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ABSTRACT

A study is conducted to investigate the feasibility of

using combined subsonic and supersonic linear theory as a means

for solving unsteady transonic flow problems in an economical

and yet realistic manner. With some modification, existing

linear theory methods are combined into a single program and

a simple algorithm is derived for determining interference

between lifting surface elements of different Mach number.

The method is applied to a wide variety of problems for which

measured unsteady pressure distributions and Mach number

distributions are available. By comparing theory and

experiment, the transonic method solutions show a significant

improvement over uniform flow solutions. As a result of

studying the experimental data, several areas of further

research are suggested for refining the method. It is

concluded that with these refinements the method will provide

a means for performing reallstic transonic flutter and dynamic

response analyses at costs which are compatible with current

linear theory based solutions.
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INTRODUCTION

In recent years, interest has grown considerably in the

desire to fly efficiently in the high subsonic regime as

indicated by various Government sponsored transonic research

programs such as ATT, F-ill TACT and others. As a result,

the need has increased for better unsteady transonic aero-

dynamic tools so that flutter and dynamic response character-

istics can be more accurately predicted in this flow regime.

Presently, for lack of anything better, these characteristics

are predicted only with methods which are based on linearized

theory in uniform potential flow. In addition, since buffet

and limit cycle flutter appear to be similar in experimental

flutter and buffet testing, it is important that their

distinction be better understood.

The characteristic of transonic flow which causes the

greatest difficulty when attempting to apply uniform flow

theory to such problems is the presence of shocks imbeded in

the flow. Clearly, such a gradient in velocity as that which

exists across a shock is no longer small, thus, linear theory

cannot account for this phenomenon and hence becomes invalid.

Finite difference methods or other iterative schemes can

account for such discontinuities but they are usually very

expensive to use in terms of computer time required. Moreover,
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if they are used for flutter or dynamic response analyses where

solutions must be computed for 10 or more frequencies, the

computer costs quickly become astronomical. For example,

a simple cantilevered wing flutter analysis with four natural

modes and l0 frequencies could require 20 or more hours of

computer time for a single flutter solution. Thus, such an

approach is not well suited for solving unsteady transonic

aerodynamic problems in a practical sense.

This report presents the results of a study conducted to

investigate the feasibility of using combined subsonic and

supersonic linear theory as a means for solving unsteady

transonic flow problems economically. In the method developed,

a wing over which the flow is mixed supersonic and subsonic

with imbedded shocks is treated as an array of multiple lifting

surfaces. Each surface is allowed to have mutual interference

with the other surfaces. Also, each is assigned a different

Mach number, either subsonic or supersonic, and its downwash is

modified accordingly. In order to determine the Mach number

distribution and shock geometry, information is first needed

from either experiment or a finite difference solution, hence

the method is used to predict unsteady perturbations about

known steady mean flows.
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With planform and flow geometry established, the configu-

ration is assembled with general aerodynamic lifting surface

(GALS) elements, for which each is assigned a mean Math number,

Math number distribution, aerodynamic control point array, and

boundary conditions. The solution proceeds from this point

in a manner identical to ordinary aerodynamic interference

methods I. The frequency sweep can be performed at about the

usual cost of a standard subsonic or supersonic unsteady

aerodynamic analysis which is less than one hour - usually

about i0 minutes - as opposed to 20 hours or more for a

finite difference solution.
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TRANSONIC FLUTTER AND DYNAMIC

RESPONSE ANALYSIS

The final objective of this research in unsteady transonic

flow is the development of a method for predicting flutter and

dynamic response characteristics of general aerodynamic

configurations. It is therefore appropriate that a brief

discussion be given at this point concerning the problems

associated with transonic flutter and dynamic response analysis.

This discussion will consider the differences between transonic

and uniform flow analyses, transonic methods available,

economics of the problem, and a practical method for solution.

The Differences Between Transonic and

Uniform Flow Analysis

In the past (and present), the Mach-altitude envelope over

which the configuration was to be shown to be flutter free posed

no serious problems from a computational standpoint. Since the

analysis methods were linear, there was no coupling between the

unsteady aerodynamics and altitude save for a simple multipli-

cative factor which contained the density of the air. Also,

there was no effect due to mean angle of attack, camber, twist,

or thickness. In transonic flow, this is no longer true.
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In order to be realistic, a transonic method must account

for several characteristics which were previously ignored as

mentioned above. The prediction of unsteady pressure distri-

butions induced by an oscillating surface in mixed transonic

flow is complicated by the strong coupling between the steady

and unsteady flow fields. The steady flow fields are in turn

drastically modified by Mach number, altitude, thickness,

camber, twist, angle of attack, interference, and boundary

layer effects. Unlike pure subsonic or supersonic flow_

these effects are no longer second order and hence cannot

be ignored.

Effects of thickness and camber may be lumped under

airfoil geometry effects which function to locate a normal

shock on the upper and lower surfaces in the two-dimensional

case of supercritical flow. Symmetric non-cambered airfoils

at zero angle of attack will show the same shock location on

both surfaces. Non-symmetric airfoils such as supercritical

and lifting airfoils with camber and/or angle of attack,

will show different shock locations on the upper and lower

surfaces. At high enough positive angles of attack, the shock

on the lower surface may even disappear depending on the Math

number.
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For three-dimensional flow, in addition to airfoil geometry

effects, planform geometry, _dist, and interference effects must

be considered. Their primary function is to define the shock

structure over the entire configuration on both upper and lower

surfaces. The shock structure will vary with any of these

/'

quantities _ however, for a fixed configuration, the only

geometric variable remaining is the angle of attack, u .

Altitude is no longer a simple variable in transonic flow.

Its influence is felt through the Reynold's number effects on

the shock-boundary-layer interaction. These interactions are

somewhat unique in that they affect both steady and unsteady

forces. The effect on the steady mean flow is to modify the

shock structure as determined by the configuration geometry

through the effective thickness increment due to the boundary

layer. The unsteady forces induced by the interactions are

due to shock oscillation and shock induced separation. These

unsteady forces are those that are normally referred to as

transonic buffet forces.

As a result of the above discussion, it is clear that

transonic flutter and dynamic response analyses must be per-

formed over a three-dimensional envelope as specified by the

Mach-altitude- u conditions. What further complicates the

problem is that the entire configuration, upper and lower

surfaces, must be considered in almost all cases.
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Through changes in the boundary layer, altitude affects the

entire shock structure as well as does Mach number and a .

Thus, a new shock geometry is necessary for each Mach-altitude-

condition. It is now apparent that an economical means for

predicting unsteady transonic aerodynamic loads

before a realistic flutter and dynamic response

can become a reality.

is mandatory

capability

Available Transonic Methods

For a transonic method to be practical, the input data

requirements should be minimal without restricting the method's

capability. Thus, one should be able to simply supply the

configuration geometry, natural mode shapes, Mach, altitude,

and u data to a computer procedure that would solve the

problem in a manner which accounted for all of the effects

above. With the present state-of-the-art, such a capability

is either impossible to achieve or if it is available in the

near future, it will be too expensive to be practical for

dynamics problems. On the other hand, the blind application

of linearized uniform potential flow theory to transonic

problems leaves much to be desired and any step in the right

direction would be an improvement.



For lack of anything better, conventional transonic flutter

analysis has been performed by bracketing the forbidden zone

with subsonic (Moo<0.95) and supersonic (M_I.2) linear solutions

and then fairing through the range 0.95< M_I.2. Runyan and

Woolston 2 approached the problem with the subsonic kernel

function by taking the limit as M_I.0. This did not account

for mixed flow or any of the effects discussed previously.

Methods have also been developed specifically for M_I.0 flow 3'4

which are subject to the same restrictions. The unsteady

transonic box method developed by Rodemich and Andrew 3 was

demonstrated by Olsen 5 to agree only qualitatively with

experiment. The comparison was clouded by uncertainty in the

experimental data. This method was later modified by Stenton

and Andrew 4 to include swept trailing edges and trailing edge

control surfaces. However, the approach was not altered.

Because these methods cannot account for transonic charac-

teristics in a realistic manner, they are not practical.

Methods are available for steady flow which provide a

more realistic treatment of transonic flows. The method of

Magnus and Yoshihara 6 uses a time dependent finite difference

solution to the compressible unsteady Euler equations. It is

applicable to thick and blunt airfoils in steady flow and it

can be readily extended to unsteady flow. Viscous effects
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cannot be considered without resorting to some type of artificial

scheme which involves approximation of the boundary layers.

The method of Murman and Cole 7 can be adapted to unsteady flow

by including the unsteady terms in the non-linear small pertur-

bation potential equation for transonic flow. This method is

also inviscid but it cannot be applied to thick, blunt airfoils

due to restrictions imposed by the small perturbation equation.

Neither of these methods have three-dimensional capability and

their cost per solution is extremely high compared to the linear

theory methods. Extension to three-dimensional flow will result

in even more costly solutions unless they are modified to improve

speed of convergence or relax grid requirements.

If one could disregard economy, clearly methods based on

a finite difference or relaxation scheme would be the most

practical since they can better account for the transonic

effects. If economy was the driving factor and accuracy

secondary, then the linearized transonic solutions would be the

better choice. Since neither economy nor accuracy can be

ignored, the best approach would be to combine the advantages of

both and eliminate the disadvantages as much as possible.
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Economics of Transonic Unsteady Aerodynamics

A discussion of economy of solution is meaningless unless

the cost is compared with other aspects of the design process.

In order to appreciate the economic impact of a finite

difference flutter analysis on an IBM 360/65, a simple flutter

problem will be considered.

The problem will be to perform a flutter analysis on a

simple cantilevered wing of trapezoidal planform in mixed

transonic flow. The first four natural modes will be used and

generalized aerodynamic force matrices will be computed at

I0 frequencies. These matrices will be interpolated at other

frequencies between the set of 10 and the resulting flutter

determinants solved for the modal damping and natural frequency

as a function of velocity. The damping and frequency values are

plotted on a V-g (velocity-damping) diagram which is used to

define the root loci for each mode. Flutter is defined at the

velocity where damping of one of the modes becomes positive.

Considering a linear theory solution (kernel function

method), it will be assumed that solution time would be about

0.5 to 1.0 minute per frequency. Since a well designed linear

theory method uses the inverted aerodynamic matrix, the cost

for multiple mode solutions is no more than that for a

matrix-vector multiplication. Thus, once the inverted matrices
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are obtained, they can be used repeatedly for subsequent problems

at very little cost. The cost for i0 frequencies is then 5 to

I0 minutes of computer time for a single flutter solution on an

IBM 360/65. (The cost of interpolation, assembling the flutter

determinants, and flutter solution are not considered since

they are usually small compared to the aerodynamic solution.)

Although it is not possible to predict the computer run

time for an unsteady three-dimensional finite difference or

relaxation solution at this time, an idea can be derived from

the results obtained by Bailey and Steger 8. Their hybrid method

for steady flow combines the small perturbation equations for

velocity components and velocity potentials to solve lifting

cases in mixed transonic flow. The method is applicable to

finite wings of swept or non-swept

to thick or blunt airfoil sections.

rectangular planform but not

Computer times for finite

wing solutions ranged from 30 to 60 minutes on an IBM 360/67.

The total iterations required for convergence was not greatly

increased in going from two-dimensional to three-dimensional

solutions; however, a greater number of grid points was needed

thereby raising the solution cost. The number of iterations

(and hence computer time) did increase with increasing transonic

effects and grid refinement.
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Based on the above discussion, it may be assumed that a

single finite difference solution for a finite wing in steady

or unsteady flow would take about 30 to 60 minutes on an

IBM 360/65. Since a solution must be obtained independently

for each mode shape, then the total number of aerodynamic

solutions necessary for a single flutter analysis would be

4xi0=40. Thus, 20 to 40 hours of computer time on an IBM 360/65

would be required for one flutter analysis.

Returning to the previous discussion on transonic flutter

analysis, the envelope is three-dimensional as defined by the

Mach-altitude-u conditions. For two Mach numbers, two

altitudes, and two a's, the total cost of a ',linear theory

transonic flutter analysis" would be from 40 to 80 minutes.

Redesign evaluations with new modes would cost about 8 minutes

per mode set. The finite difference analysis would cost from

160 to 320 hours on the IBM 360/65 for the Mach-altitude-a

conditions. Moreover, redesign evaluations would cost the

same if the new modes changed substantially as they often do.

In this example, the use of a finite difference flutter

analysis method would result in a cost in computer time which

was equivalent in dollars to the order of magnitude cost of

a flutter model test program for the simple cantilevered

trapezoidal wing. Also, routinely tying up a computer for
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20 to 40 hours becomes an impractical situation in a typical

industrial computing facility. Since one of the primary

objectives for using theoretical flutter methods is to reduce

costs by minimizing the requirement of flutter model tests,

then it seems that the finite difference approach is defeating

its intended purpose. Thus, attention will now be turned to

combining the methods.

The Hybrid Approach to

Unsteady Transonic Flow

A practical method for flutter and dynamic response

analysis in transonic flow must be realistic, reliable, and

feasibly economical. In order to be realistic, the method

must account for mixed flow with imbedded shocks as charac-

terized by transonic flows. The second requirement means that

reliable and consistent results can be obtained without a lot

of '_and waving" or "data juggling". The results must yield

valid trend data for design variations. Finally, the method

must be able to predict these characteristics within the budget

limitations imposed by the development program in which it is

being used. Thus, a balance must be maintained between desired

accuracy and available budget.
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Two facts are known about transonic flow which provide

some guidance for developing a practical approach. First_

most of the non-linear effects associated with variations in

Mach-altitude-u conditions are manifested in the steady mean

flow. Second, the oscillatory forces needed for flutter and

dynamic response analysis are usually small compared to the

steady mean forces.

The steady mean flow characteristics can be obtained in

two ways. The finite difference or relaxation schemes dis-

cussed previously can be used to define the mean flows for the

Mach-altitude-u conditions required. Since these methods are

presently very limited in capability, further development is

needed in this area. Another way is to use measured pressure

distributions from wind tunnel data which is usually available

in a typical configuration development program.

The oscillatory perturbations should be obtained with a

method that operates like the linear theory methods with

inverted aerodynamic matrices. The method which is the subject

of this report is such a method. It uses general aerodynamic

lifting surface (GALS) elements which can represent a mixed

subsonic-supersonlc flow field with linear theory solutions 9.

By knowing the steady mean flow field in advance, the general

aerodynamic elements can be arranged to fit shock and planform

14



geometries to practically any degree desired. The method is

basically an interference kernel function method whose run time

per matrix is proportional to the number of aerodynamic control

points (or unknown pressure functions).

Application of the hybrid approach to the cantilevered

wing problem would require 8 finite difference solutions for

the Mach-altitude-G conditions or a total of 4 to 8 hours of

computer time. In addition, i0 oscillatory solutions with the

GALS element method would be required at each condition. The

cost per frequency would be about i minute (as will be shown

later in the report); thus, the total would be 8x10xl=80 minutes

or 1 1/3 hours for the oscillatory forces. Finally the combined

cost for the hybrid analysis would be 5 1/3 to 9 1/3 hours on

the IBM 360/65 as compared to 160 to 320 hours for a pure finite

difference analysis. Subsequent analyses for each new set of

mode shapes would require about 8 minutes. This approach best

fits the three requirements set forth for a practical method.

The remainder of this report will be concerned with the use

of the GALS element method to predict unsteady pressure distri-

butions on wings oscillating in mixed transonic flow fields

with imbedded shocks. The modes of oscillation and planform

geometry are arbitrary and interference is permitted.
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TRANSONIC CHARACTERISTICS -

A DESCRIPTION OF THE PROBLEM

Before proceeding with discussion of the method for

solving the unsteady mixed-flow transonic aerodynamic problem,

some description of observations made on experimental results

is in order. Basically, these are separated into two groups:

steady or low frequency characteristics and unsteady or high

frequency characteristics. The primary purpose of this section

is to provide insight to the problem which facilitates under-

standing of what must be predicted and perhaps how it may be

predicted.

Steady or Low Frequency Characteristics

One of the best known transonic characteristics in steady

flow is the so called "glich" in the lift curve which occurs

at medium high angles of attack at high subsonic Mach numbers.

In Figure I, a hypothetical example is shown for the lift

curve "glich". The occurrence of this phenomenon has been tied

to the passing of the shock on the upper surface over the local

crest as prescribed by the angle of attack. What is believed

to happen is that since the upper shock is not stable on the

crest, it suddenly moves from just behind to just in front of

the crest for a very small increase in angle of attack. The
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lift gain for the small angle increase is almost zero whereas

the lift loss due to the increase in the area of high pressure

behind the shock on the upper surface is sizable. The result

is a net loss in lift due to a small increase in angle of

attack, and hence a "glich" or a negative slope occurs in the

lift curve. Because of the unstable nature of the shock near

the crest, the "glich" region has also been shown to be a

region of maximum buffet intensity. After the glich is cleared

and the shock is in a stable position forward of the crest,

the buffet intensity drops as is indicated by the second curve

in Figure i. The next peak in buffet intensity does not occur

until the flow becomes separated from the leading edge.

The significance of the negative lift curve slope is that

low frequency torsional motion at angles of attack near the

glich angle, U G, creates aerodynamic forces on the upper

surface that are 180 ° out of phase with the motion. The

amplitude, however, is almost independent of the oscillatory

increment of G due to the torsional mode. The lower surface

on the otherhand, sees the more conventional aerodynamic force

due to torsional motion which is nearly in phase with the mode

at low values of reduced frequency. In addition to its phasing,

the lower surface force is much more amplitude dependent than

that on the upper surface due to shock motion about the crest.
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Hence, with the upper surface pressures acting as a nearly

constant amplitude driving force, the amplitude of the motion

must increase such that the upper and lower forces cancel each

other in an equilibrium motion. Thus, a limit cycle one degree

of freedom flutter condition, commonly called transonic buffet,

can occur in this manner. The occurrence of this torsional

mechanism has been observed as a peak in oscillatory torsional

pivot moment near the lift curve glich in the F-ill i/6-scale

model tests conducted at NASA Ames Research Center.

Although it is beyond the scope of the present study to

predict the shock motion induced forces due to the shock

instability as it passes the crest, the phase relationship

between forces due to shock motion and surface movement is a

fundamental characteristic of mixed transonic flow. Figure 2

shows the steady upper and lower surface pressures at midspan

on the rectangular wing at _0.90 as taken from TND-344 I0.

The wing is at zero angle of attack, however, there is lift

on the wing presumably due to flow angularity. The apparent

inclination is nose down as indicated by the downward net lift

on the forward 60%-70% of the surface. Aft of that point,

the Mach number begins to decrease through a shock from a

maximum of about 1.14 to the free stream value of 0.90 at the

trailing edge. The important characteristics are that the

19
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maximum Mach number appears to be the same on the upper and

lower surfaces and that the lifting forces behind the shock

are in the opposite direction, or 180 ° out of phase. This

property is carried over into the unsteady pressures at M=0.90
O0

for a low frequency (k=ffi0.13) bending mode oscillation also

given in TND-344 for the a=0 ° case. (For the uffi5° case,

the upper surface is in separated flow, hence, its results

are not too useful.) The nominal phase shift from in front to

behind the shock is about +140 ° to +160 ° in the experimental

data along the span. The same characteristic is also observed

in some results obtained by Triebstein 11 on a rectangular wing

oscillating in pitch at a low frequency (k=ffi0.138). These

will be further discussed in the numerical examples.

Also shown in Figure 2 is the measured lift distribution

which shows the peaking tendency in the vicinity of the shock.

Thus, the main characteristics of steady or low frequency mixed

transonic flows are the 180 ° phase shift and peak aft of the

shock. The frequency must be zero or low enough to permit

sufficient communication between the shock region and the

trailing edge necessary to maintain the steady characteristics.
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Unsteady or High Frequency

Charac teris tics

The characteristics described above are modified consider-

ably as the frequency increases. In this situation, the time

lag required for wake disturbances to reach the shock is finite

and constant for a given flow condition. Thus, the forward

movement of the shock with a loss in pressure may not exist

for high frequency flow.

In order to illustrate what may happen, let us consider

a hypothetical shock which is situated such that it will never

receive any signals from the wake, i.e., it sees only the local

streamwise velocity perturbations. In this case, the load

induced by shock motion changes entirely since the shock tends

to move with the velocity perturbations. This type of movement

is a result of the shock strength tendency to remain constant.

Consider the velocity perturbations, Au I forward and _u 2 aft

of a normal shock. If Au I is about the same as Au 2 and both

are directed downstream (corresponding to a uniform drop in

pressure), the Mach numbers, M 1 forward and M 2 aft of the

shock, must both increase if the shock remains stationary.

This will violate the shock relations and is hence inadmissible.

The only way for a normal shock to remain in equilibrium is for

it to move with Au I and Au 2 such that M 1 and M 2 satisfy the

shock relationships. Since the velocity increments are not
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equal, M I and M 2 will change slightly and the shock will move

at some Au s which would be more of an average of Au I and Au 2.

If the pressure is rising, Au I and Au 2 are directed upstream,

hence, the shock will move forward in about the same manner.

These shock motions are similar to those observed in engine

inlet ducts during compressor surge or stall in supersonic flow.

The loading induced in the hypothetical case above may be

explained through a simplified example. Considering the airfoil

in Figure 3, the first step is shown in (a) where the velocity

increment on the upper and lower surfaces is at a maximum.

This corresponds to high pressure on the upper surface

(forward 3Umax) and low pressure on the lower surface

(aft _Umax). In order to maintain the local absolute Mach

number, the shocks must move with the local velocity perturba-

tions on both the upper and lower surfaces. Hence, they will

move in opposite directions. Continuing to (b), the mean value

of pressure has been reached on both surfaces, hence, the shock

movement stops. At this point, the lift increment due to shock

displacement is downward as a result of the high pressure

behind the shock. Thus, the shock induced loading lags the

surface pressure loading by 90 degrees. In step (c), the low

pressure peak on the upper surface (aft AUmax) and high pressure

peak on the lower surface (forward 3Umax) have been reached.
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At this point, the shocks are moving with maximum velocity and

are again passing each other at the mean position but going in

the opposite direction from that shown in step (a). Step (d)

shows the maximum upward loading condition for shock motion

where Au has reached zero on both the upper and lower surfaces.

At this point, the lower shock has moved to its forward most

position and the upper shock has moved to its aft most position

where again the shock motion induced lift is lagging by 90

degrees. If the upper and lower shocks do not have the same

mean position, the same story is true; however, the shock

movements will be different due to differences in the mean flow.

The principal result will be an induced oscillatory moment as

well as a llft component.

Returning to the real world, we now consider what happens

when the wake signals are included. In low frequency or steady

flow, sufficient time is available for the wake signals to

propagate forward and "inform" the shock as to what the avail-

able final pressure is at the trailing edge. With a sudden

drop in pressure on the upper surface, however, the shock

initially moves aft in order to accommodate the change in local

velocities as was discussed above. The drop in pressure is

reflected from the trailing edge by pressures from the opposite

surface which are experiencing a rise in amplitude. The
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reflected wave is a compression wave which counteracts the

expansion. When the compression wave meets the aft moving

shock, it forces the shock to slow down or reverse its motion

and move forward. In this situation, the transient case was

considered. For "steady" oscillatory flow, the trailing edge

signals will indicate a lagging phase angle which could be

estimated in the same manner as discussed by Tijdeman and

Bergh 12 for a control surface oscillating on an airfoil in

two-dimensional flow. For the current problem, the time lag

would be obtained for disturbances propagating from the trail-

ing edge rather than the control surface hinge line as was done

in Reference 12.

If the trailing edge signals are lagging by say 45 degrees

at the shock, the pressure amplitude at the shock increases

considerably. In Figure 4, the net pressure amplitude at the

shock is shown for a hypothetical case in which the oscillating

pressure at the shock due to local disturbances is assumed to

be reacted by a trailing edge signal which is twice as large

in amplitude and opposite in sign. The solid line represents

what happens in quasi-steady flow where the trailing edge

signal does not lag. The resultant in this case is an

oscillatory pressure of equal amplitude but opposite sign

compared to the pressures induced by local disturbances.
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If the trailing edge signal lags by 45 degrees, the resultant

is the long dashed line which shows a larger amplitude by

about 507.. By increasing the lag to 90 degrees, as is shown

by the short dashed line, the amplitude increases by about 125%.

Of course, if the lag is 180 degrees, the amplitude is simply

the sum of the curves which has an amplitude 200% higher than

the local disturbance. (Note also the shift in phase angle.)

As a result of lag, assuming that the trailing edge signal

is on the order of twice as large as the local disturbance,

the shock oscillation should tend to increase with increasing

lag. Thus, as the shock mean position moves aft with increasing

free stream Mach number, it would be expected that the shock

oscillation peak should diminish since the lag would decrease

as the trailing edge is approached. This characteristic has

been observed in experimental data and the trend is predictable

as will be discussed later under "Applications of the Transonic

Method."

If all disturbances originate downstream of the shock in

the subsonic region, the characteristics are much simpler.

The case of an oscillating control surface downstream of a

shock is a prime example. The measured data of Tijdeman

and Bergh 12 for two-dimensional flow over a wing with an

oscillating control surface is an excellent source for gaining

28



insight to the problem. One of the major results given was the

time history of the upstream shock during the control surface

oscillation. In one particular case, M_ =0.90, the shock

movement was shown to cover as much as 127. to 15% of the wing

chord for a control surface motion of only 1.5 degrees. The

interesting point was that for the 6?. thick airfoil section

used, the control surface amplitude appeared to be about the

same as the boundary layer thickness. Since the oscillatory

pressure amplitude forward of the shock was very small, the

shock motion was primarily due to downstream disturbances only.

In other cases, the variation of shock strength with motion was

also evident. For M_ =0.875, it was shown that the shock wave

vanished at its forwardmost position for a control surface

amplitude of +._3degrees. What is important in this discussion

is the fact that such small pressure fluctuations can create

large shock movements as well as substantial variations in

s treng th.

Another item that deserves some attention is the effect

of viscosity and flow separation. In steady or quasi-steady

flow, separation effects are not well understood quantitatively,

but they can be readily observed in experimental studies. In

unsteady flow, however, the simple low frequency mechanism is

complicated by the fact that separation is itself an unsteady
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phenomena. A means of determining unsteady separation effects

has been given by Ericsson and Reding 13 for airfoils oscillating

in stalled or nearly stalled flow. The principal inovation is

the inclusion of the effect of leeward side acceleration on a

pitching or plunging airfoil. This acceleration tends to cancel

or diminish the adverse pressure gradient effect and thereby

causes an increase in the maximum attainable value of CL.

The method is based on quasi-steady flow. However, in the

numerical results presented, reduced frequencies range as high

as 0.3 based on semi-chord (two-dimensional flow). Whether or

not Ericsson and Reding's method could be useful in unsteady

transonic flow cannot be predicted at this time since the

approach is oriented towards oscillations about high mean

angles of attack in low subsonic flow. The insight provided

by the paper could lead to a better understanding of the

transonic shock induced separation phenomena as well as

establish a basis for developing a method to predict the

unsteady effects based on steady flow measurements.

In summarizing the unsteady or high frequency charac-

teristics, a clear cut picture is not possible to define as

was done for the steady or low frequency characteristics.

A complicating factor is the large shock displacement that

apparently occurs with small pressure fluctuations. This
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effect tends to spread the shock peak in such a manner as to

make it difficult to separate the shock oscillation induced

loads with the fluctuating pressure field. It does appear,

however, that the effect of lag between the trailing edge and

the shock can be observed and predicted at least qualitatively.

The effect of unsteady separation is an additional burden which

clouds the issue. Some attempts will be made to include

separation effects in the numerical applications which,

although the model is highly simplified, do tend to improve

the solution characteristics.

In the following section, a discussion will be given for

the method developed in this research task. No attempt has

been made to incorporate special functions to account for shock

oscillation induced loads other than the regular lifting

surface theory functions already employed. The purpose of the

investigation is

theory solutions

section and the best means of application

to determine how well the use of mixed linear

predicts the characteristics discussed in this

for general problems.
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METHOD OF SOLUTION -

THE TRANSONIC ALGORITHM

The prediction method investigated in this research is

based on the use of general aerodynamic lifting surface (GALS)

elements as a means for determining unsteady aerodynamic

loadings on lifting surfaces oscillating in mixed transonic

flows. The concept as derived originally 9 has been only

slightly modified and the basic requirement of a steady mean

flow solution as a starting point has been maintained. The

method uses subsonic or supersonic lifting surface elements

to describe a lifting surface over which the flow is mixed.

The principal modification is the addition of a capability

which permits the velocity variations in the subsonic or

supersonic elements to be partially accounted for. This

capability has resulted in improved solutions which point the

way towards further refinements in the method.

The linear theory methods for treating subsonic and

supersonic flow are discussed in Appendix A and Appendix B,

respectively. In modifying the basic methods for use in the

transonic method, some investigation was necessary to insure

that they were working properly. Several important results

were obtained for both subsonic and supersonic linear theory.
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In subsonic flow, it was found that different types of

lifting surface elements gave slightly different solution

characteristics for the same problem. In this case it was

suspected that the new type of element converges more rapidly

for highly swept wings than does the conventional element.

More exhaustive convergence studies are required to settle

this matter. For the purpose of the transonic investigation,

the results were felt to be completely satisfactory.

In supersonic flow, a special weighting function was

developed for the pressure distributions and tried in a limited

number of cases. The function was derived from conical flow

theory, hence, it contained many of the discontinuities that

are encountered in pressure distributions on wings in super-

sonic flow. Use of this weighting function requires far fewer

pressure functions to converge since it is no longer necessary

to use smooth functions to construct supersonic discontinuities.

Another important result in supersonic flow was the dis-

covery of the non-integrable singularity in the non-planar

supersonic kernel function along the Mach hyperbola (see

Appendix D). A means was obtained but not programed for

evaluating the finite part of the improper integral by the use

of Leibnetz's rule. This was necessary since in the derivation

of the kernel function, the consequences were not considered

33



for interchanging integration and differentiation in supersonic

flow. The oversight was natural, however, since the problem

does not occur in subsonic flow or in supersonic flow over

coplanar surfaces. This problem did not inferrer with the

transonic study since only coplanar surfaces were considered.

The algorithm for linking subsonic and supersonic linear

theory solutions together as a means for treating unsteady

the followingmixed transonic flow problems is based on

two as sump tions :

i. The appropriate Mach number for computing

downwash at a point is the Mach number of

that point.

2. The reduced frequency, k_ = WbREF, is modified
U_

according to the local velocity such that w is

held constant. This is approximated as

kt = k_ _ _ k_

The first assumption is justified by the fact that,

for any given pressure distribution, the integrated kernel

func tion-pressure function product rapidly becomes independent

of _lach number as distance increases either upstream or down-

stream from a loaded region.

since the physical frequency,

The second assumption is mandatory

w, must be held constant. The

use of the Mach number ratio rather than velocity ratio will
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result in a small overestimate (typically about 3% to 4%) of

the effect of velocity change. However, as results will show

in the next section, such a discrepancy is minor.

With the two basic assumptions, the computational algo-

rithm becomes a simple problem of testing the Mach number of

the surface for which downwash is being computed. If the

downwash surface is supersonic, then the self-induced downwash

as well as all interference effects on that surface are com-

puted with the supersonic kernel function regardless of the

interfering surface's Mach number. Likewise, if the downwash

surface is subsonic, the subsonic kernel function at that Mach

number is used. The value of k in the kernel function is also

determined by the local Mach number since the downwash surface

sees the same value of w regardless of what surface the

disturbance is emitted from.

A partial accounting for Mach number variations within

the subsonic or supersonic elements can be derived from the

non-dimensionalization of the downwash-pressure function

integral equation. Considering parallel surfaces for

simplicity, the downwash at a point (x,y) due to a small

loaded region, An, may be expressed in supersonic flow as

-Br

Wn(X,y) = rZ (x- )z. BZr
An
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where ACpn is the constant lift amplitude acting over region

An and Un is the local steady velocity. To be more general,

let Hn be defined as

---_a-.__ r2 _(x-_)-- BZrz
Hn =

An

or its subsonic counterpart, then for either case

A un
Wn(X,y ) . _ Cpn Hn (I)

Since the function Hn now contains the Mach number character-

istics, by virtue of the first basic assumption, this effect

may now be ignored for interference since it will always be

defined by the local Mach number at the downwash point.

Now, it is desired to non-dimensionalize Wn(X,y) with the

velocity Uxy at the downwash point and _Cpn with free stream

dynamic pressure q_ . Thus, since Wn(X,y) will be summed

with other velocity components and then equated to the surface

induced downwash, Wk(X,y ) where

Wk(X,y) = -Uxy

we may write

(_-_+ ikxys) (2)
03 _

Wn(x,y) = ACpn (Un ]Uxy " s"-'_ _y Hn
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Since it was also desired to non-dimensionalize

rather than qn, we also have

Uxy 8 _r

where

(qn)ACpn _ = _Cpn _--

But for one dimensional flow,

dCp with q_

(3)

q_____ = U_
m

qn Un

and since we are primarily concerned with near normal shocks,

the above becomes approximately valid in our case.

Thus,

Wn(xsy) _. ACpHo0 /Uoo _ I_1

Uxy 8 ;r \u y/

or

U_ / Uxy 87r

Hn

Now, the input uns ready boundary conditions

Wk(x,y) . -:0_+ i _)Uxy \ _ x kxy
/__ \

are multiplied by the velocity ratio (Uxy_ in the integral

equation. In the program, the value of kxy is defined as

kxy__. M_ koo = kIs
MIS

(4)
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where MIS is the uniform Mach number assigned to the surface

which contains the downwash point rather than the local value

at the downwash point (x,y).

As a result of the above discussion, the integral equation

that is actually solved by the transonic algorithm is

Sf
\_x M_ 8_ '

K (x-_ , y-_, z-¢, kls,MIs) d_ d_ (5)

where _Cp_ (_ ,_) is the pressure difference at (_ ,_)

divided by q_ . To be more exact, later versions of the

algorithm should permit Mxy and kxy to be used in computing

the kernel function, thereby permitting the kernel function

to change at each downwash point. In this manner, it may be

possible to better account for leading edge regions where the

flow is continuously accelerated from subsonic to supersonic

flow.

Shown in Figure 5 is a flow diagram of the current

transonic flow algorithm. The key ingredient is the common

set of surface types and pressure function types for both

subsonic and supersonic flow as shown in Figure 6.

(An exception is the case for steady supersonic flow where

a special "supersonic weighting function" has been installed

in the computer program for investigating potential payoff.
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This aspect is discussed in Appendix B.) The integration

schemes are also compatible with two exceptions. The

difference in the chordwise integration is that in supersonic

flow, the limits are from Mach cone to leading edge whereas

in subsonic flow they are from trailing edge to leading edge.

In the spanwise integration, both techniques are identical

with the exception that the supersonic limits are defined by

the Mach cone-leading edge intercepts rather than wing tips.

In the next section, the transonic method is applied to

a variety of planforms oscillating in mixed transonic flow.

The method is consistently shown to yield improved pressure

distributions as compared with uniform flow solutions.
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APPLICATION OF THE TRANSONIC METHOD

The prediction method described in the previous section

was applied to a wide variety of wing configurations in mixed

transonic flow. The configurations were both retangular and

swept trapezoidal with pitching, bending and control surface

motions. The frequency variation ranged from near steady flow

to moderately unsteady. In all cases, it was possible to show

from moderate to drastic improvement with the transonic method

over conventional uniform flow linear theory solutions.

In the following discussions, the first case considered

will be a rectangular wing oscillating in a bending mode.

For this case, several means for applying the method will be

discussed to illustrate some of the areas that have been

investigated. The remaining problems simply reflect what was

learned in the first case as to how the method should be applied.

Rectangular Wing of Aspect Ratio 3.0

Oscillating in a Bending Mode

In this case results are presented which were obtained

with the initially proposed method for treating mixed transonic

flow problems. The approach simply proposed to break the wing

up into its subsonic and supersonic regions and treat each

region according to its assigned Mach number. With the proper
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linear theory method, interference was calculated for each

surface. The Mach number assigned to the downwash surface

determined whether the subsonic or supersonic kernel function

was used.

In Figure 7, experimental and theoretical results are

shown at midspan for the TND-34410 case of a=O °, M_ffiO.90

and k_ffiO.13 (based on semi-chord). The dashed line is the

uniform flow linear theory solution obtained from the program

under development. The solid line is the transonic solution

assuming that the forward surface is uniformly supersonic

at Mtffil.10 and extends from the leading edge to 70% chord.

The trailing subsonic region is at a Mtffi0.90 and extends from

70% chord to the trailing edge. The reduced frequency, k_ffi0.13,

is adjusted in each region according to its Mach number. The

peaking characteristic is obtained, however, the 180 ° phase

shift is not. Also, the dip in the supersonic pressures near

the shock is not correct and is caused by the tip Mach line in

the supersonic portion that does not actually exist in the true

transonic flow. A three region solution was attempted as a

means of removing the tip Mach line effect by allowing the

forward 30% of the wing to be at Mtffi0.90. This gave lift which

was too high and hence washed out the supersonic portion and

drove it negative in both the real and imaginary parts. The
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subsonic portion aft of the shock remained unchanged in the

solution. As a result, the three region approach was rejected.

An alternative will be given in the final recommendations which

is felt to be superior.

In Figure 8, some variations of the basic approach are

shown. The solid line is again the originally proposed method.

The dashed line is a solution obtained with the basic method

in which the subsonic region boundary conditions are multiplied

by the local chord fraction covered by the subsonic portion.

Since the downwash mode is a pure bending mode, the deflections

in the aft region are simply multiplied by 0.3. Since the

supersonic region is upstream, it is unaffected. The subsonic

region is now showing the proper phase relationship with

exception of the 70% chord station. Justification for diminish-

ing the downwash on the subsonic region is that apparently the

termination at the leading edge by a shock rather than a free

edge cancels the aspect ratio effect that tends to increase

the isolated CLu of the surface.

Also shown in Figure 8 is a second modification in the

supersonic region (dash-dot-dash line). In this case, the mode

deflections are multiplied by the local Math number ratio which

ranges from 1.0 at the leading edge to 1.25 at the shock.

Since the Math number variation is nearly linear (see Figure 2),
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a linear function was used. This modification was made based on

an assumption that local perturbations in streamwise velocity

are accelerated along with the mean flow. Although this artifice

is another semi-empirical correction, it does improve the imagi-

nary part of the solution.

Finally, Figure 9 shows the comparison of the uniform flow

solution (dashed line), the transonic solution with the two

semi-empirical corrections, and experiment. There is a definite

overall improvement with exception of the leading edge region in

the real part of the solution. In this case the uniform flow

solution is superior. Obviously, a three region solution would

help this problem. However, it would destroy many of the other

favorable characteristics.

As a result of the experience with the above problem,

additional investigation was made into the effect of local mean

velocity variations on the basic integral equation of lifting

surface theory. Surprisingly enough, the rederivation of the

integral equation gave the form in Equation 5 which effectively

performs the operation discussed in Figure 8 where the downwash

was multiplied by the local Mach number ratio in the supersonic

region. Equation 5, of course, requires that the ratio be

applied in all regions. It did not provide all that was needed

to achieve the 180 ° phase shift aft of the shock. Results of
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application of the final method are shown in Figure I0 where

the solid line is the solution obtained by this method and the

dashed line is again the uniform linear theory solution. It

will be noted that the final version of the transonic method

gives results which are better than those shown in Figure 7

for the original method, especially in the vicinity of the

shock.

The solution is still not adequate, since the 180 ° phase

shift is not predicted. In order to achieve this, an assumption

was made that the flow separated behind the shock and that this

effect could be accounted for by multiplying the downwash by

0.5 for all points aft of the shock. Results of this assumption

are shown by the short dashed line and, since the supersonic

region is not changed, it remains the same. The overall solution

is now in excellent agreement with experiment with exception of

the real part of the solution near the leading edge. The

separation assumption aritifice will be discussed further in

the other cases.
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Rectangular Wing of Aspect Ratio 2.0

Oscillating in Pitch

In Figure ii, experimental and theoretical results are

shown at 45.4% span on a rectangular wing of aspect ratio 2

oscillating in a unit pitch mode about the 25% chord axis II.

The flow is mixed transonic with free stream quantities

M= =0.90 and k= =0.069 (based on semi-chord). The mean angle

of attack is a =0. Although no data was available for the

local Math number distribution, a shock position was assumed

based on the unsteady pressure distributions at 60% chord.

The distribution of Mach number was taken from Figure 2 which

is probably low since the airfoil in this case is an NACA-0008

profile and that for Figure 2 is a 5% thick biconvex profile I0.

The solid line solution is that obtained with the final

transonic method and the dashed line is the uniform flow

solution. The first point is that the uniform flow solution

bears no resemblence to the experimental data except near the

trailing edge for the imaginary part. Although the transonic

solution shows considerable improvement, particularly forward

of the shock, it shows the same disagreement aft of the shock

as was noted in the previous problem. Again, application of

the separation assumption (1/2 downwash aft of the shock)

yields the short dashed line solution which shows much better
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agreement with experiment aft of the shock.

The gross under prediction of amplitudes is felt to be due

primarily to the experimental data being too high, which was

perhaps caused by wall interference.

part measured data, say an average of

If one scales the real

Ap=6.5 forward of the

shock, by the value of k_ _0.13 for the rectangular wing in the

previous problem, an amplitude of Apffi0.845 is obtained. Since

the wing in the previous problem was oscillating in a bending

mode, a further reduction is needed. By comparing theoretical

results of the two cases, an average dpffi.25 can be obtained at

midspan if the average value Ap=5.0 is taken from Figure Ii

forward of the shock and multiplied by 0.13 and 0.384. The

latter multiplier accounts for differences between the bending

mode spanwise displacement distribution and that of the pitch

mode (which is constant). (In this exercise, the unsteady

effects of --_Ozare ignored due to the low value of k_ .)

Multiplying _pffi0.845 by 0.384 yields Apffi0.325 which is about

50_ higher than that shown in Figure i0 for the imaginary part

forward of the shock. If the experimental data in Figure ii

was lowered by about 1/3, the agreement with theory would be

more nearly akin to that shown in Figure I0.
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The suspicion that wall interference is responsible is

based on the fact that the wing chord and span (0.280 meter)

were about 1/4 of the wind tunnel test section dimension

(i.0 x 1.0 meter2). The same was true for the model in the

previous problem which is known to have wall interference

effects. Since the wing in the current problem was thicker

and the reduced frequency lower, it is quite probable that the

unsteady interference effects were even worse.

Regardless of the source of disagreement, the transonic

method does provide a solution which shows much better agree-

ment with experiment. It has also been shown again that the

separation assumption artifice further improves the solution.

Swept Trapezoidal Wing

With Roll Excitation

In this case, a swept trapezoidal wing studied by Becker 14

was considered which was forced to oscillate in a bending mode

by roll excitation at i00 Kz. The bending mode also contained

some twist motion. In Figure 12, the planform and the mode

shape is shown. The control point array on the planform is

that used for the uniform flow solutions. For the non uniform

solutions, the downwash point arrays and planform subdivisions

are shown in Figure 13.
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The first solution considered is subsonic where the present

method for uniform flow is compared with experiment and a

theoretical solution also given by Becket obtained with Laschka's

method. This case is presented as a means of establishing

possible sources of disagreement. The flow conditions are

Ha =0.80 and k_ =0.253 (based on 1/2 _C). Since the flow is

subcritical, it would be expected the theory and experiment

should agree fairly well. The data shown in Figure 14 at 55.6%

span indicate large discrepancies between both theories as well

as between the theories and experiment. The principal cause of

the disagreement between theories is attributed to the in-

sufficient data available in the report for determining the

mode shape. This is the most likely source of error since it

has been shown 15 that the present method and Laschka's method

agree very well for wings of this type. Moreover, it seems that

Becket had not determined the proper mode shape to use in the

theoretical prediction since Laschka's method is far more

accurate than Figure 14 indicates. Thus, in considering the

following comparisons between theory and experiment in transonic

flow, the discrepancy in the mode shape used and that actually

occurring in the experiment must be kept in mind.
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In Figure 15, the chordwise pressure distribution is shown

at 55.6% span where the free stream conditions are M= =0.937

and k= =0.218 (based on 1/2 MAC). For this case, the flow is

mixed transonic flow for a mean angle of attack, _ =0. Symbols

are given for both upper and lower surface measurements which

show a considerable spread in data. Not all data points were

available from the figure in the report due to their being off

scale. (Where this is true, a symbol is given with an arrow

pointing in the direction that it is suspected to occur.)

The dashed line solution is that obtained with the uniform

flow theory method. The solid line solution is the transonic

solution for which the shock structure was assumed as shown

in Figure 13. In comparing the uniform flow and transonic

solutions, it is apparent that the transonic method is

definitely superior. Considering the disagreement at M= =0.8

in Figure 14, it is even more apparent that if the correct mode

shape was known, the agreement between the transonic method

and experiment would be excellent.

assumption was not necessary.

In Figure 16, the free stream conditions are changed to

M_=0.997 and k_ _0.207. The shock is much farther aft and

again the transonic solution shows an improvement over uniform

flow theory with exception of the imaginary part of the solution

In this case, the separation
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aft of the shock. In this case, the separation assumption is

employed which improves the imaginary part but causes the real

part to be under predicted aft of the shock. Without the

discrepancy in modal data, it is seen that the transonic

solution would probably agree quite well with experiment.

By lowering the pressures forward of the shock, the real and

imaginary parts would increase and be more in agreement with

experiment. The same would be true for the data in Figure 15.

The data obtained in this study are almost certainly

affected by wall interference. The model dimensions of a

semi-span of 0.3 meters and MAC of 0.215 meters are quite

large compared to the test section dimensions of 0.42 x 0.55

meters 2. Later investigations should include an image system

to determine how severely this data might be affected. It is

possible that the disagreement just discussed is due more to

interference rather than insufficient modal data.

Swept Trapezoidal Wing With

an Oscillating Aileron

The final case studied is concerned with a low aspect ratio

swept trapezoidal wing with an oscillating inboard aileron in

mixed transonic flow. The conditions are M_ =0.942 and

k_ =0.386 (based on 1/2 MAC). Measured data were obtained by

Bergh, Tijdeman, and Zwaan 16 which included Math number maps
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over the entire wing as well as oscillatory pressure distri-

butions. The configuration is shown in Figure 17. Comparing

the planform dimensions with the test section dimensions of the

tunnel used, 2 x 1.6 meters 2, it is apparent that the data

should show far less wall interference effects than in the

cases previously considered in the current study.

Given in Figure 17 is the GALS element arrangement and

downwash point array used to obtain the uniform flow solution.

Also shown is the geometry and downwash point array used in the

transonic solution. Since only the aileron was oscillating,

the wing area was ignored upstream of the tip shock and the

Mach line emanating from the aileron apex. The dashed line

indicates the tip shock location which cuts across the super-

sonic element. Because of current restrictions in the computer

program the supersonic element could not be broken up accord-

ingly. (The restriction is a result of the program not being

completely checked out for non-trapezoidal surfaces in unsteady

supersonic flow.) If the subsonic region could be extended

into the small triangular space between the hinge line and

shock, an improvement in the solution could be obtained as

will be pointed out. Only the subsonic portion of the M L

distribution shown in Figure 17 was used in the solution at all
/

span stations on the aileron since the downwash was zero at all

points off of the aileron (see Equation 5).
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The results for the uniform flow and transonic solutions

are shown in Figure 18 along with the experimental data. The

agreement between uniform flow theory and experiment is very

good on the aft 257o of the wing including the aileron. It is

not so good, however, on the forward 757.. The transonic

solution shows excellent agreement with experiment at all

span stations considered. Since the results are concentrated

about the tip of the aileron, this case becomes a severe test

of the method.

A very interesting point is the prediction of the negative

peaks in the imaginary part forward of the hinge line and aft

of the shock at outboard stations. This characteristic seems

to be common on oscillating control surface problems in tran,

sonic flow and was observed repeatedly by Tijdeman and Bergh

in two-dimensional flow 12 and in this case for three-dimensional

flow. What is more interesting is that the prediction shows the

peak to extend outboard of the aileron where the experimental

data seems to confirm the fact.

The over prediction of pressures on the aileron seems to

be common to both solutions, especially for the real parts.

If one assumed that the flow was separating and invoked the

separation artifice, all pressure amplitudes would be halved

since the only non-zero boundary conditions are on the aileron.
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This would bring the lift over the aileron more into agreement

for the real part. However, the imaginary part would be under-

predicted. Also, both parts of the solution outboard of the

aileron would be under predicted. It is possible that only

the outboard region of the aileron is separated since the shock

does not extend completely to the wing root. If data were

available more near the mid span of the aileron a more rational

assessment could be made of the problem.

Another characteristic that could be improved is the peak

aft of the shock at the 7=0.55 span station. If it were

possible to set up the small subsonic triangle aft of the shock

and forward of the hinge line as was discussed above, a peak

aft of the shock would be obtained as well as at the hinge line.

This would improve the agreement in shape of the pressure

distributions. However, the total integrated value of lift

would probably not change significantly.

Unlike the previous examples, the transonic solution in

this case was cheaper than the uniform flow solution. This was

due to the fewer number of control points required, 24 for the

former and 33 for the latter, as a result of ignoring the

forward portion of the wing in the transonic solution. In a

practical dynamics problem, however, all of the surface would

be used since the natural modes would produce loads in the

67



portion that was ignored. The computer time would increase to

about I00 seconds per solution.

This case represents the most difficult problem attempted

with the transonic method. Because of the high confidence in

the measured data, it is felt to represent a valid yardstick by

which the transonic method can be evaluated. The prediction of

characteristics is excellent, however, the amplitudes are over

predicted in some areas, especially on the aileron. With a

better understanding of the problem as reflected by some of the

thoughts discussed in the section "Transonic Characteristics -

A description of the Problem," it is felt that these discrepan-

cies can be almost eliminated or their effects at least minimized.

68



DISCUSSION - SEPARATION

ASSUMPTION OR SOMETHING ELSE?

In the results presented, it has been possible to obtain

solutions with the transonic method that show significant

improvement over linear theory solutions for uniform flow.

The transonic method appears to work as well as the subsonic

and supersonic methods of which it is comprised. One difficulty

that was encountered, however, is not related to the combining

of supposedly incompatible methods. The assumption of separated

flow seemed to be necessary in order to obtain proper results

aft of the shock in almost all cases. The cases that did not

require the assumption were those in which the shock was more

forward (at about 50% chord) and/or the reduced frequency was

high. This is a rather curious situation in that these are

the conditions in which the lag between the trailing edge

signals and the shock position is increased over that occurring

where the shock is close to the trailing edge or the frequency

is low. A prime example of this effect is the comparison of

data in Figures 15 and 16. In the first case, the shock was

at about 60% chord and the frequency was k_ =0.218. The

separation assumption was not needed, particularly in this

case since it would have caused further under prediction aft

of the shock. In Figure 16, the frequency is about the same,
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k_ m0.207. However, the shock is farther aft at about 75%.

The separation assumption was used to bring the imaginary part

into agreement. However, the real part was under predicted

somewha t.

Thus, it seems that the separation assumption, which simply

halves the downwash amplitude in the separated region, is not

completely satisfactory. Two reasons can be postulated:

(I) The separation phenomena is frequency dependent

due to the tendency of favorable surface motion

induced accelerations to counteract adverse

pressure gradients and delay stall. Hence,

a phase angle change should be introduced.

(2) The phenomena is not due to separation since

at very low frequencies the characteristics

should be quasi-steady which yields a 180 °

phase shift in lift aft of the shock due to

its movement.

The first reason for the difficulty is probably true since,

as was pointed out in the section on "Transonic Characteristics

... ," separation is in itself an unsteady phenomena and is

likely to change characteristics when excited by unsteady flow

of the same frequency range. The second reason is also true

and probably more important for the cases considered in this

study. This point deserves further discussion.
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The originally proposed hypothesis for development of the

transonic method was based on an abservation that shock oscilla-

tion peaks appeared to be similar to leading edge singularities

in subsonic flow. This has been shown repeatedly to be approxi-

mately true for amplitude but not for phase. Hence, it is felt

that an additional function is needed which accounts for the

shock behavior since the combined linear theory method for

transonic flow does not contain any special relations.

A promising area of investigation is the small disturbance

equation of transonic flow as discussed by Murman and Cole 7.

This equation is for a velocity potential % where

u ffi %x and v ffi _y

and is expressed as

[K- (Y+ i)_x] _xx+ _yy ffi0

where

K - I'M2

_2/3 ffitransonic similarty parameter

ffithickness to chord ratio of the airfoil section

7 = ratio of specific heats

F ffi _l/3y

The equation would have to be modified for unsteady flow and

perhaps for three-dimensional flow. Since the equation does

contain the shock jump conditions as was pointed out in

Reference 7, some excellent insight would be provided by
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studying its local solutions even in steady two-dimensional

flow. Thus, it is anticipated that local functions could be

derived similar to those obtained by Landah117 for control

surface singularities. By extending the local solutions to

include the trailing edge, the proper (or at least approximate)

lag characteristics could be obtained for unsteady flow.

As to how the shock induced function would be incorporated

into the aerodynamic procedure, guidance would be provided by

the small disturbance equation. Since the starting point is

a solution to the equation for the limit as _x-_O both forward

and aft of the shock, no real difficulty is anticipated. The

treatment of such singularities in the collocation methods will

not present any difficulties since the singularity will always

be on a surface boundary. This is a direct result of the use

of GALS elements to treat the transonic problem.
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CONCLUSIONS AND RECOMMENDATIONS

This report has presented the results of a study to

determine the feasibility of using combined subsonic and

supersonic linear theory as a means for solving unsteady

transonic flow problems economically and yet realistically.

The method developed was shown to work reasonably well in that

it provided solutions which showed improved agreement with

experimental data over those obtained with uniform flow theory

without any significant increase in cost. Agreement was

improved in several cases by the use of a simplified assumption

that the flow was separated behind the shock. The occurrence

of separation was suspected as not being the true source of

disagreement, however, when considering the relationship

between wake signal propagation and shock position. An over-

view of the cases considered also confirmed this suspicion.

As a result of the comparison of theory and experiment,

it was felt that further research would be fruitfull in the

areas of flow separation and oscillating shock induced loads.

The flow separation phenomena should be considered in the same

manner as Ericsson and Reding have done. It would not be

proposed to predict flow separation but instead predict the

effects of unsteady flow on separation which is already known

to exist. The study of oscillating shock induced loads would
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be related to the determination of quasi-steady and unsteady

effects of surface pressure fluctuations and wake signals on

shock position. This task would not include prediction of the

mean shock position, but instead, prediction of the oscillatory

perturbations about a stable mean position. The small pertur-

bation equation for transonic flow would be the main tool

employed in this study.

Some important results were also obtained in the area of

linear theory for both uniform subsonic and supersonic flow.

In subsonic flow, it was found that different types of lifting

surface elements gave slightly different solution character-

istics for the same problems. In this case it was suspected

that the new type of element converges more rapidly for highly

swept wings than does the conventional element. More exhaustive

convergence studies are required to settle this matter. In

supersonic flow, a special weighting function was developed

and tried in a limited number of cases. The function was

derived from conical flow theory, hence, it contained many of

the discontinuities that are encountered in supersonic flow.

Use of this weighting function requires far fewer pressure

functions to converge in that it is no longer necessary to use

smooth functions to construct the supersonic discontinuities.

Another important result in supersonic flow was the discovery
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of the nonintegrable singularity in the nonplanar supersonic

kernel function along the Mach hyperbola. A means was obtained

but not programed for evaluating the finite part of the improper

integral by the use of Leibnitz's rule. This was necessary

since in the derivation of the kernel function, the consequences

were not considered for interchanging integration and differen-

tiation in supersonic flow. The oversight was natural, however,

since the problem does not occur in subsonic flow or in supersonic

flow where all surfaces are coplanar.

In conclusion it is recommended that a unified subsonic,

transonic, and supersonic aerodynamic prediction method be

In order to do so, thedeveloped from the existing program.

following tasks are suggested:

i.

.

.

Complete debugging operations on the various

methods included in the program and add the

equations for integrating the nonplanar

supersonic kernel function.

Extend the unsteady supersonic flow capability

to include the supersonic weighting function.

Modify the transonic algorithm such that the

Mach number at each control point is used to

determine whether subsonic or supersonic

methods will be used to compute the downwash.
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(This means that the regular pressure functions

must be used in the supersonic regions for

transonic flow, hence, they must be retained

in addition to that proposed in 2.).

4. Develop a realistic means for predicting

unsteady effects on flow separation.

5. Develop a function which accounts for the

effect of unsteady surface pressure

fluctuations on shock motion induced loads.

6. Incorporate 4 and 5 into the transonic program.

7. Add on appropriate subroutines to perform

computation of generalized forces for flutter

and dynamic response analyses. Also, include

flutter and mode interpolation packages such that

a "one shot" flutter analysis can be performed.

8. Undertake a systematic study to determine

sensitivity of pressure distributions and

flutter results to variations in the local Mach

number distributions and shock geometries.

9. Establish a consistent utilization procedure

for routine flutter analysis.
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i0. Correlate theoretical and experimental flutter

results over a wide range of Mach numbers

including subsonic, transonic and supersonic

values. (A configuration should be chosen for

which sufficient pressure data is available

to establish the steady mean flow conditions.).

In order to be more efficient, the final program should

be capable of computing generalized forces for non-zero

or cambered airfoil cases without running two separate

problems. The mode shapes should be entered only once,

although they would have to be interpolated separately but

internally for the upper and lower surfaces. The nonsymmetric

case could be treated within a single problem by computing

the upper and lower generalized forces separately and then

adding them together prior to performing a flutter or dynamic

response analysis.
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The subsonic portion of this program has been previously

documented in Reference 1 where several comparisons between

the present method and other theories and experiment Were

presented. In this appendix, additional data for the AGARD

wing-tail configuration will be given in order to illustrate

differences between the new element (Type 3 surfaces, see

Figure 6) included in the current program and that reported in

Reference 1 (Type 1 surface).

In Figure 19, the lifting pressure distribution is shown

for the coplanar AGARD wing-tail configuration in M_ =0.8,

k_ =0.0 flow. The dashed line results are obtained with the

Type 3 surface with Type 3 spanwise loadings and the solid

line results are obtained with the more conventional Type 1

surface and Type 1 spanwise distributions. The symbols are

predicted values from the Woodward method 18. The three

solutions show acceptable agreement on the wing; however,

the Woodward solution is consistently high on the tail.

Since the present method with a Type 1 - Type 1 solution was

shown to agree very well with the Woodward method on a wing

tail configuration in Reference i, it is felt that the small

number of elements on the tail in this case is responsible for

the over prediction. A comparison of CLa and Cma (about wing

leading edge apex) is shown for the two solutions with the

present method and the doublet lattice 19 and Woodward 18 methods.
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The unsteady lifting pressure distribution for the co-

planar AGARD wing-tail configuration is shown in Figure 20.

The mode is a unit wing-tail plunging motion in uniform flow

for M_-0.8 and k_ =1.5 (based on semi-span). The distri-

butions shown are again for the Type i - Type i (solid line)

and Type 3 - Type 3 (dashed line) solutions. Results from a

convergence study for these solutions are shown in Figure 21

with a comparison with the doublet lattice method. The

quantities shown are the real and imaginary parts of the

complex lift coefficient divided by (ik). The reference area

is the total area (wing + tail) of 2.425 for a wing span of 1.0.

Very good agreement is shown for the imaginary part. However,

the real part is consistently low. The flaged symbol is the

value obtained from the Type 1 - Type 1 solution shown as the

solid llne distribution in Figure 20. A slight improvement

is achieved for the real part which is indicated in both

Figures 20 and 21. A perturbation on the Type 3 - Type 3

solution was made with NSffi6where NCffi5 on the wing and NC=3

on the tail. This solution is represented by the square symbol

and showed practically no change over the base solution with

NC=4 on the wing and NC=3 on the tail.
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Although discrepancies exist between the present method

and the doublet lattice method, the Type 3 - Type 3 solution

permits better treatment of the root region of the highly

swept wing. It should logically yield the best solution,

thus, it would be desirable to determine which is the best

method. In order to accomplish this task, one would have to

run extensive convergence studies with the present method.

For the purpose of the current study, however, the magnitude

of the disagreement was not felt to be great enough to warrant

such endeavors since the solutions were close enough to estab-

lish the feasibility of the transonic algorithm.

One difficulty that may be the root of the problem is

the high value of reduced frequency. For k_ =1.5, the wave

length is only slightly longer than the configuration. Hence,

the differences may be due to differences in evaluating the

kernel function. On the other hand, the integration of the

kernel function-pressure function product may be the source.

Future investigations should include efforts to settle this

matter o
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The supersonic portion of this program is a supersonic

extension of the method of Reference I. The only major change

that has been made is in the chordwise integration from the

leading edge to the Mach cone boundary. A coordinate trans-

formation is made for each downwash point such that the

7

chordwise variable of integration, _, varies from -1.0 at the

leading edge to +l.0 at the Mach cone. The basic method uses

the same surface element and pressure function types employed

in the subsonic scheme as shown in Figure 6.

Since the supersonic method was relatively untried in

terms of application to real problems, a significant effort

was devoted to checking out the algorithm. Based on past

experience in steady supersonic flow, it was anticipated that

solution convergence would be slow due to difficulties in

fitting pressure discontinuities imposed by clipped tips,

leading edge discontinuities and interferences with the

smooth functions. Thus, a limited investigation was made for

steady flow in which a newly developed weighting function for

supersonic flow was incorporated. Results of this study will

be discussed in the following paragraphs on steady supersonic

flow. Under unsteady flow, a brief discussion on a difficulty

encountered with the supersonic kernel function will be given

along with a comparison between the AFFDL Mach Box Method 20

and the present method for a wing-tail configuration.
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Steady Supersonic Flow and the

Supersonic Weighting Function

Prior to incorporation of the supersonic weighting function,

the steady supersonic method was checked out and used as a basis

for developing the unsteady flow subroutine. The subsonic

derived pressure functions were used along with the same set of

surface types, all of which are shown in Figure 6. Because the

supersonic weighting function concept is entirely new, the

following discussion will begin with its description and end

with a comparison with a solution obtained with the original

steady supersonic method. A comparison will also be made with

the Woodward method. 18

The supersonic weighting function is an approximation of

the flat plate solutions as obtained from conical flow theory 23

At present, it is applicable only to simple trapezoidal wings;

however, the extension to a general trapezoidal element is

certainly feasible.

The basic equation for leading edge and root characteristics

is the delta wing distribution. For a subsonic leading edge,

m _< i.o
tan ALE

we have

Ap(_) = ( 7.0 a ) i

m m

(B.I)
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where

a =

thus

_(Y-Yl)

x-x I

(Y-Yl

I

m tan ALE

, xl,Y I = Location of leading

edge vertex

For a supersonic leading edge, m >i.0,

q _mZ-1 1 u(_) P(m)

where

[ 1u(a--_ = I, a<l.O
0, E_> 1.0

4m 1.75 + i
m

(B.2)

The term < 1.75+17"0 > which appears in Equations B. I and B. 2

m

is the approximation used for the exact function

ApROOT 4m _ 7.0 a

q = _E'(m) _ _(1.75+ _)

where E' (m) is the complete elliptic integral of the second

kind 21
modulus_. The fact that the function is notof

exact presents no problem since the error is multiplicative

and is automatically compensated for in the collocation

solution.
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A tip correction is included for clipped tips. For a

subsonic leading edge, m_<_1.0, the lift distribution behind

the tip Mach line is constant in the streamwise direction.

The amplitude, a function of span only, is given as

where

AP(a) = (l.7"Oa)I
q 75 +_

E if| i

l
' I I _ |

#_/i_ (ma_)2 V 2m(l-+m)

(B.3)

_, = .... #Y
XTl P- (YTIp'Y)#

= /Value of "a" along the tip

Mach line at span station y /

For a supersonic leading edge, m >i.0, the lift distribution

behind the tip Mach line is given as

Z_p(_)

q

where

(B.4)

( Ap(_)_ = Delta distribution
wing given

q /DELTA by Equation B.2.

YTIP-Y = Value of "A" relative
(_) to forward wing tip.

The functions given above in Equations B.3 and B.4 are exact

shapes as required by conical flow theory. Hence, the approxi-

marion is still off in overall magnitude only.
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A final correction to the delta wing distribution is the

subsonic trailing edge term. This term is approximated as a

multiplicative function applied to the delta plus tip term.

The function is

for 0.0 <-_" 'i I. 0 where

_[III ..
X-XTE

(XTrv-+ Y)-XrE

XTE ffi y(tan ATE)+ XTE V = x position of trailing edge

XTE v = x position of the trailing edge vertex

thus

_ltt

m !

y (X-XTEv)
y (l-re')

m' = _ < 1.0

tan ATE

The form of this approximation is not exactly correct, however,

it seems to be close enough for practical purposes as experience

has shown.

Two examples are shown in Figure 22 of the supersonic

weighting function. The first example is for a rectangular

wing, ARffi2.0, in steady flow at M_ =1.2 and u ffil.0 Rad.

The solid line is the weighting function simply computed at

the span stations Uffi0.1,0.5 and 0.9 with the equations given
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in this appendix. The Mach lines are shown for clarity.

The symbols are values computed by the AFFDL Mach box program

for wing-tail configurations 20 In this case, the approximation

for the elliptic integral is adequate. The second example is

a swept tapered wing of the standard AGARD wing-tail configura-

tion (the true planform is shown). The conditions are steady

flow, M= =1.2 and u-l.0 rad. The solid line is again the

weighting function but this time a uniform multiplier has been

applied to account for the error introduced by the elliptic

integral approximation. The symbols are results from the

Woodward finite element method. 18 The disagreement at the Mach

line discontinuities is due to the inability of the finite

element representation to conform to such characteristics with

a reasonable number of elements.

The supersonic weighting function was incorporated only

into the steady supersonic aerodynamic subroutine. The primary

reason was that the use of different functions for supersonic

flow further complicated the transonic calculations. Thus,

for the purpose of the feasibility study, applications of the

weighting function were pursued in steady flow only in order to

assess its value to the transonic problem.
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An example of some preliminary results is shown in

Figure 23. In this case, the standard AGARD wing-tail con-

figuration is considered in steady M= _l.2 flow with both wing

and tail at G =I.0 rad. Again, the symbols are the results

predicted by the Woodward program. Two collocation solutions

are shown. The solid line is the supersonic method with the

special weighting function. The dashed line is the original

method which is identical to that currently used in the

unsteady portion of the program. The disagreement at the root

is due to some error in the supersonic weighting function

program whose effects apparently disappear in the more outboard

sections. This error is also believed to be responsible for

low pressures on the tail. The solution with the regular

functions shows the usual oscillations about the Woodward

solution but seems to be adequate on the wing. The tail

pressures are somewhat lower than Woodward. This is the same

characteristic that was exhibited in subsonic flow for the

same configuration in Figure 19. Thus, it is felt that the

difference between subsonic and supersonic flow has been

properly predicted with the original method and that the

supersonic weighting function program is affected only by a

programming error, most likely in the kernel function-pressure

function integration for control points near the root.
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Unsteady Supersonic Flow and

the Non Planar Kernel Function

In the development of the subroutine for computing

oscillatory supersonic aerodynamics on interfering surfaces,

a peculiarity of the supersonic non-planar kernel function

was discovered. The kernel function used is a streamlined

version of that presented by Harder and Rodden 22 which is

given in Appendix C. The characteristic was not evident in

steady flow due to the fact that initial applications were to

the AGARD wing-tail configuration for the coplanar case.

It was first detected in the non-coplanar case which is

described as follows.

A problem was selected for verifying the unsteady super-

sonic collocation method by comparison with a solution obtained

with the AFFDL Mach Box Method. The case was a non-coplanar

wing-tail configuration in M_ =1.2 flow for k_ _0.20 with a

unit wing translation mode. The tail was stationary. Both

the wing and tail were rectangular, ARffi2.0, surfaces with a

semi-span of 1.0. The tail leading edge was 0.2 aft and 0.4

above the wing trailing edge. As a result, the Mach hyperbola

on the wing for control points near the tail leading edge was

forward of the wing trailing edge.
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A comparison with the AFFDL Mach box is shown in Figure 24.

The number of downwash points used is NC=6 and NS=4 on both the

wing and tail for a total of 48 downwash points. The Mach box

solution had a total of 80 boxes on the wing and tall plus 109

boxes in the diaphragms. The present method is slightly low

toward the wing leading edge for the real part, but shows very

good agreement elsewhere on the wing. The disagreement on the

tail is a result of the peculiarity in the supersonic kernel

function.

In the derivation of the non-planar supersonic kernel

function based on the acceleration potential, Harder and

Rodden 22 performed the differentiation to obtain the downwash

at the control point prior to integration of the kernel

function-pressure function product as is normally done in

deriving the acceleration potential kernel function. This

resulted in a (3/2) power singularity along the Mach hyperbola

on any surface that was non-coplanar with the control point.

Such a singularity cannot be integrated and the original

derivation provided no means for defining a finite part of

the improper integral. Since the Woodward method did not have

any such problem, it was decided to investigate the taking of

the derivative to obtain the downwash since in Woodward's

method, the derivative is taken after the integration.
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By Leibnitz's Rule, it was found that some extra terms were

obtained if one differentiated prior to integration. These

terms resulted from the fact that if the aft boundary of

integration is defined by the Mach hyperbola, it is a function

of the variable of differentiation. This does not occur in

the coplanar case. One of the extra terms canceled the inte-

grated singularity and hence established the finite part of

the improper integral. The other terms were not so strong,

and for most cases should have negligible effect.

Since the current program does not require the non-

coplanar capability for investigating the transonic algorithm,

the only effort that was made toward solving this problem was

its definition and the derivation of the method for solution.

These results are summarized in Appendix D. The solution

shown in Figure 24 illustrates the effect of the (3/2)

singularity near the leading edge of the tail. Away from the

leading edge, however, the solution approaches the Mach box

results. The slight discrepancy near the trailing edge is

actually due to the erroneous peak at the leading edge of the

tail and is hence of no concern. Thus, it was felt that the

supersonic unsteady method for coplanar interference was

working properly.
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APPENDIX C

THE STEADY AND UNSTEADY NONPLANAR

SUPERSONIC KEP.NEL FUNCTION
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Harder and Rodden 22 have presented a nonplanar supersonic

kernel function in a form similar to that given earlier by

Landahl for subsonic flow_ 3 The basic equation is identical

for subsonic and supersonic flow and is expressed as

K t

e'ikxo ( K2T2 _ xo > B r--j-" KlZl+ r2 /' -

K = 0 , Xo< Br (C.I)

where

T I = cos(@ r - @s)

(zooo   -
r2 = yo 2 + Zo2

R 2 = Xo 2 - B2r2

Xo,y° Zo = x-_ y-v z-__!_
' bREF ' bRE F ' bRE F

k = bREF : bRE F = Reference Length (C.6)
U

B -- M2-I (C.7)

The coordinates Xo, Yo, Zo are the non-dimensional distances

between the sending (pressure) point at ( _, 77 , _ ) and the

receiving (downwash) point at (x,y,z). The angles @r and @s

are likewise the inclination of the sending and receiving

surfaces relative to the x-y plane.

(C.2)

(c.3)

(C.4a)

(C.4b)

(c.s)
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The KI and K2 terms are quite complex and are given in

Reference 22 as

" Mr2 I e'ikru2 e "ikrUl ]
- I 1

/

!(c. s)

{ [= B 2 (l+u22) r2 Mru2
K2 Mr 2 -

,R(l+u22) 3/2 _ - _ J

- iM2r3k / e "ikru2

R2 (1+u22) 1/2 J

where

l+u12 ) 3/2

B 2 (l+Ul 2) r2

R 2

+ iM2r3k I e'ikrul +

R2 (l+u12) i/2 J
312

+_ul]
R

and

xo-MR = Xo-MRu1" -f_=, --/_-

J_2 = 1-M2 =-B2

u2 = Xo+MR = _ xo+MR
B2r

2 e_ikruII = du

u I (i+u2)3/2

(c.Io)

(c.n)

212 = e'ikru du

Ul (i+u2)5/2

(c.z2)
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Through some algebraic manipulations, it is possible to simplify

the above set of equations.

The result of simplification in steady flow yields the

following expression

KSTEADY ffi _ r_ R _

which contains a singularity of strength

(c.13)

as R-_O along the Mach cone boundary. This singularity cannot

be integrated for the nonplanar case but does not appear for

coplanar configurations. The finite part of the improper

integral of the singularity does exist, however, which is

discussed in Appendix D.

The final form of the kernel function in unsteady flow

is not as simple as it is for steady flow, yet it is more

convenient than that given in Reference 22. The following

expressions for K I are used in Equation C.I.

K I ffiKII + KI2 (C.15)

where

Kll ffi + 1 - Ill (C.16a)

K12 = - 1 + I12 (C.16_
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For Ul>__O,
Ii

IIi = ikre-ikrul _ an El n

n=l nc+ikr

or for u I< 0,
ii

an El nIIi = ikre'ikrul nc-lkr

II

+ 2 [e'ikrul - I + (kr)2 n=_l an](nc) 2+Oct) 2

and Ii

I12 = ikre'ikru2
an E2 n

nc+ikr

where

zI = e-C[Ull
C 0.372

E2 = e'CU2 /
J¢

For the K 2 term, the following expressions are used in

Equation C. i

((C. 17a)

(C.17b)

(C.17c)

(C.17d)

(C. 17e)

K2 = K21 + K22

where

(c.18)

(C. 19a)

(C.[9b)
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For u I_> 0,

Ii

121 = ikre-ikrul

n=l

bn El 2n

2nc+ikr

or for u I< 0,

Ii

El 2n
121 = ikre-ikru I

'2nc-ikr
n-i

Ii

+ 2 [e-ikrul "i + (kr)2 n_I=

and

Ii

122 = ikre-ikru2 _ bn E22n
2nc+ikr

bn

(2nc) 2+(kr) 2

(C.20a)

(C.20b)

(C.20c)

The an and bn coefficients in the series summations in

Equations C.17 and C.20 are given in Table C.I. The an set

are those given originally by Laschka 24 for the approximation

Ii

I u )(l+u2) 1/2 " i = = ane "ncu
(C.21a)

The bn set are those given by Cunningham I for the approximation

ii

u3 - bne'nCu(i+u2)3/2 I) _ n_=l
• (C.21b)
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Table C. 1

D
m

1

2

3

4

5

6

7

8

9

I0

ii

a_

-0.24186198

2.7968027

-24.991079

111.59196

-271.43549

305.75288

41.183630

-545.98537

644.78155

-328.72755

64.279511

bn
m

-3.509407

57.17120

-624,7548

3830.151

-14538.51

35718.32

-57824.14

61303.92

-40969.58

15660.04

-2610.093
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APPENDIX D

TREATMENT OF THE IMPROPER INTEGRAL

OF THE NONPLANAR SUPERSONIC KERNEL FUNCTION
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due to a pressure difference Ap at _, _,

positive z, $ direction, is as follows:

The potential at point x, y, z for a supersonic doublet

directed in the

ZoXoD(Xo-Br)

r2R

_pU

_(x, _ ,y, n ,z, _ )ffi - 4 _ p

where all terms are as defined previously and

i, Xo _ Br ]D(xo-Br) ffi 0, Xo< Br

The total potential at (x,y,z) due to a surface, S, of

constant p distribution is the integral over S as follows:

_ Apu frjj z°x°D(x°-Br) d_ dv
¢(x,y,z) - 4_p S r2R

The downwash in the z direction at point (x,y,z) is then

w(x,y,z) ffi_-_ ¢ (x,y,z)
Oz

The Woodward method 18 uses this sequence of operations where

differentiation at the downwash point is performed after

integration of the total potential.

In the kernel function formulation, following Harder and

Rodden 22 and Landah123, differentiation is performed before

integration. The interchange is permissible as long as the

limits of integration are not a function of the variable of

differentiation, which in this case is z. For subsonic flow,

(D.2)

(D.3)
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the integration limits are defined completely by planform

boundary. In supersonic flow for coplanar surfaces, the

limits are defined by planform and the forward Math cone whose

location is independent of z. For nonplanar configurations in

supersonic flow the boundary is again defined as for the co-

planar case, however, the Mach cone boundary is now a hyperbola

whose location is a function of z for a fixed $.

Leibnitz's rule for differentiating an integral with

respect to a parameter is as follows:

b(t)

a(t)

['1
_b(t)
_t

b(t)

Ot a(t)

The limits a(t) and b(t) are constant in subsonic and coplanar

supersonic flow; thus, their derivatives are zero. For the

noncoplanar case the derivatives must be accounted for.

Starting with the double integral for w(x,y,z), we have

_I _LE

(D.5)

where _I and _2 are the spanwise limits defined by the Mach
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cone intersection with the planform boundary. The limits _ LE

and _ mc are the leading edge and Mach hyperbola boundaries.

Applying Leibnitz's rule to the spanwise integral yields

ff _(x,y,z) = G(x,y,r/2,z,_" ) one2
Oz Oz

(D.6)

172

0_I f
-G(x,Y,nl,Z,$) _ +

_mc

f _(x,_,y,r,z,_)d_ dR

Oz _LE

where

G(x,y,n,z,¢) -

The inner integral in Equation D.6 also becomes

_mc

h (L O_mc
_(x,_,y,V,z,_)d_ ffi _(X,_LE,Y,V,z,_) Oz

E

- #(x,_mc,y,17,z,_)

_:inc

o7- %E ' '
(D.7)

In Equations D.6 and D.7, all of the extra terms are nonzero

O_LE When the Mach hyperbola intersects
with exception of -_-_-.

the planform at say a streamwise tip, the corresponding _I

or _2 derivative is also zero.
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All of the nonzero terms in Equations D.6 and D.7 should

be accounted for; however, in most cases the 71 and 7 2

derivatives will contribute very little and may usually be

ignored. The stronger term results from O_mc to which we will
Oz

restrict our discussion. The form of _mc is

_mC = X - Br

which yields

O_mc Or ffi _ Bz_.__o
Or Oz r

Now, the nonzero derivative term in Equation D.7 becomes

_(x, _mc,y, r],z,_)

but,

0_mc = ApU Bzo [ZoXoD(Xo-Br)]

0z 47rp _ [ r2R J_= emc

zoxoi >
-_ R _= _mc -_- _-_mc

which is square root singular. Thus, the term becomes

0_mc

_(x, _mc,y,r/,z,_) OZm

_PU

4_p B2Zo2 (LIM i )
(D.9)
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The integral in Equation D.7 contains the differentiation inside

the integral sign, thus

_mc

_L a _(x, = - _pu,y_,z_)d_

E _" 4_rp

but

_mc

_ILE _z L r2R ]

± [zoxov<xo-sr)]= [
_z [ r2R J r2-"RL 2Zo 2 Zo2B 2 ]i -j-+ _ (D.ZO)

thus

_mc

_L ---__(x _,y V,z,¢)d_=
E @z ' '

_mc

_pu f
47rp

_LE
Zo2B 2 ]

xo I - 2z°2 + d (D.II)
\

which contains the improper integral

_mc

Is = _ ApU F XoZo2B2 d_

4_p _LE r2R3

(D.12)

due to the term R3 as _-_mc which is a 3/2 power singularity.

Evaluating Is gives
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Inserting Equations D.9, D.II and D.13 into Equation D. 7,

we obtain

_mc

_z
¢(x,_,Y,77,z,_)d_

which becomes

_mc

+ _ i- d_

_mc

_fb-F
_LZ

¢(x, _,y,_,z,_)d_ =,

_mc

[ ]__ ÷ f _o 2..021 d_
_LE r2 _(D. 14)

The extension of Equation D.14 to nonparallel surfaces and

unsteady flow follows along the same path of logic. For the

more general case where Ap is a function of _ and _ ,

the value used in Equations D.9 and D.13 for Ap is Ap(_mc,_).
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