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Abstract

This paper srmmarizes the research effort, both
theoretical and. experimental, that bas beeq reported.
slnce the 1!))+ 

"*rr"y 
by Lawrence and. F1ax2 and.

ind.icates some of the promising id.eas for future
progres$ in the subject of ving-bod.y interference at
supersofiic speed.s. Some early method.s and. results
are compared. to computer-oriented. method.s for obtain-
ing solutions to wing-bod.y interference problems.
The problem of assessing the accuracy of method.s
based. on J-lnear theory is introd.uced.2 and the impor-
tance of nonlinear effects is d.iscussed.. Proposals
for accounting for variatj-ons from linear theory
without taking the fuIl step to exact sol-utions are
reviewed..

Introd.uction

When a proposed. aircraft or missile is in the
prelirninary d.esign and. d.evel-opment phase it is nec-
essary to have fairly accurate estinates of the aero-
d.ynamic l.oading that wil-l be encountered. d.uring
flight. The cost of obtaining such inforre.tion f?om
extensive wind. tun::el tests has always been high and
seems to inerease greatly with each new project.l
The slowing or reversal of this trend lies in the
d.evelopment of theoretical- methods for pred.icting
the aerod.ynamie characteristics of proposed vehicles.
fhere is a large bod.y of literature on the aerody-
na,mics of vings and. bod.ies but a relative scarcity
of method.s for pred.icting the interaction betveen
these components. The early vork of Ferrari,
Nielsen, and others llas in some respects d.iscourag-
ing, since it indicated. that great amormts of analy-
sis and. computation were required" to obtain sol-utions
for even the simp].est configurations. The work of
this era was rrery wefl summarized. by le.vrence and.
Flax in their 19)\ survey article.2 At that time
the subject seems to have entered. a somnofeseent
period. from lrl:ich it has only recently been aroused..
fh.e new interest is d.ue, of course, to the availabil-
ity of powerfl-tJ. computing rnachinery to automate the
extensive numerical- work that appears inherent in
the solution of a problem of this complexity.

Notation

d.erivative of the modified Bessel f\rnction
of ord.er 2n

lvlach nrxrber

coord.lnate in d.irection of outward. norma]-

eomponents of the outward.
normal vector to panel i

P increment in pressure eoefficient d.ue to
angle of attaek

(&); pressure differential across panel i

Kr2n

M

n

(ni);,(ni)y,(r,i),

Re

radlus of cylindri.ea1. body

speed. of sound.

aerodynamic influence coefficient

pressure coefficient

flrnctions d.enoting the axial variation of
the 2nth tr'ourier component of velocity
induced on the body by the wing

d.ynam:ie pressure

cylind.rlcal coord.inate system, x para3.le1
to flee strea,:n

Reynold.s number

I-aplace transform of x coord.inate

perturbation velocity components ln the x2
y, and. z d.irections

mafflitud.e of Ioca1 velocitv
fu==(u*+u)2+,r'+#l

free strearr velocity

perturbation velocity nozual- to d.efining
surface of panel i

rad.ial component of perturbation velocity
(viaaial=v2+#)

special flrnction d.efined. in Ref. ,

cartesian coord.inate system, x paraI1e1 to
free stream velocity2 see Fig. 1

x-coord.inate with xr = 0 taken at 1ead.lng
edge of ring

x-component of velocity induced. on panel. i
by unit load on panel i

angle of attack

^.ffi'--
ratio of specific heats

ratio of d.istance flom bod.y centerline to
wing semispan

variable of integration

perturbation velocitY Potential
bod.y-aIone veloelty potential generated. by

kth steP in iterative method.

Laplace transform of Pi (transform on the
x-coord.tnate)
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jnterferenee velocity potential (transform
method )

wing-alone veloeity potential (transfom
method.)

wlng-aIone velocity potential generated by
kth step in iterative method.

isoLa,tetl. eomponents. Subsequent terms in the sum

satisf) boi.rndary cond.itlons flom the veloclt4,-{1ov'r
field of the previous teru. For example2 qllo/
satisfied. the bound.ary eond.ition

4k)
&1

&a[t-'l
on the v'ing

General Frob].em of Wine-Bod.v fnterference

fhe wing-bod.y eombinatlon perturbs a uniform
flee strea.:n of velocity Uoo paraI1el to the x-axis
(lig. f). The perturbation velocities in the xt Yt

z

FIGJNN 1. COORD]]SATE SYSTEM

and z d.irecti-ons are la,beIed. 1)t Yt and. w; respec-
tively. In most of the investigations reported. here,
it has been necessary to use the equations of gas-
d.ynamics in the linearized. forrn although some of the
numerical method.s to be d.escribed. are free from this
limitation. The general objective is the deveJ-op-
ment of computing procedures that are applicable to
a wid.e variety of eonfi.gurations, rapid. and. straight-
fornrard. in applleation, and. sufficiently accurate to
be of use in the d.esign and. analysis of praeti-caI
airplane d.esigns. In many investigations, it has
been necessary to restrict the geometry to a spe-
cific configuration in ord.er to simplify the
analysis to a point vhere n-umerlcal results could. be
obtained.

Computine Methods Based. on zed.

Equations_of Flov

ve lt{ethod.

In so1-ving eomplex prcblems in aerod.ynamics; 1t
is the usual practlce to exploit previ-ous1y d.erived.
results to as great an exbent as possible. In solv-
ing problems in w-ing-bod.y interference, a J-ogical-
first approach is to d.etermine hov a solutlon could.
be constructed. using the method.s d.eveloped. for iso-
1ated. wings in conjr.rnution vith methods developed.
for isolated. bod.ies. fhe ving-alone solutior:. w111
satisfy the cond.ition of tangential fJ-ov on the sur-
face of the ving but not on the bod.y, and. vice versa
for the bod.y-alone solution. In the iterative
method., these wing and. bod.y solutions are used. in
alterrrate steps. h each step a fJ.ov field. is cre-
ated. that exaetly caneels the velocity components of
the previous step that penetrate the surface. In
mathematical terms, the velocity potential of the
configuration is expressed as a sum

and.

an An
on the body

nhere A/dt signifies d.ifferentiation with respect
to the d.irectlon of the outuard. norrnal vector' The

process lr1II eventuaJ.ly converge, although it bas

i."rr", been carried. out for terms higher than k = 1
because of the length and difficulty of the numeri-
ca1 computations. It is implicltly assu:ned' tbat
there is available a i^r'ing proced.ure and a bod'y pro-
cedure for solving linear theory with arbitrary
bound.arv cond.itions. In the original paper on this
subiectls Ferrari proposed. the use of multipoles for

the solution of qdk) and a Fourier ana].ysis of the

strnrnrise 1oad. d.istribution for the d.etermlnation of

o(k). These parti.cul-a,r ehoices are appropriate only
YT,7

to the case of high aspect ratio rectanguJ-ar wings
of zero thickness mounted. in the midwlng position'
The ad.aptatj-on of this method. to more general con-
figurations d.oes not appear feaslble because of the
lack of satisfactory computing proced.ures for the
isolated. eomPonents.

flhe Transform Method.

At each step in the iterative proeed'urez the
wing flolrr field generated is exactly tbat whieh will
canceJ. the flour through the wing ind.uced. by the bod'y

of the previous step. If it turned out that the
fJ-ow through the wing at any step vere zeroz the
correction required. vould. also be zero arrd' the
series vouId. termlnate. For the special. case of a
wing nominalJ-y in the z -- O (horizontal) pl-ane on a
boay of revolution at zero angle of attack this con-

d.ition of zero flor,rr can be satisfied.2a thereby giv-
ing a complete solutlon in a finite nuniber of steps'
ThIs special case ls not as restrlcted' as it might
appear because the general case of a vi'ng-bod'y combi-
rritiot at angle of attaek can be d.ecomposed' into tvo
setrnrate solutions - one vith the bod'y alone at the
d.esirea angJ-e of attack and. another vith the bod'y at
zero angLe of attack and. an appropriate d'istribution
of wing ineid.ence (see Fig. 2).
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The terms correspond.ing to k = 0 in the sr;mnati-on
are the r,,ri.ng-a1one and. bod.y-a1one potentials for the
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T,IHJRE 2. DECOMPOSITTON TIVIO SIMPI,ER

COMB]NATIONS

The case of the eanibered. and. twisted' wing on a
bod.y at zevo lncid.ence in analyzed. by consld'eri-ng
the perturbation velocity potential the sum of tvo
parts; 9w due to the v'ing alone a'nd' qi due to
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interference. As j:r the lterative method.2 it is
assumed. that a proced.ure is available for the wlng-
alone sol-ution. This florr fieJ.d. d.ue to the wing
alone wi1-3- prod.uce a velocity component norrral- to
the body and therefore wiJ-l vloJ-ate the boundary
cond.iti-on on the body. The requirement that the net
rad.ial velocity of the conftlnation rmst be zero on
the bod.y provid.es the bor:ndary cond.ition'for the
interference potentlal, namely,

toi--qb
dr- Er' tr-q

Up to this point; the procedure is identical- to that
of the iterative method., but nor,,r an ad.d.itional
requirement is ad.d.ed. to ensi;re that the lnterference
fl-ow field. nmst have zero d.or,nnuash ln the pLa.ne of
the wing. Stated mathematically,

h.
;f ("ro1 =or rla

fhis cond.ition can be satlsfied. by assr;"ming that the
interference potential can be expressed. as a Fourj-er
coslne series at each longitud.inal station

,q
ei(rrerx) = L Vn(rrx) cos no

n=O

Since the velocity d.istrlbution must have right-lef.t
s;nmmetry, alJ- od.d-nr:.nbered. terms in this series rmrst
be zero. One must a1-so note, hoveverl that the
assumption of a cosine serles implies that the
rad.ial veJ.oclty viII have aJI even varlatlon with e.
fhis is the velocity that is to cancel the wing
veloeities, and. therefore the rad.ial component of
velocity lnd.uced. by the wing must have an even vari-
ation with 0. This is true onJ-y for the ving thick-
ness case and. not for a thin l-ifting surface.
Howeverz if the leading ed.ge of the wlng is super-
sonic, the upper and. lower surfaces of the liftir:g
ving conflguration may be analyzed. separately. If
the J.eading edge of the wing is subsonic then onJ.y
the wing thickness case can be solved. by thls method..

To complete the solution, following Nlel_sent s
developmentrs the problem is tra.nsforrr"d. by use of
lhe LapJ.aee transfornation applied to the x-variabl-e
(x is para1J-el to free-stream velocity). The trans-
form of the potential- is also a cosj_ne seri.es of
even muJ-tlples of 0 and a general sol_ution to the
transformed partial d.ifferential_ eqr-latlon is shown
to be given in terms of modified Bessel_ functions.
The boundary condition
de. dco-- S / \
nf, (",0) = - # (" ,o) = )_ t"" G) cos 2no

supplies the final uolrrtiooo=o

\E K-- ( sr)
oi(s,rro) = ) r'rrr(") fffui cos 2no

ri='" 
urr2n\ u /

where Frrr(") is ttre Laplace transform of trr(xf Ba).
The j.nversion of this equation is accomplished. by
use of the so-caned. "W flrnctions" d.efined. by

wrrr(xrr) = J-1 [."("-') _H#.*]
n = Ori'r?r...

The soJ.utlon to the problem can be r,rritten

ml-x
=Icos2nol{t

n=o L

foi
bx

a f2n(grrr* G
f,G-;.,)

B

- r + L - Et
A
lae l4

The I,[ functions are tabulated. up to Wro in Ref. 6.
tr'?om a comtrutational point of view, one first d.eter-
mines the wing-alone fJ-on field.l flom whlch one
obtains &pr/D, (are rx). At a fixed value of x2 the
velocity ls anal-yzed as a Fourier cosine serles and.
the coeffi.cients of the various harmonics are the
fUnctions fo2f22fa2 . . fhese f\rnetions are
used. in carrying out the integratlon shor,m in the
solutlon above.

fhis nethod has been applied to the problem of
a symmetrical nonliftlng wed.ge-section n-ing mou-nted.
on an infinite cy1lnd.rical- bod.y at, zeyo angle of
attack. The wing-of rectangular planform r^ras ana-
Lyzed. by Nielsenrt anil d.elta wi.ngs were analyzed. by
Randa1l7 and by Chan and Sheptrnrd..8 Nielsen al-so
obtained. solutions for the rectangular vi.:rg-bod.y com-
blnatlon at angle of attack. In general, four terms
in the infinite series were found. to give satisfac-
tory convergence except near the J-ead.ing ed.ge of the
lring. Here, the series converges so slowJ.y that the
result is of no value and. the pressure ln this
region rmrst be obtained. by erbrapolatlon.

The transfo:rn method. is a quite sa'bisfaetory
vay to obtain solutions for the case of symretrical
wed.ge-sectlon wings of rectangular or de1ta pl"a,nform
at, zeyo angle of attack. A nu:riber of cases are pre-
sented in Ref. B; by lnterpolation one nay obtain
solutions for other combinatlons of sveep angle and.
I{ach nu:rber. The exbension to the J.lfbing case
would require the eomputation of fur/d" for a
twisted. ving since the bod.y-ind.uced. upwash varies
across the span. This difficulty, plus the faet tbat
vlng solutions are not avaiLa.ble for iltany configura-
tions other than the rectangular and. d.eIta pJ.a,nforms,
has d.j.scouraged. the d.evelopment of thls method. as a
design tool. A further deficiency is the fact that
the solution is valid onl-y up to the trailing edge
of the wing and. caru:ot be used to compute afberbod.y
load.ings.

PaneL Method. (Aesodyoafl:ic Influence Coefficients )

tr: the diseussion of the iterative method. and
the transform method., it was stated. that one of the
princlpal. d.eficiencj.es for practical use r^ras the
1-aek of solutions for ving al-one when the 1ocal arrgJ-e
of attack varies in a corrplex fashion over the ving.
Therg are numerical lifting surface theorles avaiJ--
ablee that could. be used. for this calculation.
Instead. of using such a theory in conjunction with
either the iteratlve method. or the transform method.,
a complete numerical ving-bod.y proced.ure carr be for-
mulated. that is free of the restri.ctions and l-lmita-
tions of either of these other method.s. The proce-
d.ure outl-ined here forms the basls for a computer
programlorll sponsored. by NASA-Ames and. mad.e avail-
able to the U.S. aviation ind.ustry.

Numerlcal lifbing surface theories for super-
sonic appltcation have been primarily of the "box"

3
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or "paneI" typ" - that is, the conflguratlon is sub-
d.ivid.ed. into a large number of panels that cover the
surface (fig. 3). The assu:nption ls nade that the
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FIfiJRE 3. TYPICAL PANm, LAYoUT FoR WING-BoDY
COMBI]VATfON

continuous functions representing the pressure, sur-
face sIope, velocity components; etc.1 uay be approx-
imated. by fumctions that are consta,::t over each
individual panel. I-r:. this vay, the steps in the
analysis that wouJ-d require the appllcation of calcu-
1us and. d.ifferential equations nor,r require only sj.m-
pIe arlthmetle and. linear algebra. These processes
lend. themselves very weJ-l to autorratic computation.

The basic building block for the solution by
panels is the solution for the ind.ueed. velocity at
all points in space for a given thin J-ifting panel
of constant pressure differentiaJ.. The solution
must be given as one of a manber of d.ifferent cases
depending on the position of leading a.nd trailing
ed.ges relative to the }4aeh lines; these are tabu-
Iated1o and. have been prograrmed. for automatlc com-
putation.ll Suppose the panel-s are nr.mbered. from 1
to N. For each trnne1, say number j, d.efine Xij
to be the x-component of velocity ind.uced. on
panel. i by a unit load on panel j (unit load. means
(Ap).i/q. = 1. Then, if the trnnels actual.l-y bave pres-
surei or (lp)r, (ap)r, (+)r, across them,
the x-component of veloeity on trnneI i is found. by
sunnning al-l of the ind.ivid.ual veloeities.

Nt (ap);
ui= 

/_ 
Xijl-, i=lt2s .rN

j=r
Simi1-ar eqr.ratlons are d.eveloped. for the y- and.
z-components of veloclty. These JN equatlons are a
sol-utlon to the w"ing-bod.y interference problem vhere
the pressures are given and. it is d.esired. to find.
the induced veloeities (and. hence the shape of the
configuration) at each point on the surface. How-
€v€T, i.t is the inverse of this problem that is of
interest, and. to solve this problem the bound.ary con-
d.itions must be formrlated.. In general, if the
vectoruii that is nonral to panel i is resolved
into components (ri)*, (ri)y, (ni)r, then the bound-
ary condition to be satisfied 1s

(ni);(ui + u*) + (ni)y"i + (ni)zvi = o

wi (t'i)* dz t- - \

- = - = T- (Jocal_ surrace sJ-ope/uoo \nilz * (*i* panels) -

0n the bod.y, the boundary condition may be written
in eyIlnd.rical. coord.inates as

(ni)*(ui + u-) + (ni)r(vradial)i = o

since the nornal vector to a bod.y of revolution has
no 0-component. Therefore,

("r"Si4)i 
= - lll" - + (roea1 surraee slope)uco (ni)r d* til; p;;;i;i- -- -

x

fhese two bound.ary cond.itions can be wrltten as a
single equation

v_.

ui = (ro"al surface slope),
@

where +i represents the perturbation veloeity
(scalar)-normal to the nominal defining sr,rface of
the configuration. This point 1s frequently confus-
1ng and requi.res f\-rrther clarification. The wing-
bod.y geometry is d.efined. at some reference cond.ition,
usual.J-y wing and. bod.y at zero incid.ence and. no cam-
ber or twist on the wing. The j.ntrod.uction of inci-
d.ence is d.one by giving values of local- surface
slope at each paneI. fhe positj.on of the trnne1 is
assr:ared. unchanged.. fhis is a conrmon practi-ce in
ving theory, whereby the bound.ary cond.itions are
applied at a nominal position rather tban at the
actr:al- position. So, the velocity V1 represents a
veloclty norrnal- to this original d.efi::ing surface,
not the actual surface.

For a given pressure d.ifferential on any trnnel,
say panel j, there is a certain velocity ind.uced.
normal to the nominal d.efining surface of every
other paneI. By linear theory, this vel-ocity is
proportional to (Ap); and is related. by a propor-
tionality constant aij.

(ap) -

(ii) lnduced. by panel i = aij f u-

The total velocity at panel
panels is

i induced. by al.l the

N

On the wi.ng, one usualJ.y assumes that ("i)y is
negligible and that u1 ( U-. The boundary condi-
tion takes the form

(ni)*u*+(ni)zwi=o

I q
aij

j=r
fhe nond.imensi.onal proportionality constants aij
(i = !r2, . .,.rli j = LrZ, .rn) are cal.1ed. Sero-
dynam:ic iqfluenee coefficients. They d.epend. on]-y on
the rel-ative location of the panels and. the }h,ch num-
ber. The equatj.ons above can be compactly arranged.
in matrix notatlon so that the teehnique for solu-
tion becomes apparent. For the so-ca1led. "d.irect
ease" vhere the local pressures are given, the square
matrix A of aerod.lma,mic influence coefficients is
post-multiplied by the matrix % to glve the matrix
of 1ocal surface slopes. For th6 inverse case where
the l.oea1 slopes are glven, the problem is to solve
N slmultaneous linear equations for the N unknolrns
cpr, %r, . , c,,[ (rig. ]+).

vi= U* , L = Lr?t .rN
q"

i=J-r2, .2TL

4

I

i

1



I

FIGJRE 4. }iIATRTX TORMULATTON OF PANEI, ME,THOD

This is a greatly simplified. d.escription of the
computer progra,m d.escribed. in Refs. L0 and 11. A
number of ad.ctitional features a,re ineorporated. in
the complete program to improve the accuracy and
d.ecrease the time and. storage required. for solutlon.

This computer program is a d.irect and stralght-
fo:s^nard. method. for the solution of v-ing-bod.y inter-
ference problems by use of J.lnear theory. There are
virtual-ly no restrictlons as to the complexity of
geometry that can be treated.. The trnne1 method is a
very versatile procedurez but its accuracy is inher-
ently 1im:ited by the use of the linearized
d.j.fferential equati.ons of f1or,r.

Computing Ulethods Based on Exact
Inviscid Equations of Motion

Finite -Difference l{ethod s

Finite-d.ifference method.s have been erployed.
with consj.d.er:able success in the analysis of one-
and. two-d.jmensional problems in fluid. mechanics.
fhe success of these method.s in two d.imensions has
1ed. to a number of proposals for exbend.ing them to
three-d.lmensiona1 problems. At this time, there are
no results that apply direetly to the problem of
w'ing-bod.y interferenee, but the field. is very active
and., in aJ-l probability, results will be forthcoming
in the near future.

Finite-d.ifferenee method.s are based. d.ireetly on
the continuity, momentum, energy, and. state equa-
tions and. therefore d.o not require the assumption of
a velocity potential, or the various assumptions
required. to linearize the equations of motion, as
\^ras necessary in the previously d.escribed. method.s.
fn the region of interest, a reeta.ngular net is
d.efined. and. the solution consists of a tabulation of
the flov variables at these points (fie. ,). The

t23456789
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F]NITE D]T5ERH\ICE MEIHODS

d.ifferential equations that describe the flow are
converted. to d.ifference equatlons, and. the sofution
ls earried. out in a Iogica1, step-by-step manner
siml]-ar to method.s used. in the sofution of initial-
value problems in ord.inary d.ifferential equati.ons.
These problems are nearly always formul:,ted. as
unstead.y problems and. carried. to 1.arge values of
time to obtain the steady solution.

It night be supposed. that solutions of thls
tySle must be basecl on the Eulerian form of the equa-
ttons of motLon because of the use of a flxed. net.

Actual3-y, one of the most successflrl finite-
d.ifference method.s employs a lagrangian forraul-a,tion
for the tlme steps in the computation. After each
tlme stepr the fl-ov variables at the fixed. net
points are obtalned f?om the distorted lagrangi-an
net by interpolatlon. This approach2 which incorpo-
rates the best features of both the Eulerian and
Iagrangian equations, is.Ihe basis for the
partic1-e -in-cel1 method..'=

In spite of the rapidly increasing ntmber of
applications of finite-d.ifferenee method.s to two-
d.i:nensional problens2 the exbension to three d.i-men-
sions is a formidabJ.e proiect. An adequate deserip-
tion of the boundary conditions 1n a wing-body
intersection region would. require a rather fine mest
and a correspond.lngly large a,mount of computer time
and. storage. It appears that the successful applica-
tion of finite dlfference methods to prcblems of
wing-bod.y lnterference vi1J. require computers of
m-reh greater speed. and. catrn eity than those avail-a,b1e
tod.ay.

Method of Characteristi.cs

The eonclusion reached. regard.ing finite-
difference methods probably applies here also.
Whl1e the exbension of the method. of cbaracteristics
to problems of three lnd.ependent variables has been
proposed. many ti:nes, only since the introd.uction of
mod.ern comtrmters has the proposal received. serious
consid.erati-on. A nr:rnber of investi-gators are pre-
paring general purpose computer programs empJ.oying
tne SO method. of cha.racterlstics (SOUtoC); Refs. 13r
14, and. LJ ate, 1n effect, progress reports on these
ambltious projects.

It is d.ebatable vhether the finite-difference
or the characteristics method first wil.l be applied
to the problems of wing-body interference. Even lf
the use of these method.s as d.esign tools appears to
be some time in the future2 the solution of even one
or two speeial cases involving thin wings on sharp-
nosed. bod.ies would. be of great value since it vould.
ind.icate the nagnitud.e of the error irnrolved. in the
linearization of the florr equations.

Comr:arisons Different Method.s

The method of finite differences and. the method.
of characterlstlcs are based. on f\rnd.a,menta1 gas-
d.yna,mic equations instead. of the approxlmate J.inear-
ized. equatlons of flor^r. When these method.s are
d.eveloped. to the point vhere a configrration as com-
plex as a wing-bod.y combination can be treated.2 they
wiJ.J. represent the u-ltimate 1n accu-racy alnong method.s
that solve for inviscid. flortr.

As noted.z the iterative and. transform method.s
requi-re such erbensive anal.ytieal treatment that
thelr application to any but the simplest configura-
tj-ons 1s virtually impossible. The transform method.
is trnrticuJ.a,rly handieapped by the inabiJ-lty to
hand.le configrrations with subsonic lead.ing ed.ges
and to pred.ict afterbody load.ings. Although the
iterative method., in principle, can b-e used. on any
confi.guration, the problems of accounting for r,rings
that are effectively ea,ribered. and. twisted., and. bod.-
ies tbat are hig[Ly d.istorted.l virtua3-ly d.iptate the
use of nrmerica]. method.s for al]- iterations other
tha.n the first. EVen granting the avaj.lability of a
numerical llfting-surfaee theory for the varped. wlng,
the bod.y bor.md.ary cond.itlons are 1lkeJ-y to be so
trreguJ-6,r that a large nunrber of terms wtIL be
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requlred. lf the technique of For:rier series analysis
is to be used. On!.y the speclal- case of the llfbing
vtng in the 0 = 0 plane appears to be tractable.

None of these difficul-ties applles to the panel
method. This method. is the only one of the linear
theory techniques that erpJ-oits the catru.bilities of
mod.ern eomputing equitrxnent to provid.e solutions for
a very general range of configurations. Since the
panel method is by far the easiest and most rapld
method. for all those presented., it ls recournend.ed. as
the nost usef\r1 nethod. for obtaining solutlons to
the linear equation of supersonic flow. Ehe method.
applies v'ith equal ease to configr.ratlons of arbi-
trary pLanform vlth canbered and twisted wings,
cambered. and. boat-taiIed. bod.ies, subsonic or super-
sonic leading and. trail-ing ed.ges, etc. In ad.d.ition,
the panel method can be used for the anal-ysis of
eertain nonpJ-a,nar eonfigurations that re1.y on inter-
fering fl-olr fields for the establishment of
interesting or d.esirable aerod.ynamic characteristics
(r'ie. 6).

T'IG]BX 6. NONPI,ANAR II\IIERFERMICE CONFIGUEATIONS

In reeomnending this method., it is approprlate
to make comparisons uith previously published.
results eomputed. by the transform or iterative
method.s. Ferrarits article on interaction problemsrG
includ.es a mmerlcal example giving the solution for
a rectangular wing on a bod.y vith an ogival nose.
Ihis configuratlon has also been analyzed by the
pranel method.. fhe slnnwise variation of pressure
coefficient on the utrrper sr:-rface of the wing as
computed. by the two method.s is sholrn in Fig. 7.

- 
ITERATIVE METHOD

--- PANEL METHOD M=2

lnereased., the inboard. portion of the ving lncreases
its pressr.:re l-oading more than the outboard. portion.
Ehe upvrash induced. by the bod.y decreases with the
radial distance flom the bodyr and the inboard. por-
tion of the wing effectively is at a higher angle of
attack. Within the region bound.ed. by a Mach J-ine
flom the leading ed.ge of the wing-bod.y juncturez the
rring pressures are mod.ified. by the presence of the
body. The effeets of the finite nose and ind.uced
upvrash are predicted. ldenticalJ-y by the two methods,
but the pressures in the wing-bod.y juncture are not
in such good. agreement. A further comtrnrj.son of
this effect will be shovn: later.

A nunrber of results for the transfo::m method.
using W fr:nctions bave been published.. The case
of the rectangular wing was includ.ed. in Nielsenrs
original paper.s Chan and. Sheppard.s have given
results for d.eIta wings of various values of J-ead.lng-
edge sveep. Band.a1f al-so has grblished a result
for a subsonie 1ead.1ng-ed.ge d.e1ta pJ.a,nfo::m. A11
these r,l'ings are, of course, mounted. in the midwing
position on infinite cylindrical bodies. The
results for the wings with supersonlc leading edges
may be interpreted. as either a sylrmretrical r,rlng vith
wedge section or a thin lifbing wing on a body at
zero angle of attack. fhe subsonic lead.1ng-ed.ge
results can onJ-y be applied to the v:ing thickness
case. A representatlve sample of these results and.
the correspond.ing results fYom the trnne1 method. are
presented in tr'igs. B and. 9.
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The pressure in the v'ing-bod.y juncture of the
confi.gi.rration vith the rectangular wing at angle of
attack has been computed. by al-l three method.s and
the comparison is iJ-lustrated in Fig. 10. The trnne1
method. and. transform method. are in close agreementz

3
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BC^

-tw
m

The figure shovs a nrunber of interesting fea-
tures of the phenomenon of ving-body interference.
For example, at zero angle of attack, there is a
spanwise pressure grad.lent along the lead.ing ed.ge of
the ving. ThiS is due to the finlte nose on the
body. Near the tip, the flov is decelerated and
hence bas a higher pressure, while near the root,
the flour is accelerated. and. has a Ior^rer pressure.
As the ang3-e of attack of the configuration is
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whtl-e the lterative method glves substantlally d.tf-
ferent results. The resul-t shourn for the iterative
method. is only the result after one iteration, and.
not the asyurptotic result of a large number of itera-
tions (a result that has never been computed.). tr?om
the comparison, lt uay be conclud.ed. that application
of the iterative method would. requlre several
lterations for proper convergence.

TRANSFORM METHOD

PANEL METHOO

ITERATIVE METHOD

u@+

or23
x/Bo

tr"fffiJBE l-O. PRXSSUIE fN I,ING-BODY JI]NCITLIRE
BY fHRffi MEf,HODS

Comnaris Betveen Theorv and Exrreriment

Llnear Theory

tr?om the good. comeLa.tion between the panel
method. and. the transform method. on silrpJ-e configr.ra-
tions, it may be eoncluded that the results of the
panel method are good. approxire.tions of exact solu-
tions to the linearlzed. equation of fIor,r. Next, it
1s neeessary to d.etermlne the accuraey of the d.if-
ferentlal equation itself. In the absence of any
resul-ts from the method. of characteristies or flnite
d.ifference method.s2 the onl-y d.ata for eomparison are
experimental-J.y measured. pressures. Again, there i.s
a shortage of pr:.b1ished. wind.-tunnel tests in rrhich
the mod.el- has been instrumented. to provld.e informa-
tion on the phenomenon of wing-bod.y interferenee.
F?om those ava1Iab1e, three tests have been seJ.ected
to illustrate the eomparison between experimentally
and. theoretically d.eternrined. pressures.

The first test vas run by the CorneJ-l Aeronauti-
ca1 le,boratory. The nod.el r^iras of the eonflguration
shomr in tr'ig. 7 - tnat is, a rectangular wing of
aspeet ratio ).J mounted ln the midving position on
a body with trnraboli.c nose. In Flg. 11, a eompari-
son is nad.e between the extrrerimental results
obtalnedr7 and. the theoretical results corrputed. by

- 
ITERATIVE METHOD

--- PANEL METHOD

x'/c= t/T

M=2

the panel and. iterative method.s. The experi-nrent and
theory are in nonlna1 agreement, but the nonlinear
variation of pressure rrith angle of attack is qulte
apparent. A given fLov,r-d.eflection angle produces a
greater pressure variatlon in compression than ln
expansion.

tr'lgure 12 shorrs
'was run at NASA-Ames

this sa,:ne effect. This models and. is simi].ar to the Cornell

4

3

2

4

3

2

9P
c

M. 1.48

TOP MERIDIAN
d

o dO

o y/o. t.o2

o
g

dv

o

o, deg

o -5o
s -2.5"
o0"
tr 2.50
o5o

6od
o
o
o

BP
o

o

I

5

4

3

0 = 45' MERIDIAN

o 6
d6
6d

y/o = z.sa

€96
v̂

?

o-.8 0 a 1.6 2.4 3.2 4.O 4.8 0 .5 r.0 r.5 2.O 2.5 3.O 3.5
x/go

FIC{.IRE 12. COMPARISON BETII,TEEN IIMOHT
AND E)EERIMEI\II

mod.eI, although the aspeet ratio and. d.iameter-to-
strnn ratio d.iffer consld.erably. In these plots, the
pressure is given in terms of the parameter P,
vhich represents the d.ifference between the pressure
coeffieient at a given angle of attack aad. at zero
angle of attack. The theoretical results shorrn vere
computed. by the transform method.5 tr?om the develop-
ment of the theory of the trans.fo:rn method.2 it can
be seen that the trnra,:neter \P/a should be indepen-
dent of angle of attack and. I{ach number. The fail-
ure of the actual pressures to confom to these
predlctions j-s d.raroatieal1-y illustrated. by plotting
the data as shovm in Fig. 1,2.

Both of the previous tests ertployed. u:esvetrrb

wings. A sj.:nilar test employing wlngs of de1ta plan-
form rmas run at the Weapons Research Establish:nent
(mf) 1n Australia. A comlnrison of the results of
this test with the predictions of the panel method
is iJ-lustrated in Fig. 13.
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tr?om these exa,rples and. others, one ray conclude
that the solutions based on linear theory give a
quite satisfactory qualitative description of the
flow of real gas about the actual configuratlon, but
that the ind.ivid.ual pressures are fYequently in
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error by 20 to 2) percent. 0f corrrse, the usual
comment regard.ing the use of linear theory is that
the pressures on the compression slde are und.erpre-
d.icted by about the same amor:nt that the pressures
on the expanslon sid.e are overpred.icted.; a.::d. that
the loading (or pressure differential) is predicted
quite well-. While this holds for the rectangular
wlngs, the d.elta-ving results d.o not support such a
conclusion.

Nonlinear Aerod.y:amics

The inablJ-ity of linear theory to predj-ct the
aerod.ynamic eharacteristics of wing-bod.y conrbina-
tions J.1es roainly in the nonlinear variation of
pressure coefficient vith angle of attack. There
have been a nuriber of proposals for obtaining solu-
tlons that are more accurate than linear theory and
are computationally feasible (tnis exclud.es, for the
present, the method.s of characteristics and. finite
d.ifferences). fhese may be h:mped. into tvo
eategories: second.-ord.er theory, and mod.ifieations
to linear theory.

This paper d.oes not d.iscuss second.-ord.er theo-
ries in any detail except to note that a practleal-
method (from a computatlonal point of viev) has yet
to be published.. Second.-ord.er theory wil-J- a}^rays be
d.ifficult to m,anage for planforms of arbitrary shape
since complete solutions nay not be buil-t up by
superposition of elementary solutions. A d.lrect
attempt at solution of the second.-ord.er d.ifferential
equation appears to be as great a computatlonal
problem as the metbod. of characteristlcs. 0n1y lf
the second.-ord.er solution can be reached. by itera-
tion on the first-order (or llnearized) solutionra
is there any justification for this approach.

fn mod.ified. linear theoriesz the linear solu-
tlon is subjected. to a systenatic proced.ure yielding
a result that should. be closer to the so-ca]-led
"correct" solution. fn the absence of exact solu-
tlons for these three-d.imensional nroblems, the
"correet" solutj-on is obtained. experlmentally.

One of the first proposals for modifylng the
linear theory solution was to assume that the veloc-
lties computed. from linear theory are correct and
that the pressure eoeffici.ent should be computed.
from the energy equation (assrming isentropic f1-ow)
by use of the form:Ia

It has al.so been proposed. that this Buseuann
tlon be applied to three-d.imenslonal problems
analogy, Eq. (f) can be uritten as

equa
2L By

co = cn-. + E- ^'J-rnear 4 "P]-irr"a"
,)v" + ur-

x7o=s

(4)
u2

@

Any of these equatlons could. be used. as the basls
for a systematic variation of the pressure eoeffl-
cient obtained. flom 1lnear theory. There 1s no
theoretical basis for preferring one equatlon over
another; in fact, there is no theoretical basis for
applying any of these equations to the results for
three-d.imensional wlngs. The success of such an
approaeh can be evaluated. onJ-y by comparlsons rith
the t'correctt' values.

Equatlons (f) anA (3) nave been applied to 1in-
ear theory solutions for two wing-bod.y combinations
wlth d.eIta and. rectanguJ-a,r plar:forms. These partic-
ular configurations were tested. by the WRE;22res
comp,arisons between these corrections to linear
theory and. the experimental d.ata are shom in
tr'igs. 14 and. 1). For some of the pressure tapsl the
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mod.ified. theory gives fmfroved. results, but on the
whole this approach appears to hoJ-d 1itt1e promise.
In fact, such a^a approach could. never be completely
suecessf\;I, as ind.icated" by Fig. L6. The linear
theory for a delta wing as corrected. by Eq_. (S) is
compared. to Forrel-Its exact results2* for this wing.
The correction d.oes lmprove the linear sol-utlon,
but it does not mod.ify the location of the ray that
forus the bowrd.ary of the zone of influence of the
apex of the wing. The upper surface of the wing
(extrnnsion surface) Ur* loca1 Mach nr,mbers greater
than the free-stream }4ech number and. therefore has
a smaller region of root lnfluence tban would. be
pred.lctecl by d,rawing a l{ach Ilne fYom the apex.
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In tvo-dimensional alrfoi1- theory, the well-knor,m
Busemaru: theory ind.lcates that the pressure eoeffl-
ci-ent can be r,mitten2o

(:)

I



I

FIG]RE 16. MODIFIED IilVEAR THEORY IOR 4'O
Dtr,TA }MNG AT M = 3, q, = 40

This shift might be pred.ieted by the panel
method. applied. in an iterative uanner, uslng the
locaL l{ach number instead. of the f?ee-strea,n Mach
number in the calculation of the natrix of aerod.y-
nemic influence coeffleients (tr'ig. 17). Such a ca1-
cuLa.tion has been r:ad.e on the wing shovrn in Flg. 16
and. is shor,n: in Fig. 18 as the eurve J.abe1ed. "mod.i-
fied. 1-lnear theory. " Thi-s approach is successflrl in
mod.ifying the bound.ary betveen the inner and. outer

General Remarks on Com@risons
Between Theonr and. Experiment

The use of experimental results as the stand.ard.
by which theoretlcal. methods are judged and modifled
requires consid.erable caution to avoid. mislead.ing
conclusions. fhe process of eollecting experimental
d.ata is subject to rnany rand.om and. systeuati-c errors.
In ad.d.ition to errors, it is lmportant to remember
that the airflour through a wind. tr.rnne1- is not a uni-
foru stream of inviscld. perfect gas but 1s a some-
what turbulent strearn of viscous real. gas. The
assrmptlon of inviscid. flornr in the theoretlcal d.evel-
opanent requires the para11e1 assr.mption tbat the
effects of viscosity can be isolated. and. removed.
f?om the experimental d.ata. One ruay to assess the
effects of vj-seosity is to repeat the extrrerlment at
varj-ous Reynold.s numbersl 4s in the test reporbed. by
Nie1-sen.s Figr-rre 1! shows the results of this test,

a Re= IO6OOOO 2. TOP MERIDIAN
(WINDWARD)-3

/-\-
LINEAR THEORY

0r2345
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FIGJnE 19. EIS'ECT 0F REYNoLDS NUMBER 0N
]IVIERTERE\ICE PRESSUNES

as 'we11- as WRE tests at a eomparable Reynold.s number.
As shoirn, there is a significant ReynoJ.ds nu:riber
effect; eonsequently, the failure of the linear
theory to agree v'ith the experiment nay well be due
more to the effect of viscosity than to a negleet of
higher order terms in the differential equation.
fhe d.iscrepancy between the tvo wind.-tunrtel tests is
not to be taken as a d.ifference between facillties,
sinee the tests vere macle li:tth d.ifferent configura-
tions at d.ifferent l&,ch numbers and. angles of attaek.
fhe para;neter BP/o simply is not invariant w:ith
angle of attack and. Ifiach nunber as pred.icted..

Nielsenrs tests were all cond.ucted. w'ith flee
transition. The IIRE tests were conducted. with rings
around. the nose of the mod.el to i.nd.uce a turbulent
bound.ary La.yer over the bod.y. Remeasurement of the
pressures without the transitlon ri.ngs gave the
result shcnm in tr'ig. 20. There is a definite shift

3

TOP MERIDIAN (WINDWARD)

FIXED TRANSITION
-1 \ \ I-II.IEAR THEORY

WRE TESTS

M=2

c=-5"

FREE TRANSITION

or234
x/po

rIq.IRE 20. EFSUCE OF TAAI{SIETON ON IIIIERFERM{CE
PRESSI'RES

.o7

.o6

.o4

.o3

FowELL,S RESULT

LINEAR THEORY
MODIFIED LINEAR THEORY

e r
COMPRESSION SIDE

(y+l)M4-4M?+4 ..-^--P "Pur1era S(U2 - t) "PLrruern

lcrl .os

0.r-2 .4

EXPANSION SIDE

MACH LINES BASED ON
FREE STREAM MACH NUMBER

.5
I

.6

lcpl

I

.3
ton 0

SIDE

4
o
tr

RC
RC
RC

AMES
M = 1.48
o=-6o

600000
200000
500000

oo
5o

M
o

WRE

pP

o

MACH LINES BASEO ON
LOCAL MACH NUMBER

FIMJRE 17. ITEBATTVE PANtr, METHOD UStr\IG LOCAL
MACH NI.]-MBER

.4 .5 .6

+ 0.060I (SHOCK WAVE
CALCULATION)

+ .0463 (SHOCK WAVE
CALCULATION)

.06
,r0 0

COMPRESSION
SIDE

+ .05277 (LINEAR

THEORY).05

.o4

FOWELL,S RESULT

LINEAR THEORY

--o--.o_MOD, LINEAR THEORY

.03
.3

ton A

FTGJRE 18. PRESSURE DIfl'RIBUTION ON a 4)o DEtrfA
W1NGAT M=3rq,=40

d.omains of the solutlon, but still fails to predict
the proper 1evel of pressure. Nevertheless, this
result i-s promlsing and lends support to the concept
of d.eveloping a computing proeed.ure based. on a mod.i-
fication of linear theory but stiJ-3- utilizing the
concept of superposition of elementary solutions.
fhe accuracy of such a proced.ure rrould. be lntermed.l-
ate between the results of l-inear theory, vhich ean
nor^r be obtained. easily and. quickJ-y, and. the exact
method.s, which und.oubted.ly vi11 require great
amounts of computer time.
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in the loeation at which the ving beglns to affect
the pressures on the bod.y. A similar result is
reported in Ref. 2r.

ft is conclud.ed. that in any e)rperimental_ inves -
tigation of wing-bod.y interferencel special eare
uust be taken to assess the importance of bound.ary-
layer effects. The principal method.s that the
e:iBerimenter has at his d.isposal are variation of
the Relmold.s nu.rrber and. the use of varlous slzes of
trnrticles to ind.uce transition f?om a La,rninar to
turbulent boundary l-a,yer. It does appear that there
is a significa,:rt interactlon between the bor.rnd.ary
J,a,yer and. the exberrral- f3-ow at the Reynold.s mrmbers
usuaJ-J-y encountered. 1n wind. tunnels. This applies
mainJ.y to the fuselage; on the r,ring the effect seems
to be ainimal-. ft nay be that these lnteracti.ons
are al-so lmportant at flight Reynold.s numbers, in
which case it will be necessary to deve1-op an i.nte-
grated. viscous-inviscid. theory of fJ-ow about
ving -bod.y combinations .

Sumrnary and. Conelusions

The paneJ. method., based. on aerod.lmamic influ-
ence coefflcients, j-s a convenient and. economical
may to obtain accurate solutions to vlrbualJ.y aJ.J-
problems of wing-bod.y interference in linearlzed.
supersoni-e flor^r. Linear theory solutions are ad.e-
quate for the rnajority of engineering stud.ies of
airplane systems although the aecuracy is not suffi-
cient to provide the lnformation required for the
detail design of a specific configuration. The prin-
citrnI b.rea of difficulty is the failure of the 1in-
earized. theory to pred.ict the variation of
aerod.ynamlc loading with angle of attack. This
vari.ation is found (experimentally) to be distinctly
nonlinear.

Computing techni.ques based. on the f\rnd.amental
equations of inviscid. gasd.ynamics are und.er deveJ-op-
ment at several institutions. Some of these pro-
grarns even lnc1ud.e the effect of the bound.ary Iayer.
It d.oes appear, hourever, that until computers of
r,ruch greater speed. and. catrncity are avalLa.bIe, meth-
od.s of this type (tinite di-fferences, eharacterls-
tics) wilJ. not be used wlde3.y as engineerlng deslgn
tools. They are of great vaIue, nevertheless, 1n
provid.lng bench:nark solutions by ruhlch more
approxirnate method.s can be evaluated. and refined..

Research effort in the problem of r,ring-bod.y
lnterferenee shouJ-d be d.lrected. tovard. the d.evelop-
ment of theoretical methods that adequately d.escribe
the nonllnear effects d.iscussed. j.n this paper, as
well as provid.e rurmerical results without extrava-
gant a^nounts of analysis or eomputatlon. These tech-
niques might be based. on the d.irect solutj_on of the
second.-ord.er irrotational equatlons of motionr but
is more 1ike1y that they rriJ.J- be based on a
systematic proced.ure for mod.ification of the
first -ord.er solution.

The utility of such computing procedures vould
repa,y the d.evelopment costs nErny tlmes over ln the
elimination of expensive trlal-and.-error wind. tr.uu:e1
testing in the refinement of aircraft configurations.
Mod.ern aeronautlcal d.esigners rmst free themselves
flom d.epend.ence on ad. hoc testlng for aerod.lmamie
d.ata if the spiraling increase of d.evelopment tlme
and. cost that threatens the aviation ind.ustry is to
be arrested.. The key to a reversal of this trend. is
the d.evelopment of relia,ble theoretical procedures
for use by those lntimately involved. ln alrcraft

design. Thls trnper on the aerod.ynamics of the baslc
w-ing-fuselage combination is onJ.y one step tovrard.
the prediction of the characteristics of the complete
flight vehi-cle.
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