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Abstract

This paper summarizes the research effort, both
theoretical and experimental, that has been reported
since the 1954 survey by Lawrence and Flax® and
indicates some of the promising ideas for future
progress in the subject of wing-body interference at
supersohic speeds. Some early methods and results
are compared to computer-oriented methods for obtain-
ing solutions to wing-body interference problems.
The problem of assessing the accuracy of methods
based on linear theory is introduced, and the impor-
tance of nonlinear effects is discussed. Proposals
for accounting for variations from linear theory
without taking the full step to exact solutions are
reviewed.

Introduction

is in the
it is nec-

When a proposed ailrcraft or missile
preliminary design and development phase
essary to have fairly accurate estimates of the aero-
dynamic loading that will be encountered during
flight. The cost of obtaining such information from
extensive wind tunnel tests has always been high and
seems to increase greatly with each new project.l
The slowing or reversal of this trend lies in the
development of theoretical methods for predicting
the aerodynamic characteristics of proposed vehicles.
There is a large body of literature on the aerody-
namics of wings and bodies but a relative scarcity
of methods for predicting the interaction between
these components. The early work of Ferrari,
Nielsen, and others was in some respects discourag-
ing, since it indicated that great amounts of analy-
sis and computation were required to obtain solutions
for even the simplest configurations. The work of
this era was very well summarized by Lawrence and
Flax in their 1954 survey article.® At that time
the subject seems to have entered a somnolescent
period from which it has only recently been aroused.
The new interest is due, of course, to the availabil-
ity of powerful computing machinery to automate the
extensive numerical work that appears inherent in
the solution of a problem of this complexity.

Notation

a radius of cylindrical body

8o speed of sound

aij aerodynamic influence coefficient

CP pressure coefficient

- functions denoting the axial variation of

the 2nth Fourier component of velocity
induced on the body by the wing

an Laplace transform of fon

Kon modified Bessel function of order 2n
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derivative of the modified Bessel function
of order 2n

Mach number
coordinate in direction of outward normal

components of the outward
normal vector to panel i

increment in pressure coefficient due to
angle of attack

pressure differential across panel
dynamic pressure

cylindrical coordinate system, x parallel
to free stream

Reynolds number
Laplace transform of x coordinate

perturbation velocity components in the x,
y, and z directions

magnitude of local VEIOCiEZ
U2 = (U, + w2+ v2 + v

free stream velocity

perturbation velocity normal to defining
surface of panel 1

radial component of perturbation velocity
(vPadiel = V2 +

special function defined in Ref. 5

cartesian coordinate system, x parallel to
free stream velocity, see Fig. 1

x-coordinate with x' = O taken at leading
edge of wing

x-component of velocity induced on panel 1
by unit load on panel

angle of attack
VMR - 1
ratio of specific heats

ratio of distance from body centerline to
wing semispan

variable of integration

perturbation velocity potential

body-alone velocity potential generated by
kth step in iterative method

Leplace transform of @i (transform on the
x-coordinate)



oF] interference velocity potential (transform
method.)

Py wing-alone velocity potential (transform
method)

mék) wing-alone velocity potential generated by

kth step in iterative method

General Problem of Wing-Body Interference

The wing-body combination perturbs a uniform
free stream of velocity U, parallel to the x-axis

(Fig. 1). The perturbation velocities in the x, ¥,
V4
-
Uo
X
FIGURE 1. COORDINATE SYSTEM
and z directions are labeled u, v, and w, respec-

tively. In most of the investigations reported here,
it has been necessary to use the equations of gas-
dynamics in the linearized form although some of the
numerical methods to be described are free from this
limitation. The general objective is the develop-
ment of computing procedures that are applicable to
a wide variety of configurations, rapid and straight-
forward in application, and sufficiently accurate to
be of use in the design and analysis of practical
airplane designs. In many investigations, it has
been necessary to restrict the geometry to a spe-
cific configuration in order to simplify the
analysis to a point where numerical results could be
obtained.

Computing Methods Based on Linearized
Equations of Flow

The Tterative Method

In solving complex problems in aerodynamics, it
is the usual practice to exploit previously derived
results to as great an extent as possible. In solv-
ing problems in wing-body interference, a logical
first approach is to determine how a solution could
be constructed using the methods developed for iso-
lated wings in conjunction with methods developed
for isolated bodies. The wing-alone solution will
satisfy the condition of tangential flow on the sur-
face of the wing but not on the body, and vice versa
for the body-alone solution. In the iterative
method, these wing and body solutions are used in
alternate steps. In each step a flow field is cre-
ated that exactly cancels the velocity components of
the previous step that penetrate the surface. In
mathematical terms, the velocity potential of the
configuration is expressed as a sum

NGRS
k=0

The terms corresponding to k = O in the summation
are the wing-alone and body-alone potentials for the

isolated components. Subsequent terms in the sum
satisfy boundary conditions from the velocity §low
field of the previous term. For example, @%k
satisfied the boundary condition

a%%k) &P]gk—l)

= = - . on the wing
and @ék) satisfies
) (k-1)
oy
T - > on the body

ihere O/On signifies differentiation with respect
+£0 the direction of the outward normal vector. The
process will eventually converge, although it has
never been carried out for terms higher than k =1
because of the length and difficulty of the numeri-
cal computations. It is implicitly assumed that
there is availeble a wing procedure and a body pro-
cedure for solving linear theory with arbitrary
boundary conditions. In the original paper on this
subject,” Ferrari proposed the use of multipoles for

the solution of mék) and a Fourier analysis of the
spanwise load distribution for the determination of
m&k). These particular choices are appropriate only

to the case of high aspect ratio rectangular wings
of zero thickness mounted in the midwing position.
The adaptation of this method to more general con-
figurations does not appear feasible because of the
lack of satisfactory computing procedures for the
isolated components.

The Transform Method

At each step in the iterative procedure, the
wing flow field generated is exactly that which will
cancel the flow through the wing induced by the body
of the previous step. If it turned out that the
flow through the wing at any step were zero, the
correction required would also be zero and the
series would terminate. TFor the special case of a
wing nominally in the z = O (horizontal) plane on a
body of revolution at zero angle of attack this con-
dition of zero flow can be satisfied,4 thereby giv-
ing a complete solution in a finite number of steps.
This special case is not as restricted as it might
appear because the general case of a wing-body combi-
nation at angle of attack can be decomposed into two
separate solutions - one with the body alone at the
desired angle of attack and another with the body at
zero angle of attack and an appropriate distribution
of wing incidence (see Fig. 2).

DECOMPOSITION INTO SIMPLER
COMBINATTIONS

FIGURE 2.

The case of the cambered and twisted wing on a
body at zero incidence in analyzed by considering
the perturbation velocity potential the sum of two
parts: @, due to the wing alone and @3 due to



interference. As in the iterative method, it is
assumed that a procedure is available for the wing-
alone solution. This flow field due to the wing
alone will produce a velocity component normal to
the body and therefore will violate the boundary
condition on the body. The requirement that the net
radial velocity of the combination must be zero on
the body provides the boundary condition for the
interference potential, namely,

29 oy

dr =~ dr’ Slats

Up to this point, the procedure is identical to that
of the iterative method, but now an additional
requirement is added to ensure that the interference
flow field must have zero downwash in the plane of
the wing. Stated mathematically,

This condition can be satisfied by assuming that the
interference potential can be expressed as a Fourier
cosine series at each longitudinal station

o]
04(r,0,x) = }; Un(r,x) cos no
n=o

Since the velocity distribution must have right-left
symmetry, all odd-numbered terms in this series must
be zero. One must also note, however, that the
assumption of a cosine series implies that the
radial velocity will have an even variation with 6.
This is the velocity that is to cancel the wing
velocities, and therefore the radial component of
velocity induced by the wing must have an even vari-
ation with 6. This is true only for the wing thick-
ness case and not for a thin lifting surface.
However, if the leading edge of the wing is super-
sonic, the upper and lower surfaces of the lifting
wing configuration may be analyzed separately. If
the leading edge of the wing is subsonic then only
the wing thickness case can be solved by this method.

To complete the solution, following Nielsen's
development, the problem is transformed by use of
the Laplace transformation applied to the x-variable
(x is parallel to free-stream velocity). The trans-
form of the potential is also a cosine series of
even multiples of 6 and a general solution to the
transformed partial differential equation is shown
to be given in terms of modified Bessel functions.
The boundary condition

T; (&, 0) =0 BCPW = a8)= Z i <B> cos 2n6

supplies the final solutlon

o0

0;(s,r,0) = z

n=o

on(sT)

B (8) EET_TET cos 2no

where Fopn(s) is the Laplace transform of fun(x/pa).
The inversion of this equation is accomplished by

use of the so-called "W functions" defined by
_ o1 [ s(e1) Ken(em) o
Wzn(x,r) £ [ K' (s +—J;
n-= 0313256

The solution to the problem can be written
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The W functions are tabulated up to W,o in Ref. 6.
From a computational point of view, one first deter-
mines the wing-alone flow field, from which one
obtains py,/Or (2,0,x). At a fixed value of x, the
velocity is analyzed as a Fourier cosine series and
the coefficients of the various harmonics are the
functions fo,fo,fs, . « « . These functions are
used in carrying out the integration shown in the
solution above.

This method has been applied to the problem of
a symmetrical nonlifting wedge-section wing mounted
on an infinite cylindrical body at zero angle of
attack. The wing of rectangular planform was ana-
lyzed byl\Tielsen,5 and delta wings were analyzed by
Randall” and by Chan and Sheppard.® Nielsen also
obtained solutions for the rectangular wing-body com-
bination at angle of attack. In general, four terms
in the infinite series were found to give satisfac-
tory convergence except near the leading edge of the
wing. Here, the series converges so slowly that the
result is of no value and the pressure in this
region must be obtained by extrapolation.

The transform method is a quite satisfactory
way to obtain solutions for the case of symmetrical
wedge-section wings of rectangular or delta planform
at zero angle of attack. A number of cases are pre-
sented in Ref. 8; by interpolation one may obtain
solutions for other combinations of sweep angle and
Mach number. The extension to the lifting case
would require the computation of dpy/dr for a
twisted wing since the body-induced upwash varies
across the span. This difficulty, plus the fact that
wing solutions are not available for many configura-
tions other than the rectangular and delta planforms,
has discouraged the development of this method as a
design tool. A further deficiency is the fact that
the solution is valid only up to the trailing edge
of the wing and cannot be used to compute afterbody
loadings.

Panel Method (Aerodynamic Influence Coefficients)

In the discussion of the iterative method and
the transform method, it was stated that one of the
principal deficiencies for practical use was the
lack of solutions for wing alone when the local angle
of attack varies in a complex fashion over the wing.
There are numerical lifting surface theories avail-
able® that could be used for this calculation.
Instead of using such a theory in conjunction with
either the iterative method or the transform method,
a complete numerical wing-body procedure can be for-
mulated that is free of the restrictions and limita-
tions of either of these other methods. The proce-
dure outlined here forms the basis for a computer
programl©,11 sponsored by NASA-Ames and made avail-
able to the U.S. aviation industry.

Numerical lifting surface theories for super-
sonic application have been primarily of the "box"



or "panel" type - that is, the configuration is sub-
divided into a large number of panels that cover the
surface (Fig. 3). The assumption is made that the

TYPICAL PANEL LAYOUT FOR WING-BODY
COMBINATION

FIGURE 3.

continuous functions representing the pressure, sur-
face slope, velocity components, etc., may be approx-
imated by functions that are constant over each
individual panel. In this way, the steps in the
analysis that would require the application of calcu-
lus and differential equations now require only sim-
ple arithmetic and linear algebra. These processes
lend themselves very well to automatic computation.

The basic building block for the solution by
panels is the solution for the induced velocity at
all points in space for a given thin lifting panel
of constant pressure differential. The solution
must be given as one of a number of different cases
depending on the position of leading and trailing
edges relative to the Mach lines; these are tabu-
lated™© and have been programmed for automatic com-
putation.ll Suppose the panels are nunmbered from 1
to N. For each panel, say number j, define Xij
to be the x-component of velocity induced on
panel i Dby a unit load on panel (unit load means
(Ap)j/q = 1. Then, if the panels actually have pres-
sures of (&p)1, (Ap)z, - . . , (&p), across them,

the x-component of velocity on panel i is found by
summing all of the individual velocities.
N
(Ap)j
ui:zxij a » i=1,2, « « «,N
J=1
Similar equations are developed for the y- and

z-components of velocity. These 3N equations are a
solution to the wing-body interference problem where
the pressures are given and it is desired to find
the induced velocities (and hence the shape of the
configuration) at each point on the surface. How-
ever, it is the inverse of this problem that is of
interest, and to solve this problem the boundary con-
ditions @Est be formulated. In general, if the
vector ni that is normal to panel 1 is resolved
into components (nj)x, (ni)y, (ni)y, then the bound-
ary condition to be satisfied is

(n3)x(ug + Up) + (n3)yvs + (ng)pwg = 0
1525 = o ,n

On the wing, one usually assumes that (ni)y is
negligible and that uji << U,. The boundary condi-

tion takes the form

(n4)xU, + (ng)pwy = 0

or
4% (ny)y _dz

T (local surface slope)
ilz

(wing panels)

On the body, the boundary condition may be written
in cylindrical coordinates as

(n3)y(us + Ug) + (n3)p(vpagia1ds = O

since the normal vector to a body of revolution has
no 6O-component. Therefore,

(vragiad)i " (ng)y _dr

= local surface slope
U, (ni)r e ( pe)

(body panels)

These two boundary conditions can be written as a
single equation

<
—t

L - (local surface slope);

8

where ¥; represents the perturbation velocity
(scalar) normal to the nominal defining surface of
the configuration. This point is frequently confus-
ing and requires further clarification. The wing-
body geometry is defined at some reference condition;
usually wing and body at zero incidence and no cam-
ber or twist on the wing. The introduction of inci-
dence is done by giving values of local surface
slope at each panel. The position of the panel is
assumed unchanged. This is a common practice in
wing theory, whereby the boundary conditions are
applied at a nominal position rather than at the
actual position. So, the velocity ¥; represents a
velocity normal to this original defining surface,
not the actual surface.

For a given pressure differential on any panel,
say panel J, there is a certain velocity induced
normal to the nominal defining surface of every !
other panel. By linear theory, this velocity is ‘
proportional to (Ap)j eand is related by a propor-
tionality constant aij.

(AP)j
aij q

(¥;) induced by panel j = U,

The total velocity at panel 1 induced by all the ;

panels is
N

™ (AP)j
Vi = Z a’ij q Uoo E}

J=1

The nondimensional proportionality constants ajs

(i = 152, S g = 152, .,n) are called aero-
dynamic influence coefficients. They depend only on
the relative location of the panels and the Mach num-
ber. The equations above can be compactly arranged
in matrix notation so that the technique for solu- ;
tion becomes apparent. For the so-called "direct

case" where the local pressures are given, the square

matrix A of aerodynamic influence coefficients is
post-multiplied by the matrix CP to give the matrix

of local surface slopes. For the inverse case where

the local slopes are given, the problem is to solve

N simultaneous linear equations for the N unknowns

Cpl: sz’ X CPN (Fig. L). !
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FIGURE 4. MATRIX FORMULATTION OF PANEL METHOD

This is a greatly simplified description of the
computer program described in Refs. 10 and 11. A
number of additional features are incorporated in
the complete program to improve the accuracy and
decrease the time and storage required for solution.

This computer program is a direct and straight-
forward method for the solution of wing-body inter-
ference problems by use of linear theory. There are
virtually no restrictions as to the complexity of
geometry that can be treated. The panel method is a
very versatile procedure, but its accuracy is inher-
ently limited by the use of the linearized
differential equations of flow.

Computing Methods Baged on Exact
Inviscid Equations of Motion

Finite-Difference Methods

Finite-difference methods have been employed
with considerable success in the analysis of one-
and two-dimensional problems in fluid mechanics.

The success of these methods in two dimensions has
led to a number of proposals for extending them to
three-dimensional problems. At this time, there are
no results that apply directly to the problem of
wing-body interference, but the field is very active
and, in all probability, results will be forthcoming
in the near future.

Finite-difference methods are based directly on
the continuity, momentum, energy, and state equa-
tions and therefore do not require the assumption of
a velocity potential, or the various assumptions
required to linearize the equations of motion, as
was necessary in the previously described methods.
In the region of interest, a rectangular net is
defined and the solution consists of a tabulation of
the flow variables at these points (Fig. 5). The

123456789
i

FIGURE 5. FINITE DIFFERENCE METHODS
differential equations that describe the flow are
converted to difference equations, and the solution
is carried out in a logical, step-by-step manner
similar to methods used in the solution of initial-
value problems in ordinary differential equations.
These problems are nearly always formulated as
unsteady problems and carried to large values of
time to obtain the steady solution.

It might be supposed that solutions of this
type must be based on the Eulerian form of the equa-
tions of motion because of the use of a fixed net.

Actually, one of the most successful finite-
difference methods employs a Lagrangian formulation
for the time steps in the computation. After each
time step, the flow variables at the fixed net
points are obtained from the distorted Lagrangian
net by interpolation. This approach, which incorpo-
rates the best features of both the Eulerian and
Lagrangian equations, is the basis for the
particle-in-cell method.lZ

In spite of the rapidly increasing number of
applications of finite-difference methods to two-
dimensional problems, the extension to three dimen-
sions is a formidable project. An adequate descrip-
tion of the boundary conditions in a wing-body
intersection region would require a rather fine mesk
and a correspondingly large amount of computer time
and storage. It appears that the successful applica-
tion of finite difference methods to problems of
wing-body interference will require computers of
much greater speed and capacity than those available
today.

Method of Characteristics

The conclusion reached regarding finite-
difference methods probably applies here also.
While the extension of the method of characteristics
to problems of three independent variables has been
proposed many times, only since the introduction of
modern computers has the proposal received serious
consideration. A number of investigators are pre-
paring general purpose computer programs employing
the 3D method of characteristics (3DMoC); Refs. 13,
14, and 15 are, in effect, progress reports on these
ambitious projects.

It is debatable whether the finite-difference
or the characteristics method first will be applied
to the problems of wing-body interference. Even if
the use of these methods as design tools appears to
be some time in the fubure, the solution of even one
or two special cases involving thin wings on sharp-
nosed bodies would be of great value since it would
indicate the magnitude of the error involved in the
linearization of the flow equations.

Comparisons Between Different Methods

The method of finite differences and the method
of characteristics are based on fundamental gas-
dynamic equations instead of the approximate linear-
ized equations of flow. When these methods are
developed to the point where a configuration as com-
plex as a wing-body combination can be treated, they
will represent the ultimate in accuracy among methods
that solve for inviscid flow.

As noted, the iterative and transform methods
require such extensive analytical treatment that
their application to any but the simplest configura-
tions is virtually impossible. The transform method
is particularly handicapped by the inability to
handle configurations with subsonic leading edges
and to predict afterbody loadings. Although the
iterative method, in principle, can be used on any
configuration, the problems of accounting for wings
that are effectively canbered and twisted, and bod-
ies that are highly distorted, virtually dictate the
use of numerical methods for all iterations other
than the first. Even granting the availability of a
numerical lifting-surface theory for the warped wing,
the body boundary conditions are likely to be so
irregular that a large number of terms will be



required if the technique of Fourier series analysis
is to be used. Only the special case of the lifting
wing in the 6 = O plane appears to be tractable.

None of these difficulties applies to the panel
method. This method is the only one of the linear
theory techniques that exploits the capabilities of
modern computing equipment to provide solutions for
a very general range of configurations. Since the
panel method is by far the easiest and most rapid
method for all those presented, it is recommended as
the most useful method for obtaining solutions to
the linear equation of supersonic flow. The method
applies with equal ease to configurations of arbi-
trary planform with cambered and twisted wings,
cambered and boat-tailed bodies, subsonic or super-
sonic leading and trailing edges, etc. In addition,
the panel method can be used for the analysis of
certain nonplanar configurations that rely on inter-
fering flow fields for the establishment of
interesting or desirable aerodynamic characteristics

(Fig. 6).
\
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FIGURE 6. NONPLANAR INTERFERENCE CONFIGURATIONS
In recommending this method, it is appropriste
to make comparisons with previously published
results computed by the transform or iterative
methods. Ferrari's article on interaction problems
includes a numerical example giving the solution for
a rectangular wing on a body with an ogival nose.
This configuration has also been analyzed by the
panel method. The spanwise variation of pressure
coefficient on the upper surface of the wing as
computed by the two methods is shown in Fig. 7.
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COMPARTSON OF THE PANEL AND
ITERATIVE METHODS

FIGURE 7.

The figure shows a nunber of interesting fea-
tures of the phenomenon of wing-body interference.
For example, at zero angle of attack, there is a
spanwise pressure gradient along the leading edge of
the wing. This is due to the finite nose on the
body. Near the tip, the flow is decelerated and
hence has a higher pressure, while near the root,
the flow is accelerated and has a lower pressure.

As the angle of attack of the configuration is

increased, the inboard portion of the wing increases
its pressure loading more than the outboard portion.
The upwash induced by the body decreases with the
radial distance from the body, and the inboard por-
tion of the wing effectively is at a higher angle of
attack. Within the region bounded by a Mach line
from the leading edge of the wing-body juncture, the
wing pressures are modified by the presence of the
body. The effects of the finite nose and induced
upwash are predicted identically by the two methods,
but the pressures in the wing-body Jjuncture are not
in such good agreement. A further comparison of
this effect will be shown later.

A nunber of results for the transform method
using W functions have been published. The case
of the rectangular wing was included in Nielsen's
original paper.s Chan and Sheppard8 have given
results for delta wings of various values of leading-
edge sweep. Randall” also has published a result
for a subsonic leading-edge delta planform. All
these wings are, of course, mounted in the midwing
position on infinite cylindrical bodies. The
results for the wings with supersonic leading edges
may be interpreted as either a symmetrical wing with
wedge section or a thin lifting wing on a body at
zero angle of attack. The subsonic leading-edge
results can only be applied to the wing thickness
case. A representative sample of these results and
the corresponding results from the panel method are
presented in Figs. 8 and 9.
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METHODS - WING PRESSURES

The pressure in the wing-body Jjuncture of the
configuration with the rectangular wing at angle of
attack has been computed by all three methods and
the comparison is illustrated in Fig. 10. The panel
method and transform method are in close agreement,




while the iterative method gives substantially dif-
ferent results. The result shown for the iterative
method is only the result after one iteration, and
not the asymptotic result of a large number of itera-
tions (a result that has never been computed). From
the comparison, it may be concluded that application
of the iterative method would require several
iterations for proper convergence.

TRANSFORM METHOD
— — — PANEL METHOD
— —— ITERATIVE METHOD

X/Ba

PRESSURE IN WING-BODY JUNCTURE
BY THREE METHODS

FIGURE 10.

Comparisons Between Theory and Experiment

Linear Theory

From the good correlation between the panel
method and the transform method on simple configura-
tions, it may be concluded that the results of the
panel method are good approximations of exact solu-
tions to the linearized equation of flow. Next, it
is necessary to determine the accuracy of the dif-
ferential equation itself. In the absence of any
results from the method of characteristics or finite
difference methods, the only data for comparison are
experimentally measured pressures. Again, there is
a shortage of published wind-tunnel tests in which
the model has been instrumented to provide informa-
tion on the phenomenon of wing-body interference.
From those available, three tests have been selected
to illustrate the comparison between experimentally
and theoretically determined pressures.

The first test was run by the Cornell Aeronauti-
cal Laboratory. The model was of the configuration
shown in Fig. 7 - that is, a rectangular wing of
aspect ratio 5.7 mounted in the midwing position on
a body with parabolic nose. In Fig. 11, a compari-
son is made between the experimental results
obtained'” and the theoretical results computed by

—
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FIGURE 11. UPPER SURFACE PRESSURE DISTRIBUTION

the panel and iterative methods. The experiment and
theory are in nominal agreement, but the nonlinear
variation of pressure with angle of attack is quite
apparent. A given flow-deflection angle produces a
greater pressure variation in compression than in
expansion.

Figure 12 shows thls same effect. This model
was run at NASA-Ames® and is similar to the Cornell
i M=1.48
TOPMERIDIAN
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FIGURE 12. COMPARISON BETWEEN THEORY

AND EXPERIMENT

model, although the aspect ratio and diameter-to-
span ratio differ considerably. In these plots, the
pressure is given in terms of the parameter P,
which represents the difference between the pressure
coefficient at a given angle of attack and at zero
angle of attack. The theoretlcal results shown were
computed by the transform method.® From the develop-
ment of the theory of the transform method, it can
be seen that the parameter BP/@ should be indepen-
dent of angle of attack and Mach number. The fail-
ure of the actual pressures to conform to these
predictions is dramatically illustrated by plotting
the data as shown in Fig. 12.

Both of the previous tests employed unswept
wings. A similar test employing wings of delta plan-
form was run at the Weapons Research Establishment
(WRE) in Australia. A comparison of the results of
this test with the predictions of the panel method
is illustrated in Fig. 13.
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PRESSURE DISTRIBUTION ON DELTA
WING-BODY

FIGURE 13.

From these examples and others, one may conclude
that the solutions based on linear theory give a
quite satisfactory qualitative description of the
flow of real gas about the actual configuration, but
that the individual pressures are frequently in



error by 20 to 25 percent. Of course, the usual
comment regarding the use of linear theory is that
the pressures on the compression side are underpre-
dicted by about the same amount that the pressures
on the expansion side are overpredicted, and that
the loading (or pressure differential) is predicted
quite well. While this holds for the rectangular
wings, the delta-wing results do not support such a
conclusion.

Nonlinear Aerodynamics

The inability of linear theory to predict the
aerodynamic characteristics of wing-body combina-
tions lies mainly in the nonlinear variation of
pressure coefficient with angle of attack. There
have been a number of proposals for obtaining solu-
tions that are more accurate than linear theory and
are computationally feasible (this excludes, for the
present, the methods of characteristics and finite
differences). These may be lumped into two
categories: second-order theory, and modifications
to linear theory.

This paper does not discuss second-order theo-
ries in any detail except to note that a practical
method (from a computational point of view) has yet
to be published. Second-order theory will always be
difficult to manage for planforms of arbitrary shape
since complete solutions may not be built up by
superposition of elementary solutions. A direct
attempt at solution of the second-order differential
equation appears to be as great a computational
problem as the method of characteristics. Only if
the second-order solution can be reached by itera-
tion on the first-order (or linearized) solution'®
is there any justification for this approach.

In modified linear theories, the linear solu-
tion is subjected to a systematic procedure yielding
a result that should be closer to the so-called
"correct" solution. In the absence of exact solu-
tions for these three-dimensional problems, the
"correct” solution is obtained experimentally.

One of the first proposals for modifying the
linear theory solution was to assume that the veloc-
ities computed from linear theory are correct and
that the pressure coefficient should be computed
from the energy equation (assuming isentropic flow)
by use of the formula

Cp = 512 [1+%1M2<1-%>J7/(7'1) -1} (1)

If U 1is considered in terms of its components

Uy, + u, v, and w, Eq. (1) may be written in terms of
fi{gt and second powers of perturbation velocities
as

M

=
Lt (2)

g™l

% = g+ 7

In two-dimensional airfoil theory, the well-known
Busemann theory indicates that the pressure coeffi-
cient can be written®°

4 =
+(7+1)M-LM +l+Cz (3)

e
P Cplinear 8(M2 - 1) Plinear

It has also been proposed that this Busemann equa-
tion be applied to three-dimensional problems.Z* By
analogy, Eq. (1) can be written as

2

2
Gy e Goy it o v (0
linear linear o
Any of these equations could be used as the basis
for a systematic variation of the pressure coeffi-
cient obtained from linear theory. There is no
theoretical basis for preferring one equation over
another; in fact, there is no theoretical basis for
applying any of these equations to the results for
three-dimensional wings. The success of such an
approach can be evaluated only by comparisons with
the "correct" values.

Equations (1) and (3) have been applied to lin-
ear theory solutions for two wing-body combinations
with delta and rectangular planforms. These partic-
ular configurations were tested by the WRE;22:23
comparisons between these corrections to linear
theory and the experimental data are shown in
Figs. 1k and 15. For some of the pressure taps, the
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P
modified theory gives improved results, but on the
whole this approach appears to hold little promise.
In fact, such an approach could never be completely
successful, as indicated by Fig. 16. The linear
theory for a delta wing as corrected by Eq. (3) is
compared to Fowell's exact results® for this wing.
The correction does improve the linear solution,
but it does not modify the location of the ray that
forms the boundary of the zone of influence of the
apex of the wing. The upper surface of the wing
(expansion surface) has local Mach numbers greater
than the free-stream Mach number and therefore has
a smaller region of root influence than would be
predicted by drawing a Mach line from the apex.




FOWELL'S RESULT

— =— LINEAR THEORY
----- MODIFIED LINEAR THEORY

(y +IM% - am2 + 4
8(M2-1)

07 r
0 c2

Cp = C, +
P~ “PLiNear PLinEAR

FIGURE 16. MODIFIED LINEAR THEORY FOR 45°
DELTA WING AT M = 3, a = 4°

This shift might be predicted by the panel
method applied in an iterative manner, using the
local Mach number instead of the free-stream Mach
number in the calculation of the matrix of aerody-
namic influence coefficients (Fig. 17). Such a cal-
culation hag been made on the wing shown in Fig. 16
and is shown in Fig. 18 as the curve labeled "modi-
fied linear theory." This approach is successful in
modifying the boundary between the inner and outer
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MACH NUMBER
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domains of the solution, but still fails to predict
the proper level of pressure. Nevertheless, this
result is promising and lends support to the concept
of developing a computing procedure based on a modi-
fication of linear theory but still utilizing the
concept of superposition of elementary solutions.
The accuracy of such a procedure would be intermedi-
ate between the results of linear theory, which can
now be obtained easily and quickly, and the exact
methods, which undoubtedly will require great
amounts of computer time.

General Remarks on Comparisons
Between Theory and Experiment

The use of experimental results as the standard
by which theoretical methods are judged and modified
requires considerable caution to avoid misleading
conclusions. The process of collecting experimental
data is subject to many random and systematic errors.
In addition to errors, it is important to remember
that the airflow through a wind tunnel is not a uni-
form stream of inviscid perfect gas but is a some-
what turbulent stream of viscous real gas. The
assumption of inviscid flow in the theoretical devel-
opment requires the parallel assumption that the
effects of viscosity can be isolated and removed
from the experimental data. One way to assess the
effects of viscosity is to repeat the experiment at
various Reynolds numbers, as in the test reported by

Nielsen.® Figure 19 shows the results of this test,
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FIGURE 19. EFFECT OF REYNOLDS NUMBER ON

INTERFERENCE PRESSURES

as well as WRE tests at a comparable Reynolds number.
As shown, there is a significant Reynolds number
effect; consequently, the failure of the linear
theory to agree with the experiment may well be due
more to the effect of viscosity than to a neglect of
higher order terms in the differential equation.

The discrepancy between the two wind-tunnel tests is
not to be taken as a difference between facilities,
since the tests were made with different configura-
tions at different Mach numbers and angles of attack.
The parameter BP/a simply is not invariant with
angle of attack and Mach number as predicted.

Nielsen's tests were all conducted with free
transition. The WRE tests were conducted with rings
around the nose of the model to induce a turbulent
boundary layer over the body. Remeasurement of the
pressures without the transition rings gave the
result shown in Fig. 20. There is a definite shift

=3 =
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in the location at which the wing begins to affect
the pressures on the body. A similar result is
reported in Ref. 25.

It is concluded that in any experimental inves-
tigation of wing-body interference, special care
must be taken to assess the importance of boundary-
layer effects. The principal methods that the
experimenter has at his disposal are variation of
the Reynolds number and the use of various sizes of
particles to induce transition from a laminar to
turbulent boundary layer. It does appear that there
is a significant interaction between the boundary
layer and the external flow at the Reynolds numbers
usually encountered in wind tunnels. This applies
mainly to the fuselage; on the wing the effect seems
to be minimal. Tt may be that these interactions
are also important at flight Reynolds numbers, in
which case it will be necessary to develop an inte-
grated viscous-inviscid theory of flow about
wing-body combinations.

Summary and Conclusions

The panel method, based on aerodynamic influ-
ence coefficients, is a convenient and economical
way to obtain accurate solutions to virtually all
problems of wing-body interference in linearized
supersonic flow. Linear theory solutions are ade-
quate for the majority of engineering studies of
airplane systems although the accuracy is not suffi-
cient to provide the information required for the
detail design of a specific configuration. The prin-
cipal area of difficulty is the failure of the lin-
earized theory to predict the variation of
aerodynamic loading with angle of attack. This
variation is found (experimentally) to be distinctly
nonlinear.

Computing techniques based on the fundamental
equations of inviscid gasdynamics are under develop-
ment at several institutions. Some of these pro-
grams even include the effect of the boundary layer.
It does appear, however, that until computers of
much greater speed and capacity are available, meth-
ods of this type (finite differences, characteris-
tics) will not be used widely as engineering design
tools. They are of great value, nevertheless, in
providing benchmark solutions by which more
approximate methods can be evaluated and refined.

Research effort in the problem of wing-body
interference should be directed toward the develop-
ment of theoretical methods that adequately describe
the nonlinear effects discussed in this paper, as
well as provide numerical results without extrava-
gant amounts of analysis or computation. These tech-
nigques might be based on the direct solution of the
second-order irrotational equations of motion, but
is more likely that they will be based on a
systematic procedure for modification of the
first-order solution.

The utility of such computing procedures would
repay the development costs many times over in the
elimination of expensive trial-and-error wind tunnel
testing in the refinement of aircraft configurations.
Modern aeronautical designers must free themselves
from dependence on ad hoc testing for aerodynamic
data if the spiraling increase of development time
and cost that threatens the aviation industry is to
be arrested. The key to a reversal of this trend is
the development of reliable theoretical procedures
for use by those intimately involved in aircraft

design. This paper on the aerodynamics of the basic
wing-fuselage combination is only one step toward
the prediction of the characteristics of the complete
flight vehicle.
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