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ABSTRACT

The equations for the NACA 4-digit and 4-digit-
modified sections are in algebraic form and easily
incorporated into various geometrical procedures that
define a vehicle and any necessary flow field grid. The
6-series and 6A-series airfoils are more complex
because they are developed by conformal mapping
procedures. Even though there are computer programs
available (refs 1-3) that can produce a large table of
points on the surface of the airfoil, there is a frequently
expressed desire for an algorithm that will calculate the
upper and lower ordinates and slopes of a cambered
airfoil at a specified chord location that requires no
interpolation on the part of the user. The purpose of this
paper is to present such an algorithm and describe
subroutines that may be used for these calculations. A
public domain computer program incorporating these
procedures has been written and may be downloaded
from the author’s web site. This program is modular,
allowing its internal procedures to be used in other
programs.

INTRODUCTION

In spite of the advanced airfoils available to the modern
designer, the NACA series of airfoils continue to be of
interest. Computer programs were written in 1974-1975
(Ref 1-2) and updated in 1996 (Ref. 3) that enable a user
to produce a table of surface coordinates of an airfoil
with thickness and camber from the NACA families.

These original programs have been included in the
collections of public domain aeronautical software
distributed by the author (Ref 4). Users of these
programs identified two areas where the programs did
not totally satisfy their needs. Firstly, many users wanted
to specify the chord position of the airfoil and compute
the upper and lower ordinates of the surface directly
above and below this chord point. The output from the
programs of refs 1-3 displaces the upper and lower x-
coordinates because the thickness is applied
perpendicular to the mean line. Secondly, many users
wanted subroutines that performed these calculations
that could be incorporated in a larger analysis or design
program. The monolithic structure of the programs of
Refs 1-3 discouraged any such use. In order to satisfy
these user requirements, the present algorithm was
developed.

THICKNESS OF 6- AND 6A-SERIES AIRFOILS

The NACA 6-series airfoils are calculated by a
nonlinear mapping of a unit circle by a four-step
algorithm that uses a pair of functions defined on [0,�]
named � and � that were chosen to satisfy a prescribed
velocity distribution about the airfoil. The definition of
the � and � functions is described in refs 7-8. Each of
the five members of the 6-series family and the three
members of the 6A-series family has its own � and �
functions. These functions are multiplied by a scale
factor to produce airfoils of various thickness to chord
ratios. The mapping is shown in figure 1. A given value
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of the scale factor is used to multiply both basic
parameters giving new values of the  � and � functions
that will be used in the mapping. A given value of scale
factor will produce a certain thickness to chord ratio of
the airfoil in the normalized physical plane. It is not
known in advance just what thickness will result from a
given value of the scale factor. The algorithms of
references 1 and 3 use an iterative procedure to
determine the scaling factor required to achieve an
airfoil of a given thickness.

The algorithm used in the present method is based upon
a study of the scaling factor required to achieve a given
thickness. Calculations were made of the thickness
resulting from a given value of scale factor for each of
the eight airfoil families. The results are shown as
Figure 2. The dependency is somewhat nonlinear but
easily fitted as a polynomial with four coefficients. The
fitting is done on the data as if scale factor c is a
function of t/x.

c=K1(t/c) + K2(t/c)**2 + K3(t/c)**3 + K4(t/c)**4

K1 K2 K3 K4

63 8.1827700 1.3776209 -0.0928517 7.5942563

64 4.6535511 1.0380630 -1.5041794 4.7882784

65 6.5718716 0.4937629 0.7319794  1.9491474

66 6.7581414 0.1925377 0.8128826 0.852090

67 6.6272890 0.0989966 0.9675977 0.9053758

63
A

8.1845925 1.0492569 1.3115094 4.4515579

64
A

8.2125018 0.7685596 1.4922345 3.6130133

65
A

8.2514822 0.4656936 1.5013018 2.0908904

 
Now, for a specified family and thickness, the thickness
distribution may be determined without iteration. From
the thickness, the scale factor is computed from the
polynomial function shown above. Then, the scale
factor is used to multiply the basic values of the � and �
functions for this airfoil family. These scaled � and �
functions are used in mapping the z-plane to the z’-
plane shown in Figure 1. The Joukowski function 

�  =  z’ + 1/z’
then maps the z’-plane into the zeta-plane and these
results are normalized so that the leading edge is at x=0

and the trailing edge is at x=1.

ORDINATES AT A SPECIFIED X-COORDINATE

The calculation as described in the previous paragraph
is usually done by selecting a uniformly distributed set
of points on the circle in the z-plane. The resulting
points in the normalized zeta-plane will be nicely
distributed, but not, in general, at the points desired by
the user. The solution is to interpolate in the tables of
computed points to get the desired x-coordinates. Many
people have encountered difficulties in doing this near
the leading edge because the slope of the thickness
distribution becomes infinite there. The preferred
technique is to define a parametric variable and express
both x and y as functions of this variable. Arc length is a
rather obvious choice and arc length can be
approximated by inscribed arc length quite well if there
are sufficient points in the data set.

In figure 3, the x- and y-coordinates of the scaled airfoil
are shown as a function of arc length. The arc length, s,
is taken as zero at the trailing edge, proceeds forward
along the upper surface reaching a value slightly greater
than one at the leading edge and then proceeds rearward
along the lower edge to its final value of slightly greater
than two at the trailing edge. The x- and y-coordinates
are seen to be smooth functions of s with smooth
derivatives whose magnitude never exceeds one (see
Figure 4 for derivatives). With no troublesome infinities,
the interpolation is quite straightforward. For a given x,
the value of s is computed by the inverse of the x vs. s
function and from this value of s, the corresponding
value of y is computed. Cubic splines are used for the
interpolation.

The algorithms described in the paragraphs above
enable us to produce a portable computational
procedure. Given an airfoil family, max thickness and a
table of x-coordinates along the chord, a table of
corresponding y-coordinates is produced. In fact, the
first and second derivatives may also be computed. This
satisfies the second of the user needs outlined in the
introduction. This algorithm has been coded as
Subroutine Thickness6 in the Fortran module.

CAMBERED AIRFOILS AT SPECIFIED X-
COORDINATES

Having the thickness and y-coordinate of the mean line
at each desired x-coordinate enables one to compute the
table of ordinates of the upper and lower surfaces of the
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cambered airfoil. Users are frequently distressed to find
that the output tables are not at these x-coordinates, but
at slightly different values. The reason for this can be
seen from Figure 5. As explained in Refs 1-6, the
thickness is always applied perpendicular to the mean
line and the computed points on the upper and lower
surfaces are shifted from the original values on the
chord. 

sinupper meanx x t θ= −

cosupper meany y t θ= +
sinlower meanx x t θ= +
coslower meany y t θ= −

In these equations, t is one-half the thickness. The result
is shown in figure 6. For a given distribution of points
along the chord, the black points are those that would be
produced by the programs of ref 1-4. To satisfy the
user’s needs, the white points should be output by the
computing procedure.

Again, the solution is interpolation using both x and y as
functions of a parametric variable, namely arc length, s.
For a given x, one finds the value of s that corresponds
to this value of x on the upper surface and obtains y at
the same s. This process is repeated for the lower
surface. The derivative dy/dx is computed by computing
dx/ds and dy/ds at the interpolation point and computing
dy/dx = (dy/ds) / (dx/ds). The algorithm described here
is quite general and does not require the thickness
profile or the mean line to belong to the NACA families.
Figures 7 and 8 illustrate the interpolation process for a
cambered airfoil.

COMPUTER CODE

A number of functions and subroutines have been
written and checked that implements the algorithms
described above. These procedures and the mean line
subroutines that are essentially unchanged have been
coded in modern Fortran. The six-series and six-A-
series thickness calculations use the COMPLEX data
type of Fortran and thereby are much simpler to
understand compared to explicitly working out the real
and imaginary parts of the functions. The procedures
have been encapsulated in a module called
NacaAuxiliary. Users who wish to incorporate these
algorithms into their own computer programs can simply
include this module. Some of the public procedures in

this module are:

MeanLine2(xmax,ymax,x,ym,ymp)
MeanLine6(a,x,ym,ymp)
ComboMeanLine6(a,cl,x,ym,ymp)
MeanLine6Modified(cl,x,ym,ymp)
Thickness4(tc,x,y,yp,ypp)
Thickness4SharpTE(tc,x,y,y,yp,ypp)
Thickness4modified(tc,xc,x,y,yp,ypp)
Thickness6(family,tc,x,y,yp,ypp)
CombineThicknessAndCamber(x,yt,ym,ymp,
   xupper,yupper,xlower,ylower)

In the subroutines above, x is a given array of points in
fraction of chord. The arrays y, yp, ypp are output
arrays of the same dimension as x with corresponding
values of y-coordinates, derivatives and second
derivatives. The arrays ym and ymp are output arrays of
the same dimension as x with corresponding values of
mean line y-coordinates and slopes. a is the chordwise
extent of uniform load and cl is design lift coefficient.
Consult the user guide accompanying the program for
fuller explanations of these and other parameters
associated with the subroutines and functions.

A program that uses this module has been written to
emulate the original programs called NACA4 and
NACA6 that were based on the 1974-1975 programs of
references 1,2. This program allows a user to select an
airfoil of a given family and thickness and combine it
with an arbitrary mean line and print out a table of upper
and lower ordinates and slopes at a user-specified set of
chord locations. 

All of the code mentioned above has been declared
open-source or public domain and is available from the
author’s web site at http://pdas.com. 

CONCLUSIONS

An algorithm that generates a table of coordinates of a
cambered NACA airfoil at a user-specified set of chord
locations has been described.  The procedure is modular
and may be easily be incorporated into other analysis or
design programs. The algorithm has been coded and
compared with existing programs. The public domain
routine is coded in Fortran and may be downloaded
from the author's web site.
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AIRFOIL DEVELOPMENT BY TRANSFORMATION

φ

z-plane z’ = z * exp {(ψ−ψ0)+ιε}

θ

z’-plane

zeta = z’ + 1/z’

zeta-plane

normalized zeta-plane

Figure 1 - Airfoil Development by Transformation
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VARIATION OF T/C WITH SCALE FACTOR
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Figure 2 - Variation of t/c with scale factor
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63A018 AIRFOIL IN PARAMETRIC COORDINATES
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Figure 3 - Airfoil in Parametric Coordinates

DERIVATIVES IN PARAMETRIC COORDINATES
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Figure 4 - Derivatives of Airfoil in Parametric Coordinates
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COMBINING MEAN LINE AND THICKNESS

chord line
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t is one-half the thickness

Figure 5 - Combining Mean Line and Thickness

OUTPUT POINTS

Figure 6 - Output Points
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65-415 AIRFOIL IN PARAMETRIC COORDINATES
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Figure 7 - 65-415 Airfoil in Parametric Coordinates

DERIVATIVES IN PARAMETRIC COORDINATES
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Figure 8 - Derivatives of Cambered Airfoil in Parametric Coordinates
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