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NUMERICAL  ANALYSIS OF THE  TRANSIENT  RESPONSE OF 

ABLATING  AXISYMMETRIC  BODIES  INCLUDING 

THE EFFECTS OF SHAPE CHANGE 

By Stephen S. Tompkins,  James N. Moss,  Claud M. Pittman, 
and  Lona M. Howser 

Langley Research  Center 

SUMMARY 

The  differential  equations  governing  the  transient  response of an  ablating  axisym- 
metric,  orthotropic body have  been  derived  for  fixed  points  in a moving coordinate  sys- 
tem.  These  equations  have  been  expanded  into  finite-difference  form  and  programed  for 
numerical  solution, with an  implicit  technique, on a digital computer.  Numerical  results 
compare  favorably with exact  solutions. 

Several  applications of the  analysis  are  discussed.  These  applications  demonstrate 
the  significance of a salient  feature of the  analysis, that is, the  ability  to  analyze  the 
effects of changes in body geometry.  This  feature was used  to  obtain  satisfactory  agree- 
ment between numerical  and  experimental  results  for an ablating  teflon  sphere  and a 
small test specimen  exposed  to a high-intensity laser beam. Although the  analysis is 
primarily  for a single-layer  material, a multilayer  material  can  be  successfully  approx- 
imated  under  certain  conditions by a single-layer  system. 

INTRODUCTION 

One-dimensional  ablation  analyses  have  been  used  extensively  to  study  the  thermal 
response of heat  shields  subjected  to  aerodynamic  heating.  However,  for  heat  shields 
with large  curvature or large  heating-rate  variations  over  the  surface,  the  assumptions 
of one-dimensional  heat flow no longer  apply, and an  accurate  description of the  thermal 
response  requires  an  ablation  analysis  for  multidimensional  heat  transfer  that  includes 

* the effects of changes  in  heat-shield  geometry. 

References 1 to 6 are  examples of two-dimensional  thermal  analyses  presently 
available.  The  outstanding  features of the  analyses of references 1 and 2 are  that  both 
consider  axisymmetric  bodies of anisotropic  materials and  both use  stable,  implicit 
numerical  methods  to  solve  the  heat-conduction  equation.  However,  neither  analysis 
considers  mass  transfer. Mass transfer is included  in  the  analysis of reference 3 in 



addition  to  the  indicated  features of references 1 and 2. The  analysis of reference 3 is 
formulated  for  fixed  nodal  points  in a fixed  coordinate  system  and  often  requires  inter- 
polation at the  boundaries  because  the nodal points  and  the  boundaries do  not always 
coincide. This  interpolation  can  lead  to  inaccuracies.  The  analysis of reference 4 is 
similar  to  that of reference 3 except  that it uses a moving coordinate  system (which 
eliminates  interpolation)  and a conditionally  stable,  time-consuming  explicit  formulation 
as opposed  to  the stable,  time-saving  implicit  formulation  used  in  references 1 to 3. 
Only references 5 and 6 consider  the  effects of shape  change  on  the  thermal  response of 
the  heat  shield.  However,  reference 5 does not consider an anisotropic  material, and 
both references 5 and 6 use  explicit  methods  to  solve  the  governing  equations. 

Collectively,  references 1 to 6 consider many of the  significant  physical  character- 
istics of an axisymmetric  ablating  heat  shield  and  also  demonstrate  the  desirable  method 
of solution,  that is, an  implicit  method.  However, no single  reference  incorporates all 
these  features  into one analysis. 

This  paper  presents  and  discusses a transient  two-dimensional  ablation  analysis 
which incorporates all the  significant  characteristics of the  physical  problem  considered 
collectively  in  references 1 to 6. The  analysis  has  the following features: (1) the  abla- 
tion  material is considered  to  be  orthotropic with temperature-dependent  thermal  prop- 
erties; (2) the  thermal  response of the  entire body is considered  simuitaneously; (3) the 
heat-transfer  and  pressure  distribution  over  the body are adjusted  to  the new geometry 
as ablation  occurs; (4) the  governing  equations  and  several  boundary-condition  options 
a re  formulated  in  terms of generalized  orthogonal  coordinates  for  fixed  points  in a 
moving coordinate  system;  and (5) the  finite-difference  equations are  derived and  solved 
implicitly. 

The  accuracy of the  analysis  presented  in  this  paper is demonstrated by compari- 
sons between  numerical  results  and  exact  solutions  for  simplified  conduction  problems. 
Selected  examples  and test data  are shown to  demonstrate  the  utility of the  analysis  and 
the  importance of the coupling  between  body-shape  change  and the  heating-rate  and  pres- 
sure  distributions. 

The  finite-difference  equations  have  been  programed  for  solution on a high-speed 
digital computer.  The  program  has a plotting  routine which can  display  the  shape of the 
ablating body at any time  during  the  calculation. t 

SYMBOLS 

1 a6  A = - -  
Xb 

defined by equation (10) 

AC constant  in  oxidation  equation  corresponding  to  specific  reaction rate 
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coefficients  in  equation (28) 

AS constant  in  sublimation  equation 

a constant  to  adjust  equations (C24),  (C25),  and (C26) to  correct  form  for 
Cartesian  coordinates 

BC constant  in  exponential of oxidation  equation  corresponding  to  activation 
energy 

BS constant  in  exponential of sublimation equation 

C oxygen concentration by mass 

I 

cP specific  heat 

H total  enthalpy 

AHC heat of combustion 

AHS heat of sublimation 

h17h2,h3  coordinate  scale  factors  (eqs. (2)) 

i order of reaction (eq. (11)) 

K reaction-rate  constant  for  oxidation  (eq. (15)) 

k  thermal conductivity . 
L number of stations  in  x-direction 

M molecular  weight of gas 

M molecular  weight of oxygen 
0 2  



mo, 

mS 

P 

PW 

qC 

q c  ,net 

%et 

q r  

R 

Rcyl 

Rstag 

integers 

mass  loss ra te  

rate at which  oxygen  diffuses  to  surface 

mass  loss  due  to  sublimation 

exponent of pressure  in  sublimation  equation (eq. (17)) 

wall  pressure 

convective  heating rate  to  nonablating cold wall 

hot-wall  convective  heating rate corrected  for  transpiration (eq. (13)) 

net  heating  rate  to  surface  including  combustion,  sublimation, and surface 
reradiation (eq. (19)) 

radiant  heating  rate 

radius of curvature of base  curve 

cylindrical  radius  from axis of symmetry to base  curve 

stagnation-point  radius of curvature 

r exponent of radius  in  sublimation  equation (17) ; spherical  coordinate 

S number of stations  in  y-direction 

T  temperature 

TB 

Tm,n  temperature at finite-difference  station (m,n) 

temperature of body to which back  surface radiates 

t thickness of heat  sink 
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X,Y 

P 

6 

7 

cp 

free-stream  velocity 

Cartesian  coordinates (see fig. 2) 

curvilinear  coordinates (see fig. 1) 

length of base  curve 

absorptance 

weighting  factor  for  transpiration  effectiveness of mass  loss  due  to 
combustion 

weighting factor  for  transpiration  effectiveness of mass  loss due  to 
sublimation 

either 0 or 1 depending  on  whether transpiration o r  ablation  theory is used 

material  thickness 

emittance 

angle  between R and  Rcyl (fig. 1); spherical  coordinate 

mass of char  removed  per  unit  mass of oxygen 

dimensionless  curvilinear  coordinates,  equations (4) 

density of material 

Stefan-Boltzmann  constant 

time 

angle of rotation  about axis of symmetry,  figure 3 

angle  between axis of symmetry  and  normal  to  surface,  figure 1 
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Subscripts: 

C combustion 

e edge of boundary  layer 

m  ,n integers 

L last station  in  x-direction 

max  maximum 

0 original,  value at previous  time 

S last station  in  y-direction 

stag  stagnation-point  condition 

W wal l  condition 

X,Y coordinates 

5,rl dimensionless  coordinates 

Superscripts: 

I condition  along x = L 

I 1  condition  along  y = 0 

ANALYSIS 

Physical Model 

The  analysis  considers  an  axisymmetric  ablating body exposed  to  aerodynamic 
heating; this body is composed of a single  orthotropic  material of varying  thickness  with 
temperature-dependent  thermal  properties. (See  fig. 1.) Although the  analysis con- 
siders a single-layer  material,  the  analysis of a multilayer  material,  such as a charring 
ablator,  can  be  successfully  approximated  with  the  present  analysis  under  certain condi- 
tions. (See ref. 7, for  example.) 
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Surface  normal 

Or thot ropic   mater ia l  

k> CP> k(X,Y)] 

ULV Body axis of symmetry - 
Figure 1.- Schematic  diagram  of  the  physical   model  for  a  typical axidsymmetric body. 

Two coordinate  systems are used  to  study  the  thermal  and  ablative  response of the 
heat  shield. One is a curvilinear  coordinate  system with x,y  coordinates (fig. l), which 
is used  to  determine  internal  temperature  distributions. A stationary  base  curve  located 
at the  back  surface of the  ablator  establishes  the x-axis. 

The  second  coordinate  system (fig. 2) is used  to  define  the  heat-shield  exterior 

"1. 
I n i t i a l   s u r f a c e  

c Surface a t  time r 

Figure 2.- Coordinate  system  used  to  define body geometry. 
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geometry which changes  with  time as a result of ablation.  This  coordinate  system, with 
w,z coordinates, is a Cartesian  system with the  origin  fixed at the  original  stagnation 
point  on the  heat  shield. All the  geometric  parameters  needed  to  compute  changes  in  the 
stagnation  heating rates and  the  heating-rate  and  pressure  distributions  over  the  surface 
are defined in this system.  The  equations that quantitatively  relate  the  internal  temper- 
atures with the  changes  in  the  heating  and  pressure  over  the  surface of the  heat  shield 
are given in  the following sections. 

Governing  Differential  Equations 

The  differential a r c  length ds  in  the  curvilinear  coordinate  system  in  figure  3 is 

= h:(dx)2 + h 2 ( d ~ ) ~  + h3(dq)2 

where  the  scale  factors are 

h l =  1 + -  Y 
R 

The  curvilinear  coordinate  system  should  conveniently  describe any axisymmetric 
body geometry of interest. However, if the  Cartesian  coordinate  system is required, 
care  must be taken  to  use unity scale  factors. Unity scale  factors  are obtained by 
assigning  the  values of 1 to  Rcyl, 00 to R, and n/2 to 6. (See  eqs. (2).) 

For an  axisymmetric body, the  governing  time-dependent  heat-conduction  equation 
with variable  coefficients is (in  fixed  coordinates) 

c 

If equation  (3) were expressed  in  finite-difference  form, it would describe  the  tem- 
perature  variation at fixed  stations  in a fixed  coordinate  system.  To  maintain a fixed 
number of stations  in a layer which changes  thickness with time, it is necessary  to 
change  the  locations of the  stations and to  interpolate  to  determine  the  temperatures at 
the new location  after  each  time  step  in  the  calculation. This procedure not  only 
increases  the  time  required  to  perform  the  computations but also  introduces a small 
error  in  each  step of the  calculation. An alternative  to  this  procedure is to  transform 

8 



Figure 3 . -  Basic  curvilinear  coordinate system. 

the  equation  to a coordinate  system  in which the  stations  remain fixed  and the  coordinates 
themselves move to  accommodate  changes  in  the  surface  location. 

This  transformation  can be made by introducing a moving  coordinate  system which 
is defined by the  following  relations: 

In 
at 

this system,  the  outer  surface  remains  fixed at q = 1 and all other  stations  remain 
fixed  values of 7. 

Before  equation (3) can  be  transformed  to  the [ , q  coordinates,  derivatives  with 
respect  to x and  y in   terms of 5 and q must be  determined.  These  derivatives 
are given  in  the  following  equations: 
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and 

Because is a function of 6 which is also a function of time,  the  time  derivative on 
the  right  side of equation (3) becomes 

The  derivatives of f and q are,  from  equations (4), 

A change in 6 is given by 

Therefore, 

Replacing  the  appropriate  terms  in  equation (7a) with equations (7b)  and  (7d) gives 

Substituting  equations  (2b),  (5), (6), and (8) into  equation (3) gives,  in  the  trans- 
formed moving coordinates, 
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where 

The  solution  to  equation (9) depends  on  the initial conditions  and  the  specified 
boundary  conditions.  These  conditions are discussed  in  the following sections. 

Initial Conditions 

The initial conditions  that  must  be  specified are  the  temperature  distribution, 
mass-transfer rates, and  the body shape.  For  most  cases of interest,  the initial tem- 
perature  distribution is uniform  and  the initial mass-transfer  rate is zero. 

Surface  Boundary  Conditions 

Two conditions  must  be  specified at the  outer  surface.  Either  the  rate of removal 
of the  surface  material o r  the  surface  temperature  must  be  specified;  the  other condition 
is provided by an energy  balance at the  surface. 

Surface  recession.-  Ablation is assumed to result  from a chemical  process  (oxida- 
tion) or from a phase-change  process  (sublimation).  The  rate of mass  loss due to  oxida- 
tion by molecular  oxygen is, for  an  ith-order  reaction, 

In this analysis, it is assumed that all oxygen at the  surface is in  molecular  form. 

The  net  rate at which  oxygen diffuses  to  the  surface is, from  reference 8 (assuming 
a unit  Lewis  number), 

where 

11 



which is the  net  convective  heating rate  to a hot  ablating  surface.  Either  transpiration 
theory ( p  = 0) or linear  ablation  theory ( p  = 1) can  be  used  to  account  for  the  effects of 
mass transfer on the  convective  heating rate. 

The  rate at which mass is removed by oxygen must  be  proportional  to  the  net rate 
at which  oxygen diffuses  to  the  surface;  that is, 

mc = A m @  

where 

K = Ace -Bc/Tw 

The  equation  for a first-order  oxidation  reaction (i = 1) is 

Equations (15)  and  (16)  apply to both the  reaction-rate-controlled  and  the  diffusion- 
controlled  oxidation  regimes as well as the  intermediate  conditions. 

The  rate of ablation by sublimation is 

AS(Pw)P -Bs/Tw 

(Rs t ag)r 

ms = e 

The  form of equation (17) is compatible with reference 9 and  most  other  sublimation 
theories.  Either  equation (15) , (16) , or  (17) can  be  the  boundary  condition  that  defines 
the rate of removal of the  surface  material. 
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Surface  location.-  The  thickness at any  point 5 at any time is 

The  mass-loss  variation about  the body caused by the  heating-rate  distribution  will 
result in a nonuniform  change in  the  geometry of the  outer  surface.  This  effect will in  
turn  affect  the  heating  and  pressure  distribution as discussed  in a subsequent  section. 

Surface  energy  balance.-  The  heat  input  to  the  surface  consists of convective  and 
radiative  heating  and  heat  from  combustion when oxidation occurs.  This  heat  input  must 
be  accommodated by one or  more of the following mechanisms: (1) aerodynamic  blocking 
by mass transfer, (2) reradiation  from  the  surface, (3) conduction  into  the  material,  and 
(4) sublimation of the  surface  material. 

The  surface  energy  balance is 

where 

The  heat  absorbed  during  sublimation and the  heat  released  during  oxidation are 
considered  separately  in  equation (20) as is the  blocking  effectiveness of the  gases  pro- 
duced by oxidation  and  sublimation  in  equation (13). In the  present  analysis,  oxidation 
and  sublimation are not  allowed  to  occur  simultaneously. 

The  mass  transfer  affects only convective  heating  in this analysis.  Reference 10 
indicates  that at hypersonic  entry  velocities, radiant heating  may also be  significantly 
affected by mass  transfer.  However, at present  there is no quantitative  analysis  for  the 
effect of mass  transfer on  radiant  heating,  and it is therefore  neglected.  Additional 
terms  can  easily be  included  in  equation (20) to  account  for  other  phenomena which  may 
affect  the  energy  input  to  the  surface. 

Correction  for change in body geometry.-  The  heat  input  to  the  surface is also 
affected by changes  in body geometry.  In  the  present analysis, the  stagnation  convective 
and  radiative  heat-transfer rates are adjusted for changes  in  the body bluntness as 
follows: 

~~ 

&.tag,o 

/R,tag 
and qr  = qr,o 

Rstag,o 
SC =9c,0=- 

%tag 



Geometry  changes  affect  the  heating  and  pressure  distribution  around  the body as 
well.  The  heating-rate  distribution is computed by using  equation (14) of reference 11 
and  modified Newtonian pressure  distribution.  The  methods for evaluating  the body 
shape  parameters which are  used  to  determine  the  heating-rate  and  pressure  distribu- 
tions are given in appendix A. 

Modified  Newtonian pressure  distributions  are  sufficiently  accurate  for  most appli- 
cations  where  the body is a hemisphere or a hemispherically  blunted  cone. For cones, 
the  cone  angle  must  be  less  than  the  value  required  to  maintain  supersonic flow over  the 
conical  portion of the body. Also,  for  ablating  hemispherical o r  hemispherically  capped 
bodies,  the  modified Newtonian pressure  distribution  and  consequently  the  heating-rate 
distributions  become  inaccurate as the body shapes  are blunted;  that is, as the  ratio of 
the body radius  to  nose  radius  approaches  zero. 

Boundary  Conditions Along the <-Axis (0 S < 5 1, q = 0) 

Several  options o r  combinations of conditions are  considered  along  the  surface 
q = 0 (y = 0). This  interior  surface  may be  perfectly  insulated o r  lined  with a heat  sink 
which  may or  may not radiate  energy  to a body at a constant  temperature TB. The 
boundary  condition is 

The  layer  along q = 0 is assumed  to  have a constant  heat  capacity p"c"t". P 

Boundary  Conditions Along 4 = 1, 0 5 q 5 1 

The  same  conditions  may exist along this surface  that  exist  along q = 0, 0 5 5 2 1. 
The  boundary  condition  along  this  surface is 

The  thermally  thin  layer  along < = 1 is assumed  to have a constant  heat  capacity 
p ' c p  

Boundary  Conditions Along Line of Symmetry ( 5  = 0, 0 < q < 1) 

The  assumption of an  axisymmetric body requires  the following  boundary  conditions 
along  the  line of symmetry: 
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! and 

The  boundary  conditions  along this line of symmetry at the  surface 5 = 0, ?? = 1 
and at q = 0 are the  same as those  previously  described.  However, this line is mathe- 
matically a singularity  for  equation (3). The  equations  required  along this line are dis- 
cussed  in  the  following  section. 

Singularities 

Equation (3) applies  to  the  entire  region of interest;  however, a line of discontinuity 
(singularity) exists. An inspection of equation (2c) shows  that at x = 0, that is, along  the 
line of symmetry,  the  scale  factor h3 vanishes.  This  coordinate  singularity  can  be 
eliminated by using  proper  approximations  valid  only  near x = 0. Appendix B presents 
a detailed  derivation of a form of equation  (3)  that  applies at x = 0 and is given in [,q 
coordinates as 

The  boundary  conditions at [ = 0 are, at q = 0, 

and, at 17 = 1, 

METHOD OF SOLUTION 

The  differential  equations  that  define  the  temperature  field  in  an  ablating  axisym- 
metric body of revolution a r e  given in  the  previous  section.  To  obtain a solution,  these 
equations  have  been  approximated by finite-difference  equations  and  programed  for  solu- 
tion  on a high-speed digital computer.  The  methods  used  to  derive  the  finite-difference 
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expressions are given in appendix  C  along  with a summary of the  finite-difference  equa- 
tions  obtained by these  methods. 

The method of solution of the unknown temperature  field  defined by equations (C23) 
to (C31) is essentially  that  used  in  reference 12. This  method is classed as an 
alternating-direction  implicit  method which has  the  advantages of being  implicit,  stable, 
and  amenable  to  rapid  solution. With this method,  the  second  derivative a2T/ay2 is 
replaced by a second  difference  evaluated  in  terms of unknown temperatures at time 
T + AT, and  the  other  derivative a2T/ax2 is replaced by a second  difference  evaluated 
in  terms of known temperatures at time 7. This  formulation is implicit  in  the 
y-direction.  The  procedure is then  repeated  for a second  time  step of equal size, with 
the  formulation  implicit  in  the  x-direction.  The  alternation  in  solution,  that is, column- 
row, is continued  over  the  specified  time  period. It should  be noted that  to  maintain a 
stable  numerical  solution, a pair of successive  row-column  solutions is required. Suc- 
cessive  pairs of solutions,  however,  may  have  different  time  steps if  desired. 

Equations (C23) to (C31) take  the  form,  for  either a row or  a column  solution, of 

where j = 1, 2, 3,  . . ., S for  the  column  solution  and j = 1, 2,  3, . . ., L for  the  row 
solutions.  Equation (28) represents L o r  S equations and L or S unknown tem- 
peratures. Since  equation (28) results  in a tridiagonal  matrix of unknown temperatures, 
this set of equations  can  be  quickly  solved  simultaneously by using a procedure  based  on 
the  Gauss  elimination  method.  This  procedure is discussed  in  reference 12. 

RESULTS AND  DISCUSSION 

In  the following section,  the  accuracy of the  solution  for  the unknown temperature 
field  defined by equations (C23) to (C31) is evaluated by comparing  the  results of the 
numerical  solution with two exact  solutions.  Also,  the  results  obtained by application of 
the  present  analysis via the  associated  computer  program  to  several  special two- 
dimensional  ablation  cases are presented.  Computer-drawn  curves showing the  com- 
puted results  for  some of these  cases  illustrate  the  plotting  feature of the  program. 

Comparison With Exact  Solutions 

The  exact  solutions  to two heat-transfer  problems  are  used  to  evaluate  the  accu- 
racy of the  numerical  results.  The  exact  solution of an orthotropic  ablating body with 
temperature-dependent  properties is not available.  Therefore,  comparisons  are  made 
with results  from  exact  solutions  for  homogeneous,  nonablating  bodies with constant 
properties. 
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Insulated  thick-walled  hemisphere.-  The  exact  steady-state  temperature  distribu- 
tion of the  insulated  thick-walled  hemisphere shown schematically  in  figure 4 is derived 
in appendix D in  spherical  coordinates and is 

T(r,O) = 4 T0(3 cos28 - 1) T, + 

TABLE 1.- TEMPERATURE DISTRIBUTIONS OF THICK-WALLED HEMISPHERE 

FROM EXACT SOLUTION AND FROM  NUMERICAL  ANALYSIS 

0 

-0.162 
- .488 
-.467 
-.356 
-.209 

0.125 

-0.220 
-.507 
-.493 
-.395 
-.248 

0.25 

-0.234 
-.473 
-.463 
-.381 
-.254 

0.375 

-0.240 
-.407 
-.397 
-.338 
-.245 

0.50 

-0.243 
-.3 18 
-.304 
-.265 
- .2 10 

0.625 

-0.248 
-.280 
-. 194 
-. 168 

1 -. 143 i 

I 0.75 

-0.257 
-. 136 
-.093 
-.067 
-.058 

0.875 I 1.00 

One-dimensional  insulated  slab.-  The  exact  transient  temperature  distribution  in a 
one-dimensional  insulated  slab shown schematically  in  figure 5(a) is given by equa- 
tion (All) in  reference 13 as (in  the  notation of the  present  paper) 
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.1 
1.  

.2 .3 .4 .5 
Time, sec 

( a )  Time step, 0.0625  see. 

Figure 5.- Trans ien t   t empera ture   h i s tor ies  f o r  a one-dimensional  insulated slat .  
% = 1.1349 MW/m2; k = 62.35 W/m-%; p = 160.1 kg/d; cp = 0.4187 J/g-%. 
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r 1 

This equation  gives  the  temperature at a point y as a function of time.  Constant  ther- 
mophysical  properties were used  for  the  slab (see fig. 5(a))  and  the  numerical  values 
were  chosen  to facilitate computations  and not to  represent any particular  material. I 

Comparisons  between  the  exact  solution  and  the  numerical  solution  for two differ- 
ent  time  steps, 0.0625  and  0.25 second, are shown in  figures 5(a)  and  5(b).  The  nurner- 
ical  results are in good agreement with the  exact  results  for both time  steps. 

A Numerical solution 
Exact solution (ref. 13) 

200 I I 
0 

I 
.2 

1 I I 1 I I I I 
.4 

~~ 

.6 .a 1.0 
Time, sec 

(b) Time s t ep ,  0.25 sec. 

Figure 5. - Concluded. 
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The  agreement  between  numerical  and  exact results for  the  larger  time  steps is not 
as good as that  obtained with the  smaller  time  step.  The  maximum  errors  for  the first 
three  time  steps of 0.0625 second  were,  respectively, 0.70, 0.36, and 0.25 percent,  whereas 
the  maximum errors  for  the  larger  time  step were -1.22, 0.56, and 0.26 percent.  In both 
cases, the  solutions  were  stable  and  converged  rapidly. 

Application 

The  results  obtained  from  application of the  present  analysis  to  ablating  bodies are 
presented  in this section. Two of the  cases  discussed,  an  ablating  hemisphere-cone body 
and  an  ablating  hemisphere, a r e  of general  interest. Two additional  cases  provide a com- 
parison, on a qualitative  and  quantitative  basis,  between  test  and  analytical  results.  All 
the  cases  illustrate  situations  that  are not amenable  to a one-dimensional  analysis. 

4 

Hemisphere-cone ~ .~ "" body.- A graphite  hemisphere-cone body is exposed  to  stagnation 
convective  and  radiant  heating rates of 34 and 11 MW/m2, respectively, and a stream 
enthalpy of  93 MJ/kg. These  energy  levels  are  typical of earth  entry at hyperbolic  veloc- 
ities.  The body is assumed to be  subjected  to  this  environment  for 60 seconds.  Fig- 
ure  6(a)  shows  computed  geometry as a function of time  during  the  60-second  exposure. 

25 

15 

10 

5 

0 5 10 15 20 25 35 40 

=> 

( a )  Shape  change. 

Figure 6.- Graphite  hemisphere-cone body. In i t i a l   s t agna t ion   co ld -wa l l   hea t ing  rates 
of qc = 34 MW/m2 and qr = 1l MW/m2; H, = 93 MJ/kg; i n  air. 
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.*  

Note the nonuniform surface  recession  over  the body which requires  continued  adjustment 
in  pressure  and  heating-rate  distributions  over  the body. Adjustments  to  the  stagnation 
heating  rates  are  required  to  account  for  increased  nose  bluntness.  These latter adjust- 
ments, as computed  with the  present  analysis,  are shown in  figure 6(b). 

1.4, 

'80 
I I 

20 40 
I I 

60 

Time, sec 

(b) Variation of stagnation  heating  rates (due t o  changing 
nose  bluntness)  with time. 

Figure 6.- Concluded. 

A 5- by 10-node network,  that is, S = 5 and L = 10, was used  for this example. 
A  finer  network would produce  smoother  profiles of the  hemisphere-cone body than a r e  
shown in  figure 6(a). This is particularly  true  in  the  hemispherical  portion of the body. 
The  total  number of stations  that  should  be  used will depend on the  physical  size of the 
body considered  and  the  gradients of the  surface  inputs,  that is, heating rates and  pres- 
sure  on  the  surface. 

Hemisphere.-  A  low-density  phenolic-nylon  hemisphere,  approximated  with a 10- by 
10-node network, is assumed  to  be  exposed  to a convective  heating rate of 3.4 MW/m2 in 
air for 110 seconds.  The  method  presented  in  reference 7 was  used  to  approximate  the 
thermophysical  and  thermochemical  properties of a charring  ablator  in a single-layer 

* material. 

Figure "(a) shows  the  outer  surface  location as a function of time.  For  these  cal- 
* culations  the  heating-rate  distribution  was  based  on Newtonian pressure  distribution,  and 

therefore,  figure 7(a) shows  qualitative  rather  than  quantitative  results  for  an  ablating 
hemisphere.  Note  that  for  about  the first 70 seconds,  nonuniform  ablation  occurs  across 
the surface;  however, after 70 seconds,  the  recession is uniform.  This  behavior,  although 
expected, would not  be  revealed  in a one-dimensional  analysis or  a multidimensional  anal- 
ysis  that  does not consider  shape  change.  Similarly, the variation  in  the  stagnation 
heating rate with  nose  bluntness would not be  revealed  in a one-dimensional  analysis or a 
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(a)  Shape  change. 

Figure 7.- Hemispherical  nose  cap of low-density  phenolic-nylon.  Initial  stagna- 
tion  cold-wall  convective  heating  rate of 3 . 4  MW/~I?; H, = 7 N/kg; in air. 

multidimensional  analysis  that  does not consider  shape  change.  The  variation  in  the 
stagnation  heating  rate with time  resulting  from  nose  bluntness, as computed by the 
present  analysis, is shown  in  figure  7(b). 

Teflon  sphere.-  The  results of a series of tests on  teflon  spheres at various  heating * 
conditions are given in  reference 14. One of the  spheres,  model E, was  tested at an ini- 
tial stagnation  cold-wall  convective  heating rate of 6.41 MW/m2, a stream enthalpy of 
4.88 MJ/kg, and a Mach number of 2.6. The  experimental  profile  history for model E is 
shown in  figure  8(a). 

i 

The  analytical  profile  history  for  model E, obtained by using  the  present  analysis 
with a 10- by 10-node network, is shown in figure 8(b). The  agreement  between  the 
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(b)  Variation of stagnation  heating  rate (due t o  changing  nose  bluntness)  with  time. 

Figure 7.- Concluded. 

Approximate location 

T = 0.6 sec 
of  center  l ine of  

7 i n i t i a l  sphere 

Model E 

(a)  Experimental   profile  history (ref. 14).  (b)   Analyt ical   prof i le   his tory.  

Figure 8.- Experimental   and  analytical   profile  histories  for an ablating  teflon  sphere. 
In i t ia l   condi t ions :  qC,stag = 6.41 Mw/m2; He = 4.88 MJ/kg;  Mach number, 2.6. 
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experimental  and  analytical  profile  histories is good, qualitatively, up to  about 8 seconds. 
The  analytical  calculations  were  terminated at 8 seconds  because  the  present  analysis 
cannot  consider  the  entire  sphere,  but  only  the  forward  hemisphere.  Therefore,  in  the 
analysis  the  stagnation  point  cannot  recede  more  than a length  equal  to  one body radius. 
Also, the  heating-rate  distribution  used is not accurate  for highly  blunted  bodies. 

A comparison  between  the  experimental  and  analytical  stagnation-point  recession 
is shown in  figure 9. The  analytical  and  experimental  recessions are in good agreement. 
This  agreement is better  quantitatively  than  that  shown  in  figure 8 because  the  inaccurate 
heating-rate  distribution  predicted with the  present  method  for highly  blunted  bodies  did 
not affect  stagnation-point  recession as directly as it affected  the  overall  recession. 

1 -  &stag 

2 *stag,o 

0 Test data r e f .  1 4  
Present analysis 

0 

I 
0 10 

1 
20 

Time, sec 

Figure 9.- Comparison  between  the  experimental  and  analytical 
stagnation-point  recession for an  ablating  teflon  sphere. 
Initial  conditions: 
He = 4.88 W/kg; Mach  number, 2.6. 

‘c, stag = 6.41 Mw/m2; 

Laser  test.-  The  results of tests of a low-density  phenolic-nylon  ablation material 
at high radiant  heating rates produced by a laser  beam  are  given  in  reference 15. The 
specimen  was  exposed  to a laser beam, with the  energy  distribution  shown  in  figure lO(a), 
for 2 seconds.  The  maximum  radiant  heating  rate at the  center  was  about 40  MlV/m2. 
The  final  geometry of the  ablated  specimen  was  characterized by a very  thin  shell of 
charred  material,  figure 10(b).  The  present  analysis  was  used  to  determine  whether 
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sufficient  radiation  from  the  sides  could  limit  recession  along  the  sides  and  thus  allow a 
thin  shell of char  to  remain. 

The  profiles  computed first by assuming no radiation  from  the  specimen  sides  and 
then by assuming  that  the  sides radiate a r e  shown in  figure lO(c). Note that without radi- 
ation,  the  cusp  profile is similar  to  that  obtained  during  the  test  except  that  the  sides are 
not as high. When the  sides are allowed  to radiate, the  center  recedes  about  the  same 

q,( laser  beam) 

edge e edge 

(a) Energy  dis t r ibut ion.  

4 ' b . 6 4  cm 

(b) Estimated  specimen  shape. 

S i d e   r a d i a t i m  
" - No s ide   r ad ia t ion  

(c)   Calculated  recession.  

I n i t i a l  ou ter  surf  ace 

Figure 10.- Lase r   t e s t   r e su l t s   fo r   l aw-dens i ty   pheno l i c -ny lon  
specimen  (ref. 15). 
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amount as with no radiation;  however, tall sides,  more  characteristic of the  experimental 
results, are obtained. This substantiates  the  conclusion  drawn  in  reference  15  that  the 
sides of the  model  were  cooled  sufficiently by radiation to permit a considerable  height of 
char  to  remain at the  edges. 

The  profiles shown in  figure 1O(c) were  computed  with a 10- by  5-node network 
(i.e., S = 10 and L = 5). The  computation was repeated with a 10- by 10-node network 
with  essentially  the  same  results. 

CONCLUDING REMARKS 

The  differential  equations  governing  the  transient  response of an  ablating  axisym- 
metric,  orthotropic body have  been  derived  for  fixed  points.in a moving  coordinate  system. 
These  equations  have  been  expanded  into  finite-difference  form  and  have  been  programed 
for  numerical  solution  with  an  implicit  technique  on a digital computer.  Numerical 
results  compared  favorably with the  exact  solutions  for  simplified  conduction  problems. 

The  determination of the  changes  in  the body geometry as ablation  occurs,  and  the 
effect of these  changes on the  surface  energy  inputs, is a salient  feature of this analysis. 
This  feature was used  to  obtain  satisfactory  agreement  between  numerical  and  experi- 
mental  results of an  ablating  teflon  sphere  and a small  test  specimen  exposed  to a high- 
intensity  laser  beam. 

Langley Research  Center, 
National  Aeronautics  and  Space  Administration, 

Hampton, Va., April 2, 1971. 
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APPENDIX A 

SHAPE CHANGE DUE TO MASS LOSS 

Mass transfer at the  surface due to  ablation  causes a change in  material  thickness. 
The change in  material  thickness at any  point n  on the  surface is, from  equation (18) , 

When there  are  variations  in  heating  and  pressure  over  the body surface,  the  mass  trans- 
fer also varies  over  the  surface.  This  variation  in  mass  transfer  causes a nonuniform 
change in  thickness  and,  hence, a change  in  shape which consequently alters  the  heating- 
rate and pressure  distributions  over  the  surface. 

The  heating-rate  and  pressure  distributions are recalculated, with the  analysis of 
reference 11, as the  shape  changes.  The  methods  used  to  evaluate  the  shape  parameters 
Wn, qn, and Rstag required to  implement  the  analysis of reference 11 a r e  given  in this 
appendix . 

The w,z coordinate  system  shown  in figure 2 is used  to  define  the  surface  geometry 
at any time.  The  surface  coordinates at station  n as a function of time are 

and 

Z ( T )  = z ( T ) ~  + 6 ( ~ ) ~  - 6 ( ~ )  sin 8 (A3 ) 

The  instantaneous  value of the  angle Qn between  the  free-stream  velocity  vector 
and  the  local  normal  to  the  surface is required  in defining a new pressure  distribution. 
This  angle is determined as follows: 

For n =  1, 

for 2 S n < L, 



APPENDIX A - Concluded 

and for  n = L, 

Both the  stagnation  convective and radiative  heating rates are functions of the 
instantaneous  radius of curvature..  The  radius of curvature  in  the  stagnation  region is 
obtained by finding  the  radius of a circle  passing  through  points (S,1) and (S,2) (see 
fig. 11) in w,z coordinates. 

Figure 11. - Location of f ini te-difference  s ta t ions.  

The  equation of a circle  in  the w,z coordinate  system  with its cent 
is of the  form 

Evaluating  equation (A7) at the point (S,2) and  solving  for RStag gives 
curvature  in  the  stagnation  region as 
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APPENDM B 

DERIVATION OF THE DIFFERENTIAL EQUATIONS  AT 

THE COORDINATE  SINGULARITY 

The  governing  differential  equation,  equation  (3),  has a line of singularity at x = 0. 
This  singularity  can  be  eliminated by examining  the  behavior of the  scale  factor h3 as 
x - 0. 

AS x - 0, Rcyl - x and cos 8 = - Rcyl - - x Therefore, 
R R' 

h3 = Rcyl + y cos 8 - x 1 + x = ( R) Xhl 

(3x-o = hl 

and 

($) X 

x-0 

Now consider  equation (3) in  the  expanded  form 

As x - 0, equations  (Bl),  (B2), and  (B3) reduce  equation (B4) to 

At x = 0, the  axisymmetric-body  assumption  requires  that - = 0 and - - 
As a result,  the  second  term on  the  left  side of equation (B5) becomes  indeterminate. 
Applying L'Hospital's  rule  to this term  gives 

aT ahl - 0. 
ax ax 
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APPENDIX B - Concluded 

Equation (B5) may now be  written as 

which is the  governing  differential  equation  along  the  line x = 0 and is solved with the 
boundary  conditions of equations (19) and (22). 
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APPENDIX C 

FINITE-DIFFERENCE EQUATIONS 

The  differential  equations are put in  finite-difference  form  through  the  use of 
Taylor's  series  expansions.  Forward,  central, and  backward  differences are used.  The 
methods  used  to  obtain  these  differences are from  reference 8. These  methods,  in gen- 
eral, use  Taylor's series expansions at points *At or  a~ to  evaluate  first-order 
derivatives  and  Taylor's series expansions at points *A5/2 or  *A77/2 to. evaluate 
second-order  derivatives.  Typical  finite-difference  expressions  used  are  summarized 
in this appendix. The  sketches  in  figure 12 illustrate  the  spatial  relationship between 
points  used  in  the  Taylor's  series  expansions. 

( m , x )  

(a) For standard  derivatives.  (b) For cross derivatives. 

Figure 12.- Spatial  relation  between  points used in Taylor's  series  expansions. 

First-Order  Derivatives 

The  first-order  derivatives  are given by the following equations which are  correct 
to  order of Aq2: 

Forward  difference 

Central  difference 



APPENDIX C - Continued 

Backward  difference 

Second-Order  Derivatives 

The  second-order  derivatives  are given by the following equations: 

Forward  difference 

where  B = hlhgk. 

Central  difference 

Backward  difference 

term 

Term 

Cross  Derivatives 

The  methods  used  to  evaluate  cross  derivatives  can  be shown by considering  the 

(C7) is first expanded in  the  q-direction. T 'hus, 
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APPENDIX C - Continued 

The first derivatives are then  expanded  in  the  x-direction  to  give 

Equation (C9) is correct  to A$, Ax2. Equations (C8) and (C9) are  central-difference 
expansions. 

The  forward  expansion of term (C7) is obtained by evaluating at Aq and  2 Aq, 
which gives 

The first derivatives  are  then expanded  to  give 

The  backward  expansion of term (C7) is obtained by evaluating at -Aq and -2 Aq. 
The  resulting  expression is 

A Special  Case 

The  boundaries  along  x = 0 and  x = L require  special  attention. At these two 
locations  the  boundary  conditions  are,  respectively, 

and 
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APPENDIX C - Continued 

Because of symmetry at x = 0, 

Therefore, at x = 0, the  boundary  condition  becomes 

A forward-difference  expansion  different  from  equation (C8) can now be  obtained 
for  the first term on the  left  side of equation (25). This  difference  expression of a2T/ax2 
is obtained as follows:  A Taylor's  series  expansion of Tm,2  in  terms of Tm, l  

Similarly,  the  expansion of Tm,3  in  terms of Tm, l  is 

Eliminating  the  third  derivative  between  equations (C 17) and (C 18) gives 

After  the  boundary  condition of equation (C16) is utilized,  equation (C19) becomes 

Along x = L, it is advantageous  to  write  the first term  in  equation  (3) in a semi- 
expanded form, which is, in  the 6 ,q coordinates , 

34 



APPENDIX C - Continued 

when a half-station  backward-difference  expression (eq. (C10)) is used,  the first term  on 
the  right  side of equation (C21) becomes 

The last term is evaluated  from  the  boundary  condition at x = L (eq. (C14)). The 
other  terms are expressed  in  forward-,  backward-, or central-difference  form as 
required. 

Finite-Difference  Approximations of the  Field  Equations 

The  locations of the  finite-difference  stations  (m,n) are shown in  figure 11. The m 
and  n  subscripts  correspond  to  the  r-coordinates  and  F;-coordinates,  respectively. 

The  methods  used  to  change  the  differential  equations  to  finite-difference  form a r e  
given in  the  preceding  sections of this appendix.  A summary of the  finite-difference  equa- 
tions  obtained by these  methods is presented  here. 

For any point  (m,n),  where 1 < m < S, 1 < n < L, the  governing  equation (eq. (9)) is 

p m y n + l  - Tm,n> - (T) h3k5 p m , n  - 
mp+-  1  1 

2 m,n- - 2 

+ &Flh3$) 6nAV m+--,n (Tm+l,n - Tm,n) tlh3$)  (Tm,n - Tm-l,n 

2 m- 3;'" 3 

(Equation  continued  on  next  page) 
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APPENDIX C - Continued 

At station (m = 1, n = l), the  boundary  condition (eq. (26)) is combined  with  equa- 
tion (25) to  give 

For the  curvilinear  coordinate  system,  the a term is set equal  to 2. It should  be noted 
that  for  Cartesian  coordinates, a slight  modification  must  be  made  to  equations  (C24), 
(C25),  and (C26). This  modification is required  since  there is no line of singularity  in  the 
Cartesian  system as there is in  the  curvilinear  system.  The  correct  forms of equa- 
tions (C24),  (C25), and (C26) for  the  Cartesian  system are obtained by setting  the a term 
in  these  equations  equal  to 1. 

For station (1 < m < S, n = l), equations (24) and (25) yield 

(Equation  continued  on  next  page) 
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APPENDIX C - Continued 

For station (m = S, n = l), equations (25)  and (27) result  in 

For station  (m = 1, 1 < n < L), equations (9) and (26) combine  to give 

For station  (m = S, 1 < n < L), combining  equations (9) and  (20) yields: 

+ 

(Equation  continued  on  next page) 
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APPENDIX C - Continued 

S-2 ,n+l 

(C28) 

For station (m = 1, n = L),  combining  equations (9), (22),  and (23): gives 

(Equation  continued  on  next  page) 
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APPENDIX C - Continued 

at1,1 
= (hlh3Pcp) (C29) 

1,1 

For stations  (1 < m < S, n = L),  equations (9) and (23) yield 

m+l,L - Tm-1,L 

+ -  ( 21 2) Plh3%)  (Tm+l,L - Tm,L) - (hlh3%) (Tm,L - Tm-l,L) 

2 1 6 A7 m,L m+-,L 1 m- -,L 
2 

= (hlh3Pcp) m,L [",L A r  + (%) (Tm+l,L 
'P m,L 2 Av 
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APPENDIX C - Concluded 

For station (m = S, n = L),  equations  (9),  (20), and  (23) are combined to yield 

3 T ~ - 2 , ~  - 4 T ~ - 2 , ~ - 1  + 

4xb 

- 4 T ~ - 1 , ~ - 1  + T ~ - 1 , ~ - 2  
4Xb A t  )-(%) s- -,L 3 (T"L - 

2 

r 77 

" (3 A:262) 1 3%) s-z,L 3 (TS-1,L - TS-2,L) - 9(hlh3%) 1 (TS,L - TS-1,L) 
S,L 

s- -,L 
2 
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APPENDIX D 

DERIVATION OF EXACT  SOLUTION 

The  governing  differential  equation for the  steady-state  temperature  distribution  in 
an internally  insulated,  thick-walled, hollow hemisphere shown  schematically  in  figure  4 
is 

The  boundary  conditions are 

and 

The  general  solution  to  equation  (Dl) by the  method of separation of variables is 

where Ao, Bo, Co,  Do,  An,  Cn,  and Dn are  constants of integration  and Pn(COS e) 
is the  Legendre  polynomial. 

When the  boundary  conditions,  equations (D2) and  (D3), are used  to  evaluate  the 
coefficients  in  equation (D4), the  solution  to  equation  (Dl) is 

4 T(r,O) =3  To + 
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