight Coefficient
C(163)	=	Fixed Thrust Structure Weight, Ibs

The weight coeffird ent C(168) is used to scale the thrust structure as a function of total stage thrust. When specific design data is not available, a typical preliminary design value of C(168) = 0.004 will provide a realistic thrust structure weight. The data shown in Table 2.1.2 reflects the Saturn vehicle thrust structure data as well as the ratio of thrust structure weight to total thrust. The weight of the calculated thrust structure and the data shown in Table 2.1.2 does not include weight for the aft skirt. The aft skirt weight is included is basic body.
1

The coefficient C(163) is a fixed input weight to the thrust structure calculation. This input may be positive or negative. The coefficient C(163) may also be used to input a fixed thrust structure weight when scaling is not desired. When C(163) is used for this purpose, the coefficient C(163) must be set to zero. The coefficient C(163) is initialized at zero and will not be used unless a value (+ or -) is input.

Table 2.1.2.	Thrust Structure Data.
--------------	------------------------

Vehicle	Diameter	No.of Engines	Thrust Structure Wt.	Total Thrust	Thrust Struc. Wt. Total Thrust
S-I	21.65	8	11,100	1 504 000	0 00739
S-IB	21.65	8	9,780	1 504 000	0.00755
S-IC	33.0	5	28.477	7 500 000	0.00000
S-U	33.0	5	7,302	1,000,000	0.00380
S-IV	18.0	6	400	90 000	0.00730
S-IVB	21.65	1	508	200,000	0.00254

The total weight of body group is summed by the equation:

والارتمان الممتد والمرافرة والانتظام والمحاطة مرامع ممتحيه المحتوي المحاصية والمحاص والمحاص والمطمو

WINFUT + WINOXT + WBASIC + WSECST + WTHRST WBODY =

3.0 INDUCED ENVIRONMENT PROTECTION

3.1 INDUCED ENVIRONMENT PROTECTION - The equation inputs for a specific design concept are cormally obtained by a thermal analysis involving all of the pertinent parameters with the results of the analysis being in terms of the required program input. This method should be used when specific design conditions are known, as it yields the most accurate results accounting for all the features of a particular design that are impossible with a generalized case. However, when detailed knowledge of a design is not available, generalized data is given based upon the results of prior design studies.

The data presented is of necessity simplified for use in a generalized weight/sizing program. The results are not intended to replace a thermal analysis which must take into account many more variables than can be accounted for in a program of this nature. The results obtained for this area of design is dependent upon judgment used in making the input which requires a knowledge of vehicle surface temperature, type of support structure and type of panel construction.

A radiative protection system to hold structural temperatures within acceptable limits is the type of vehicle thermal protection system considered for this study. This system utilizes radiative cover panels with or without insulation. If insulation is used it assumes that the structural temperature is held to approximately 200° F. The insulation must then be protected from the flight conditions by radiative cover panels. The equation for the insulation weight is:

WINSUL = C(180) * STPS(1) + C(26)

- 4244 7 - 1

WINSUL	=	Total Weight of TPS Insulation, lbs
STPS(1)	=	Total TPS Surface Area, ft ²
C(180)	=	Insulation Unit Weight, lbs/ft ²
C(26)	=	Fixed Insulation Weight, lbs

The coefficient C(180) is an insulation unit weight that may be obtained as a function of surface temperature from Figure 3.1-1. The user must estimate the surface temperature that will be encountered on the initial case in order to input the coefficient C(180) and then adjust the input on following runs if the initial estimate is too far off.

The data shown in Figure 3.1-1 is based on microquartz insulation for a 1/2 hour time duration. The three curves represent allowable heating rates of 100, 400 and 700 Btu/ft² with the structural temperature being held to approximately 200° F.

The user may select different combinations of area to be covered by insulation depending on what ITPS flag value is set. The ITPS flag value and area is shown in Table 14.1.2, Section 14.1.3 of this report. However, if an area is selected the program utilizes that total area. If, for example, the ITPS flag is set at 2 the area used for insulation weight will be total body wetted area. If only a percentage of the body is actually covered by insulation, the input coefficient C(180) must be modified by that percentage value to account for the weight.

The coefficient C(26) is a fixed input weight to the insulation calculation. This input may be positive or negative. A typical example on the use of this coefficient would be to add a fixed insulation weight for localized hot spots. The coefficient C(26) may also be used to input a fixed insulation weight when scaling is not desired. When C(26) is used for this purpose the coefficient C(180) must be set to zero. The coefficients C(180) and C(26) are both initialized at zero and will not be used unless a value (+ or -) is input.

The orbiter vehicle will normally require insulation and the booster vehicle will not. When the design concept utilizes insulation panels to hold the structural temperature within acceptable limits, the insulation must be protected from flight conditions. This protection is provided by cover panels. The equation for the cover panel weight is:

WCOVER = C(181) * STPS(1) + C(27)

ALLOWABLE HEATING - BTU/Ft² 围 ι. III. 臣 2 ηĒ 'n .00 20 1 民 2400-Ì 2 1 ti: ÷. ų ÷ H **#**! H H ÷ 1 ÷ H !÷! 1 ţ tt: p Ц i 1 E H. I . . . 11 1. • • ł + 职 1 ł !E i : 2000 . .:; -. . ÷ 1 · : I :: 目 1 1 Hii. <u>.</u> -..... 1 -1 . : : G i ÷ł: Hi 1800 . ٠ .: <u>+</u>111 H . 1 :: ... ١. : SURFACE TEMPERATURE 1.11 1. 1.1 F Ein HI. 1600 . 111 · . • • **4**4.4 . = 200⁰F -1 . F : 1400 7 Structural Temperature = Time Duration = 30 Min. 4! : Insulation 1 . E ÷ ПП 1.1 Ţ 127 : Ŧ 11 <u></u> 12001 12001 3. Microquartz II 1:4 :: •H 3 -IIII . 田 H Ē :1 HI ÷.... .: • ŀ: 1000 **.**... **語**; :: NOTE: 11 朣 <u>Elt</u> 17 Ţ. 4 :12 111 1 ::[:] 800 2.0 0 Ŀ, 34 5 ۰. 0.5 ÷. 1 'te de t # Π EXTERNAL INSULATION UNIT WEIGHT (Lba/Ft²) HEREIT Figure 3, 1-1

K-K C I COLUMN

T.S.C.: 34

GDC-DBB70-002

WCOVER	=	Total Weight of TPS Cover Panels, lbs
STPS(1)	=	Total TPS Surface Area, ft ²
C(181)	=	Cover Panel Unit Weight, lbs/ft ²
C(27)	=	Fixed Cover Panel Weight, Ibs

The cover panels that have been used in recent studies have varied greatly in design features and materials. The generalized equation used in this program must be input from point design data if a specific design is to be properly represented. Unfortunately, a detail design is not always available during the early phases of a study. Therefore, a range of input values are included to provide the user with a weight that will be representative of the cover panel designs used in recent studies.

The orbiter will vary from C(181) = 0.9 to 1.8. This assumes the orbiter has insulation in conjunction with the cover panel weight. The lower value is representative of a low cross range orbiter with efficient attachment capability and the higher value is a high cross range orbiter requiring deep frames or standoff's for attachment. The values are average unit weights to be used with the total area. These inputs also assume the aerodynamic surfaces have the same average unit weight for TPS as the body when the surface requires protection.

The booster will vary from C(181) = 1.5 to 2.25. This assumes the booster does not have insulation panels. The primary factor contributing to the input coefficient differences is the type of support structure required. The values shown are average unit weights to be used with the total area.

The coefficient C(27) is a fixed input weight to the cover panel calculation. This input may be positive or negative. This coefficient may also be used to input a fixed cover panel weight when scaling is not desired. When C(27) is used for this purpose the coefficient C(181) must be set to zero. Both coefficients are initialized at zero and will not be used unless a value (+ or -) is input.

The total weight of induced environment protection is summed by the equation:

WTPS = WINSUL + WCOVER

. **.** .

<u>توريخ</u>

4.0 LAUNCH AND RECOVERY

r A

4.1 LAUNCH AND RECOVERY - SPACE SHUTTLE

4.1.1 LAUNCH GEAR — The launch gear equation is used for the support structure and devices associated with supporting the vehicle during the launch sequence. This includes struts, pads, sequencing devices, controls, etc. The equation for launch gear is:

WLANCH = C(143) * WTO + C(144)

WLANCH	=	Total Weight of Launch Gear, lbs
OTW	=	Take-off Weight, lbs
C(143)	=	Launch Gear Weight Coefficient
C(144)	=	Fixed Launch Gear Weight, 15s

The input coefficient C(143) is a proportion of the computed take-off weight. A typical value, for preliminary design purposes, would be C(143) = 0.0001.

The coefficient C(144) is a fixed input weight to the launch gear calculation. This input may be positive or negative. This coefficient may also be used to input a fixed launch gear weight when scaling is not desired. When C(144) is used for this purpose the coefficient C(143) must be set to zero. The coefficient C(144) is initialized at zero and will not be used unless a value (+ or -) is input.

4.1.2 LANDING GEAR — The landing gear equation has been developed from data correlation of existing aircraft. This data included the nose gear, main gear and controls. The equation for calculating landing gear (including controls) is:

WLG = C(30) * WWAIT (7) ** C(182) + C(31)

3. 4

WLG	=	Total Weight of Landing Gear and Controls, lbs
WWAIT(7)	=	Maximum Landing Weight, lbs
C(30)	3	Landing Gear Weight Coefficient (Intercept)
C(192)	=	Landing Gear Weight Coefficient (Slope)
C(31)	=	Fixed Landing Gear Weight, the

33

The landing gear weight coefficients C(30) and C(182) represent the intercept and slope, respectively, of the logarithmic data shown in Figure 4.1-1. The data used in deriving the C(30) and C(182) coefficients in Figure 4.1-1 is based on conventional aircraft. If landing gear weight reduction methods are used on a Space Shuttle design due to the reduced number of landing (berylium brakes, thinner brake shoes, reduced tire treads, etc.) then the C(30) input coefficient should be modified in accordance with that philosophy.

The coefficient C(31) is a fixed input weight to the landing gear calculation. This input may be positive or negative. This coefficient may also be used to input a fixed landing gear weight when scaling is not desired. When C(31) is used for this purpose, the coefficients C(30) and C(142) must be set to zero. The coefficient C(31) is initialized at zero and will not be used unless a value (+ or -) is input.

4.1.3 DEPLOYABLE AERODYNAMIC DEVICES — The deployable aerodynamic devices include such items as drag chutes, etc., that may be used for assistance at entry or landing. The equation for deployable aerodynamic device system weight is:

WDPLOY = C(145) * WWAIT(7) + ('(146))

All states and

لللا الحاسرة محفظات والدار القرور الوشاد لشروا داروا كالالتك

WDPLOY	Ξ	Weight of Deployable Aerodynamic Devices, lbs
WWAIT(7)	=	Landing Weight, 1bs
C(145)	=	Deployable Aerodynamic Devices Weight Coefficient
C(146)	=	Fixed Deployable Aerodynamic Devices Weight, lbs

The coefficient C(145) is used to scale the deployable aerodynamic devices system weight as a function of landing weight. If parachutes are used a typical input value for this type vehicle is C(145) = 0.002 per parachute.

Figure 4, 1-1

The coefficient C(146) is a fixed input weight to the deployable aerodynamic device system calculation. This input may be positive or negative. This coefficient may also be used to input a fixed deployable aerodynamic device system weight when scaling is not desired. When C(146) is used for this purpose the coefficient C(145) must be set to zero. The coefficients C(145) and C(146) are both initialized at zero and will not be used unless a value (+ or -) is input.

4.1.4 DOCKING STRUCTURE — The docking structure is weight penalty associated with the orbiter stage for orbital docking requirements. The equation for docking structure is:

WDOCK = C(147) * WWAIT(5) + C(148)

WDOCK	=	Weight of Docking Structure, 15s
WWAIT(5)	Ŧ	Initlal Entry Weight, lbs
C(147)	=	Docking Structure Weight Coefficient
C(148)	=	Fixed Docking Structure Weight, lbs

The coefficient C(147) is used to scale the docking structure weight as a function of initial entry weight. A typical C(147) input will vary from 0.0015 to 0.0025 depending on the specific design requirements.

The coefficient C(148) is a fixed input weight to the docking structure calculation. This input may be positive or negative. This coefficient may also be used to input a fixed docking structure weight when scaling is not desired. When C(148) is used for this purpose the coefficient C(148) must be set to zero. The coefficients C(147) and C(148) are both initialized at zero and will not be used unless a value (+ or -) is input.

The total weight of the launch and recovery system is summed by the equation:

WLRD = WLANCH + WLG + WDPLOY + WDOCK

ŝ

17

5.0 MAIN PROPULSION

.

5.1 MAIN PROPULSION - SPACE SHUTTLE

5.1.1 ENGINES — The engines considered in this study are the main engines used to propel the vehicle during the main flight phases, the secondary engines used for orbit maneuvering and de-orbit maneuvers and the flyback engines used for flyback and landing.

The main rocket engines may be scaled as a function of total stage thrust, as a combination of total stage thrust and area ratio or input as a fixed weight per engine. Data is provided for either LO_2/LH_2 or $LO_2/RP-1$ engines. The equation for rocket engine weight is:

WENGS =
$$C(32) * TTOT + C(219) * TTOT * C(220) ** C(221)$$

+ $C(33) * NENGS + WENGMT$

WENGS	=	Total Weight of Rocket Engine Installation, lbs
TTOT	=	Total Stage Vacuum Thrust, Ibs
NENGS	=	Total Number of Engines per Stage
WENGMT	=	Weight of Engine Attachment Hardware, lbs
C(32)	=	Rocket Engine Weight Coefficient f(Thrust)
C(219)	2	Rocket Engine Weight Coefficient f(Thrust and Area Ratio)
C(220)	2	Rocket Engine A rea Ratio
C(221)	=	Rocket Engine Area Ratio Exponent
C(33)	=	Fixed Rocket Engine Weight, lbs

The Space Shuttle LO_2/LH_2 engines are advanced technology stage combustion engines that are still in a development phase. Various engine manufacturers have predicted a wide range of weight for these engines. Whenever possible, the user should utilize current design engine data from the engine manufacturers design studies. However if specific engine design data is not available, or if the user desires to rubberize the engines for scaling purposes, the following input data will scale the LO_2/LH_2 engines within an acceptable weight range.

The first part of the equation scales the basic engine as a function of thrust. A typical input value for this portion of engine weight is C(32) = 0.00766. The second part of the equation adds a penalty weight to the basic engine to account for differences in area ratio. Typical input values for this portion of the equation are C(219) = 0.00033, C(220) = desired area ratio and C(221) = 0.5. The third part of the equation is for the fixed weight portion of the engine. A typical input value is C(33) = 700. The term WENGMT is the weight of engine attachment hardware. This calculation is done by a separate equation and is discussed in Section 5.1.2.

the start of the first start

A graphical representation is shown in Figure 5.1-1 of engine weight versus vacuum thrust for different area ratios. These curves were developed using the typical input values for C(32), C(219), C(221) and C(33). The coefficient C(220) varies from 35 to 150. The data presented in Figure 5.1-1 is weight and thrust per engine and does not include allowances for engine to thrust structure attachment hardware or gimbal system weight. The gimbal system weight equatior is presented in Section 6.1.1.

When $LO_2/RP-1$ engines are used for main thrust, the coefficients C(219), C(220) and C(221) should be set to zero so the engines may be sized as a function of total stage thrust or input as a fixed weight. The data shown in Figure 5.1-2 is representative of various production type $LO_2/RP-1$ type engines. A typical input value for C(32) = 0.0106. The input coefficient C(32), for $LO_2/RP-1$ engines, represents the nominal engine weight-to-thrust ratio. The data in Figure 5.1-2 is based on single engine thrust levels and does not include allowances for engine to thrust structure attachment hardware or gimbal system weight. The gimbal system weight equation is presented in Section 6.1.1.

The coefficient C(33) is used to input the fixed engine weight that does not scale with size. This coefficient may also be used to input a fixed rocket engine weight when scaling is not desired. When C(33) is used for this purpose it must be input as a weight per engine value and the coefficients C(32), C(219) and C(220) must all be set to zero. The coefficient C(221) may romain at 0.5 or set to any value greater than zero. All t^{-1} coefficients (C(32), C(32), C(219), C(220) and C(221)) are initialized at zero and will not be used unless a value (+ or -) in input.

ារ៉ាស្តី 🕈 📲 ចំពោះ 👔

39

3.2) 1 ****** ****** 10 1 î. 40 1351

GDC-DBB70-002

į

The secondary rocket engines have been associated with orbital transfer, retro thrust, major maneuvers and de-orbit maneuvers. The secondary rocket engines may be scaled as a function of secondary engine thrust or input as a fixed weight. The equation for secondary rocket thrust is:

TTOT2	<u>-</u>	WWA1T(5) * CTHST2 + C(158)
TTOT2	Ξ	Total Secondary Engine Vacuum Thrust, Ibs
WWAIT(5)	-	Initial Entry Weight, Ibs
CTHST2	=	Secondary Propulsion T/W Ratio
C(158)	÷.	Fixed Secondary Thrust, 1bs

The secondary engine thrust may be computed as a function of the initial entry weight by inputting the desired thrust-to-weight ratio (CTHST2) or it may be input as a fixed thrust by inputting C(158). If CTHST2 is input as a value then the coefficient C(158) should be input as zero and vice versa. Whichever term is used and the value of that term (CTHST2 or C(158)) is set by the user.

The equation for secondary rocket engine weight is:

WENGS2 = C(140) * TTOT2 + C(141)

WENGS2	=	Total Weight of Secondary Rocket Engines, 1bs
TTOT2	=	Total Secondary Engine Vacuum Thrust, lbs
C(140)	=	Secondary Rocket Engine Weight Coefficient
C(141)	=	Fixed Secondary Rocket Engine Weight, lbs

The input coefficient C(140) scales the secondary rocket engine weight as a function of total thrust. This input should be based upon the specific application being considered using engine manufacturers data if available. However, if data is not available, typical values of the secondary rocket engine application are C(140) = 0.015 to 0.025. This would be representative of a typical LO_2/LH_2 rocket engine with a thrust range from 10,000 to 40,000 lbs.

The coefficient C(141) is a fixed input weight to the secondary rocket engine calculation. This input may be positive or negative. This coefficient may also be used to input a fixed

secondary rocket engine weight when scaling is not desired. During recent space shuttle studies this option has been utilized totally since the selection of engines for this application is so limited. Typical values for fixed secondary rocket engine weight are C(141) = 300 to 400 lbs/engine. When C(141) is used to input fixed secondary rocket engine weight the coefficient C(140) must be set to zero. The coefficients C(140) and C(141) are both initialized at zero and will not be used unless a value (+ or -) is input.

The flyback engines are used for flyback and landing on the booster vehicle and they are used for landing only on the orbiter stage. These are airbreathing engines that are scaled as a function of initial flyback weight or input as a fixed weight. The equation for flyback engine weight is:

WABPR = C(210) * WWAIT (6) + C(211)

WABPR	=	Weight of Airbreathing Engines for Flyback, lbs
WWAIT(6)	=	Vehicle Entry Weight (Initial flyback), lbs
C(210)	=	Airbreathing Engine Weight Coefficient
C(211)	=	Fixed Airbreathing Engine Weight, lbs

The coefficient C(210) scales the airbreathing engine weight as a function of initial flyback weight. The coefficient may be computed from the data shown in Table 5.1.1. The engine thrust level and number of engines are determined by the user. With this information he may then select the best engine for a specific application from the data shown in Table 5.1.1. If scaling is desired the coefficient C(210) may be computed by dividing the total engine weight by the estimated flyback weight. If scaling is not desired, the fixed engine weight may be input as C(211) and C(210) set to zero. The coefficients C(210) and C(211) are both initialized at zero and will not be used unless a value (+ or -) is input.

41

5.1.2 ENGINE MOUNTS — The weight equation for main rocket engine attachments is:

WENGMT = C(183) * TTOT + C(184)

ĩ

WENGMT	=	Weight of Engine Mounts, lbs
ттот	=	Total Stage Vacuum Thrust, lbs
C(183)	=	Engine Mount Weight Coefficient
C(184)	=	Fixed Engine Mount Weight, Iba

The expression C(183) * TTOT is the weight of the hardware to attach the engines to the thrust structure assembly. A typical value used in design studies is C(183) = 0.0001.

The coefficient C(184) is a fixed input weight to the engine mount calculation. This input may be positive or negative. This input may also be used to input a fixed engine mount weight when scaling is not desired. When C(184) is used for this purpose the coefficient C(183) must be set to zero. Both coefficients are initialized at zero and will not be used unless a value (+ or -) is input.

Table	5.3	1.1.	Airbreathing	Engine	Data.	
-------	-----	------	--------------	--------	-------	--

.

•••••••

and the second

	T	1		· · · · · · · · · · · · · · · · · · ·
Engine (Manuf.)	Туре	Thrust (SSL)	Dry Weight	Remarks
CF6-50C (Gen. Elect.)		51,000	8225	Used on series 30 DC-10
CF6-6 (Gen. Elect.)	High Dama	40,000	7450	Used on series 10 DC-10
RB211-22 (Rolls-Royce)	Ratio	40,600	6353	Used on Lockheed L-1011
RB211-56 (Rolls-Royce)	Turbofan Engines	52,500	7834	Advanced version of RB211-22
JT9D-7 (Pratt-Whit.)		45,500	8370	Used on series 20 DC-10 and Boeing 707
F101	Moderate Bypass Ratio Turbofan Engine	Classified	Class.	USAF B1A uses after burner version
JTF-22	Low Bypass Ratio Turbofan Engine	Classified	Class.	USN F-14B and USAF F-15 uses after burner version

5.1.3 NON-STRUCTURAL PROPELLANT TANK - The non-structural fuel and oxidizer tanks are defined as tanks mounted within a load-carrying shell. The equation for non-structural fuel tank weight is:

WFUTK = C(39) + VFUTK + C(40)

WFUTK	=	Weight of Non-Structural Fuel Tank, lbs
VFUTK	z	Total Volume of Fuel Tank, ft ³
C(39)	=	Fuel Tank Weight Coefficient (Non-Structural), the /ft
C(40)	=	Fixed Fuel Tank Weight (Non-Structural), lbs

The input coefficient C(39) scales the non-structural fuel tank as a function of iotal fuel tank volume. The lower curve, shown in Figure 5.1-2, assumes a single cylindrical fuel tank configuration. The coefficient C(39) should be derived from specific design calculations, whenever possible, in order to account for variations in tank shape and loads. However, when specific design data is not available, a typical input value is C(39) = 0.37. If multiple tanks, double bubble tanks or high fineness ratio tanks are used the C(39) value should be scaled up by a configuration factor of 1.1 to 1.4. The equation for non-structural oxidizer tank weight is:

WOXTK = C(41) * VOXTK + C(42)

111011

r.

.

WOXTK	=	Weight of Non-Structural Oxidizer Tank, lbs
VOXTK	×	Total Volume of Oxidizer Tank, ft ³
C(41)	=	Oxidizer Tank Weight Coefficient (Non-Structure) the 443
C(42)	=	Fixed Oxidizer Tank Weight (Non-Structural), 108/11

4

.

T. L

The input coefficient C(41) scales the non-structural oxidizer tank as a function of total oxidizer tank volume. The upper curve, shown in Figure 5.1-3, assumes a single cylindrical oxidizer tank configuration. The coefficient C(41) should be drived from specific design calculations, whenever possible, in order to account for variations in tank shape and loads. However, when specific design data is not available, a typical input value is C(41) = 0.45. If multiple tanks, double bubble tanks or high fineness ratio tanks are used the C(41) value should be scaled up by a configuration factor of 1.25 to 1.75.

The coefficients C(40) and C(42) are used to input fixed weights to the non-structural fuel and oxidizer tank calculations, respectively. These inputs may be positive or negative. These inputs may also be used to input a fixed weight for the non-integral tanks when scaling is not desired. When the coefficients C(40) and C(42) are used for this purpose une coefficients C(39) and C(41) must be set to ze v. All four coefficients are initialized at zero and will not be used unless a value (+ or -) is input.

ì.

5.1.4 SECONDARY TANKAGE AND SYSTEM - The secondary tankage and system includes the tanks, insulation, pressurization, etc., of both fuel and oxidizer for orbit maneuvering requirements. The equation for secondary fuel tank and system weight is:

WFUTK2 = C(170) • VFUTK2 + C(136)

WFUTK2		Total Weight of Secondary Fuel Tank and System, Ibs
VFUTK2	а	Total Volume of Secondary Fuel Tank, ft ³
C(170)	-	Secondary Fuel System Weight Coefficient, lbs/ft
C(136)	-	Fixed Secondary Fuel System Weight, ibs

The coefficient C(170) scales the secondary fuel tank and system as a function of secondary fuel tank volume. Input data for C(170) should be obtained from design analysis. However, for preliminary design, a typical value would be C(170) = 0.75. The lower curve in Figure 5.1-4 shows the secondary fuel tanks ge and system weight as a function of secondary fuel tank volume using the typical C(170) input value.

The equation for secondary oxidizer tank and system weight is:

 $WOXTK2 = C(171) \cdot VOXTK2 + C(137)$

WOXTK2		Total Weight of Secondary Oxidizer Tank and System, Iba
VOX TK2	=	Total Volume of Secondary Oxidizer Tank, Iba
C(171)	故	Secondary Oxidizer System Weight Coefficient, lbs/ft
C(137)	*	Fixed Secondary Oxidizer System Weight, lbs

The coefficient C(171) scales the secondary oxidizer tank and system as a function of secondary oxidizer tank volume. Input data for C(171) should be obtained from design analysis. However, for preliminary design, a typical value would be C(171) = 1.25. The

ĉ

٠,

upper curve in Figure 5.1-4 shows the secondary oxidizer tankage and system weight as a function of secondary oxidizer tank volume using the typical C(171) input value.

The coefficients C(136) and C(137) are fixed inputs to the secondary fuel and oxidizer tankage and system weights, respectively. These inputs may be positive or negative. These inputs may also be used to input fixed secondary fuel and oxidizer tankage and system weights when scaling is not desired. When C(136) or C(137) are used for this purpose the coefficients C(170) and C(171) should be set to zero, respectively. All four coefficients are initialized at zero and will not be used unless a value (+ or -) is input.

14 . 14

÷

5.1.5 PROPELLANT TANK INSULATION — This section presents the necessary data to obtain a weight renalty associated with the protection required to prevent excessive boiloff from the main propellant tanks.

The normal parameters that affect the boiloff insulation penalties include tank shape, tank location, vehicle flight trajectory, general shape of the vehicle, tank material and construction, insulation distribution around the tank, rate and sequence that tanks are emptied, vent pressure, etc. The interaction of these parameters makes a thermal analysis a complex task. The data in this section assumes that the insulation penalty is adequate to cover any reasonable combination of these variables.

The basis for the data in this section is Reference 5.1.5.1. This reference gives the results of a program to obtain the optimum thermal protection/structural combination for typical liquid hydrogen fuel tanks. However, due to the complex nature of the problem, the program input has been made a function of temperature and time. These were considered to be the two major variable parameters for the material, concept and conditions of Reference 5.1.5.1.

The program is written so that the insulation penalty is in terms of lbs/ft^2 of tank area which varies in the sizing routine according to tank volume, which in turn varies with a number of other design parameters. The equation for tank insulation weight is:

WINSTK = C(43) * SFUTK + C(77) * SOXTK + C(44)

WINSTK	=	Total Weight of Tank Insulation, lbs
SFUTK	=	Total Fuel Tank Wetted Area, ft ²
SOXTK	=	Total Oxidizer Tank Wetted Area, ft ²
C(43)	=	Fuel Tank Insulation Unit Weight, lbs/ft^2
C(77)	=	Oxidizer Tank Insulation Unit Weight, lbs/ft ²
C(44)	=	Fixed Propellant Tank Insulation Weight, lbs

}

The weight coefficient C(43) is obtained from the upper curve in Figure 5.1-5. The fuel tank insulation unit weight is a function of radiating temperature. The user must estimate what the maximum radiating temperature will be and select the corresponding value for C(43). A typical radiating temperature of 500° F may be assumed for preliminary runs if data is not available for making a specific selection.

The C(43) value obtained from Figure 5.1-5 is for a total flight duration of 500 seconds. When other flight times are anticipated the C(43) value should be modified by multiplying it by the time correction factor $(T_{Corr.})$ obtained from Figure 5.1-6.

During past Space Shuttle design studies, there has not been a requirement for main oxidizer tank insulation. However, input data is provided for cases where the user feels that oxidizer tank insulation is required. The weight coefficient C(77) is obtained from the lower curve in Figure 5.1-5. The selection criteria used to obtain C(77) is the same as that used for C(43). The coefficient C(77) obtained from Figure 5.1-5 is for a total flight time of 500 seconds. When other flight times are anticipated, the C(77) value should be modified by multiplying it by the time correction factor $(T_{Corr.})$ obtained from Figure 5.1-6.

The coefficient C(44) is a fixed input weight to the propellant tank insulation calculations This input may be positive or negative. This input may also be used to input a fixed propellant tank insulation weight when scaling is not desired. When C(44) is used for this purpose the coefficients C(43) and C(77) must be set to zero. All three coefficients are initialized at zero and will not be used unless a value (+ or -) is input.

х м

40 1751

.

53

			GDC-DBB70-002
		•••••••••••••••••••••••••••••••••••••••	
3			
······································			
0.8			
E-4 171111, 11			
Z E			
			-
	· • • • • • • • • • • • • • • • • • • •		
ž i i i i i i i i i i i i i i i i i i i			
		• • • •	
ā lieta ar			
0.2			
6			
		600	
	TIME DURATION	(SECONDS)	
En de la	Little HEHEE HEEE Figure	5.1-6	

......

1

54

يو. نو

Ľ.

5.1.6 MAIN FUEL SYSTEM - The fuel system includes the weight of those items necessary to deliver the fuel from the vehicle storage tanks to the engine pump inlets, tank venting and propellant dumping requirements. The weight of such systems is highly dependent upon the vehicle tank and propulsion system layout and the ease of duct-ing required to perform the propellant transfer function. The equation for main fuel system weight is:

WFUSYS C(45) * TTOT + C(46) * LBODY + C(47)WFUSYS Total Fuel System Weight, lbs = TTOT Total Stage Vacuum Thrust, ibs = LBODY Body Length, ft = C(45) Fuel System Weight Coefficient f(Thrust) =2 C(46) Fuel System Weight Coefficient f(Length), lbs/ft = C(47) Fixed Fuel System Weight, 1bs =

The weight of the main fuel system may vary substantially from one vehicle to another because of the many design considerations which can only be analyzed on the basis of a specific design application. Since vehicles may have to be sized on a preliminary basis before detail design data is available the following input coefficients are provided to account for the main fuel system.

An orbiter vehicle, with the fuel tank in an aft position will have a typical input range of C(45) = 0.002 to 0.003 for LH₂ fuel. If the fuel is RP-1 the input value will vary from C(45) = 0.001 to 0.0015.

1)

A booster vehicle, with the fuel tank in an aft position will have a typical input range of C(45) = 0.0015 to 0.0020. If the fuel is RP-1 the input value will vary from C(45)= 0.0006 to 0.001.

The equation has a term C(46) * LBODY that may be used to calculate the ducting weight separately when sufficient detail is available. However, this portion of the equation is not currently being used and may be zeroed out.

The coefficient C(47) is a fixed input weight to the main fuel system calculation. This input may be positive or negative. This input may also be used to input a fixed fuel system weight when scaling is not desired. When C(47) is used for this purpose the coefficients C(45) and C(46) must be set to zero. All three coefficients are initialized at zero and will not be used unless a value (+ or -) is input.

5.1.7 MAIN OXIDIZER SYSTEM - The oxidizer system comprises those items needed to transfer oxidizer from the vehicle storage tanks to the propulsion system and the components required to vent or dump the oxidizer tanks. This system is dependent upon the size, length and ease of ducting for transfer of the propellant. The equation for main oxidizer system weight is:

WOXSYS	=	C(48) * TTOT + C(49) * LBODY + C(50)
WOXSYS	=	Total Oxidizer System Weight, Ibs
TTOT	=	Total Stage Vacuum Thrust, lbs
LBODY	=	Body Length, ft
C(48)	=	Oxidizer System Weight Coefficient for must
C(49)	=	Oxidizer System Weight Coefficient f(Inrus)
C(50)	=	Fixed Oxidizer System Weight, Ibs

Ť

The main oxidizer system weight is dependent upon practical design factors as well as the fluid flow characteristics. The input values for C(48) and C(49) should be obtained from the analysis of a specific design application. However, since a detail analysis is not always possible during the early phases of a study, the following inputs are representative of an LO_2 system with the LO_2 tank located forward of the fuel tank.

An orbiter vehicle with the oxidizer tank forward of the fuel tank, and LH_2 is used for the fuel, will have a typical input value that varies from C(48) = 0.0035 to 0.004. If RP-1 is used for fuel the coefficient C(48) will vary from 0.0025 to 0.003. The reduction in input value is due to the shorter ducting lengths required with the higher density and lower mixture ratio fuel.

A booster vehicle with the oxidizer tank forward of the fuel tank, and LH_2 is used for the fuel, will have an input value of C(48) = 0.002 to 0.0025. If RP-1 is used for fuel the coefficient C(48) will vary from 0.0015 to 0.002.

- 1

The term $C(\pm 9)$ * LBODY is provided in the equation so that the ducting weight may be computed separately from the rest of the oxidizer system. This option is not currently being used and may be zeroed out by setting C(49) = 0.

The coefficient C(50) is a fixed input weight to the main oxidizer system calculation. This input may be positive or negative. This input may also be used to input a fixed oxidizer system weight when scaling is not desired. When C(50) is used for this purpose the coefficients C(48) and C(49) must be set to zero. All three coefficients are initialized to zero and will not be used unless a value (+ or -) is input.

58

manufactorial fr Augebras series and

5.1.3 PROPELLANT PRESSURIZATION AND PURGE SYSTEM - The propellant pressurization and purge system for the main propellant system is representative of a stored high pressure helium system. The two major parameters used to obtain input are the main tank pressures and the helium storage temperature. The system weight includes the storage bottles, stored gas and system components. The weight equation inputs weigh the pressurization and purge system as a function of fuel and oxidizer tank volumes. The equation for propellant pressurization and purge system weight is:

WPRSYS = C(51) * VFUTK + C(52) * VOXTK + C(187)

.

WPRSYS	=	Weight of Pressurization System, lbs
VFUTK	=	Total Volume of Fuel Tank, ft ³
VOXTK	=	Total Volume of Oxidizer Tank, ft ³
C(51)	=	Fuel Tank Pressure System Weight Coefficient the /ft ³
C(52)	=	Oxidizer Tank Pressure System Weight Coefficient, he (1) ³
C(187)	=	Fixed Pressurization System Weight the

The coefficients C(51) and C(52) are fuel and oxidizer dependent, respectively, for the pressurization and purge system weights. The input values for these coefficients are obtained from Figure 5.1-7.

The coefficient C(187) is a fixed input weight to the pressurization and purge system calculation. This input may be positive or negative. This input may also be used to input a fixed pressurization and purge system weight when scaling is not desired. When C(187) is used for this purpose the coefficients C(51) and C(52) must be set to zero. All three coefficients are initialized at zero and will not be used unless a value (+ or -) is input.

The airbreathing propulsion pressurization system, for JP type fuel, includes the weight of the storage bottles, stored gas and system components. The weight of the airbreathing fuel prossurization system is calculated by the following equation:

60

-Himen man

. .

WABFPS	=	0.0009 * C(149) * ANENGS * AN TANK
WABFPS	3	Weight of JP Pressurization System the
ANENGS	=	Number of Airbreathing Engines
ANTANK	=	Number of Airbreathing Fuel Tanka (ID
C(149)	=	Airbreathing Engine Thrust per Engine, Ibs

•

e de la companya de l

.....

ŧ

٠.

......

61

.

5.1.9 NACELLE, PODS AND PYLONS — The nacelle, pods and pylons weight penalty is associated with the airbreaching flyback engines. This penalty has been included in the engine weight input during a evious studies. However a scaling equation is presented so the user has the option of carrying this penalty as a separate weight. The equation for nacelle, pods and pylon weight is:

WNACEL = C(36) + WABPR + C(37)

HIN'S ODS

5

NNACEL	2	Weight of Nacelle, Pods and Pylons, ibs
WABPR	2	Weight of Airbreathing Engines for Flyback the
C(3E)	Ŧ	Nacelle, Pods and Pylons Weight Coefficient
C(37)	Ξ	Fixed Nacelle, Pods and Pylon Weight, Ibs

The coefficient C(36) scales the nucelle, pods and pylon weight as a function of flyback engine weight. Input for this coefficient is dependent on the type and size of flyback engine used and must be determined at the time of usage.

The coefficient C(37) is a fixed input weight to the nacelle, pods and pylon calculation. This input may be positive or negative. This input may also be used to input a fixed nacelle, pods and pylon weight when scaling is not desired. When C(37) is used for this purpose the coefficient C(36) must be set to zero. The coefficients C(36) and C(37) are both initialized at zero and will not be used unless a value (+ or -) is input.

5.1.10 AIRBREATHING PROPULSION TANKAGE AND SYSTEMS — The airbreathing propulsion tankage and systems weight include the tanks, pumps, lines, valves, etc. A test is made on C(212) and C(213) to determine the type of flyback fuel used. If C(212) or C(213) have a positive value the flyback propellant will be liquid hydrogen and the tankage and system weight will be determined by the following equation. When liquid hydrogen is used the term ABFSYS will be automatically set to zero.

WABFTK = C(212) * WABFU + C(213) + ABFSYS

WABFTK	Ξ	Weight of Airbreathing Propulsion Tankage and System the
WABFU	-	Weight of Airbreathing Fuel, lbs
ABFSYS	=	Airbreathing Fuel System Weight (JP), lbs
C(212)	*:	Airbreathing Propulsion Tankage and System Weight Coefficient
C(213)	=	Fixed Airbreathing Propulsion Tankage and System Weight, Ibs

The coefficient C(212) is used to scale the airbreathing propulsion tankage and system weight as a function of airbreathing fuel weight. A typical value of C(212) = 0.20 may be used when the airbreathing fuel tank is assumed to be inside the main fuel tank.

The coefficient C(213) is a fixed input weight to the airbreathing propulsion tankage and system calculation. This input may be positive or negative. This input may also be used to input a fixed airbreathing propulsion tankage and system weight when scaling is not desired. When C(213) is used for this purpose the coefficient C(212) must be set to zero. The coefficients C(212) and C(213) are both initialized at zero.

When the coefficients C(212) and C(213) are both set to zero the fuel system will be calculated on the basis of a JP-4 or JP-5 type system. The parameters used are limited to those which would be available in a preliminary design study. The fuel system is broken down into boost and transfer pumps, distribution system - Part I, Distribution System - Part D, Fuel System Controls, Ground Refueling System, Fuel Dump and Drain System, and Tank Bay Sealing. The data presented for the weight calculation of the JP type systems are based on Reference 5.1.10.1.
The weight of the boost and transfer pumps is a function of the engine thrust and the number of engines. The equation for boost and transfer pumps is:

WBPUMP	=	C(149) * ANENGS * (1.75 + 0.266 * ANENGS)/1000
WBPUMP	Ľ	Total Weight of Boost and Transfer Pumps, lbs
ANENGS	=	Number of Airbreathing Engines
C(149)	-2	Airbreathing Engine Thrust Per Engine, Ibs

The fuel distribution system - Part I is the total of all fuel lines, supports, fittings, etc., to provide fuel flow from a reservoir tank to the engines. The equation for the fuel distribution - Part I Weight is:

WDIST1		ANENGS * C(191) * C(149) ** 0.5
WDIST1	2	Total Weight of Fuel Distribution System - Part I, 15s
ANENGS	=	Number of Airbreathing Engines
C(191)		Fuel Distribution System - Part I - Weight Coefficient
C(149)	=	Airbreathing Engine Thrust Per Engine, lbs

The input coefficient C(191) is used to differentiate between a non-afterburning and afterburning engines. If the flyback engine utilizes an afterburner the input value will be C(191) = 0.316. For a non-afterburning engine, which is most common for Space Shuttle vehicles, the input value will be C(191) = 0.221.

When JP type fuel is used for flyback, the system weights utilize gallons as a parameter. The equation for gallons is:

GAL = WABFU/6.5

and the Manual States of the In-

のないないというないのないのである

GAL = Total Gallons of Fuel WABFU = Weight of Airbreathing Fuel, lbs

The fuel distribution system - Part II is the total of all fuel lines, fittings, supports, etc., to provide flow between various tanks within the system. The equation for the fuel distribution system - Part II Weight is:

WDIST2	=	0.255 * GAL ** 0.7 * ANTANK ** 0.25
WDIST2	=	Total Weight of Fuel Distribution System - Part II, lbs
GAL	z	Total Gallons of Fuel
ANTANK	=	Number of Airbreathing Fuel Tanks (JP)

The fuel system controls is the total of all values and value operating equipment such as wiring, relays, cables, etc. The equation for the fuel system controls weight is:

	=	0.169 * ANTANK * GAL ** 0.5
WFCONT	=	Total Weight of Fuel System Controls the
ANTANK	=	Number of Airbreathing Fuel Tanks (IP)
GAL	E	Total Gallons of Fuel

1

1.1.11

WECONT

The fuel tank refueling system includes the ducts and values necessary to fill the fuel tanks. The equation for fuel tank refueling system weight is:

WREFUL	=	ANTANK * (3.0 + 0.45 * GAL ** 0.333)
WREFUL	=	Total Weight of Fuel Tank Refueling System the
ANTANK	=	Number of Airbreathing Fuel Tanks (JP)
GAL	=	Total Gallons of Fuel

٦t.

,

The fuel tank dump and drain system is the total valves and plumbing necessary to dump and drain the JP fuel system. The equation for fuel tank dump and drain system weight is:

WDRANS = 0.159 * GAL ** 0.65 WDRANS = Total Weight of Fuel Tank Dump and Drain System, lbs GAL = Total Gallons of Fuel

The fuel tank bay sealing is the total weight of sealing compound and structure required to provide a fuel tight compartment. This sealing is used with a bladder tank to prevent fuel leakage and it is used to seal a structural compartment to provide an integral tank concept. The equation for fuel tank bay sealing weight is:

WSEAL	=	0.045 * ANTANK * (GAL/ANTANK) ** 0.75
WSEAL	=	Total Fuel Tank Bay Sealing Weight, lbs
ANTANK	= .	Number of Airbreathing Fuel Tanks (JP)
GAL	=	Total Gallons of Fuel

The type of fuel tank construction assumed in this study for JP type fuel is the non-self sealing (bladder) and self-sealing. The input data presented here also assumes that the tanks are located in either the wing box or carry-through structure. However, the equation is of a form that other tankage systems may be studied if input data is available. The equation for JP fuel tank weight is:

and the second se

WFUNCT	*	C(189) * (GAL/ANTANK) ** 0.6 * ANTANK + C(190)
WFUNCT	×	Total Weight of Fuel Tank, the
GAL	-	Total Gallons of Fuel
ANTANK	-	Number of Airbreathing Fuel Tanks (112)
C(189)	~	Fuel Tank Weight Coefficient
C(190)		Fixed Fuel Tank Weight, Ibs

The input coefficient C(189) is used to differentiate between self-sealing and non-self-sealing tanks. If self-sealing is assumed the input value will be C(189) = 3.0. For a non-self-sealing tank, which is most common for Space Shuttle vehicles, the input value will be C(189) = 1.27. The tank weight calculated by this equation includes supports and backing boards. The coefficient C(190) is a fixed input weight to the free tank calculation. This input may be positive or negative. This input may also be used to input a fixed fuel tank weight when scaling is not desired. When C(190) is used for this purpose the coefficient C(189) must be set to zero. The coefficients C(189) and C(190) are both initialized at zero and will not be used unless a value (+ or -) is input.

The weight of the flyback fuel system for JP type fuel is summed by the equation:

The weight of the flyback fuel system for JP type fuel less tankage is calculated by the equation:

WABFS = ABFSYS - WFUNCT

The total weight of the propulsion system is summed by the equation:

THERE PARD BEANK NOT FILMED

. . .

-

GDC-DBB70-002

6.0 ORIENTATION CONTROLS AND SEPARATION

6.1 ORIENTATION CONTROLS AND SEPARATION - SPACE SHUTTLE

6.1.1 GIMBAL SYSTEM - The gimbal (thrust-vector-control) actuation system is utilized when a rocket engine is used for main impulse. The data in Figures 6.1-1 and 6.1-2 is based on Reference 6.1.1.1 and is for an electrical system consisting of a silver-zinc primary battery, a d. c. electric motor and a gear train, two magnetic partical clutches and ball-screw actuators. The work in Reference 6.1.1.1 also covered a pneumati : actuation system. Both systems were completitive from a weight standpoint with a slight advantage for electrical systems for the longer operating times (\approx 1200 sec.) and for all torque levels greater than 1000 lb-in.

The system weight is expressed in parametric form as a function of delivered torque, maximum deflection rate of nozzle and operating time. The range of significant operational requirements and conditions for the data presented here are:

Delivered Torque	-	6,000 to 3,000,000 lb-in
Nozzle Deflection	-	2 to 20 degrees
Nozzle Deflection Rate		5 to 25 degrees/second
Operating Time	<u></u>	50 to 1200 seconds
Thermal Environment	27	-420 to $+400$ °F
Acceleration		2.5 to 15 g

The system assumes pitch and yaw control for single engine and pitch, yaw and roll control for multiple engines. The equation for delivered torque is:

IDEL	-	750 * (TTOT/NENGS/PCHAM) ** 1.25
TDEL	=	Gimbal System Delivered Torque, Ib-in
TTOT		Total Stage Vacuum Thrust, ibs
NENGS		Total Number of Engines Per Stage
РСНАМ	÷	Rocket Engine Changer Pressure, psin

1

;

The delivered torque calculation assumes a maximum nozzle deflection of 10 degrees. The calculated delivered torque is then used in the gimbal system weight equation which is:

WSTAB NENGS * (C(28) * TDEL ** C(160)) + C(161) WSTAB Weight of Engine Gimbal System, lbs NENGS Total Number of Engines per Stage TDEL Gimbal System Delivered Torque, lb-in -C(28) Gimbal System Weight Coefficient (Intercept) ÷., C(160) Gimbal System Weight Coefficient (Slope) C(161) Fixed Gimbal System Weight, lbs

The weight coefficients C(28) and C(160) represent the intercept and slope, respectively, for the curves shown in Figures 6.1-1 and 6.1-2. These coefficients scale the gimbal system weight per engine as a function of the engine delivered torque. The data in Figure 6.1-1 represents a gimbal system with a maximum nozzle deflection rate of 20 deg/sec and Figure 6.1-2 is for 5 deg/sec. Both figures are for maximum deflections of 10 degrees and operating times of 100 to 1200 seconds. If the maximum deflection rate is between i and 20 degrees the coefficient C(28) may be ratioed from the values shown on Figures 6.1-1 and 6.1-2.

The gimbal system is calculated as a weight per engine and then multiplied by the number of engines per stage. If the engines are slaved together as one or more units the coefficient C(28) will have to be modified to account for the reduction in weight. This modification is a function of the specific design and is left to the discretion of the user.

The coefficient C(161) is a fixed input weight to the gimbal system calculation. This input may be positive or negative. This input may also be used to input a fixed gimbal system weight when scaling is not desired. When C(161) is used for this purpose, the coefficient C(28) must be set to zero. The coefficient C(161) is initialized at zero and will not be used unless a value (+ or -) is input.

70

Sector Lands

DELIVERED TORQUE (IN-LBS)

Figure 6.1-1

6.1.2 SPATIAL ATTITUDE CONTROL SYSTEM — This subsystem represents the weight of the attitude control system which includes engines, valves, pressurant and residual propellants. It does not include the propellants and their associated tankage. The system includes pitch, yaw, roll and translation engines. The equation for attitude control system weight is:

WACS = C(156) * WWAIT (4) ** C(155) + C(157)

WACS	ž	Weight of Attitude Control System, lbs
WWAIT(4)	=	Initial Orbit Weight, Ibs
C(156)	=	ACS System Weight Coefficient (Intercept)
C(155)	-	ACS System Weight Coefficient (Slope)
C(157)	=	Fixed ACS System Weight, ibs

The weight coefficients C(156) and C(155) represents the intercept and slope, respectively, for the data shown in Figure 6.1-3. These coefficients scales the attitude control system as a function of initial orbit weight and type of system. The upper curve is representative of a high pressure turbopump system. The thrust level ranges from 1,000 lbs to 2,000 lbs per thruster with the number of thrusters varying from 15 to 30. The lower curve is representative of a high pressure fed super critical storage system. The thrust range and number of thrusters are the same as the upper curve.

The coefficient C(157) is a fixed input weight to the attitude control system calculation. This input may be positive or negative. This input may also be used to input a fixed gimbal system weight when scaling is not desired. When C(157) is used for this purpose, the coefficient C(156) must be set to zero. The coefficient C(157) is initialized at zero and will not be used unless a value (+ or -) is input.

6.1.3 ATTITUDE CONTROL SYSTEM TANKAGE — The attitude control system tankage weight includes the bladders, insulation, mounting, etc., but does not include the propellants. The equation for attitude control system tankage weight is:

1

INTEAC ORB, I WEIGHT (1 BS)

Figur, 6. . . 2

WACSTK	÷	C(164) * (WACSFO + WACRES) + C(165)
WACSTK	4	Weight of Attitude Control System Tankage, lbs
WACSFO	-	Weight of ACS Fuel and Oxidizer, 1bs
WACRES	r.	Weight of ACS Propellant Reserve, lbs
C(164)	÷	ACN Tank Weight Coefficient
C(165)	n	Fixed ACS Tank Weight, 1bs

The coefficient C(164) scales the attitude control propellant tankage weight as a function of total attitude control propellant and reserve propellant weight. Different types of propellant combinations and storage arrangements may be used. If a storable propellant is used a typical input value is C(164) = 0.10. A cryogenic propellant will have an input value of C(164) = 0.25. If the cryogenic propellant utilizes super critical storage the input value should be increased to C(164) = 0.60.

The coefficient C(165) is a fixed input weight to the attitude control tankage calculation. This input may be positive or negative. This input may also be used to input a fixed tankage weight when scaling is not desired. When C(165) is used for this purpose, the coefficient C(164) must be set to zero. The coefficient C(165) is initialized at zero and will not be used unless a value (+ or -) is input.

د ه

1

6.1.4 AERODYNAMIC CONTROLS — The weight of this subsystem includes the total weight of the aerodynamic control system. It includes all control levers, push-pull rods, cables, and actuators from the control station up to but not including the aerodynamic surfaces. This weight does not include the autopilot or the AN Hydraulic/Pneumatic system weight. The equation for aerodynamic controls system weight is:

WAERO =
$$C(55) * [WWAIT(5) ** 0.689 * (LBODY + CSPAN) ** 0.287]$$

** $C(185) + C(56)$

WAERO	=	Weight of Aerodynamic Controls, Ibs
WWAIT(5)	=	Initial Entry Weight, los
LBODY	=	Body Length, ft
CSPAN	a	Structural Span (Along .5 Chord), ft
C(5 5)	÷	Aerodynamic Control System Weight Coefficient Intercent
C(185)	=	Aerodynamic Control System Weight Coefficient (Slope)
C(36)	=	Fixed Aerodynamic Control System Weight, lbs

The weight coefficients C(55) and C(185) represent the intercept and slope, respectively, for the aerodynamic controls data from various aircraft shown in Figure 6.1-4. These coefficient scales the aerodynamic controls weight as a function of entry weight, body length and structural wing span. The data is also representative of fixed wing aircraft. If a variable sweep wing design is involved the coefficient C(55) should be increased from 8 to 10% to account for the actuation system penalty.

The coefficient C(56) is a fixed input weight to the aerodynamic controls calculation. This input may be positive or negative. This input may also be used to input a fixed aerodynamic controls weight when scaling is not desired. When C(56) is used for this purpose the coefficient C(55) must be set to zero. The coefficients C(55), C(185) and C(56) are all initialized at zero and will not be used unless a value (+ or -) is input.

76

a

Fugure 6, 1-4

)

. .

6.1.5 SEPARATION SYSTEM — The separation system weight includes the system and attachments that are used for separating the two stages from each other. This weight includes the separation system back-up structure required to react the loads as well as the fittings and structure that attaches the two stages together.

Since the booster is dropped early in flight, the major loads may be reacted by the booster structure. The separation system weight for both orbiter and booster is scaled as a function of orbiter take-off weight. This is accomplished by utilizing a different equation in each stage calculation. The equations for separation system weight are:

Orbiter Stage:

WAUXT = C(153) * WTO + C(154)

Booster Stage:

The second s

WAUXT = C(153) * WPAYL + C(154)

WAUXT	=	Weight of Separation System, 1bs
WTO	÷	Take-off Weight, lbs
WPAYL	-	Total Payload Weight, lbs
C(153)	=	Separation System Weight Coefficient
C(154)	. •	Fixed Separation System Weight, Ibs

The coefficient C(153) scales the separation system as a function of orbiter take-off weight for both the orbiter and booster stages. The booster equation uses payload weight as the scaling term but the program is such that the booster payload is equal to orbiter take-off weight.

If design data is not available, and it is assumed that the major loads are reacted by the booster, a preliminary design value of C(153) = 0.001 to 0.003 may be used for the orbiter. A preliminary design value of C(153) = 0.02 to 0.04 may be used for the booster. As separation system design data becomes available, new values for C(153) should be generated and incorporated into the Data Handbook.

The coefficient C(154) is a fixed input weight to the separation system calculation. This input may be positive or negative. This input may also be used to input a fixed separation system weight when scaling is not desired. When C(154) is used for this purpose the coefficient C(153) must be set to zero. The coefficients C(153) and C(154) are both initialized at zero and will not be used unless a value (+ or -) is input.

The total weight of the orientation controls and separation group is summed by the equation:

WORSUL = WSTAB + WACS + WAERO + WAUXT + WACSTK

. . .

and the second sec

7.0 POWER SUPPLY, CONVERSION AND DISTRIBUTION

.

7.1 POWER SUPPLY, CONVERSION AND DISTRIBUTION - SPACE SHUTTLE

7.1.1 ELECTRICAL SYSTEM — This subsystem includes the weight items required to generate, convert and distribute electrical power required to operate the various vehicle subsystems. The major components represented in this system weight are power generating units, transformers, recetifier units, control equipment and electrical power distribution system.

The Space Shuttle electrical load will vary with flight requirements and trajectories as a result of varing demands of each subsystem. The subsystems requiring electrical power are comprised primarily of the electronic equipment and the electrically driven fuel system. The equation for electrical system weight is:

WSORCE	=	C(62) * (WAVIOC + WABFS) ** C(63) + C(64)
WSORCE	=	Weight of Electrical System, lbs
WAVIOC	=	Weight of Avionic System lbs
WABFS	=	Weight of JP Fuel System Less Tests
C(62)	=	Electrical System Weight Coefficients
C(63)	=	Electrical System Weight Coefficient (Intercept)
C(64)	=	Fixed Electrical System Weight, lbs

The weight coefficients C(62) and C(63) represents the intercept and slope, respectively, for the electrical system data shown in Figure 7.1-1. The coefficients C(62) and C(63)scales the prime power source and distribution weight as a function of the electronic and electrical driven (flyback JP) fuel system weights.

1

The flyback fuel system may utilize either liquid hydrogen of JP for flyback fuel. If the flyback fuel system utilizes a pressure fed liquid hydrogen system, fed from the main fuel system, it will not significantly affect the electrical requirements and will therefore be omitted from the calculation. This is accomplished by testing for JP and either calculating a value for WABFS or setting WABFS equal to zero.

The coefficient C(64) is a fixed input weight to the electrical system calculation. This input may be positive or negative. This input may also be used to input a fixed electrical system weight when scaling is not desired. When C(64) is used for this purpose the coefficient C(62) must be set to zero. The coefficient C(64) is initialized at zero and will not be used unless a value (+ or -) is input.

The electrical system may utilize a power generating system that requires propellants. The weight of prime power source propellant tankage is calculated by the equation:

WPOWTK = C(29) * WPOWFO + C(60)

.

WPOWTK	-	Weight of Prime Power Source Tankage, Ibs
WPOWFO	=	Weight of Prime Power Source Propellants, lbs
C(29)	=	Prime Power Source Tankage Weight Coefficient
C(60)	=	Fixed Prime Power Source Tankage Weight, Ibs

The coefficient C(29) scales the prime power source tankage as a function of prime power source propellant weight. Different types of propellant combinations and storage arrangements may be used. If a storable propellant is used a typical input value is C(29) = 0.10. If a cryogenic propellant is utilized a typical input value is C(29) = 0.25. If the cryogenic propellant utilizes super critical storage system the typical input value should be increased to C(29) = 0.60.

Figure 7, 1-1

The coefficient C(60) is a fixed input weight to the prime power source tankage calculation. This input may be positive or negative. This input may also be used to input a fixed prime power source tankage weight when scaling is not desired. When C(60) is used for this purpose the coefficient C(29) must be set to zero. The coefficients C(29)and C(60) are both initialized at zero and will not be used unless a value (+ or -) is input.

The total electrical system weight is summed by the equation:

WPOWER = WSORCE + WPOWTK

7.1.2 HYDRAULIC/PNEUMATIC SYSTEM — The hydraulic/pneumatic system is comprised of the system components to produce fluid or pneumatic pressure, control equipment, storage vessels, hydraulic fluid and a distribution system up to but not including the various functional branches, actuators, etc. The equation for hydraulic/ pneumatic system weight is:

WHYCAD =
$$C(65) * [(SWING + SHORZ + SVERT) * Q/1000) * 1.3125 + (LBODY + CSPAN) ** 1.06125] ** C(66) + C(67)$$

WHYCAD	=	Weight of Hydraulic/Pneumatic System the
SWING	=	Gross Wing Area, ft ²
SHORZ	=	Horizontal Stabilizer Planform Area ft
SVERT	=	Vertical Fin Planform Area, ft ²
ଢ	=	Maximum Dynamic Pressure, lbs/ft ²
LBODY	22	Body Length, ft
CSPAN	u	Structural Span (Along .5 Chord), ft ²
C(65)	=	Hydraulic/Pneumatic System Weight Coefficient (Intercent)
. 	=	Hydraulic/Pneumatic System Weight Coefficient (Slope)
C(67)	=	Fixed Hydraulic/Pneumatic System Weight ha

The weight coefficients C(65) and C(66) represents the intercept and slope, respectively, for the hydraulic/pneumatic system data shown in Figure 7.1-2. These input coefficients scale the hydraulic/pneumatic system as a function of the summation of aerodynamic surface areas times the dynamic pressure and as a function of body length and structural span. The areas and dynamic pressure are the parameters for sizing the hydraulic/pneumatic equipment. The body length and structural span is used as the parameters to account for the distribution system.

The coefficient C(67) is a fixed input weight to the hydraulic/pneumatic system calculation. This input may be positive or negative. This input may also be used to input a fixed hydraulic/pneumatic system weight when scaling is not desired. When C(67) is used for this purpose the coefficient C(65) must be set to zero. The coefficient C(67) is initialized at zero and will not be used unless a value (+ or -) is input.

85

....

310.46

Figure 7, 1-2

8.0 AVIONICS

8.1 AVIONICS SYSTEMS - The avionic system, for this study, includes the guidance and navigation system, the instrumentation system and the communications system.

8.1.1 GUIDANCE AND NAVIGATION SYSTEM - The guidance and navigation system includes those items necessary to ensure that the vehicle position and its trajectory is known at all times. This system also generates commands for the flight control system for changing or correcting the vehicle heading. The equation for guidance and navigation system weight is:

WGNAV = C(68)

The coefficient C(68) is a fixed input weight that depends upon the type system utilized. A typical input value for space shuttle type vehicles and trajectories is C(68) = 550.

8. 1.2 INSTRUMENTATION SYSTEM - The instrumentation system provides for a weight allocation assigned to the basic instruments normally required for sensing and readout of the normal flight parameters needed for monitoring a flight program. In addition to this basic system there are many possible mission oriented instrumentation functions that may be required. Weight allocation for the instrumer tation system is normally part of a design study for a particular vehicle design and mission requirement. However, an initial estimate of the instrumentation system weight may be obtained by the following equation:

WINST = C(69) * LBODY + C(70)
WINST = Weight of Instrumentation System, lbs
LBODY = Body Length, ft
C(69) = Instrumentation System Weight Coefficient, lbs/ft
C(70) = Fixed Instrumentation System Weight, lbs

GDC-DBB70-002 The coefficient C(69) is a function of body length to account for various instrumentation that is spread along the vehicle body. This input will be configuration oriented and must be estimated by the last α

The coefficient C(70) is a fixed input to the instrumentation system calculation. This input may be positive or negative. This input may also be used to input a fixed instrumentation system weight when 5 along is not desired. Typical fixed input values for Space Shuttle type vehicle is C(70) = 1300 for the orbiter and C(70) = 2000 for the booster. When C(70) is input as a fixed system weight, the coefficient C(69) must be set to zero. The coefficients C(69)and C(70) are both initialized at zero and will not be used unless a value (+ or -) is input.

5.1.3 COMMUNICATION SYSTEM - The communication system weight allocation is for all equipment necessary to provide for the communication between vehicle and air or ground stations including communication within the vehicle itself. The equation for communication system weight is:

WCOMM - C(71) • NCREW + C(72)

WCOMM = Weight of Communication System, lbs

NCREW = Number of Crew Members

C(71) = Communication System Weight Coefficient

C(72) = Fixed Communication System Weight, lbs

The coefficient C(71) is a function of crew size and may be used if a specific type communication system is being used. However, in most cases the communication system is input as a fixed weight by use of the coefficient C(72). When C(72) is used for this purpose the coefficient C(71) must be zero. Typical input values for Space Shuttle vehicles with a crew of two is C(72) = 600 for the orbiter and C(72) = 350 for the booster.

The total weight of the avionics system is summed by the equation:

WAVIOC = WGNAV + WINST + WCOMM

•

9.0 PERSONNEL PROVISIONS

Contraction and the second store

9.1 PERSONNEL PROVISIONS - SPACE SHUTTLE

9.1.1 PERSONNEL PROVISIONS — The personnel provisions include the equipment and personnel environmental control system, coolant system, personnel accommodations, fixed life support equipment, emergency equipment, furnishings, crew station controls and panels.

The equipment environmental control system is used to maintain the correct operating conditions for vehicle system equipment. Under the procedures for obtaining program inputs for this system a thermal analysis should be made in which equipment is provided to obtain a thermal balance over a wide range of operating conditions. This procedure requires detailed knowledge of specific design conditions for high accuracy and should always be followed when possible. In lieu of this, the input can be based upon past studies or weight allocations used in initial design studies. The typical coefficients given in Table 9, 1, 1 are based upon some present aircraft data and vehicle design study values.

The function of the personnal environmental control system is to provide an acceptable environmental condition for the crew. This includes temperature, atmosphere and pressurization equipment and supports. The best design inputs are provided after a thermal analysis is made using the component size and weight along with known design parameters. When this is not possible, reasonable weight allocations may be made for initial design purposes which are based on present aircraft. The coefficients shown in Table 9.1.1 are intended to provide the user with typical values which will yield weight allocations of the right magnitude.

The coolant system is required for controlling environment in conjunction with the overall active environmental control system. The weight of this item is usually derived during we process of thermal analysis of the compartment design conditions. In the absence of a weight estimate based on a thermal analysis, a typical number is provided which is based on existing aircraft data. The input for coolant system is given in Table 9.1.1.

ЯÐ

The accommodations for personnel includes seats, supports, restraints, shock absorbers, ejection mechanisms, etc. The weights used for these items usually fall into a narrow band depending upon the type of seat required by design. Nominal weights for various type systems are shown in Table 9.1.1. The user has the option to select the best input to fit his specific design. Space is left on the table so that the user may add data for other systems if he so desires.

The fixed life support system includes food containers, waste management, hygiene equipment, etc. A typical value for this input is shown in Table 9.1.1.

The fixed emergency equipment includes a build-in fire extinguishing system, life rafts, etc. A typical value for this input is shown in Table 9.1.1.

The furnishings includes crew storage cabinets, partitions and sound proofing. A typical value for this input is shown in Table 9.1.1.

The crew station control and panels is for installation of crew station flight controls, instrument panels, control pedestals and stands. Typical input values for the crew station controls and panels are shown in Table 9.1.1.

The personnel provisions are a combined function of landing weight, crew size and fixed weights. Therefore, the weight penalty may be represented by one equation and the various inputs collected and summed from Table 9.1.1. The equation for personnel provisions weight is:

WPPROV = C(74) * WWAIT(7) + C(75) * NCREW + C(76)

WPPROV	=	Weight of Crew Provisions, lbs
WWAIT(7)	=	Maximum Landing Weight, Ibs
NCREW	=	Number of Crew Members
C(74)	Ξ	Equipment ECS Weight Coefficient
C(75)	=	Crew Provisions Weight Coefficient
C(76)	=	Fixed Crew Provisions Weight, lbs

the set of setting one many a limit that are by an only it instants and an one

The input coefficient C(74) is used to scale the equipment environmental control system and fixed emergency equipment with landing weight. A typical value for C(74) is shown in Table 9.1.1.

. .

3

The first of the second second second second second

The input coefficient C(75) is used to scale the personnel provisions with crew size. Typical values for the crew dependent provisions are shown in Table 9.1.1. The user may select and sum the C(75) values he wishes to incorporate into any given run. If a design has both crew and passengers, the weight may be accounted for by over weighting the C(75) input.

The input coefficient C(76) is used for fixed weight portions of the various personnel provision items. The user may sum the typical values show a in Table 9.1.1 and input as one number. This coefficient may also be used to input a fixed weight for the total personnel provisions when scaling is not desired. When C(76) is used for this purpose the coefficients C(74) and C(75) must be set to zero.

The off and a factor was not stored and and an an an annual and a

1

SYSTEM DESCRIPTION				
	C(74)	C(75)	C(76)	
Equipment Environmental Control				
Booster	0.00015	_		
Orbiter	0.001	-	-	
Personnel Environmental Control				
Booster	-	100		
Orbiter	-	300	-	
Coolant System				
Booster	-	100		
Orbiter	-	200	-	
Accommodations for Personnel				
B-70 Type Encapsulated Seat	-	570		
X-15 Ejection Seat	_	300	-	
Gemini Ejection Seat	-	220	-	
Lightweight Ejection Seat	-	100	-	
Conventional Crew Seat	-	50-120	-	
Fixed Life Support				
Booster	-			
Orbiter	-	10	-	
Fixed Emergency Equipment	0.0008	00	-	
Furnishings	-	50	-	1
Crew Station Controls and Panels	-	50	- 350	
			I I I	

Table 9.1.1. Typical Parsonnel Provisions Input.

92

-

10.0 DESIGN RESERVE

.

Kerne .

1

10.1 DESIGN RESERVE - SPACE SHUTTLE

10.1.1 CONTINGENCY AND GROWTH - The input for contingency and growth permits a proportion of dry weight and/or a fixed weight to be set aside for growth allowance, design unknows, etc. The dry weight is summed by the equation:

WDRY = WSURF + WBODY + WTPS + WLRD + WPROP + WORSUL + WPOWCD + WGNAV + WINST + WCOMM + WPPROV + WPOWER

This value for dry weight is then used in the equation for contingency and growth which is:

WCONT	=	C(96) * WDRY + C(162)
WCONT	=	Weight of Contingency and Growth, Ibs
WDRY	=	Stage Dry Weight, lbs
C(96)	=	Contingency and Growth Coefficient
C(162)	z	Fixed Contingency and Growth Weight, lbs

The coefficient C(96) is an input coefficient to provide a percentage of dry weight for contingency and growth. The input value for C(96) is the users responsibility as to the percent he wants to allocate for this purpose. If 10% is desired the coefficient is input as 0.10 or 15% is 0.15, etc.

The coefficient C(162) is used to input a fixed weight to the growth and contingency calculation. This input may be positive or negative. An additional use for this coefficient would be to input ballast weight if required.

93

*

,

1

•

When scaling is not desired, this coefficient may be used to input a fixed weight for contingency, growth or ballast. When C(162) is used for this purpose the coefficient C(96)must be set to zero. The coefficients C(96) and C(162) are both initialized at zero and will not be used unless a value (+ or -) is input.

The weight empty is summed by the equation:

WEMPTY = WDRY + WCONT

11.0 PERSONNEL

11.1 PERSONNEL - SPACE SHUTTLE

11.1.1 CREW AND CREW LIFE SUPPORT - Inis section includes the crew, gear and accessories as well as the crew life support.

The crew, gear and accessories includes crew, constant wear and protection garments, pressure suits, head gear, belt packs, personal parachutes, portable hygienic equipment, maps, manuals, log books, portable fire extinguishers, maintenance tools, etc. Typical input values for the crew, gear and accessories are shown in Table 11.1.1.

The crew life support includes food, water, portable containers, medical equipment, survival kits, etc. Typical input valves for crew life support is shown in Table 11.1.1.

The crew and crew life support system weight is a function of crew size and fixed weight items. The equation for crew and crew life support weight is:

WPERS = C(97) * NCREW + C(98)

WPERS = Weight of Crew, Gear and Crew Life Support, lbs
NCREW = Number of Crew Members
C(97) = Crew Weight Coefficient
C(98) = Fixed Crew Weight, lbs

The input coefficient C(97) is used to scale the crew and crew life support with crew size. Typical values for the crew dependent weight is shown in Table 11.1.1.

The input coefficient C(98) is used for fixed crew life support weight. A typical input for C(98) is shown in Table 11.1.1. This coefficient may also be used to input a fixed weight for crew and crew life support. When C(98) is used for this purpose the coefficient C(97) must be set to zero.

Lable 11.1.1.	Typical	Inputs fo	r Crew	and	Crew	Life Support	
---------------	---------	-----------	--------	-----	------	--------------	--

Table 11 1 4

DESCRIPTION	C(97)	C(98)
rew, Gear and Accessories rew Life Support	180-250 75	
		ļ

12.0 PAYLOAD

4

÷

Contractor Contractor

the strange of the

12.1 PAYLOAD - SPACE SHUTTLE

12.1.1 CARGO \sim The Space Shuttle payload/cargo weight for the orbiter is calculated by the following equation:

WCARGO	=	C(102) * NPASS + C(103)

WCARGO	=	Weight of Payload/Cargo, lbs
NPASS		Number of Passengers
C(102)		Payload/Cargo Weight Coefficient
C(103)	=	Fixed Payload/Cargo Weight, lbs

The coefficient C(102) sizes the payload/cargo as a function of passenger size. This input is for the weight of furnishings and support equipment associated with number of passengers but does not include weight of passengers.

The coefficient C(103) is used to input a fixed weight to the payload/cargo calculation. This input may be positive or negative. The coefficient C(103) may also be used to input a fixed payload/cargo weight when scaling is not desired. In addition, this coefficient may be calculated for the fixed gross weight option. If either of the last two options are used the coefficient C(102) must be set to zero. When the fixed gross weight option is used the C(103) input is a estimate that is used in the first pass only. The coefficients C(102) and C(103) are both initialized at zero and will not be used unless a value (+ or -)is input.

The weight of passengers are computed by the equation:

WPASS	æ	C(104) * NPASS + C(105)
WPASS	æ	Total Weight of Passengers, lbs
NPASS	Ŧ	Number of Passengers
C(104)		Passenger Weight Coefficient
C(105)	z	Fixed Passenger Weight, 1bs

1

The coefficient C(104) is the weight per passenger. The input value will vary as to the type of passenger assumed by the user.

The coefficient C(105) is used to input a fixed weight to the passenger calculation. This input may be positive or negative. This coefficient may also be used to input a fixed passenger weight when scaling is not desired. When C(105) is used for this purpose the coefficient C(104) must be set to zero. The coefficients C(104) and C(105) are both initialized at zero and will not be used unless a value (+ or -) is input.

The normal booster payload weight is equal to the orbiter gross weight. This operation is accomplished by inputing the booster coefficients C(102), C(103), C(104) and C(105) equal to zero. When the orbiter gross weight has been calculated the value is stored in C(105) for the booster iterations. If additional payload is desired on the booster stage it may be added as C(103).

The total payload weight is summed by the equation:

WPAYL = WCARGO + WPASS

diversity in the second straining for

13.0 PROPELLANTS

13.1 PROPELLANTS - SPACE SHUTTLE

13.1.1 RESIDUAL PROPELLANTS AND SERVICE ITEMS — This section includes the equations for determining the residual propellants and service items for a Space Shuttle type vehicle.

In most cases the allowances are arbitrary at the discretion of the designer. However, in some cases the input will result from extensive study involving the specific tankage geometries and ducting layouts. If such values are available or can be calculated they should be converted to the terms required by the program equations.

The weight of trapped gases for pressurization and purge is calculated by the following equation:

WGASPR = C(106) * VFUTK + C(107) * VOXTK + C(108)

WGASPR	=	Weight of Pressurization and Purge Gases. Ibs
VFUTK	=	Total Volume of Fuel Tank, ft ³
VOXTK	=	Total Volume of Oxidizer Tank, ft ³
C(106)	=	Fuel Tank Gas Weight Coefficient, lbs/ft ³
C(107)	=	Oxidizer Tank Gas Weight Coefficient. lbs/ft ³
C(108)	=	Fixed Pressurization and Purge Gas Weight, lbs

The coefficients C(106) and C(107) scales the gas weight as a function of fuel and oxidizer tank volumes, respectively. The input value for these coefficients depends upon the specific design and requirements set by the user.

The coefficient C(108) is a fixed input to the pressurization and purge gas calculation. This input may be positive or negative. This coefficient may also be used to input a fixed pressurization and purge gas weight when scaling is not desired. When C(108) is used for this purpose the coefficients C(106) and C(107) must be set to zero. The coefficients C(106), C(107) and C(108) are all initialized at zero and will not be used unless a value (+ or -) is input. The trapped fuel is defined as that amount of fuel trapped in the main tank and canno, be expended for main impulse. The equation for trapped fuel weight is:

WFUTRP	=	C(109) * WFUTOT + C(225) * WP + C(226) * TTOT + C(110)
WFUTRP	=	Weight of Trapped Fuel, lbs
WFUTOT	=	Total Weight of Fuel, lbs
WP	=	Total Weight of Propellant, lbs
TOT	=	Total Stage Vacuum Thrust, Ibs
C(109)	z	Trapped Fuel Weight Coefficient f/Fuel Weighn
C(225)	=	Trapped Fuel Weight Coefficient f(Propellant Weight
C(226)	2	Trapped Fuel Weight Coefficient f(Thrust)
C(110)	=	Fixed Trapped Fuel Weight, 1b3

The trapped fuel may be scaled as a function of total fuel weight, total propellant weight or total thrust. The input value for these coefficients will vary as a function of design and propellant type. However, if specific design detail is not known, the following set of input data may be used as typical values until specific data is available.

FOR LH₂ FUELED VEHICLES

Orbiter		
C(109)	=	0
C(225)	=	0.0011
C(226)	=	0.000062
C(110)	=	0
Booster		
C(109)	=	0
C(225)	# 1	0.0011
C(226)	=	0.00015
C(110)	=	0

FOR RP-1 FUELED VEHICLES

Orbiter and Booster C(109) = 0.006 to 0.010 C(225) = 0 C(226) = 0 C(110) = 0

The coefficient C(110) is a fixed input to the trapped fuel calculation. This input may be positive or negative. The coefficient may also be used to input a fixed trapped fuel weight when scaling is not desired. When C(110) is used for this purpose the coefficients C(109), C(225) and C(226) must be set to zerc. All four coefficients in this equation are initialized at zero and will not be used unless a value (+ or -) is input.

The trapped oxidizer is defined as that amount of oxidizer trapped in the main tank and cannot be expended for main impulse. The equation for trapped oxidizer weight is:

2

$$WOXTRP = C(111) * WOXFOT + C(227) * WP + C(228) * TTOT + C(112)$$

WOXTRP	=	Weight of Trapped Oxidizer, Ibs
WOXTOT	=	Total Weight of Oxidizer, lbs
WP	=	Total Weight of Propellant, lbs
TTOT	=	Total Stage Vacuum Thrust, lbs
C(111)	=	Trapped Oxidizer Weight Coefficient f (Orbiter Weight)
C(227)	=	Trapped Oxidizer Weight Coefficient f(Propellant Weight
C(228)	=	Trapped Oxidizer Weight Coefficient f(Thrust)
C(112)	Ξ	Fixed Trapped Oxidizer Weight, lbs

The trapped exidizer may be scaled as a function of total oxidizer weight, total propellant weight or total thrust. The input value for this coefficients will vary from one design to another. However, if specific design detail is not known, a typical input value for the orbiter of C(111) = 0, C(227) = 0.0005 and C(228) = 0.00114 may be used for a liquid oxygen system. Typical values for the booster of C(111) = 0, C(227) = 0.000395 and C(228) = 0.000395 may be used.

The coefficient C(112) is a fixed input to the trapped oxidizer calculation. This input may be positive or negative. This coefficient may also be used to input a fixed trapped oxidizer weight when scaling is not desired. When C(112) is used for this purpose the coefficients C(111), C(227) and C(228) must be set to zero. All four coefficients in this equation are initialized at zero and will not be used unless a value (+ or -) is input.
The trapped service items are calculated by the equation:

WSRTRP	=	C(113) + WWAIT (1) + C(114)
WSRTRP	Ŧ	Weight of Trapped Service Items, lbs
WWAIT(1)	=	Weight at Ignition, lbs
C(113)	=	Trapped Service Items Weight Coefficient
C(114)	=	Fixed Trapped Service Items Weight, lbs

The coefficient C(113) scales the trapped service items weight as a function of ignition weight. This input is determined by the user as some percent value.

The coefficient C(114) is a fixed input to the trapped service item calculation. This input may be positive or negative. This coefficient may also be used to input a fixed trapped service item weight when scaling is not desired. When C(114) is used for this purpose the coefficient C(113) must be set to zero. The coefficients C(113) and C(114) are both initialized at zero and will not be used unless a value (+ or -) is input.

The total weight of residual propellant and service items is summed by the equation:

WRESID = WFUTRP + WOXTRP + WGASPR + WSRTRP

a farmer and the second statement of the second statement of the second statement of the second statement of the

ì

13.1.2 RESERVE PROPELLANTS AND SERVICE ITEMS — This section includes reserve propellant equations for the main impulse fuel and oxidizer, the attitude control propellants, the power source propellants and the service items.

The main impulse propellant reserves may be computed from the mass ratio and mixture ratio, as a percentage of the main impulse fuel and oxidizer weights or input as fixed weights. The equations for calculating the main impulse reserve fuel and oxidizer weights are:

WFURES	=	C(115) * WFUEL (3) + WFUEL (4) + C(116)
WOXRES	-	C(117) * WOX (3) + WOX(4) + C(118)
WFURES	÷	Weight of Fuel Reserve, lbs
WFUEL(3)	-	Weight of Main Impulse Fuel, lbs
WFUEL(4)	-	Main Impulse Fuel Reserve, lbs
WOXRES		Weight of Oxidizer Reserve, Ibs
WOX(3)	=	Weight of Main Impulse Oxidizer, lbs
WOX(4)		Main Impulse Oxidizer Reserve, lbs
C(115)	=	Fuel Reserve Weight Coefficient
C(116)	=	Fixed Reserve Fuel Weight, lbs
C(117)	Ŧ	Oxidizer Reserve Weight Coefficient
C(118)	=	Fixed Reserve Oxidizer Weight, Ibs

The coefficients C(115) and C(117) scales the reserve fuel and oxidizer weights as a function of the main impulse fuel and oxidizer weights, respectively. Typical input values for C(115)and C(117) will vary from 0.05 to 0.20. When the reserve propellants are calculated as a function of main impulse propellant weight, the reserve propellant mass ratio and mixture ratio (MR(4) and CFUEL(4)) must be set to zero. This results in a calculated value of zero for WFUEL(4) and WOX(4) which are used in the previously described equation.

103

The second s

If the reserve fuel and oxidizer weights are to be computed as a function of mass ratio and mixture ratio then the coefficients C(115) and C(117) must be set to zero. The reserve propellant mass ratio (MR(4)) is input as a ratio or as a delta velocity in ft/sec. If a delta velocity is input it will be converted to a mass ratio value within the program. In addition the reserve propellant mixture ratio and specific impulse (CFUEL(4) and ISP(4)) must also be input. The weight of WFUEL(4) and WOX(4), for the previously described equation is then computed by the following equations:

WFUOX	=	WWAIT(4) * (MR(4) - 1.)/MR(4)
WFUEL(4)	=	WFUOX * CFUEL (4)
WOX(4)	=	WFUOX - WFUEL (4)
WFUOX	2	Weight of Main Impulse Propellant Reserve the
WWAIT(4)	=	Initial Orbit Weight, 1bs
MR(4)	e	Reserve Propellant Mass Ratio
WFUEL(4)	=	Main Impulse Fuel Reserve, lbs
CFUEL(4)	=	Reserve Propellant Mixture Ratio
WOX(4)	z	Main Impulse Oxidizer Reserve. Ibs

The input value for the mass ratio is left to the discretion of the user. The reserve propellant mixture ratio and ISP is normally input the same as the main impulse propellants.

The coefficients C(116) and C(118) are fixed input to the reserve fuel and oxidizer calculations. These inputs may be positive or negative. These coefficients may also be used to input fixed reserve fuel and oxidizer weights when scaling is not desired. When they are used for this purpose the coefficients C(115) and C(117) and MR(4) must be set to zero. All four coefficients are initialized at zero and will not be used unless a value (+ or -)is input.

The ACS propellant reserves are computed by the equation:

WACRES	=	C(172) * WACSFO + C(73)
WACRES	Ŧ	Weight of ACS Propellant Reserves the
WACSFG	=	Weight of ACS Propellants, lbs
C(172)		ACS Reserve Propellant Weight Coefficient
C(73)	z	Fixed ACS Reserve Propellant Weight, lbs

The coefficient C(172) scales the ACS reserve propellant weight as a function of ACS propellant weight. A typical input value for C(172) will vary from 0.03 to 0.05.

The coefficient C(73) is a fixed input to the ACS reserve propellant calculation. This input may be positive or negative. This coefficient may also be used to input a fixed ACS reserve propellant weight when scaling is not desired. When C(73) is used for this purpose the coefficient C(172) must be set to zero. The coefficients C(172) and C(73) are both initialized at zero and will not be used unless a value (+ or -) is input.

The reserve power source propellants are computed by the equation:

WPOWES	Ξ	C(119) * WPOWFO + C(120)
WPOWRS	=	Weight of Reserve Power Source Propellants, lbs
WPOWFO	=	Weight of Power Source Propellants, lbs
C(119)	=	Power Source Reserve Propellant Weight Coefficient
C(120)	=	Fixed Reserve Power Source Propellant, lbs

The coefficient C(119) scales the reserve power source propellants as a function of the power source propellants. A typical input value for C(119) will vary from 0.03 to 0.05.

ŧ

The coefficient C(120) is a fixed input to the reserve power source propellant calculation. This input may be positive or negative. This coefficient may also be used to input a fixed reserve power source propellant weight when scaling is not desired. When C(120) is used for this purpose the coefficient C(119) must be set to zero. The coefficients C(119) and C(120) are both initialized at zero and will not be used unless a value (+ or -) is input.

The reserve service items are computed by the equation:

WOILRS = C(121) * WOIL + C(122)

WOILRS	=	Weight of Reserve Service Items, lbs
WOIL	=	Weight of Service Item Losses, lbs
C(121)	=	Reserve Service Items Weight Coefficient
C(122)	=	Fixed Reserve Service Items, lbs

The coefficient C(121) scales the reserve service items as a function of the service item losses. A typical input value for C(121) will vary from 0.03 to 0.05.

The coefficient C(122) is a fixed input to the reserve service item calculation. This input may be positive or negative. This coefficient may also be used to input a fixed reserve service items weight when scaling is not desired. When C(122) is used for this purpose the coefficient C(121) must be set to zero. The coefficient to C(121) and C(122) are both initialized at zero and will not be used unless a value (+ or -) is input.

The total propellant reserves are summed by the equation:

WRESRV = WFURES + WOXRES + WACRES + WPOWRS + WOILRS

13.1.3 IN-FLIGHT LOSSES — The in-flight losses includes all losses during main flight except main impulse propellants.

The vented fuel and oxidizer is computed by the equations:

....

the state of the second se

Ť

WFULOS	=	C(123) * WFUTOT + C(229) * WP + C	(124)
WOXLOS	=	C(125) * WOXTOT + C(230) * WP + C	(126)
WFULOS	=	Weight of Vented Fuel, lbs	
WFUTOT	=	Total Weight of Fuel, lbs	
WP	=	Total Weight of Propellant, lbs	
WOXLOS	=	Weight of Vented Oxidizer. Ibs	
WOXTOT	=	Total Weight of Oxidizer, lbs	
C(123)	=	Vented Fuel Weight Coefficient	f(Total Du)
C(229)	=	Vented Fuel Weight Coefficient	f(Total Fuel)
C(124)	=	Fixed Vented Fuel Weight, lbs	I(Iotal Propellant)
C(125)	=	Vented Oxidizer Weight Coefficient	
C(230)	=	Vented Oxidizer Weight Coefficient	f(Total Oxidizer)
C(126)	=	Fixed Vented Oxidizer Weight, lbs	I(10tal Propellant)

The coefficients C(123) and C(125) scales the vented fuel and oxidizer as a function of total fuel and oxidizer, respectively. Input values for C(123) and C(125) will vary with different vehicles, propellants and trajectories so the selection of these values is left to the user.

The coefficients C(229) and C(230) scales the vented fuel and oxidizer as a function of total propellant weight. Only one set of coefficients should be used at a time, either C(123) and C(125) or C(229) and C(230), and the unused set should be zeroed out.

After Antoine Securit States of a Street

The coefficients C(124) and C(126) are fixed inputs to the vented fuel and oxidizer calculations. These inputs may be positive or negative. These coefficients may also be used to input a fixed weight for vented fuel and oxidizer when scaling is not desired. When C(124) and C(126)are used for this purpose the coefficients C(123), C(229), C(125) and C(230) must all be set to zero. All six coefficients are initialized at zero and will not be used unless a value (+ or -) is input.

The attitude control system propellants are calculated by the equation:

WACSFO	=	C(173) * WTO + C(174) * WWAIT (4) + C(175)
WACSFO	=	Weight of the ACS Propellant, lbs
WTO	=	Take-off Weight, lbs
WWAIT(4)	=	Initial Orbit Weight, lbs
C(173)	=	ACS Propellant Weight Coefficient f(WTO)
C(174)	2	ACS Propellant Weight Coefficient f(WWAIT(4))
C(175)	=	Fixed ACS Propellant Weight, lbs
		-

The coefficients C(173) and C(174) scales the ACS propellant as a function of take-off weight or orbit weight, respectively. Typical input values for the orbiter ACS propellant weight are C(173) = 0 and C(174) = 0.0042. Typical input values for the booster ACS propellant weight are C(173) = 0 and C(174) = 0.003.

The coefficient C(175) is a fixed input to the ACS propellant calculation. This input may be positive or negative. This coefficient may also be used to input a fixed ACS propellant weight when scaling is not desired. When C(175) is used for this purpose the coefficients C(173) and C(174) must be set to zero. The coefficients C(173), C(174) and C(175) are all initialized at zero and will not be used unless a value (+ or -) is input.

7

The power source propellants are computed by the equation:

WPOWFO C(38) * WWAIT(6) + C(127) WPOWFO = Weight of Power Source Propellants, lbs WWAIT(6) = Initial Entry Weight, lbs C(38) = Power Source Departs in the

C(38) - Power Source Propellant Weight Coefficient C(17) - Fixed themes Section 6

) Fixed Power Source Propellant Weight, 1bs

The coefficient C(38) scales the power source propellant weight as a function of vehicle entry weight. A typical orbiter input value for C(38) will vary from 0.008 to 0.01. A typical booster input value for C(38) will vary from 0.0002 to 0.0004.

The coefficient C(127) is a fixed input to the power source propellant calculation. This input may be positive or negative. This coefficient may also be used to input a fixed power source propellant weight when scaling is not desired. When C(127) is used for this purpose the coefficient C(38) must be set to zero. The coefficients C(38) and C(127) are both initialized at zero and will not be used unless a value (+ or -) is input.

The weight of service item losses are computed by the equation:

WOIL = C(130) * TTOT + C(121)

WOIL	I	Weight of Service Item Losses, Ibs
TTOT	=	Total Stage Vacuum Thrust, ibs
C(130)	2	Service Item Losses Weight Coefficient
C(131)	=	Fixed Service Item Losses, ibs

The coefficient C(130) scales the service item losses as a function of total vacuum thrust. Typical orbiter input values for C(130) will vary from 0.001 to 0.002. Typical booster input values for C(130) will vary from 0.00002 to .00004.

ł

The coefficient C(131) is a fixed input to the service item loss calculation. This input may be positive or negative. This coefficient may also be used to input a fixed service item loss weight when scaling is not desired. When C(131) is used for this purpose the coefficient C(130) must be set to zero. The coefficients C(130) and C(131) are both initialized at zero and will not be used unless a value (+ or -) is input.

State of the state

and the state of t

「ちゃういいという」、「「「「「」」

The ice and frost weight is accounted for by the equation WFROST = C(78). The coefficient C(78) is a fixed injut for ice and frost. The value of C(78) depends on the configuration and must be estimated by the user.

The weight of mirbreathing fuel, which is used for flyback and landing, is computed by the equation:

WABFU	-	C(214) /(1	+ 0	2(214))*	WWAIT	(4)	+ C(215)
-------	---	------------	-----	------------------	-------	-------------	----------

WABFU	-	Weight of Airbreathing Fuel, Iba
WWAIT(6)	4	Vuhiele Entry Weight, Ibs
C(214)	÷	Flyback Maas Ratio Minus 1.
C(215)	-	Fixed Flyback Fropellant Weight, lbs

The C(214) value for the orbiter stage is input by the user and held constant for a given run. The C(214) value for the booster is an initial estimate and is updated within the synthesis program.

The coefficient C(215) is a fixed input to the airbreathing tuel calculation. This input may be positive or negative. This coefficient may also be used to input a fixed airbreathing fuel weight. When C(215) is used for this purpose the input in the subroutine that calculates C(214) must be such to produce zero for that coefficient. The coefficient C(215) is initialized at zero and will not be used unless a value (+ or -) is input.

The total weight of the in-flight lesses is summed by the equation:

WLOSS = WFULOS + WOXLOS + WACSFO + WPOWFO + WOIL + WABFC + WFROST

13.1.4 THRUST DECAY PROPELLANTS - The thrust decay propellants are calculated by the equation:

WDECAY=C(166) * TTOT + C(167)WDECAY=Weight of Thrust Decay Propellants, lbsTTOT=Total Stage Vacuum Thrust, lbsC(166)=Thrust Decay Propellant Weight CoefficientC(167)=Fixed Thrust Decay Propellant Weight, lbs

The coefficient C(166) scales the thrust decay propellant as a function of total vacuum thrust. The input value for C(166) will depend upon the type of engine and must be estimated by the user.

The coefficient C(167) is a fixed input to the thrust decay propellant calculation. This input may be positive or negative. This coefficient may also be used to input a fixed thrust decay propellant weight when scaling is not desired. When C(167) is used for this purpose the coefficient C(166) must be set to zero. The coefficients C(166) and C(167) are both initialized at zero and will not be used unless a value (+ or -) is input.

The total thrust decay propellant weights are sub-divided into fuel and oxidizer by the equations:

WFDCAY	=	WDECAY * CFUEL (3)
WODCAY	=	WDECAY - WFDCAY
WFDCAY	=	Weight of Thrust Decay Fuel, lbs
WDECAY	=	Weight of Thrust Decay Propellants, lbs
CFUEL(3)	22	Main Impulse Propellant Mixture Ratio
WODCAY	=	Woight of Threat D

ODCAY = Weight of Thrust Decay Oxidizer, lbs

)

And a submittee of the second s

Ì

)

١

13.1.5 MAIN IMPULSE PROPELLANTS - The main impulse propellants are computed by the equation:

WFUOX = WWAIT (2) * (MR (3) - 1.0)/MR(3)

. . .

.

and the second second

WFUOX	=	Weight of Main Impulse Propellant, lbs
WWAIT(2)	=	Take-off Weight, lbs
MR(3)	=	Main Impulse Mass Ratio

The main impulse propellant weight is then sub-divided into fuel and oxidizer weight by the equations:

WFUEL(3)	=	WFUOX * CFUEL (3)
WOX (3)	=	WFUOX - WFUEL (3)
WFUEL(3)	1:	Weight of Main Impulse Fuel, lbs
WFUOX	::::	Weight of Main Impulse Propellant, lbs
CFUEL(3)	=	Main Impulse Propellant Mixture Ratio
WOX (3)	=	Weight of Main Impulse Oxidizer, lbs

A MAG AND A CONTRACTOR

Ĩ

-

13.1.6 THRUST BUILD-UP PROPELLANTS - The thrust build-up propellants may be computed from mass ratio or input as a fixed value. If computed, the input is MR(1) which may be a mass ratio value or delta V. If delta V is input it will be converted to mass ratio prior to use in the thrust build-up propellant calculation equation.

The following equations are used for the thrust build-up propellant calculations:

WFUOX	=	WWAIT(1) * (MR(1) -1)/MR(1)
WFUOX	=	Weight of Thrust Build-up Propellants, lbs
WWAIT(1)	=	Ignition Weight, Ibs
MR(1)	2	Thrust Build-up Mass Ratio

(

ć

The thrust build-up propellant weight is then sub-divided into fuel and oxidizer weight by the equations:

wruel(1)	=	WFUOX * CFUEL (1)
WOX(1)	=	WFUOX - WFUEL (1)
WFUEL(1)	=	Weight of Thrust Build-up Fuel, lbs
WFUOX	3	Weight of Thrust Build-up Propellants, the
CFUEL(1)	=	Thrust Build-up Mixture Ratio
WOX(1)	=	Weight of Thrust Build-up Oxidizer, lbs
WFUEL(1) WFUOX CFUEL(1) WOX(1)		Weight of Thrust Build-up Fuel, lbs Weight of Thrust Build-up Propellants, Thrust Build-up Mixture Ratio Weight of Thrust Build-up Oxidizer, lbs

The thrust build-up propellants may be input as a fixed weight in lieu of computation. The fixed weights are accounted for by the equations:

WFUEL(1)	=	WFUEL(1) + C(132)
WOX(1)	=	WOX(1) + C(133)
WFUEL(1)	=	Weight of Thrust Build-up Fuel, Ibs
w0x(1)	=	Weight of Thrust Build-up Oxidizer, lbs

;)

)

C(132) = Fixed Thrust Build-up Fuel Weight, lbs C(133) = Fixed Thrust Build-up Oxidizer Weight, lbs

The coefficients C(132) and C(133) are both initialized at zero and will not be used unless a value (+ or -) is input.

13.1.7 PRE-IGNITION LOSSES — The pre-ignition losses are accounted for by the equation:

WPREIG = C(134)

A A A A A A

Carrier Street and a service

.4

こううう うちょうちょうちょうちょうちょうちょうちょうちょう

していたのでのである

The coefficient C(134) is a fixed input for pre-ignition losses and must be estimated by the user.

The total weight of the main fuel and oxidizer is summed in the propellant calculation loop by the equations:

WFUL	=	WFUL + WFUEL(I)
WOXID	=	WOXID + WOXID (1

where WFUEL(1) and WOXID(1) represent the fuel and oxidizer weights for flight Phases 1 through 3, respectively.

The total weight of fuel and oxidizer, respectively and the total weight of propellants are summed by the following equations:

WP	2	WFUTOT + WOXTOT
WOXTOT	2	WOXID + WOXRES + WOXLOS + WOXTRP + WODCAY
WFUTOT	=	WFUL + WFURES + WFULOS + WFUTRP + WFDCAY

13.1.8 SECONDARY PROPELLANT WEIGHTS - The secondary propellants are used for orbital transfer, retro thrust, major maneuvers and de-orbit maneuvers. The equations for secondary fuel and oxidizer weights are:

WFU2(1)	=	WWAIT(5) * (MR(5)-1.)/MR(5) * CFUE1(5)
WQX2(1)	=	WWAIT(5) * (MR(5)-1.)/MR(5) * (1 CFUEL(5))

WFU2(1)	=	Weight of Secondary Fuel, lbs
WWAIT(5)	=	Initial Entry Weight, lbs
MR(5)	=	Secondary Impulse Mass Ratio
CFUEL(5)	2	Secondary Impulse Mixture Ratio
WOX2(1)	2	Weight of Secondary Oxidizer, 1bs

The following relationships are utilized for performance calculations:

WFUEL(5) = WFU2(1) WOX(5) = WOX2(1)

7

(

 $\langle \hat{} \rangle$

.

The total weight of main impulse and secondary propellants are summed by the equation:

WFUOX = WFUL + WOXID + WFU2(1) + WOX2(1)

WFUOX		Weight of Main and Secondary Propellant, lbs
WFUL	2	Weight of Main Fuel, lbs
WOXID	=	Weight of Main Oxidizer, lbs
WFU2(1)	=	Weight of Secondary Fuel, lbs
WOX2(1)	8	Weight of Secondary Oxidizer, lbs

The term WFUOX is used for temperary storage in previous calculations of thrust build-up and main impulse propellants. However, the term as defined here is the exit condition of WFUOX.

13.1.9 STAGE WEIGHT CONDITIONS - The various conditions of stage weights include the wet weight, zero fuel weight, take-off weight, gross weight and the net stage weight. The vehicle wet weight is summed by the equation:

The vehicle zero fuel weight is summed by the equation:

WZROFU = WWET + WFULOS + WOXLOS + WACSFO + WPOWFO + WOIL + WABFU + WFROST

The vehicle takeoff weight is summed by the equation:

$$WIO = WZROFU + WFUOX + WDECAY - WFUEL (1) - WOX (1)$$

The vehicle gross weight is summed by the equation:

THOMAS

WGROSS = WTO + WPREIG + WFUEL(1) + WOX(1)

The net stage weight is summed by the equation:

WTABC = WGROSS - WPAYL

13.1.10 STAGE PERFORMANCE WEIGHTS - The stage performance weights include ignition, take-off, burnout, initial orbit, initial entry, initial flyback and landing weight.

Ignition weight is designated by WWAIT(1) and is computed by the equation:

WWAIT(1) = WGROSS - WPREIG

Take-off weight is designated by WWAIT(2) and is computed by the equation:

WWAIT(2)=WWAIT(1) - WFUEL(1) - WOX(1) - WJET (1)Burnout weight is designated by WWAIT(3) and is computed by the equation:WWAIT(3)=WWAIT(2) - WFUEL(2) - WOX(2) - WJET(2)Initial orbit weight is designated by WWAIT(4) and is computed by the equation:WWAIT(4)=WWAIT(3) - WFUEL(3) - WOX(3) - WJET(3)Initial entry weight is designated by WWAIT(5) and is computed by the equation:

.....

$$WWAIT(4) - WJET(4)$$

alar a sana mana ji ya

いたいとうとうとうとうないないのできょうない

(,)

(^{•,•},

Initial flyback weight is designated by WWAIT(6) and is computed by the equation:

$$WWAIT(6) = WWAIT(5) - WFUEL(5) - WOX(5) - WJET(5)$$

Landing weight is designated by WWAIT(7) and is computed by the equation:

WWAIT(7) = WWAIT(6) - WABFU

13.1.11 JETTISON WEIGHTS - The jettison weights for each phase are computed by the following equations:

WJET(1)	=	0
WJET(2)	=	0
WJET(3)	=	WFROST
WJET(4)	=	WFUTRP + WOXTRP + WSRTRP + WDECAY + WFURES + WOYPES
WJET(5)	=	WACSFO + WFULOS + WOXLOS + WPOWFO + WGASPR + WACRES
		+ WPOWRS
WJET(6)	2	0

PRECEDING PAGE BLANK NOT FILMED

1.1.1

1

いきしん しょういい ちょうちょう たまままず ままち ちゅう

: .

()

GDC-DBB70-002

SECTION II DESCRIPTION AND INPUT FOR

-

GEOMETRY EQUATIONS

FRECEDING PAGE BLANK NOT FILMED

14.0 GEOMETRY

うちょうかいかい かいかいしょう たいちのかい わったまい みんしのうな ちゅう

(

GDC-DBB70-002

14.1 GEOMETRY — SPACE SHUTTLE

The gross body volume has been divided into a number of sub-volumes, each contributing its share to the size and weight of the vehicle. Volumes of items which are outside the body structural envelope have in general been ignored, since they do not contribute directly to vehicle-sizing. Wing volume, for instance, is not included, since there is no equation calling for this information. External thermal protection is also excluded from volume calculations.

Within the body volume, only those individual volumes which are called for in some weight equation are calculated separately. All other volumes within the body are lumped together as "miscellaneous volume". For instance, there are no program requirements for the various subsystem bay volumes, so they are not broken out. Thus, "miscellaneous volume" includes both unusable space and miscellaneous spaces.

The first step in obtaining volume input data is to measure the total body volume of the baseline vehicle, as drawn. Unless the vehicle is to be fixed size, this volume will change. It is only important for finding the percentage of "miscellaneous volume".

Next, the individual sub-volumes within the body are measured (again, some of these may vary in sizing, but an initial number is required to find the unassigned volume percentage):

- Main propulsion tanks
- Propellant insulation
- Personnel compartment
- Payload compartment
- Recovery system bays
- Structure (average structural depth x wetted area)
- Propulsion bays

Then the miscellaneous volume may be determined by summing the sub-volumes and subtracting from the total body volume.

Lastly, the volume equations which are applicable to the vehicle being considered are scanned to determine what inputs are necessary to drive the equations properly. All "K" numbers are preset to zero, so that a non-applicable item need not be entered as zero. All volumes are in cubic feet.

14.1.1 GEOMETRY SCALING COEFFICIENTS — The geometry section of the WTSCH subroutine functions on the principle of photographically scaling from an input configuration. This is accomplished through the use of scaling coefficients that are derived from a baseline configuration and computed in the STORE subroutine. The geometry coefficients computed in the STORE subroutine are for horizontal stabilizer planform area, body wetted area, body planform area, vertical fin planform area, fairing area, body width, body height and body length. A test is made with each equation to determine if the input is an actual value or a coefficient. If a coefficient is input, the equation will be by-passed and if the actual value is input it will be converted to a coefficient. The equations for these coefficients are:

If (CSHORZ . GT . 20.) CSHORZ = CSHORZ/SWING

「「「「「「「「」」」

En Arres V. K. L.

CSHORZ = Horizontal Stabilizer Planform Area or Coefficient, ft^2 SWING = CSWING - Gross Wing Area, ft^2

The inputs for this equation is CSHORZ and CSWING. CSWING must be input as the actual value and the program will set SWING = CSWING. CSHORZ may be input as a coefficient or as the actual value.

If (CSBODY. GT. 20.) CSBODY = CSBODY/VBODY^{2/3} If (CSPLAN. GT. 20.) CSPLAN = CSPLAN/VBODY^{2/3} If (CSVERT. GT. 5.) CSVERT = CSVERT/VBODY^{2/3} If (CSFAIR. GT. 20.) CSFAIR = CSFAIR/(CSBODY * VBODY^{2/3}) If (CBBODY. GT. 5.) CBBODY = CBBODY/VBODY^{1/3} If (CLBODY. GT. 5.) CHBODY = CHBODY/VBODY^{1/3} If (CLBODY. GT. 20.) CLBODY = CLBODY/VBODY^{1/3}

CSBODY	=	Total Body Wetted Area or Coefficient. ft ²
VEODY	74	Total Body Volume, ft ³
CSPLAN	=	Body Planform Area or Coefficient, ft^2
CSVERT	=	Vertical Fin Planform Area or Coefficient ft ²
CSFAIR	=	Fairing Planform Area or Coefficient, ft ²
CBBCDY	=	Body Width or Coefficient, ft
CHBODY	-	Body Height or Coefficient, it
CLBODY	Ŧ	Body Length or Coefficient, ft

(1, 1)

(

The terms CSBODY, CSPLAN, CSVERT, C3FAIR, CBBODY, CHBODY and CLBODY may be input as actual values or coefficients. The term VBODY must be input as the actual baseline value.

The pre-mentioned scaling coefficients are set on the initial pass through the STORE subroutine and then held constant as input to the WTSCH subroutine. The vehicle geometry is resized in WTSCH on each iteration using these coefficients.

14.1.2 VEHICLE GEOMETRY — The oxidizer tank volume may either be calculated, input as a fixed volume or zeroed out completely. The equation for calculating the oxidizer tank volume is:

VOX TK = (WOX TOT / RHOX) * (K(2) + 1.) + K(29)

VOXTK	=	Total Volume of Oxidizer Tank, ft ³
WOXTOT	=	Total Weight of Oxidizer in Tank, lbs
RHOX	3	Oxidizer Density, lbs/ft ³
K(2)	=	Oxidizer Tank Ullage Volume Coefficient
K(29)	=	Fixed Oxidizer Tank Volume, ft ³

When the oxidizer density is input, the basic oxidizer tank volume will be calculated using the calculated oxidizer weight. This value is then multiplied by the coefficient (K(2) + 1, 0)to allow for ullage volume. The input for K(2) is provided by the user. A typical value for K(2) will vary from 0.02 to 0.05 depending on the percent of ullage the user desires. The coefficient K(29), in this equation, is used to add a fixed oxidizer tank volume to the calculation. This volume may be for internal bottles, lines, etc.

The coefficient K(29) may also be used to input a fixed oxidizer tank volume when scaling is not desired. When it is used for this purpose the term K(2) is input as -1 and the first part of the equation is zeroed out. The oxidizer tank volume is then established as VOXTK = K(29).

The oxidizer tank volume may be zeroed out 'completely by setting RHOX and K(29) equal to zero. When RHOX is equal to zero the program will by-pass the VOXTK equation.

The oxidizer tank wetted area is obtained by the equation:

SOXTK	=	CSOXTK *	$VOX T \kappa^{2/3}$
-------	---	----------	----------------------

VINSTK

SOXTK	=	Total Oxidizer Tank Wetted Area, ft ²
CSOX TK	=	Oxidizer Tank Surface Area Coefficient
VOXTK	=	Total Volume of Oxidizer Tank, ft ³

The insulation volume for main fuel and/or oxidizer tanks is computed by the equation:

VINSTK	=	K(3) * SFUTK + K(25) * SOXTK + K(4)
VINSTK	=	Total Tank Insulation Volume, ft ³
SFUTK	=	Total Fuel Tank Wetted Area, ft
SOXTK	=	Total Oxidizer Tank Wetted Area, ft ²
K(3)	=	Average Fuel Tank Insulation Thickness ft
K(25)	÷	Average Oxidizer Tank Insulation Thickness ft
K(4)	=	Fixed Propellant Tank Losulation Volume, ft ³
		•

The input coefficients K(3) and K(25) represents the average fuel and oxidizer tank insulation thickness in feet. A typical input value for K(3) may be derived by dividing the input value for C(43) by the insulation density. A typical input value for K(25) may be derived by dividing the input value for C(77) by the insulation density. The type of insulation may vary, however, a typical density for microquartz is 6.2 lbs/ft^3 .

The input coefficient K(4) is used to input a fixed propeliant tank insulation volume to the basic calculation. It may also be used to input a fixed propellant tank insulation volume when scaling is not desired. When K(4) is used for this purpose the coefficients K(3) and K(25)must be set to zero.

È.

The fuel tank volume may be either calculated or input as a fixed volume. The equation for calculating the fuel tank volume is:

VFUTK (WFUTOT/RHOFU) * (K(1) + 1.) + K(28) + K(21) VFUTK Total Volume of Fuel Tank, ft³ WFUTOT Total Weight of Fuel in Tank, lbs = Fuel Density, lbs/ft³ RHOFU Ξ K(1) = Fuel Tank Ullage Volume Coefficient K(28) Fixed Fuel Tank Volume, ft³ = Fixed Fuel Tank Volume, ft³ K(21)

When the fuel density is input, the basic fuel tank volume will be calculated using the calculated fuel weight. This value is then multiplie by the coefficient (K(1) + 1.0) to allow for ullage volume. The input for K(1) will normally vary from 0.02 to 0.05 and is determined by the user based on the amount of ullage he desires. The coefficients K(28) and K(21), in this equation are used to input fixed fuel tank volume to the basic calculation. This volume may be for pressurization bottles, lines, secondary tanks, etc. Two coefficients are provided so that volumes for different things may be kept as separate inputs. If the airbreathing fuel is LH₂ the coefficient K(28) will be calculated by the equation K(28) = WABFU/RHOFU. This provides a fuel tank volume scaling capability as a function of flyback fuel weight. The program tests on C(212) and C(213) for this calculation.

The coefficients K(28) and K(21) may also be used to input a fixed fuel tank volume when scaling is not desired. When they are used for this purpose the term K(1) is input as -1 and the first part of the equation is zeroed out. The fuel tank volume is then est-ablished as VFUTK = K(28) + K(21).

The fuel tank wetted area is obtained by the equation:

SFUTK = CSFUTK * VFUTK^{2/3} SFUTK = Total Fuel Tank Wetted Area, ft² CSFUTK = Fuel Tank Surface Area Coefficient VFUTK = Total Volume of Fuel Tank, ft³

The secondary fuel and oxidizer tank volumes are calculated by the equations:

VFUTK2	=	WFU2(1)/RHOFU2
VFUTK2	=	К(7)
VOXTK2	=	WOX2(1)/RHOX2
VOXTK2	=	K(8)
VFUTK2	=	Total Volume of Secondary Fuel Tank, ft ³
WFU2(1)	=	Weight of Secondary Fuel, lbs
RHOFU2	=	Secondary Fuel Density, lbs/ft ³
VOXTK2	=	Total Volume of Secondary Oxidizer Tank, ft ³
WOX2(1)	=	Weight of Secondary Oxidizer, 1bs
RHOX2	=	Secondary Oxidizer Density, lbs/ft ³
K(7)	=	Fixed Secondary Fuel Tank Volume, ft ³
K(8)	=	Fixed Secondary Oxidizer Tank Volume, ft ³

The fuel and oxidizer densities are input values and the weight of secondary fuel and oxidizer are calculated values. A test is made so that if the fuel or oxidizer densities are input as zero the respective equation will be by-passed and the volume of fuel and oxidizer will be equal to the input values of K(7) and K(8), respectively.

VPROP = K(16) * TTOT + K(17)

ť

(

*., £.,.;

VPROP	=	Volume of Propulsion Bay, ft ³
TTOT	-	Total Stage Vacuum Thrust, lbs
K(16)	=	Propulsion Bay Volume Coefficient, ft ³ /lb
K(17)	=	Fixed Propulsion Bay Volume, ft ³

The input coefficient K(16) is used to scale the propulsion bay volume with thrust. This coefficient is determined by measuring the propulsion bay volume on the baseline configuration and then dividing that volume by the baseline thrust.

The coefficient K(17) is used to input a fixed propulsion bay volume to the basic calculation. This coefficient may also be used to input a fixed propulsion bay volume when scaling is not desired. When K(17) is used for this purpose the coefficient K(16) must be set to zero.

The payload bay volume is input as a fixed value. The equality for payload volume is:

$$VCARGO = K(9)$$

The input value for K(9) is established by the user.

The crew compartment volume is calculated by the equation:

VCREW	=	Volume of Crew Compartment, ft ³
NCREW	=	Number of Crew Members
K(5)	2	Crew Volume Coefficient
K(6)	-	Fixed Crew Volume, ft ³

The input coefficient K(5) is used to scale the crew compartment volume by crew size. The user may input any desired volume for K(5), however, a typical value would range from 100 to 150.

The coefficient K(6) is used to input a fixed crew compartment volume to the basic calculation. This coefficient may also be used to input a fixed crew compartment volume when scaling is not desired. When K(6) is used for this purpose the coefficient K(5) must be set to zero.

The equation for calculating the recovery system bay (landing gear) volume is:

VLGBAY = K(12) * WLG + K(13) VLGBAY = Volume of Recovery System Bay, ft³ WLG = Total Weight of Landing Gear + Controls, lbs

K(12) = Landing Gear Bay Volume Coefficient, ft³/lb K(13) = Fixed Landing Gear Bay Volume, ft³

The input coefficient K(12) is used to scale the recovery system bay volume as a function of landing gear weight. This input coefficient is determined by dividing the baseline recovery system bay volume by the landing gear weight.

The coefficient K(13) is used to input a fixed recovery system bay volume to the basic calculation. If the K(12) input scales the volume to much the coefficient may be reduced and a fixed portion added to K(13). The K(13) coefficient may also be used to input a fixed recovery system bay volume when scaling is not desired. When K(13) is used for this purpose the coefficient K(12) must be set to zero.

The body wetted area is scaled by the equation:

SBODY = $CSBODY * VBODY^{2/3}$

SBODY = Total Body Wetted Area, ft² CSBODY = Total Body Wetted Area or Coefficient VBODY = Total Body Volume, ft³

The volume taken up by structure is based on the body wetted area and average structural depth, excluding thermal protection outside of the body shell. The equation for structure volume is:

VSTRUC = K(10) * SBODY + K(11)

VSTRUC	2	Volume of Basic Structure, ft ³
SBODY	=	Total Body Wetted Area, ft ²
K(10)	=	Average Body Structural Depth, ft
K(11)	=	Fixed Body Structural Volume, ft ³

١

The coefficient K(10) is the average structural depth of the basic shell measured in feet. This input value is estimated by the user and based on the baseline configuration.

. . .

.

The coefficient K(11) is a fixed input volume to the structural volume calculation. This coefficient may also be used to input a fixed structural volume when scaling is not desired. If it is used for this purpose the coefficient K(10) must be set to zero.

All other vehicle volume not accounted for in the preceding equations is called "miscellaneous volume" even though it includes much space that is utilized as well as unusable volume. The equation for miscellaneous volume is:

VOTHER = K(18) * (VBODY - VCARGO - VSTRUC) + K(19)

VOTHER	2	Miscellaneous and Unused Volume, ft ³
VBODY	=	Total Body Volume, ft ³
VCARGO	=	Volume of Cargo Bay, ft ³
VSTRU C	=	Volume of Basic Structure, ft ³
K(18)	=	Miscellaneous Volume Coefficient
K(19)	=	Fixed Miscellaneous Volume fr ³

The input coefficient K(18) is used to scale the miscellaneous volume as a function of the usable internal volume. The baseline miscellaneous volume is obtained by summing all the sub-volumes obtained from the baseline configuration and subtracting that from the baseline total volume. For some configurations it may be apparent that a portion of this miscellaneous volume will not vary with sizing (an equipment bay, for instance). This fixed volume may be input as K(19). The remaining miscellaneous volume is divided by the baseline usable internal volume to obtain the K(18) input value.

The input coefficient K(19) may be used to input a fixed miscellaneous volume to the basic calculation. This coefficient may also be used to input a fixed miscellaneous volume when scaling is not desired. When K(19) is used for this purpose the coefficient K(18) must be set to zero.

An alternate method of calculating the miscellaneous volume is provided that scales as a function of total body volume. The equations used in the alternate solution are:

VBODY = K(18) * (VFUTK + VOXTK) + K(23)

and

Ć

VOTHER	=	VBODY - VFUTK - VOXTK - VINSTK - VCREW - VCARGO
		- VSTRUC - VLGBAY - VPROP - VFUTK2 - VOXTK2

where

.....

K(18)	-	Slope of Body Volume Versus Propellant Volume Orma
K(23)	=	Body Volume Intercept, ft ³

A test is made on K(18) to determine which method is used. If the K(18) input is greater than 1.0 then the alternate method is used. The following steps must be taken if the alternate method is desired.

A graph of body volume versus propellant volume is developed for the baseline configuration, as shown in Figure 14.1-1. This may be done by establishing a point smaller and a point greater than the baseline vehicle. With a graph as shown in Figure 14.1-1 the K(18) and K(23) input values may be determined.

$$K(23) = Body Volume at Zero Propellant Volume Intercept.$$

$$K(18) = \left[Body Volume - K(23) \right] / Propellant Volume$$

The data shown in Figure 14.1-1 is a sample of the type of data that must be generated for each baseline configuration under consideration. The data from Figure 14.1-1 is not to be used as typical input for any given case.

The alternate method requires a little more work to obtain the initial inputs but it also yields more accuracy in the final output.

;

I,

132

14.1.3 GEOMETRY UP-DATE — The configuration geometry is updated on each iteration. The new total body volume is summed by the equation:

VBODY = VOXTK + VFUTK + VINSTK + VPROP + VCARGO + VCREW + VLGBAY + VFUTK2 + VOXTK2 + VSTRUC + VOTHER

A test is made to determine if the wing has a fixed area or if \therefore has a fixed wing loading. This test is made on the input value of fixed wing loading (FXWOVS). If the fixed wing loading (FXWOVS) is input as zero the wing area will remain fixed and the wing loading will be calculated by the equation:

WOVERS = WWAIT (NWL)/SWING

{

WOVERS =	Wing Loading, lbs/ft ²
WWAIT(NWL) =	Design Weight for Wing Loading or Area. Ibs
SWING =	Gross Wing Area, ft ²

If the wing loading input is a fixed value (FXWOVS) the wing area will be calculated by the equation:

SWING = WWAIT (NWL) /FXWOVS

SWING =	Gross Wing Area, ft ²
WWAIT(NWL) =	Design Weight for Wing Loading or Area. Ibs
FXWOVS =	Fixed Wing Loading, lbs/ft ²

The term WWAIT(NWL) is used to provide the user with the option of selecting ignition through landing weight as the designing condition for wing loading or wing area calculation. This is accomplished by inputting a value from 1 to 7 for the wing loading flag NWL. For example, if NWL = 6 and FXWOVS = 100, the wing area will be sized for a fixed loading of 100 psf at initial flyback condition.

With the wing area established the geometric wing data is then calculated. The calculated wing data includes the geometric wing span, root chord, tip chord, structural span measured along the 50% chord and the thickness at the root. This data is determined by the following equations:

GSPAN	=	$(ASRATO * SWING)^{1/2}$		
GSPAN	=	Geometric Wing Span, ft		
ASRATO	=	Aspect Ratio		
SWING	=	Gross Wing Area, ft ²		
CROOT	=	2 * SWING/((1 + TPRATO) * GSPAN)		
CROOT	=	Wing Root Chord, ft		
SWING	=	Gross Wing Area, ft ²		
TPRATO	=	Wing Taper Ratio		
GSPAN	Ŧ	Geometric Wing Span, ft		
CTIP	=	CROOT * TPRATO		
CTIP	=	Wing Tip Chord, ft		
CROOT	2	Wing Root Chord, ft		
TPRATO	=	Wing Taper Ratio		
CSPAN =	= GSP. (1 +	AN/COS (ATAN (TAN (ASWEEP/RTOD) - (.5 * CROOT * TPRATO)/(GSPAN/2))))		
CSPAN	-	Structural Span (along .5 Chord), ft		
GSPAN	=	Geometric Wing Span, ft		
ASWEEP	=	Wing Leading Edge Sweep Angle, deg		
RTOD	=	Degrees to Radians Conversion Factor (57.3)		
CROOT	=	Wing Root Chord, ft		
TPRATO	=	Wing Taper Ratio		

and the state of the

Alle Storage

Hand Street

- - **-**

· • •

۰.

•;

Sec. 14

1. 1. 1. 1. N.

٠.

÷.

i

TROOT	=	TOVERC * CROOT

TROOT	=	Theoretical Root Thickness, ft
TOVERC	-	Wing Thickness Over Chord Ratio
CROOT	2	Wing Root Chord, ft

The body width is computed by the equation:

(

BBODY = CBBODY * VBOD	$\gamma^{1/3}$
-----------------------	----------------

BBODY	=	Body Width, ft
CBBODY	=	Body Width Coefficient
VBODY	=	Total Body Volume, ft ³

The exposed wing area is computed by the equation:

SX POS	3	SWING - (CROOT * BBODY - (.5 * BBODY) ** 2 * TAN(ASWEEP/RTOD)
SX POS	3	Exposed Wing Area, ft ²
SWING	=	Gross Wing Area, ft ²
CROOT	=	Wing Root Chord, ft
BBODY	=	Body Width, ft
ASWEE P	=	Wing Leading Edge Sweep Angle, deg
RTOD	=	Degrees to Radians Conversion Factor (57, 3)

The areas for horizontal stabilition, body wetted area, vertical fin, fairings, and body planform are computed by the following set of equations:

J

SHOPZ	-	CSHORZ * SWING
SBODY	=	CSBODY + $VBODY^{2/3}$
SVERT	-	$CSVERT * VBODY^{2/3}$
SFAIR	=	CSFAIR * SBODY
SPLAN	=	$CSPLAN * VBODY^{2/3}$
SHORZ	=	Horizontal Stabilizer Planform Area, ft ²
CSHORZ	=	Horizontal Stabilizer Planform Area Coefficient
SWING	=	Gross Wing Area, ft ²
SBODY	=	Total Body Wetted Area, ft ²
CSBODY	=	Body Width Coefficient
VBODY	=	Total Body Volume, ft ³
JVERT	=	Vertical Fin Planform Area, ft ²
CSVERT	8	Vertical Fin Planform Area Coefficient
SFAIR	=	Total Fairing or Shroud Surface Area, ft ²
CSFAIR	=	Fairing Planform Area Coefficient
SPLAN	=	Body Planform Area, ft ²
CSPLAN	=	Body Planform Area Coefficient

The body height and length are computed by the equations:

HBODY	2	CHBODY * VBODY $^{1/3}$
LBODY	=	CLBODY * VBODY $^{1/3}$

.

بالمعادية وأوقيت والعناش

an see a se a

.

. .

.,

.....

 $s_{i,i}$

.

HBODY	=	Body Height, ft
CHBODY	=	Body Height Coefficient
VBODY		Total Body Volume, ft ³
LBODY	=	Body Length, ft
CLBODY		Body Length Coefficient

The user may set various areas that are covered by TPS. This is done by setting the ITPS flag at values from 1 through 8. Table 14.1.2 relates the ITPS number to the area summation that is covered by TPS. The ITPS flag is initialized at 1.0 and does not need to be input if TPS is not required.

Table 14.1.2. TPS Areas.

ITPS VALUE

TPS AREA

1	STPS(1)	=	0
2	STPS(1)	2	SBODY
3	STPS(1)	=	SBODY + SHORZ
4	STPS(1)	=	SBODY + SHORZ + SUCPT
5	STPS(1)	=	SBODY + SHORZ + SVERT + SUBJO
6	STPS(1)	r	SHORZ + SVERT + SWING
7	STPS(1)	=	SBODY + SWING
8	STPS(1)	=	SBODY + SVERT

×

PRECEDING PAGE BLANK NOT FILMED

-

ł,

ť

SECTION III DESCRIPTION OF TERMS FOR WEIGHT/VOLUME SUBROUTINE REPRODUCIBILITY OF THE ORIGINAL PAGE IS POO

FURCEDING PAGE BLANK NOT FILMED

Ò

SPACE SHUTTLE WISCH SUBROUTINE

INPUT COEFFICIENTS

TERMS

Ţ

DESCRIPTION

UNITS MER SECTION

C(1)	WING AN IGHT CONFERENCE NE ANALY		
C(2)	WING WIGHT COEFFICIENT (INTERCEPT)		1 • 1 • 1
C (3)	EIXED SING WELGHT	LUS/FT2	1.1.1
C(4)	VERTICAL FIN WEIGHT (IN FRIGHT)	Lbu	1 • 1 • 1
C(S)	FIXED VERTICAL CINE LINE	LOS/HT2	1.1.2
C(u)	HUDI (INITAL TALE A ALA ALA ALA A	Luj	1.1.2
C(I)	FIXED DUBLY CONTACT OF THE THE TOTAL COLF.		د.ا،ا
C(0)	UNIT WEIGHT OF PAILUR WEIGHT	لداري	leles
c(y)	FIXE A LIGHT OF FAIRING OR SHRULD	Lus/rTe	1.1.4
$C(1\dot{U})$	INTROPAL FUEL TANK INTRUCT CONTRACT	أسكان	1+1+4
C(11)	FIXED INTERPATIENT	LUJ/rTc	20101
C(12)	WING STIGHT CONFERTS IN THE STORE	LUJ	Z •1•1
2(13)	DASIN DODY WE LOAT (WE TRINK (SLOPE)		1.1.1
C(14)	DADIC BOOT WEIGHT COEFFICIENT & (AREA)	LUJ/FT2	celes
C(15)	FIXED UPSIC AND A RELEAT	LUJ/HT3	20100
C(16)	NOT USED	Los	د ا ه ک
C(17)	NGT Gord		
C(10)	NOT VALV		
L(19)	NOT LARD		
C(LU)	NOT USED	~ -	
$C(z_1)$	NOT USED		
C(22)	NOT USED		
C(23)	SECONDARY STRUCTURE EXAMPLEMENT		
C(24)	VERTICAL FIN VEICHT CHER	LUJ/FTL	Cele 4
C(25)	HORIZONTAL WEIGHT COULT FOR STANDARDA	LUJ/rTe	10102
C(c6)	FIXED INSULATION STATE	Luu/r Tz	ت ا ا
C(27)	FIXED COVED DANGE IS TOUT	Lus	1 ه ک
(Lu)	GINDRE GYER FRALL LEIGHT	Lou	3+1
C(29)	POINT COLOR WEIGHT COLF. (INTERCEPT)		o.l.i
C (34)	LANDING CEAD ANT ANT UEF	** -	7+1+1
C(3))	LANDING GEAR HEIGHT LOEF. F(WLAHU)		4.1.2
	FIRED LANDING GEAR WEIGHT	Lou	4.1.2
	ROUNLI LNGINE WEIGHT COEF.		Delel
C(34)	NOT STEP	Lus	D .1.1
C(36)	NOT USED NACELLE PODS AND PMICNUS IN TOUR STATE		
C(37)	FIXED NACELLE PODS AND BY CNS AND TOUT		5+1+9
C(38)	POWER SOURCE PROPELLANT WEIGHT TOLE	تاتا	Dele9
C(19)	FULL TANK WEIGHT COFF. (NON-STELL THUNK	· · · · · · · · ·	130105
C(40)	FIXED FUEL TAINK WEIGHT (NEWSTOOT TALL)	LU3/F 13	50103
C(41)	OXID TANK WEIGHT CULFA (NON-STRUCTORAL)		Delec .
C(42)	FIXED UXID TANK AFTIGHT (NONESTRUCTORAL)	L03/F13	20102
J(43)	FUEL TANK INJULATION UNIT WEIGHT		20100
6(44)	FIXED PROPERLANT TANK THESE ATTENDED	LUSZFIZ	5+1+5
((45)	FUEL SYSTEM AT COEF. FITHEUSTA		5+1+5
C(46)	FUEL SYSTEM WT COEF FILENGTHY		0.1.C
C(47)	FIXED FUEL SYSTEM WEIGHT		3 •1•0
C(49)	OXID SYSTEM WI COFF FITHE STA	LUS	50100
ü(49)	OXID SYSTEM WE COEF FULLINGTAN		2.1.7
C(50)	FIXED OXID SYSTEM WEIGHT		5.1.7
		L (1.)	5.1.7
North Action of the Action of

\$ --\$

TERMS	DESCHIPTION	UNITS	AFE. SECTION
C(51)	FUEL TANK OPECSUOT AUTON		NEW SCOTOR
C(52)	OXID TANK PRESSURE SYSTEM WEIGHT COEF	L8S/FT3	5.1.4
C(53)	NOT USED	LBS/FT3	5.1.8
C (54)			J. 1 . 0
C (55)			
C (56)	STYED AFRONTROL SYSTEM WEIGHT COEF		<u> </u>
C (57)	NOT WERE WEIGHT	LAS	
C (5P)	NOT USED		0+4+4
((50)	NOT USED		~~
6 (60)	NUT USED		
C(60)	FIXED PRIME POWER SOURCE TANKAGE WEIGHT	LAC	~~
((62)	NUTUSED	203	/ • 4 • 1
((62)	ELECTRICAL SYSTEM WEIGHT COEF.		
C (63)	ELECTRICAL SYSTEM WEIGHT COEF.		7.1.1
	FIXED ELECTRICAL SYSTEM WEIGHT		/.1.1
C(65)	HYDRAULIC/PNEUMATIC SYSTEM WEIGHT COFE	203	7.1.1
C (66)	HYDRAULIC/PNEUMATIC SYSTEM WEIGHT COEF		7.1.2
C(67)	FIXED HYDRAULIC/PNEUMATIC SYSTEM WETCHT		7.1.2
C(68)	FIXED GUIDANCE AND NAVIG. SYSTEM WETCHT	LBS	7.1.2
C(69)	INSTRUMENTATION SYSTEM WEIGHT COFE	LBS	8.1.1
C(70)	FIXED INSTRUMENTATION SYSTEM WETCHT	LBS/FT	8.1.2
C(71)	COMMUNICATION SYSTEM WEIGHT COFF	LBS	8.1.2
C(72)	FIXED COMMUNICATION SYSTEM WEIGHT		8.1.3
C(73)	FIXED ACS RESERVE PROPELLANT HETOLE	LBS	8.1.3
C(74)	EQUIPMENT ECS WEIGHT COFF.	LBS	13.1.2
C(75)	CREW PHOVISIONS WEIGHT COFF		9.1.1
L(76)	FIXED CREW PROVISIONS WEIGHT		9.1.1
C(77)	UXID TANK INSULATION UNIT WEIGHT	LBS	9.1.1
C(78)	FIXED ICE AND FROST WEIGHT	LBS/FT2	5.1.5
C(79)	NOT USED	LUS	13.1.3
C(80)	NOT USED		
C(81)	NOT USED		
C(82)	NOT USED		
C(83)	NOT USED		
C(84)	NOT USED		
C(85)	NOT USED		••
C(86)	NOT USED		**
C(87)	NOT USED		
C(88)	NOT USED		* •
C(89)	NOT USED		
C(90)	NOT USED		
C(91)	NOT USED		
L (92)	NOT USED		• • •
C (93)	NOT USED		
C(94)	NOT USED		*•
C (95)	NOT USED		
C(96)	CONTINGENCY AND GROWTH COEF.		
	CHEW WEIGHT COLF.		10.1.3
C (98)	FIXED CREW WEIGHT	RC	
C (99)	NUT USED		11+1-1
~(100)	NUT USED		

T)

TERMS	DESCRIPTION	UNITS	REF. SECTION
C(101)	NOT USED		
C(102)	PAYLOAD/CARGO WEIGHT COFE		***
C(103)	FIXED PAYLOAD/CAPGO HETCHT		12.1.1
C(104)	PASSENGER WEIGHT COEFFICIENT	LBS	12.1.1
C(105)	FIXED PASSENGEN WETCHT		12.1.1
C(105)	FUEL TANK GASEOUS HETONT COM	LBS	12.1.1
L(107)	OXID TANK GASEOUS WEIGHT COEP.	LBS/FT3	13.1.1
C(108)	FIXED PRESSURE AND DUDGE CLEF.	L8S/FT3	13.1.1
C(109)	TRAPPED EUEL WEIGHT COSE RESEARCH	T LBS	13.1.1
C(110)	FIXED (PAPPED EVEL WT.)		13.1.1
C(111)	TRAPPE() OVI() WEIGHT COEF THEME	LBS	13.1.1
C(112)	ELYED TRADDED (VYTO (CONTO WT.)	**	13.1.1
C(113)	TRAPPED CERVICE TRENE	LBS	13.1.1
C(114)	ELVED TRAPPED SCOULOG WEIGHT COEF.		13.1.1
C(115)	FUEL RECEIVE WEIGHT	LBS	13.1.1
C(116)	FINED DECENDER FUEL		13.1.1
C(117)	OYID RESERVE FUEL WEIGHT	LBS	13.1.2
C(11A)	CALD RESERVE WEIGHT COEF.		13.1.2
C(110)	FILED RESERVE UXIDIZER WEIGHT	LBS	13.1.2
C(120)	POWER SOURCE RESERVE PROPELLANT WT COEL	F	13.1.2
	FIXED RESERVE POWER SOURCE PROPELLANT	LBS	13.1.2
C(121)	RESERVE SERVICE ITEMS WEIGHT COEF.		
((122)	FIXED RESERVE SERVICE ITEMS	LBS	
C(123)	VENTED FUEL WEIGHT CUEF. F(TOTAL FUEL)		1301.2
	FIXED VENTED FUEL WEIGHT	LBS	
	VENTED OXID WEIGHT COEF. F(TOTAL OXID)		
C(120)	FIXED VENTED OXID WEIGHT	(AS	13.1.3
	FIXED POWER SOURCE PROPELLANT WEIGHT	LBS	
	NOT USED		13+1+3
	FIXED MAIN THRUST PER ENGINE	LRS	2 1 E
	SERVICE ITEM LOSSES WEIGHT COEF,		2+4+0 12 1 1
	FIXED SERVICE ITEM LOSSES	I BS	
C(132)	FIXED THRUST BUILD-UP FUEL WEIGHT	I RC	
C(133)	FIXED THRUST BUILD-UP OXID WEIGHT	L BS	13+1+0
C(134)	FIXED PRE-IGNITION LOSSES	IRS	
C(135)	VENTICAL FIN WEIGHT COEF.		
C(136)	FIXED SECONDARY FUEL SYSTEM WEIGHT	1.85	
	FIXED SECONDARY OXIO SYSTEM WEIGHT	LAC	
C(138)	INTEGRAL OXID TANK WEIGHT COEF.	L RG/ETR	
C(139)	FILED INTEGRAL OXID TANK WEIGHT	LOGIFIG	2+2+2
C(140)	SECONDARY ROCKET ENGINE WEIGHT COFF.		
C(141)	FIXED SECONDARY ROCKET ENGINE WEIGHT		
C(142)	NOT USED	203	5.1.1
C(143)	LAUNCH GEAR WEIGHT COEF.		
C(144)	FIXED LAUNCH GEAR WEIGHT		4.1.1
C(145)	DEPLOYABLE AERODYNAMIC DEVICES WT COFE	FD2	4 • I • I
C(146)	FIXED DEPLOYABLE AERODYNAMIC DEVICES WY		4.1.5
C(147)	DOCKING STRUCTURE WEIGHT COFF.	L D D	4.1.3
C(148)	FIXED DOCKING STRUCTURE WEIGHT		4.1.4
C(149)	AIRBREATHING ENGINE THRUST PER ENGINE		4.1.4
C(150)	NOT USED	ra2	5.1.8

TERMS	DESCRIPTION	UNITS	REF. SECTION
C(151)	NOT USED		• • • • • •
C(152)	NOT USED		
C(153)	SEPARATION SYSTEM WEIGHT COFF.		••••••
C(154)	FIXED SEPARATION SYSTEM WEIGHT		6.1.5
C(155)	ACS SYSTEM WEIGHT COFF.	L02	6.1.5
C(156)	ACS SYSTEM WEIGHT COFF		6.1.2
C(157)	FIXED ACS SYSTEM WETGHT		6.1.2
C(158)	FIXED SECONDARY THRUST	LUS	6.1.2
C(159)	NOT USED	LHS	5.1.1
C(160)	GINBAL SYSTEM WEIGHT COFE		
C(161)	FIXED GINBAL SYSTEM WETCHT		6.1.1
C(162)	FIXED CONTINGENCY AND GROWTH WE TOUT	LUS	6.1.1
C(163)	FIXED THRUST STRUCTURE WETCHT	LBS	10.1.1
C(164)	ACS TANK WEIGHT COFE	LBS	2.1.5
C(165)	FIXED ACS TANK WETCHT	•••	6.1.3
C(166)	THRUST DECAY PROPELLANT HETCHT COTT	LBS	6.1.3
C(167)	FIXED THRUST DECAY PROPERLANT DETOUT		13.1.4
C(168)	THRUST STRUCTURE WEIGHT CORE	LBS	13.1.4
C(169)	FIXED SECONDARY STRUCTURE WETCHT		2.1.5
C(170)	SECONDARY FUEL SYSTEM WETCHE CORE	LBS	2.1.4
C(171)	SECONDARY OXID SYSTEM WEIGHT COEF.	LBS/FT3	5.1.4
C(172)	ACS RESERVE : OPELLANT WETCHE COFF	LBS/FT3	5.1.4
C(173)	ACS PROPERIANT VETCHT COEF		13.1.2
C(174)	ACS PROPELLANT WEIGHT COEF. F(WIO)		13.1.3
C(175)	FIXED ACS PROPELLANT DETOUT		13.1.3
C(176)	HORIZONTAL STANILIZEN WEICHT CORE	LBS	13.1.3
C(177)	NOT USED		1.1.3
C(178)	NOT USED		
C(179)	NOT USED		
C(180)	INSULATION UNIT WETCHT		**
C(181)	COVER PANEL UNIT WETCHT	LUS/FT2	3.1
C(182)	LANDING GEAR WEIGHT COFF FILL AND	LUS/FT2	3,1
C(183)	ENGINE MOUNT WEIGHT COFF		4.1.2
C(184)	FIXED ENGINE MUUNT WETCHT		5.1.2
C(185)	AERODYNAMIC CONTROL SYSTEM WETRUT COFE	r92	5.1.2
C(186)	NOT USED		6.1.4
C(187)	FIXED PRESSURIZATION SYSTEM WEIGHT		* ••
C(188)	NOT USED	L82	5.1.8
C(189)	FUEL TANK WEIGHT COFF. (.:D)		
C(190)	FIXED FUEL TANK WEIGHT		5.1.10
C(191)	FUEL DIST. SYSTEM-PANT & WEYGHT COCE	ro2	5.1.10
C(192)	NOT USED		5.1.10
C(193)	NOT USED		
C(194)	NOT USED		
C(195)	NOT USED		
C(196)	NOT USED		••
C(197)	NOT USED	· · · · ·	
C(198)	NOT USED		T a
C(199)	NOT USED		**
C(20U)	NOT USED		

144

TERMS	DESCRIPTION		
		UNITS	REF. SECTION
C(201)	NOT USED		
C(202)	NGT USED		
C(203)	NOT USED		
C(204)	NOT USED		
C(205)	NOT USED		
C(206)	NOT USED		
C(207)	NOT USED		
C(208)	NOT USED		
C(209)	INDT USED		
C(210)	AIRBREATHING ENGINE WEIGHT COLF.		5.1.1
	FIXED AIRBREATHING ENGINE WEIGHT	LHS	
C(212)	AIRBREATHING TANKAGE + SYSTEM WT. COLF		5-1-10
+ C(210)	FIXED AIRBREATHING TANKAGE + SYST. WT.	LBS	5.1.10
- C(216)	FLYBACK MASS RATIO MINUS 1.0		
(216)	PIALD FLYBACK PROPELLANT WEIGHT	LBS	
C(217)	NOT USED		100140
C(218)	NOT USED		
C(219)	POCKET ENCINE WE CORE		
C(220)	POCKET ENCINE ADEA DATE	-	5.1.1
C(221)	ROCKET ENGINE AREA RATIO		5.1.1
C(222)	NOT USED		5.1.1
C(223)	NOT USED		
C(224)	NOT USED		
C(225)	TRAPPED FUEL WEIGHT COSE ELEVOR		
C(226)	TRAPPED FUEL WEIGHT COEF F(THOMET)		13.1.1
C(227)	TRAPPED OXID WEIGHT COFE E(DOODLA ANT)		13+1+1
C(228)	TRAPPED OXID WEIGHT COLE STADULT	*-	13+1+1
C(229)	VENTED FUEL WEIGHT COFF E (PRODELLANT		13.1.1
C(230)	VENTED OXID WEIGHT COFF ' F(PROPELLANT)		13-1-3
C(231)	NOT USED	* 4	13.1.3
C(232)	NOT USED		
C(233)	NOT USED		
C(234)	NOT USED		
C(235)	NOT USED	-	
C(236)	NOT USED		
C(237)	NOT USED		
C(238)	NOT USED		
C(239)	NOT USED		
C(240)	NOT USED		
	NOTUSED	-	
C(242)	NOT USED		
C(2aa)	NOT USED		
C(2ac)	NOT USED		
C(246)	NOT USED	-	
C(247)			
C(248)		-	
C(249)			
C(250)	NOT USED	-	
/ /		-	

* INITIAL ESTIMATE ONLY FOR THE BOOSTER STAGE

TERMS

. . .

「「「「「「「「」」」」を見たいので、「「」」」を見たいです。

v., (

DESCRI	PTION
--------	-------

		DESCRIPTION	UNITS	WEE SECTION
C(251)	NOT USED			HER SECTION
C(252)	NOT USED			
C(253)	NOT USED			
C(254)	NOT USED		-	
C(255)	NOT USED			
C(256)	NOT USED			
C(257)	NOT USED			-
C(258)	NOT USED		**	-
C(259)	NOT USED			**
C(260)	NOT USED		-	
C(261)	NOT USED			
L(262)	NOT USED			
C(263)	NOT USED			
C(264)	NOT USED		-	
C(265)	NOT USED			
C(266)	NOT USED			
C(267)	NOT USED			
C(268)	NOT USED			
C(269)	NOT USED			
C(270)	NOT USED			
C(271)	NOT USED			
(272)	NOT USED			**
C(273)	NOT USED			
C(274)	NOT USED			
((275)	NOT USED			-
	NOT USED			-
C(277)	NOT USED			-
C(270)	NOT USED			
C (2 A O)	NOT USED			
C(281)	NOT USED			
C (282)	NOT USED			
C(283)	NOT USED			
C(284)	NOT USED			
C(285)	NOT USED			
C(286)	NOT USED			
C(287)	NOT USED			
C(288)	NOT USED			
C(289)	NOT USED			
C(290)	NUT USED			
C(291)	NOT USED			
C(292)	NOT USED			
C(293)	NOT USED			
C(294)	NOT USED			
C(295)	NOT USED			
(296)	NOT USED			
C(297)	NOT USED			**
C(298)	NOT USED		4 947	**
(299)	NOT USED		•••	
C(300)	NOT USED			

SPACE SHUTTLE WISCH SUBROUTINE (CONT)

INPUT TERMS

TERMS

÷

DESCRIPTION

UNITS REF. SECTION

	ANENGS	NUMBER OF AIRBREATHING ENGINES		
	ANTANK	NUMBER OF AIRBREATHING EVEL TANKS (10)	~ •	5.1.8
	ASRATO	WING ASPECT RATIO		5.1.8
	ASWEEP	WING LEADING EDGE SWEEP ANGLE		14.1.3
	CUBODY	BODY WIDTH OR COEFFICIENT		14.1.3
	CFUEL(1)	THRUST DUILD-UP MIXTURE PATTO		14+1+1
	CFUEL(2)	NOT USED		
	CFUEL(3)	MAIN IMPULSE MIXTURE RATIO		
	CFUEL(4)	MAIN IMPULSE RESERVE MIXTURE DATIO		
	CFUEL(5)	SECONDARY IMPULSE MIXTURE PATIO		
	CFUEL(6)	NOT USED		
	CHBODY	BODY HEIGHT OR CUEFFICIENT		
	CLBODY	BODY LENGTH OR COEFFICIENT		14+1+1
	CSBODY	TOTAL BODY WETTED AREA OF COFFEICIENT		14.1.1
	CSFAIR	FAIRING PLANFORM AREA OR COFFEICLENT	F12	14+1+1
	CSFUTK	FUEL TANK SURFACE AREA COFFEICIENT		14.1.1
	CSHORZ	HORIZONTAL STAB. PLANFORM AREA OF COFE		14.1.2
	CSOXTK	OXID TANK SURFACE AREA COFFEICIENT	riz	14.1.1
	CSPLAN	BODY PLANFORM AREA OR COFFEICIENT		14.1.2
	CSVERT	VERTICAL FIN PLANFORM AREA UN CUEF.	FIZ	14.1.1
**	CSWING	WING PLANFORM AREA	FIC	14.1.1
	CTHRST	VACUUM THRUST TO LIFT-OFF WEIGHT DATIO	F12	
	CTHSTZ	SECONDARY PROPULSION T/W HATIO		2.1.5
	FXWOVS	FIXED WING LOADING		50101
	1SP(1)	THRUST BUILD-UP PROPELLANT ISP		د ه ۱ ه ۴۰ ۱
	ISP(2)	NOT USED		
*	15P(3)	MAIN IMPULSE PROPELLANT ISP		
***	ISP (4)	MAIN IMPULSE RESERVE PROPELLANT ISP	SEC	-
	15P(5)	SECONDARY PROPULSION PROPELLANT ISP		•
	ISP(6)	NOT USED	520	-
	ITPS	TPS FLAG		••••
	K(1)	FUEL TANK ULLAGE VOLUME COEFFICIENT		
	K(2)	OXIDIZER TANK ULLAGE VULUME LUEFFILIENT		
	K(3)	AVERAGE FUEL TANK INSULATION THICKNESS	FT	
	K(4)	FIXED PROPELLANT TANK INSULATION VOLUME	FTS	
	K(5)	CREW VOLUME COEFFICIENT		
	K(6)	FIXED CREW VOLUME	FT3	
	K(7)	FIXED SECONDARY FUEL TANK VOLUME	ETG	
	K(B)	FIXED SECONDARY OXID TANK VOLUME	ET3	
	к(9)	FIXED CARGO BAY VOLUME	FTJ	14.1.2
	K(10)	AVERAGE BODY STRUCTURAL DEPTH	FT	▲マ♥▲● <u>←</u> 14.1.9
	К(11)	FIXED BODY STRUCTURAL VOLUME	FT3	14-1
	K(12)	LANDING GEAR BAY VOLUME COEFFICIENT	FTJZLH	• ▼● ↓ ● G
	K(13)	FIXED LANDING GEAR BAY VOLUME	FTJ	14.1.4
1	K(14)	NOT USED		• * * * * * *
1	<(15)	NOT USED		

* INITIAL ESTIMATE ONLY FOR BOTH STAGES

** WHEN WING HAS FIXED AREA THIS INPUT IS FIXED. WHEN WING IS SIZED BY WING LOADING THIS INPUT IS AN INITIAL ESTIMATE ONLY. *** INITIAL ESTIMATE ONLY FOR BOOSTER STAGE

INPUT TERMS (CONT)

	TERMS	DESCRIPTION	UNITS	REF. SECTION
	K(16)	PROPULSION BAY VOLUME COFFEICIENT		
	K(17)	FIXED PROPULSION BAY VOLUME	FIJ/LB	14+1+2
	K(18)	MISCELLANEOUS VOLUME COFFEICIENT	F13	14.1.2
	K(19)	FIXED MISCELLANEOUS VOLUME		14+1+2
	K(20)	NOT USED	F13	14+1+2
	K(21)	FIXED FUEL TANK VOLUME		
1	K(22)	NOT USED	FIJ	14+1+2
1	K(23)	BODY VOLUME INTERCEPT (K(1H) SCALING)	 5.T.	• • •
1	K(24)	NOT USED	F13	14+1+2
I	K(25)	AVERAGE OXID TANK INSULATION THICKNESS	 6 T	14.1
1	K(26)	NOT USED		140102
1	K(27)	NOT USED		
*	K(28)	MAIN FUEL TANK VOLUME FOR FLYBACK	ET3	14-1-4
	K(29)	FIXED OXIDIZER TANK VOLUME	FTA	
×	<(30)	NOT USED		140102
ĸ	<1N	NOT USED		
L	_F	ULTIMATE LOAD FACTOR		1.1.1
M	MR(1)	THRUST BUILD-UP MASS RATIO OR AV		
N	AR(2)	NOT USED		
*** ~	18(3)	MAIN IMPULSE MASS RATIO OR AV		
M	12(4)	MAIN IMPULSE RESERVE MASS RATIO OR AV		40
M	18(5)	SECONDARY IMPULSE MASS RATIU OR AV		
M	1R(6)	NOT USED		
		NUMBER OF CREW MEMBERS		8.1.3
N N	LISTO	TOTAL NUMBER OF ENGINES PER STAGE		2.1.5
		NAME LIST OUTPUT FLAG		
ING N I	IPASS	NUMBER OF PASSENGERS		12+1+1
		WING LOADING FLAG		14.1.3
• D	CHAM	MAIN ROCKET ENGINE CHAMBER PRESSURE	PSIA	6+1+1
	HOFU	MAXIMUM DYNAMIC PRESSURE	PSIA	1.1.1.5
R	HOFU2	SECONDARY FUEL DENGLAR	LUSZET3	14.1.2
R	HOX	OXIDIZED DENSITY	LUS/FT3	14.1.2
R	HOX2	SECONDARY OXINIZED DENSITY	LBS/FT3	14+1+2
* SE	BODY	TOTAL HOLY WETTED ADEA	LUS/FT3	14+1+2
TC		GROSS WEIGHT ITERATION TO EDANG	FTZ	14.1.3
тс	DVERC	WING THICKNESS OVER CHOOD DATES	LBS	
TF	PRATO	WING TAPER DATIO		14-1-5
TY	TAIL	NOT USED		14+1+3
* VE	BODY	TOTAL BODY VOLUME		
* wG	ROSS	GROSS WEIGHT	FT3	14-1-3
-			LBS	13.1.9

--

4

 \mathbf{i}

* INITIAL ESTIMATE ONLY FOR BOTH STAGES **** INITIAL ESTIMATE ONLY FOR ORBITER STAGE

_

-

4

SPACE SHUTTLE WISCH SUBROUTINE (CONT)

COMPUTED TERMS

TERMS	DESCRIPTION	UNITS	REF. SECTION
ABESYS	AIRBREATHING FUEL SYSTEM WEICHT (TH		
BBODY	BODY WIDTH	L05	5.1.10
CROOT	WING ROOT CHORD	F:	14.1.3
CSPAN	STRUCTURAL SPAN (ALONG 5 CHOPE)	FT	14+1+3
CTIP	WING TIP CHORD	FI	14+1+3
GAL	TOTAL GALLONS OF FUEL	FT	14.1.3
GSPAN	GEOMETRIC WING SPAN	GAL	5+1+10
HEODY	DOUY HEIGHT	⊢ T	14.1.3
L60DY	BODY LENGTH	F 1	14.1.5
RTOD	DEGREES TO RADIANS CONVERSION FACTOR	F I	14+1+3
SFAIR	TOTAL FAIRING OR SHROUD SUPERCE ONE		14.1.5
SFUTK	TUTAL FUEL TANK WETTED ADDA	FIZ	د.14+1
SHORZ	HORIZUNTAL STADILIZED DIANEGUAL ALLA	FIZ	14+1+4
SOXTK	TOTAL OXIDIZER TANK WETTER ANT		د ۲ + ۲ + ۲
SPLAN	BUDY PLANFORM AREA	FIL	14+1+4
STPS(1)	TOTAL TPS SURFACE ADEA	FIZ	14+1+3
SVERT	VERTICAL FIN PLANFORM ADEA	F12	د.14+1
SWING	GROSS WING APPA	F12	14.1.3
SXPCS	EXPOSED WING AREA	FIZ	14.1.3
TDEL	GIMBAL SYSTEM DELIVERED TOROLE		14.1.3
TROOT	THEORETICAL ROOT THICKNESS		0.1.1
TTOT	TOTAL STAGE VACUUM THHUST		14+1+5
TTOT2	TOTAL SECONDARY ENGINE VACINIA THUIST	203	2.1.5
TTOTAL	TOTAL STAGE VACUUM THRUST OVER 100000		20101
VEODYA	TOTAL BUDY VOLUME LESS STRUCT, AND WISC	- LUS	
VRODA1	VEODY TO THE 1/3 POWER	5 F 13	
VHODY2	VOODY TO THE 2/3 POWER	F 15	4
VCARGO	VOLUME OF PAYLOAD BAY	FT's	
VCREW	VOLUME OF CREW COMPARTMENT	FT3	14.1.2
VFUTK	TOTAL VOLUME OF FUEL TANK	ETIA	14.1.2
VFUTK2	TOTAL VOLUME OF SECONDARY FUEL TANK	FT3	14.1.2
VINSTK	TOTAL TANK INSULATION VOLUME	ET S	
VLGBAY	VOLUME OF RECOVERY SYSTEM BAY	FT3	
VOTHER	MISCELLANEOUS AND UNUSED VOLUME	FTA	
VOXTK	TOTAL VOLUME OF UXIDIZER TANK	FTN	
VOXTK2	TOTAL VOLUME OF SECONDARY OXID TANK	FTS	
VPROP	VULUHE OF PROPULSION DAY	FTJ	140102
VSTRUC	VOLUME OF BASIC STRUCTURE	FTS	14.1.4
WABFPS	WEIGHT OF JP PRESSURIZATION SYSTEM	1.85	44010C 5.1 G
WABFS	WEIGHT OF JP FUEL SYSTEM LESS TANKS	Lbo	5.1.10
WABETK	WT. OF AIRBREATHING PROPUL. TANKS + SYS	L 5	5-1 10
WABFU	WEICHT OF AIRBREATHING FUEL	1.00	2010
WABPR	WT. OF AIRBREATHING ENGINES FOR FLYBACK	Los	
WACRES	WEIGHT OF ACS PROPELLANT RESERVE	LUN	
ACS	WEIGHT OF ATTITUDE CONTROL SYSTEM	 Lua	
WACSFO	WEIGHT OF ACS FUEL AND OXIDIZER	Los	
WACSTK	WT. OF ATTITUDE CONTROL SYSTEM TANKAGE	LUS	6.1.1
WAERO	WEIGHT OF AERODYNAMIC CONTROLS	Lus	5.1.4
WAUXT	WEIGHT OF SEPARATION SYSTEM	LuS	
WAVIOC	TOTAL WEIGHT OF AVIONIC SYSTEM	ີ່ພວ	Halad
WEASIC	TOTAL WEIGHT OF DASIC DODY	LoS	2.1.3

「「「「」」

Contraction - Manual Train

1. A. T.

如此是是一些人的是是是是是是是是是是是是是一些人的。我们就是这些主要的人来来,我们也不能能了。 1999年,我们们就是是是是是是是是是是是是是我们的是是不是一些人们就是是我们的主要的。

ŝ,

COMPUTED TERMS (CONT)

	DESCRIPTION	UNI	S REF. SECTION
8 60QY	TOTAL WEIGHT OF BODY GROUP	LBS	~ 1 a b
st e∖ ₂MP	TOTAL WEIGHT OF BOOST AND TRANSFER PUM	PLUS	
· · ····	WEIGHT OF PAYLOAD/CARGO	LBS	12-1-1
St. C. C. St. W.	WEIGHT OF COMMUNICATION SYSTEM	600	
ALC: YNT	WEIGHT OF CONTINGENCY AND GROWTH	Lou	
#COVER	TOTAL WEIGHT OF TPS COVER PANELS	Lø5	3-1
WULCAY	WEIGHT OF THRUST DECAY PROPELLANTS	Los	13-1-4
WDISTI	TOTAL WT. OF FUEL DIST. SYST - PART 1	L:1:3	5-1-10
WEIST2	TOTAL WT OF FUEL DIST. SYST PART 2	1.1535	
WUOCK	WEIGHT OF DOCKING STRUCTURE	1.65	
WOPLOY	WEIGHT OF DEPLOYABLE AERODYNAMIC LEVICE	- L H S	4 . 1 . 7
WDRANS	TOTAL WT. OF FUEL TANK DUMP + DRAINS		
MORY	STAGE DRY WEIGHT	1.65	561610
WEMPTY	WEIGHT EMPTY	LES	
WENGMT	WEIGHT OF ENGINE MOUNTS	185	
WENGS	TOTAL WEIGHT OF ROCKET ENGINE INSTU-	145	
WENGS2	TOTAL WEIGHT OF SECONDARY ROCKET FNG.		
WFAIR	TOTAL WEIGHT OF FAIRINGS OF SHOULDS	105	3+1+1
WECONT	TOTAL WEIGHT OF FUEL SYSTEM CONTHOLS		10104
WFDCAY	WEIGHT OF THRUST DECAY FUEL		301010
WFROST	TOTAL WEIGHT OF FROST AND ICH		13+1+4
WFU2(1)	WEIGHT OF SECONDARY FUEL	600	13.1.3
WFUEL(1)	WEIGHT OF THRUST BUILD-UP FUEL		13.1.8
WFUEL(2)	NOT USED	605	13.1.6
WFUEL(3)	WEIGHT OF MAIN IMPULSE FUEL		
WFUEL(4)	MAIN IMPULSE FUEL RESERVE	£85	13.1.5
WFUEL(5)	WEIGHT OF SECONDARY IMPLUSE FUEL		13.1.2
WFUEL(6)	NOT USED	LBS	13.1.8
WEUL	WEIGHT OF MAIN FUEL		
WFULOS	WEIGHT OF VENTED FUEL		13.1.7
WFUNCT	TOTAL WEIGHT OF FUEL TANK	L33	13.1.3
WFUOX	WEIGHT OF MAIN AND SECONDARY PROPERTANT	LDS	5.1.10
WFURES	WEIGHT OF FUEL DESEDVE	LBS	13-1-8
WFUSYS	TOTAL FUEL SYSTEM WEIGHT	LBS	#13-1-2 弾いい
WEUTK	WEIGHT OF NON-STRUCTUON	L03	5.1.6
WEUTKO	WEIGHT OF NON-STRUCTURAL FUEL TANK	LBS	5.1.3
WEUTOT	TOTAL WEICHT OF FUEL TANK AND SYSTEM	LBS	5.1.4
WFUTRP	WEIGHT OF TRAPPED FUEL	LBS	1 13.1.7
WGASPR	WEIGHT OF PRESSURFIZATION AND DUDGE CAN	LBS (200) 1 LC	State 13-1-1
WGNAV	WEIGHT OF GUIDANCE AND NAVIGATION	LBS	13.1.1
WHORZ	TOTAL HORIZONTAL STABILIZED WEICHT	LBS	8+1+1
WHYCAD	WEIGHT OF HYDRAULIC/PNEUMATIC SYSTEM		
WINFUT	WEIGHT OF INTEGRAL FUEL TANK	145	
WINOXT	WEIGHT OF INTEGRAL OXIDIZED TANK	THS .	
WINSTK	TOTAL WEIGHT OF TANK INSULATION	LHS	5-1-6
WINST	WEIGHT OF INSTRUMENTATION SYSTEM		20102
WINSUL	TOTAL WEIGHT OF TPS INSULATION		0010C
WJET(1)	IGNITION TO LIFT-OFF JETTISON WEIGHT		13.1 14
WJET(2)	NOT USED		1001011
WJET(3)	WEIGHT JETTISONED DURING ASCENT		13.1.14
WJET(4)	IN-ORBIT JETTISON WEIGHT	 	13.1 11
WJET(5)	PRE-ENTRY JETTISON WEIGHT	.85	13-1-11
W HET ALS			******

.

,

••

WJET(6)

1.000

13.1.11

LBS

FLY-BACK JETTISON WEIGHT

- 特殊的人……

COMPUTED TERMS (CONT)

OFSCRIPTION

UNITS REF. SECTION

STATES AND

	- HE WEIGHT OF CAULDER GEAR	1 4 6	
	WEIGHT OF LANDING GEAR + CONTROL	LBS	4.1.1
- * -	AND INFLIGHT LONGES		4.1.2
	WEAL WEIGHT OF LAUNC , AND RECOVERY SU		13.1.5
	MUSHE OF MACLEURPOUS AND PVIONS	5 L85	4.1.4
and and a second	ACTONT OF THRUST DECAY DXIDIZED	LBS	5.1.9
in a Es_	WORGHT OF SERVICE ITEM LOSSES	LDS	13.1.4
*ULRS	+ CIGHT OF RESCRICE SERVICE ITEME	LBS	13.1.3
WORSHL	FUTAL WT. OF ORIENT." CONTROL & CEDADA	LBS	13.1.2
VOVERS	WING LOADING	• LBS	5+1+5
WUX(1)	NEIGHT OF THRUST BUILDING ON TOTICS	LBS/FT2	14+1+3
WOX(2)	NOT USED	LBS	13.1.6
WOX(3)	WEIGHT OF MAIN IMPLY SE OVIDITER		
WOX(4)	MAIN IMPULSE OXIDIZED DECEDUE	LBS	13.1.5
WOX(5)	WEIGHT OF SECONDARY INDUCCE PURCHASE	LBS	13.1.2
WOX(6)	NOT USED	LBS	13.1.8
WOX2(1)	WEIGHT OF SECONDARY ON TOTATO		
WOXID	WEIGHT OF MAIN OXINIZED	LBS	13.1.8
WOXLOS	WEIGHT OF VENTED ONIDIZED	LBS	13.1.7
WUXRES	+EIGHT OF OXIDIZED DELEDUR	LBS	13.1.3
WOXSYS	TOTAL OXIDIZED SYSTEM WE HOLT	LUS	13.1.2
WOXTK	FIGHT OF NON-STOLETHING ONTO THE	LOS	5.1.7
WOXTK2	TT OF SECONDARY ONLY TANK	LUS	5.1.3
WOXTOT	TOTAL WEIGHT OF OMIDICALE	LBS	5.1.4
WOXTRP	WEIGHT OF TRAPPLO AVIOLETO	LBS	13.1.7
WP	TOTAL WEIGHT OF DUODELLANT	LBS	13+1+1
WPASS	TOTAL WEIGHT OF PROPELLANT	Los	13.1.7
WPAYL	OTAL BAYLOAD WEICHT	LBS	12+1+1
WPERS	WEIGHT OF OPEW-GEAD AND ODEW LITE INTE	LUS	12+1+1
WPOWER	TOTAL WT. OF PRIME ROWER SOURCE	LBS	11+1+1
WPOWFO	WEIGHT OF PRIME POWER SOURCE + TANK	Lus	7+1+1
WPOWRS	WT. OF RESERVE DOWER SOURCE PROPELLANT	LBS	13.1.3
WPOWTK	WEIGHT OF PRIME POWER SOURCE PROPELLANT	L85	130102
WPPROV	WEIGHT OF REDSONNEL PROVIDE TANKAGE	Los	7+1+1
WPREIG	WEIGHT OF POENCAUTION LOSSES	LBS	9+1+1
WPROP	TOTAL WEICHT OF DODDUN CASES	LBS	13.1.7
WPRSYS	WEIGHT OF PROPULSIUN GROUP	LBS	5+1+10
WREFUL	TOTAL WT. OF FUEL TANK DESIGN	LBS	5.1.8
WRESID	TOTAL WIL OF FOLL TANK REFUELING SYST.	LBS	5.1.10
WRESRV	TOTAL WEIGHT OF RESIDUALS	LBS	13+1+1
WSEAL	TOTAL EVEL TANK HAN CEN AND RESERVES	LUS	13.1.2
WSECST	TOTAL WEIGHT OF HOOM STORAGE WEIGHT	LUS	5.1.10
WSORCE	WEIGHT OF WEIGHT OF BOUY SECONDARY STRUCT.	LBS	2+1+4
WSKIRP	WEIGHT OF TRADELL ANTICE + DIST.	LBS	7+1+1
WSTAB	WEIGHT OF ENGINE CHARACTER	LBS	13+1+1
WSURF	TOTAL WEIGHT OF AFRICAL SYSTEM	LBS	6.1.1
WTABC	NET STAGE WEIGHT	LBS	1.1.4
WTHRST	TOTAL WEIGHT OF THOUSE CONSISTING	LUS	13.1.9
WTO	TAKE-OFE WEIGHT	LBS	2.1.5
WTPS	THE WE OF INDUCED CANNED METHOD	LBS	13+1+9
WVERI	TOTAL VEDTICAL ETAL MELCUT	LBS	3.1
	The second conception wellow	LUS	لأحلما

151

्या है. जन्म के समिति सम्प्राय के स्वार प्रायण के स्वार के स्वार

in and the second s ina la série Na la série

ŧ

COMPUTED TERMS (CONT)

DESCRIPTION

UNITS REF. SECTION

- 5 - 5 - 1 - 7 - 9	194ITION WEIGHT	LBS	13.1.10
	BURNOUT WEIGHT	LBS	13.1.10
5311544 45417(5)	INITIAL ORBIT WEIGHT INITIAL ENTRY WEIGHT	LBS	13.1.10
+ AII(0)	INITIAL FLYBACK WEIGHT	LBS	13.1.10 13.1.10
WALT(NHL	DESIGN WT. FOR WING LOADING OR AREA	LBS	13.1.10
HNET	OPERATING WEIGHT EMPTY	LBS	14.1.3 13.1.9
HZROFU	ZERO FUEL WEIGHT	LBS LBS	1.1.1 13.1.9

REFERENCES

Design, fabrication and experimental verification of cryogenic tankage applicable to manned aerospace systems. General Dynamics/Convair, Report No. GD/A-DCB-64-094, December 1965.(Secret)

- Generalized weight estimating methods (aircraft systems and equipment). General Dynamics/Fort Worth, Report No. ERR-FW-039, W.E. Caddell, December 1960. (Unclassified)
- Dynamic/Convair, Report No. GDC-ERR-AN-1171, N. Saslove, December 1967.

Contraction of the second