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APPLICATION  OF  A  SUPERSONIC  KERNEL-FUNCTION  PROCEDURE 
TO  FLUTTER ANALYSIS OF THIN LIFTING  SURFACES 

By Herbert J .  Cunningham 
November  1970 

In  several  places  numerical  values of generalized  masses are given  with  units of 
slug-ft2  and  include  conversion  to  units of kg-m2.  The  numerical  values  are  correct, 
but the  units  should be slugs  rather  than  slug-ft2.  The  converted  numerical  values are 
not correct  for kg units.  The  following  corrections  should be  made: 

Page 13: The  third  sentence  in  the  section "Model  1C"  should  be  changed to   read - 
These  masses  in  slugs (kg) were 

[mid = €58.0 (846) (1325) 90.8 

Page 15: The  sentence  beginning on the  third  line  below  figure  4  should  read - 
The  resulting  masses  in  slugs (kg) a r e  

r 55.6 
- 

-8.95 -2.68 I (811)  (-130.6)  (-39.1) 

piJ = 10-61 

1 Symmetric 

85.8  -12.17 
(1252)  (-177.6) 

65.7 
(9  59) - 

Page 31: Lines  8  and  9  in  the  section  "Solution of the  Flutter  Determinant' '  should  read - 
mll  = 0.0001905 slug (0.002780 kg), "22 = 0.0003801 slug (0.005547 kg), 

m33 = 0.0004918 slug (0.007177 kg), m44 = 0.0001271 slug (0.001855 kg), 

Page 34: The  second  sentence of the  second  paragraph  should  be  changed  to  read - 
Th,e numerical  surface  integrations  produced  the  following  matrix  in  units of slugs 
(kg) that  can  be  compared-with  the  values  cited  previously  in  the  text: 
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! 162 -0.4  17.2 8.6 
- 

(2G56) (-6)  (251)  (126) 

3  56  -89.2  -29.8 

Symmetric 

L 

(5195)  (-1302)  (-435) 

472 41.0 
(6888) (598) 

128 
(1868) - 

P a p a  38: Change the three  generalized  mass  values  in  the  table  subheadings  to - 
m l l  = 0.000357 slug (0.00521 kg) 

m22 = 0.000518 slug (0.00756 kg) 

m33 = 0.000264 slug (0.00385 kg) 

?Q addition,  the  following  corrections  should be made: 

F:j:;t: 5, line 1: The  formula  for air mass should be 

Page 18:. Replace  figure 7 with  the  attached  figure.  The  error  was  in  the  ordinate  scale 
bow2 l o r  - . a 
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APPLICATION O F  A SUPERSONIC  KERNEL-FUNCTION  PROCEDURE 

TO  FLUTTER ANALYSIS O F  THIN LIFTING  SURFACES 

By Herbert  J.  Cunningham 
Langley  Research  Center 

SUMMARY 

Lifting-surface  theory  for  supersonic  flow, as analyzed by the  supersonic  kernel- 
function  method,  has  been  applied  to  obtain  calculated  flutter  boundaries by a Galerkin 
modal  flutter  analysis. A systematic  procedure  for  calculating  the  required  generalized 
aerodynamic  forces is described  for a planform  with  subsonic  leading  and  supersonic 
trailing  edges.  Analytical  and  experimental  flutter  characteristics  are  compared  for 
three  flutter-tested  models.  For  two of the  models,  the  analytical  flutter  speed  ranges 
from  slightly  to  moderately  unconservative  over a Mach  number  range of approximately 
1 .2  to  3.0. For  the  third  model,  the  analytical  flutter  speed is slightly  conservative. 
The  agreement of analytical  flutter  frequencies  with  the  experimental  values is good for  
the  three  models. 

INTRODUCTION 

An improved  numerical  procedure  for  calculating  lifting  pressures on harmonically 
deforming  thin  lifting  surfaces by a supersonic  kernel-function  method,  based  on  the 
linearized  theory of unsteady  potential  flow,  was  described  in  reference 1. A lift- 
distribution series was  developed for planforms  with  apex  forward,  subsonic  leading 
edges,  supersonic  trailing  edges, and (basically)  pointed  tips.  The  procedure  was appEied 
to  the  vibration  modes of two  root-cantilevered,  platelike,  low-aspect-ratio  wings.  For 
those  wings,  the  desired  or  prescribed-downwashes  were  compared  graphically  with  the 
approximate  downwashes  that  result  from  least-square-error  solutions of the  downwash 
equations.  The  agreement  was good for  the  smoother  downwashes;  however,  for  the 
downwash  distributions  that  fluctuated  rather  abruptly,  particularly  those  for  the real 
par t s  of the  modes,  the  approximate  downwashes  did not follow  the  prescribed  variations 
in  detail. 

The  purpose of the  present  investigation is to  further  appraise  the  accuracy and 
adequacy of the  lift-distribution  series and its application  in  the  kernel-function  method 
by calculating  flutter  boundaries by a Galerkin  modal  method  for  comparison  with 
available  experimental  results  from  references 2 and 3 and from a model  similar 



described  in  reference 4. The  computer  program  was  extended,  compatibly  with  the  lift 
distribution series, to  calculate  generalized  aerodynamic  forces  appropriate  for  the 
Galerkin  formulation. 

A  description of the  method of calculating  the  generalized  aerodynamic  forces is 
presented  together  with a comparison of analytical  and  experimental  flutter  boundaries. 
The  flutter-equilibrium  equations  and  the  procedure  for  determining  the  analytical  flutter 
characterist ics and boundaries are described  in  appendix A. Appendix B gives  an  example 
of a computed  flutter  case. 

Reference 5 is a recent  report   that   treats  essentially  this  same  problem,  that  is, 
the  lifting-surface  integral  equation  that relates lift and  downwash,  which is applied  to a 
planform  with  subsonic  leading  and  supersonic  trailing  edges  in  supersonic  flow  and 
solved by a downwash  collocation  procedure.  Unlike  the  present  work,  the first step  in 
choosing a pressure  ser ies   was  to   assume  separat ion of the  chordwise  and  spanwise 
variables.  Also  unlike  the  present  work,  the  method of reference 5  applies  to  planforms 
with streamwise  tips. A flutter  calculation  was  made  for  comparison  with  one of the 
same  experiments  (from ref. 2) used  in  the  present  work. 

b0 

gi 

' %,S 

2 

SYMBOLS 

speed of sound  in test medium 

weighting  factors  in  the  lift-distribution series for  mode j (see eq. (9)) 

local wing semichord 

wing semichord at root or plane of symmetry 

wing semichord at 0.75-semispan  station (y = 0.75s) 

coefficients  in  polynomials,  where r = 0 ,  1, 2, . . . (see  eqs.  (Bl)) 

analytic  integrals  (see eqs. (15)) 

modal-independent  damping  coefficient in gi 

coefficient of structural,  solid-friction  damping for mode i (see eqs. (A?) 
and (AIO)) 

measured or assigned  value of damping coef€icient  in gi 



H(x,y,t) vertical  displacement of lifting  surface,  positive with z 

h ( 3  chordwise  distribution of mode-shape  deflections  approximated  for 
numerical  integration 

hi 7hj amplitude of natural  mode-shape  deflection  for  modes i and j (see,  
for  example,  eq. (1)) 

Ic(~c),I,(y,) elements of integrating  matrices  for  chordwise  and  spanwise  inte- 
gration,  respectively (see eqs. (14) and (16)) 

imaginary  part of ( ) 

t ransfer   matr ix   (see eq. (10) and  ref. 1) 

unit of imaginaries, fi 

reduced  frequency  with  reference  length  bo, k = - WbO 
V 

nondimensional lift distribution  associated  with  mode j (see  eq. (8)) 

t e rms  of lift-distribution  series  where  n = 0, 1, . . ., 5 (see 
eqs. (9) and (10)) 

Mach  number of s t ream flow,  V/a 

mass   per  unit a r ea  of lifting  surface 

generalized  mass  (see  eq. (A3)) 

number of modes  in  modal  flutter  analysis 

lifting-pressure  distribution,  positive  with z (see eq. (4)) 

lifting-pressure  distribution  per  unit 2b0 for  mode j (see 
eqs. (4) and (8)) 

generalized  aerodynamic-force  quantity  for  mode i (see  eqs. (3) and (5)) 
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Q. .  Q*. 
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dimensional  and  nondimensional  generalized  aerodynamic  forces  (see 
eqs. (5) and (11)) 

qj  generalized  coordinate of motion for mode j ,  i jeiwt 

- 
3 complex  amplitude of qj  

Re( 1 real part  of ( ) 

S y  coordinate at right-hand  wing t ip 

t t ime 

V velocity of undisturbed air o r  other test medium 

wj amplitude of downwash distribution  per  unit  q. 2b0 at lifting  surface  for 
1 I 

mode j ,  positive  with z (see  eqs. (6) and (7)) 

X,Y,Z axis system of planforms 

X,Y ,= nondimensional  chordwise,  spanwise,  and  vertical  coordinates,  referred 
t o  2b0 

XC x coordinate of points  at  which  integrands are evaluated  for  numerical 
chordwise  integration,  where  c = 1, 2, . . . 

- 
X nondimensional  local  section  chordwise  coordinate,  referred  to  local  chord 

(see eq.  (B2)) 

yo  y  coordinate of span  stations at which  chordwise  integrations are done for 
subsequent  spanwise  integration,  where c = 1, 2,  . . . 

a mass  of air contained  in  the  volume 4.rrb0, a! = 47rpb0 3 3 

rij elements of flutter  equilibrium  equations  and  flutter  determinant (see 
eqs. (A12) and (A13)) 

Y i  quantity  in  flutter  equation (A12) 
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EL ratio of mass  of semispan wing to  air mass 

V number of spanwise  integration  stations (odd in  the  present  report) 

P density of air or other  test  medium 

s-2 complex  frequency  eigenvalue  (see  eq. (A12)) 

W circular  frequency of harmonic  motion 

W B chosen  base or reference  frequency 

W. 
1 

normal-mode  natural  frequency of mode i 

Subscripts: 

exp 

i , j  

l e  

m 

n 

t e  

th  

V 

experimental 

mode  numbers 

value at wing  leading  edge 

integers  associated  with  exponent  m on ym 

integers  associated  with lift t e rm 2, o r  2: 

value at wing trailing  edge 

theoretical  (analytical) 

highest  numbered  (usually  the  most  outboard)  spanwise  integration  station 

ANALYSIS 

Origin of Analysis  and  Galerkin  Modal  Formulation 

The  present  report is an  outgrowth  and  extension of the  work of reference 1. Its 
purpose is to  describe a procedure  for  the  calculation of generalized  aerodynamic  forces 
for a Galerkin  modal  formulation  and  to  report  the  results of several  flutter  calculations 
made  for  comparison  with  experimental  results.  The  planform  treated is that  shown  in 
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Figure 1.- Perspec t ive   v iew of l i f t ing   sur face   and   coord ina te   sys tem.  

figure 1. The  analysis  applies  for  subsonic  leading  edges,  supersonic  trailing  edges,  and 
for  (basically)  pointed  tips.  The  flutter-equilibrium  equations are developed  in  appen- 
dix A, essentially  in  accord  with  existing  practice,  in  order  to  make  readily  available 
the  framework  in which the  aerodynamic  forces are applied  and  from which flutter  solu- 
tions  are  obtained. 

In  the  Galerkin  method,  the  location  H(x,y,t) of the  deformed or displaced  surface 
is approximated by a finite  series of chosen  modes (see eq. (7) of ref. 1) that  satisfy  the 
boundary  conditions of the  structure: 

T” 

where  for  each  mode j ,  hj(x,y) is the  nondimensional  mode  shape,  qj(t) is the  dimen- 
sional  generalized  coordinate of motion,  and  t is time. 

The  generalized  aerodynamic  forces  required  for  flutter  calculations  arise  from 
simple  harmonic  motion;  that is, 

q.(t) = 6.e J J 
i w t  

where ;i is the  complex  amplitude of q and w is the  circular  frequency of har-  
monic  motion. 

j j 
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Generalized  Aerodynamic  Forces 

In  the  Galerkin  method,  the  generalized  force  Qi is 

Qi = (2boY Is 1" hi Ap(x,y,t)dx  dy 
O Xle 

where hi 3 hi(x,y) is defined  in  equation (l), x and  y are nondimensional  chordwise 
and  spanwise  coordinates,  respectively, 2b0 is the  root  chord  length, s is the  y 
coordinate of the wing tip, xle and %e are the x coordinates of leading  and  trailing 
edges,  respectively,  and Ap(x,y,t) is the  lifting-pressure  distribution  over  the  lifting 
surface  that  appears  in  the downwash integral  equation,  equation (1) 

In  keeping  with  the  modal  representation,  the  lifting  pressure 
a modal s e r i e s  

where  Ap.(x,y,t) is the  lifting  pressure  that is associated  with  the 
per  unit  value of q 2b0. 

J 

j/ 
The  use of equation (4) in  equation (3) leads  to a modal  series 

j 
where 

of reference 1. 

Ap is replaced by 

deflection  in  mode j 

for  Qi 

( 5 4  

The  lifting  pressure Apj is related  to  the  motion  in  mode j in t e r m s  of its associated 
downwash  w pe r  unit  q 2b0 by the downwash integral  equation j j/ 

where .E and q are dummy  variables for x and  y,  respectively, and  K(M,k,x-(,y-q) 

is the  supersonic  kernel  function  in  which M is Mach  number  and  k = - Ob' is the 
reduced  frequency  with  reference  length bo. (The  limits of integration qR, qL, tMC, 
and tle are given  in ref. 1.) 

V 
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The  downwash rat io   for  mode j is 

The  pressures  Ap are expressed  in  terms of nondimensional  quantities  Lj(x,y) as 
in  equation (12) of reference 1 

j 

In  reference 1, Lj(X,y) is approximated by a linear  combination of chosen  functions of 
the  form Zn(x,y)ym, each  with  an  initially  undetermined  complex  weighting  factor an,m, (j) 
this  relationship,  given  in  matrix  form, is 

The  16  complex  functions Znym  of reference 1 were  chosen  to  provide good matrix con- 
ditioning  in  least-square-error  solutions  for  the  16  weighting  factors  a(j)  from  the set 
of equations for the downwash at selected downwash control  points. But in  order  to 
improve  computational  efficiency at other stages of the  overall  calculation,  the  functions 
Znym are   expressed  in   terms of 46 real  elements Ziym through a transformation 
matrix 111 as follows: 

n,m 

where  the  terms 2; and  the  matrix I11 are given  by  equation (13) and  table I, respec- 
tively, of reference 1. (It  should  be  noted  that  unlike  the  lift-distribution  functions  that. 
are  used  frequently  in  the  subsonic  kernel-function  methods,  the  elemental  functions 
Zt(x,y)  in  the  present  supersonic  kernel  approach  do not feature  separation of the  chord- 
wise  and  spanwise  variables x and y.) 

Substitution of equations (8), (9); and (10) into  equations (5) gives 

Q.. = 4 ~ p V  2 b Q*. 
11 0 1 3  

where 

and Q!. are the  nondimensional  generalized  aerodynamic-force  elements.  The  surface 
integration  indicated  in  equations (11) is carr ied out  by numerical  quadrature, first chord- 
wise  and  then  spanwise.  The  procedure  that is the  most  economical of computing  time 

13 
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is integration of the  product of hi and  each of the 46 elements  in [Z:yq followed by 

postmultiplication of the  resulting  row of 46 integrals by I11 a,,, . c 1 ( (j) ) 
Chordwise  integration.-  The  chordwise  integrals are obtained at the  span  stations 

required by the  spanwise  integration.  Two of the  lift-distribution  terms 2; and 2 2  have 
integrable  singularities at the wing  leading  edge.  Consequently,  the  accuracy of the  chord- 
wise  integration is improved if hi(x,y) is replaced by its identity 

. ~~ 

s o  that the  chordwise  integral  for  any  term Z i  becomes 

The  integrand of the first integral is zero at the  leading  edge,  and  integration of the  second 
integral  can be performed  analytically  with  high'accuracy. 

For any  span  station,  the  chordwise  integrations of the  array of t e rms  1: are  indi-  
cated  in  the  following  matrix  operation: 

n r  i- 
1 n,- i+ 

matrix (4) matrix (5) 

where  xc  and y, are the x and  y  coordinates,  respectively, of the  array of points 
along  the  chord at which  integrand  quantities are evaluated  for  span  station yo. The 
order  and  dimension of each  matrix are indicated with arrows as follows:  n + means  n 
var ies   f rom 0 in  the first row  to 5 in  the sixth row;  c- (or c + I )  indicates as many 
columns (or rows) as there  are points xc along  the  chord;  and i- means  that  mode i 
ranges  from 1 to  N, the  number of modes  in  the  analysis.  Each  matrix  has a designation 
for  convenience of referral. The  elements Ic(xc) in  the  diagonal  matrix,  matrix (2), 
are  the  integrating  factors  for  chordwise  integration. 
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The  values of the  chordwise  integrals  in  the  elements of matrix (4) of equation (14) 
a r e  found from  their  analytical  expressions  that are tabulated as follows  for  any  span 
station yo: 

. ." - 

n 

". .. . . . . .  

0 . . . . . . . . . . . . .  

1 . . . . . . . . . . . . .  

2 . . . . . . . . . . . . .  

3 . . . . . . . . . . . . .  

. . . . . . . . . . . . .  L . . . . . . . . . . . . .  
~ - . .  

where 

. ~ . .  

+- 3 

The  numerical  integration  that is accomplished by the first matrix  product  in  equation (14) 
(matrix (1) X matrix (2) X matrix (3)) can be performed by any  suitable  rule.  In  the  pres- 
ent work, Gaussian  quadrature  was  used  because of its known accuracy.  The  choice of 
rule  determines  the  locations  xc  and  the  associated  integrating  factor  Ic(xc).  The  com- 
puting  program  permits  other  types of numerical  quadrature at the option of the  user ,  who 
must  then  supply  "nonstandard"  input  data  for  the arrays of xc and  Ic(xc).  Often  the 
deflections hi(xc,yo) a r e  not  known at the  points  xc,  and  interpolation is necessary. 

Spanwise  integration.- When the  matrix  operation of equation (14) is carr ied out for 
the  span  stations  yo  in  sequence,  matrix (5) takes on a third  dimension  equal  to  the 
number of span  stations.  The  spanwise  integration is indicated by the  following  matrix 
operation: 

10 



c 
0 

0 
0 

0 

C 
I 

r 

matrix (5) matrix (6) 

2 4  18 
Y,  Y, - 9 - Y, 

matrix (7) 

10  columns - 
c 0  

Surface 

matrix (8) 

(16) 
where (7- (or ) indicate as many  columns (or rows) as there   are   span  s ta t ions.   In  
the  diagonal  matrix,  matrix  (6),  the  elements I,(yo) are the  spanwise  integrating  factors 
that are the  same  for  all modes.  In  matrix (7) the  number of powers of yo  (that is, 10) 
was  determined by the  number of lift terms  chosen  in  reference 1. The  even  powers 
shown  in  matrix (7) apply to  spanwise  symmetry of lift and  motion.  The odd powers  from 
1 t o  19  apply to  spanwise  antisymmetry. 

For the  present  work,  the  spanwise  integrals  indicated by  equation  (16) a r e  obtained 
according  to  Simpson's  rule  for  second-degree  parabolas.  The wing semispan (y = 0 t o  
y = s) is divided  into  an  even  number of parts  (tenths  in  this  example), which results  in  an 
odd number of evenly  spaced  span  stations yo,  including  both  limits.  The  matrix of inte- 
grating  factors,  matrix  (6),  for  this  choice is 

4 
2 

4 

2 
4 

1 I 
where v is the (odd) number of span  stations.  Here  too,  the  computer  program  permits 
other  options  for  which  the  user  supplies  "nonstandard"  input  data  for  the  arrays of y, 
and I,. The  availability of deflections  hi is an important  fzctor  in  the  choice of yo. 

The  result at matrix (8) is 60 elements for each  mode. This excess over  the 
46 elements  that are needed  because of the  choices  made at equations (15) to  (17) of 
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reference 1 is produced  to  keep  the  operation  simpler  to  this  point. But for  each  mode i, 
14 elements are discarded,  the  remaining 46 elements are rearranged,  and  the  matrix of 
Q?. is computed as follows: 
11 

46 columns - 16 columns - 

matrix (8x) 

Each  row of the  rearranged  matrix (8x) is fo r  one of the  modes  and is obtained from  the 
elements of matrix (8) for  that  mode by using  the  following  elements: all 10  elements  from 
the first row of matrix  (8),  the first eight  elements  from  row  two, all 10  elements  from 
row  three,   the first eight  elements  from  row  four,  the first six elements  from  row  five, 
and  the first four  elements  from  row six - a total of 46 elements.  The  elements of 

[ I I ~  7 [4!m], and 1 Q.. :j] are complex  quantities,  in  general.  Matrices (1) to (8x) all have 
real-number  elements. 

RESULTS AND DISCUSSION 

The  present  procedure  for  calculating  generalized  aerodynamic  forces  has  been 
applied  in a Galerkin  modal  analysis,  described  in  appendix A, to determine  the  flutter 
characteristics  and  boundaries of three  different  flutter-test  models  for which experi- 
mental  results  were  available.  These  models  include  the  semispan,  root  cantilevered,. 
flat-plate  flutter  models of reference 2, that is, model 1A with a 70° swept  delta  planform 
and  model  1C  with an 80° swept  delta  planform.  The  third is a flutter  model  designated 
HT-7 that  was a variation of the HT series of reference 4, but  which  was  tested  subse- 
quent  to  the  preparation of reference 4. 

Model 1A 

The  planform of model  1A is shown  in  figure 2. 

Figure 2.  - Planform of model U. 

12 



A comparison of complex  downwash results  for  this  model  was  presented in  fig- 
u r e  5 of reference 1 for  the first two  vibration  modes  for  M = 2.0 and k = 0.5. For 
the  present  analysis, all four  modes of table  II(a) of reference  2  were  used. Appendix B 
includes a description of how the  general  mode  shape  and downwash  information  was  inter- 
polated  from  the  limited  data of that  table.  Forty-eight downwash control  points  were 
used, as described  in  appendix B, rather  than  the 46 that  gave  the  results  in  reference 1. 

Figure 3 and  table I present  the  stiffness-altitude  parameter b"75sW2 fi and  the a 
ratio of analytical  to  experimental  flutter  frequency as functions of Mach  number.  The 
resul ts  of the  present  kernel-function  analysis are plotted  for  each  experimental  super- 
sonic Mach number,  beginning  with  M = 1.19,  except at the  upper  limit  for a subsonic 
leading  edge,  M = 2.92, the  analytical point  was  calculated by using  the wing parameters  
for  the  experiment at M = 3.0. The  experimental  and  piston-theory  results  from  ref- 
erence 2 are repeated  on  the  figures  for  comparison.  The  kernel-function  results  for 
stiffness-altitude  parameter fall mostly  between  the  piston-theory  results  and  the  experi- 
ment  (except  for M = 1.19),  and  thus are still slightly  to  moderately  unconservative  in 
comparison  with  the  experiment. (By unconservative, it is meant  that  the  stiffness 
required  to  prevent  flutter  determined  analytically  was  found  to  be  less  than  that  deter- 
rnined  experimentally.)  The  calculation  for M = 2.0 is described  in  appendix B. The 
values  for  the  analytical  flutter  frequency are within 6 percent of the  experimental  value 
for  five of the six cases  presented and  within 11 percent  for  the  other  case. 

Reference  5  reports  the  results of a flutter  calculation  for  this  same  model 1A for 
M = 2.0. That  calculation  used a different  pressure-mode  series, a different  collocation, 
and  analytically  rather  than  experimentally  determined  mode  shapes  and  frequencies. 
The  calculated  stiffness-altitude  parameter  was  unconservative by only  about 5 percent 
in  comparison  with  experimental  value  and  the  flutter  frequency  was  within 1 percent of 
the  experimental  value. 

Model 1C 

The  planform of model  1C is shown  in  figure 4. For  this  model,  calculations  were 
first made  with  three  modes  and  with  the  diagonal  generalized  mass  matrix  that  was  used 
in  obtaining  the  piston-theory  results  in  reference 2. These  masses  in 
were s I q 5  (koQ.) 

[mid = ,%8& 90.8 
+==e- 

C8Cllc) ( i 3 ~ ~ )  (1049) 4 
The  resulting  flutter  boundary,  in  terms of the  stiffness-altitude  parameter,  was  widely 
unconservative;  and  the  flutter  frequency  was  near  the  third-mode  frequency  rather  than 
being  below  the  second-mode  frequency as the  experimental  value  was.  The  root  that 
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Figure 3 , -  Flutter  boundary  in  terms of stiffness-altitude  parameter and ra t io  of 
analytical  to  experimental  flutter  frequency as a function of Mach number for 
model 1A. 
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I 

Figure 4.- Planform of model 1C. 

originated  from  mode  3 is the one that  .became  unstable. In view of the  serious  lack of 
agreement  between  analysis  and  experiment, it was  decided to  calculate new generalized 
masses  on  the  basis of the  interpolations  from  equation  (B3).  The  resulting  masses in 

are 

= lo- 

6 

55.6 -8.95 
" M  c- i30. b) 

85.8 
w" 
ClASL2) 

L 

and  their  use  along with the  modal  frequencies of model 1C produced  the  results  listed  in 
table I and  plotted  in  figure 5. Even  though  the  off-diagonal,  mass-coupling  elements are 
small  compared with the  on-diagonal  direct  elements,  their  effect is decisive  in  deter- 
mining  the  flutter  characteristics  since  they  cause  the  mode 2 root,  rather  than  the  mode  3 
root,  to  become  unstable.  This  difference  caused a great  improvement  in  the  calculated 
frequency  (three out  of five  frequencies within  5 percent of the  experimental  values  and 
another  within  10  percent)  and a substantial  improvement  in  the  stiffness-altitude  param- 
eter, although  the latter is still somewhat  unconservative, as it was  for  model 1A. The 
same,comments as for  model 1A apply  concerning  the  unconservativeness. A comparison 
of tables I and  II(c) of reference  2  discloses  that  the  frequencies  for  the  "representative 
mode  shapes"  in  table  II(c) are noticeably  higher  than  those  given  in  table I therein  for  the 
models  actually  fluttered.  Whether  this  highef  frequency  has  any  significant  effect on the 
mode  shapes is only  conjectural.  (Incidentally,  in  table I of reference  2  there are two 
incorrect  numbers at M = 2.0 f o r  model  1C.  The  cyclic  frequency  f2  should  be 367 Hz 
rather  than 467 Hz,  and  density p should be 0.001418 slug/ft3 (0.731 kg/m3) rather  than 
0.001468 slug/ft3 (0.7566 kg/m3).) 
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Model  HT-7 

The  planform of model  HT-7 is shown  in  figure 6. 

Figure 6.- Planform of model HT-7. 

In seeking  additional  flutter  experiments  to which the  present  analysis  could be 
compared,  reference  4 was considered.  There,  the  all-movable  horizontal-tail  models 
a r e  of primary  interest  because,  in  spite of the cut-off tip,  the  relative  proportion of the 
surface area that is affected by the cut-off t ips is small  and  because  the  models  had 
neither  control  surfaces  nor  leading-edge  breaks  to  complicate  the  analysis.  Unfortu- 
nately,  there is not sufficient  information  in  reference  4 on  mode  shapes of the HT (hori- 
zontal tail) series.  Unpublished  data  were found,  however, on a variation  (HT-7) of the 
HT series  that  was successfully  flutter  tested.  The  available  modal  data are listed 
herein  in  table 11. The  parameters  for  the  flutter  experiment  were as follows: 
M = 1.64, V = 1300  ft/sec (396.2 m/sec), P = 0.003305  slug/ft3 (1.703 kg/m3), 
Dynamic  pressure = 2790 lb/ft2 (133.59 kN/m2), w/w2 = 0.683,  and V/b0w2 = 2.09. 

For this surface,  the  aspect  ratio is 2.50, the  taper  ratio is 0.3, the  sweepback 
angles  are 50.5O for  the  leading  edge  and 45' for  the  quarter-chord  line,  and  the Mach 
number  for a sonic  leading  edge is 1.573,  which is the  upper  limit of the  subsonic  leading- 
edge  range  in which calculations  can be  made by the  present  analysis.  Calculations 
were  made  for M = 1.2, 1.3,  1.4,  and 1.573 by using  the  experimental  density 
p = 0.003305 slugjft3 (1.703 kgIm3).  Figure 7 includes  curves  faired  through  the point 

b0w2 values  obtained  for T @  and w w2. The  experimental  values  are  plotted  at / 
M = 1.64,  and the  results  obtained  from  aerodynamic  piston  theory  are  obtained  from  fig- 

the Mach number of the  experiment  yields good agreement  for  the  frequency  and a small  
conservative  margin  for  the  stiffness-altitude  parameter. 

I ure  10 of reference  3 for comparison. A smooth  extrapolation of the  analytical  results  to 

Based on the  analyses  and  the  comparisons  with  experiment  that  have  been  pre- 
sented,  the  application of the  lifting-pressure  series of reference 1 in the  present  pro- 
cedure  for  calculating  flutter  characteristics is concluded  to  be  rather  accurate  and 
adequate  overall  and,  therefore,  to  have  useful  areas of application. 

n, 
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Figure 7.- Flutter  boundary  in  terms  of  the  stiffness-altitude  parameter and 
ratio  of  flutter  frequency to second  natural  frequency  as  a  function  of 
Mach  number  for an all-movable  control-surface  model, HT-7. 
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CONCLUDING REMARKS 

A description is presented of a systematic  procedure  for  obtaining  generalized  aero- 
dynamic  forces  ,from  the  lifting-surface  theory by the  supersonic  kernel-function  method 
and for  using  those  forces  obtained  in a Galerkin  modal  flutter  analysis.  Analytical  flutter 
resul ts  are presented  for  three  different  flutter  models  and  compared  with  their  experi- 
mental  results. 

For  two of the  models  the  analytical  flutter  results  in  terms of stiffness-altitude 
parameter  are  slightly  to  moderately  unconservative  in  comparison  with  the  experimental 

I resul ts ,  and  the  flutter-frequency  agreement is within 6 percent  for  eight of 11 cases and 
. within 11 percent  for  two of the  other  three  cases.  For  the  third  model,  analytical  results 

were  obtained  over a Mach  number  range  up  to 1.573 for which the  leading  edges  are  sub- 
sonic.  A  smooth  extrapolation of the  resul ts   to   the Mach  number of the  experiment,  1.64, 
yielded good agreement  with  experimental  results  for  the  frequency  and a small  conserva- 
tive  margin  for  the  stiffness-altitude  parameter.  The  procedure  presented  herein,  there- 
fore,   appears  to have  useful areas of application. 

Langley  Research  Center, 
National  Aeronautics  and  Space  Administration, 

Hampton, Va., August  19,  1970. 
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APPENDIX  A 

FLUTTER EQUATIONS FROM  A GALERKIN FORMULATION AND 

SOLUTIONS FOR  FLUTTER CHARACTERISTICS 

Flutter  characterist ics and  boundaries are determined  from  the  equations of equi- 
librium  for  the  structure.  Here,  those  equations of equilibrium  are  formulated  based  on 
the  Galerkin  modal  approach,  beginning  from  the  fundamentals  essentially as described 
in  reference 6. 

Mathematical  Model 

The  lifting  surface is considered  nearly  planar with a mean  location  nearly  in  the 
XY-plane as shown  in  figure 1. A small  displacement or  deformation  H(x,y,t) of the 
surface away from its mean  location  during  flutter is approximated by a finite series, as 
indicated  in  equation (1) (see  a lso eq. (7) of ref. 1). This  equation is repeated  here  for 
convenience: 

~ ( x , y , t )  1 hj(x,Y)qj(t) (A 1) 
j 

where  for  each mode j ,  hj(X,y) is the  nondimensional  mode-shape  distribution  and 
qj(t) is the  generalized  coordinate of motion.  The start of flutter  (neutral-stability  con- 
dition) is defined by the  existence of simple  harmonic  motion so that  q.(t) = q.eiwt 

1 1 .  

Equations of Equilibrium 

With the  modal  representation of equation  (Al),  the  Galerkin  procedure  results  in 
the  following  equations  for  no  internal  damping: 

j 

where  the  generalized  masses are 

(i = 1, 2, . . .) (A21 

the  generalized  aerodynamic  force 

s x  
Qi = (2b0)2 1 I te hi 

0 Xle 

quantity,  given as equation (3) previously, is 

AP(X,Y,t)& dY 
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APPENDIX A - Continued 

I 

and w i  is the  normal-mode  natural  frequency of mode i, 2b0 is the  root  chord  length, 
mA is the  mass  per  unit area, s is the  y  coordinate of the  right-hand wing tip, xle 
and xte are the x coordinates of the  leading  and  trailing  edges,  respectively,  and 
Ap(x,y,t) is the  lifting-pressure  distribution  over  the  lifting  surface. 

The first t e r m  on  the  left-hand side of equation (A2) is the  generalized  stiffness 
represented  in  terms of W i  and mii, according  to  Rayleigh's  principle.  This  term 
reflects the  usual  assumption  that  stiffness  coupling  between  modes is negligible.  The 
second  term  contains  the  generalized  masses  mij  and a l l o ~ s  the  possibility of mass  
coupling  between  modes.  The  third  term is the  generalized  aerodynamic  force, which 
represents  the  work done  on  mode i by the  aerodynamic  forces  from  the  overall  motion 

The  lifting-pressure  distribution Ap in  equation (A4) is expressed  in  terms of the 
contributions  from  the  modes j of equation  (Al) as 

where Ap is the  lifting-pressure  distribution  per  unit  value of q /2b0. Application of 

equation (A5) to  equation (A4) permits  Qi to be separated  into a modal  series,  presented 
previously as equations  (5a)  and (lla), respectively, 

j j 

and  the  nondimensional  generalized  aerodynamic-force  terms &*. a r e  developed  in  the 
main text (see  eq.  (llb)). 

1J 

Structural  damping.-  Provisions for structural  damping  are  introduced  in  the 
customary way  by multiplying  the  generalized  stiffness  term,  the first term  in  equa- 
tion (A2), by (1 + igi), where  gi is the  coefficient of structural,  solid-friction  damping 
for  mode i. (The  unit of imaginaries i = \I-1 is not to  be  confused  with  the  modal  sub- 
scr ipt  i = 1, 2, . . . .) This  type of structural  damping i s  characterized by: (1) a 
resisting  force  that is in  phase  with  velocity  and  proportional t o  amplitude  and (2) mechan- 
ical energy  dissipated  per  cycle of vibration, which is proportional  to  the  square of the 
amplitude  but  independent of frequency. 

~~ 

Flutter  equations.-  Insertion of the  damping  term (1 + igi)  in  the first t e r m  of equa- 
tion (A2) and  substitution of equation (A6) in  the  same  equation  leads  to  the  following  form: 
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APPENDIX  A - Continued 

q.w. 2 (1 + igi)mii - 1 qj(w 2  mij + 4 w v  2 bo&*.) = 0 (i = 1, 2, . . .) (A7) 
1 1  11 

j 

The  set  of equations of dynamic  equilibrium  represented by equation (A7) contains  two 
unknowns w and V. The  aerodynamic  force  quantities &*. are complex  functions of 

wb, 1J 

the  reduced  frequency k = - " that  combines w and V. Therefore,  w and V can- 
not be  solved  explicitly,  and  some  procedure  for  searching  for  solution  values is required. 
A  commonly  used  method is to  group  terms dependent on k separately  from  those con- 
taining w only. This  grouping is done by dividing  equation (A7) by w2 and  using  the 
relations  among w ,  V, and k so  that 

V 

b 

J 

t 

(i = 1, 2,  . . .) (A8) 

At this  point, it can  be  seen  that,  for  chosen  combinations of  p and k,  eigensolutions 
can  be  made  for ( l /w2) .  In general  l / w 2  will  be a complex  quantity; if the real part  is 
positive,  the  sign of the  imaginary  part is a qualitative  indication of a damped  (stable) or  
growing  (unstable)  oscillation.  Points on flutter  boundaries are obtained  from  combina- 
tions of p and k that  result  in  zero  imaginary  parts  for l / w 2 ,  that  correspond  to 
neutrally  stable,  simple  harmonic  motion  for which the  aerodynamic  forces are valid. 

Equations (A8) are not,  however,  in a form  ready  for  eigensolution by an  eigenvalue 

subroutine. . To put them  in  such a form,  they  are  first  multiplied by - (WB/Wi)2 to  
obtain 

mii  

where uB is a chosen  "base" or  reference  frequency.  In  order  to  facilitate  the  search 
in  the  customary way for  eigenvalues of (wg/w)2 that are real only,  and  at  the  same  time 
to  retain  the  use of actual or ,assumed  structural  damping  coefficients gi that  are  dif- .> 

ferent  for  different  modes i,  the  asymptotic  approximation  introduced  in  reference 7 is 
adopted;  that is, gi is considered to be  made  up of two  parts 

4 

gi  = gi,s + g (A10) 

where gi,s is the  measured or assigned  structural  value fo r  mode i,  and  g is a 
modal-independent  increment  that  has  the  same  interpretations as in  past  usage;  that is, 
points on a flutter  boundary  are  sought  for which  g = 0, and  where  g f 0 that  value of 
g is the  amount  that would have  to  be  added  to  the  structure  to  permit  neutrally  stable, 
simple  harmonic  motion. By using  equation (A10) 
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APPENDIX A - Continued 

where  the  asymptotic  approximation  appears on the  right-hand  side of the  equation. Sub- 
stituting  equation  (All)  into  equation (A9) and  dividing  by 1 + igi,s result   in  the following 
form  that  is ready  for  solution  by a complex  eigenvalue  subroutine: 

P 

(i = 1, 2, . . .) (A1 2) 

where 

Nontrivial  solutions  (that is, all q. # 0) of the  set  of equations (A12) a r e  obtained by 
J 

setting  the  determinant of the  matrix of the  coefficients of the  q.'s  equal  to  zero,  giving 
the  usual  flutter  determinant 

3 

-a + rll r12 . . D  1N 

r2 1 -a + r22 . . . '2N 
= o  

rN 1 . . .  -52 -I- I'NN 

where N represents  the  number of modes  used.  The  eigenvalues S2 of the  flutter 
determinant  can  be found by any  method  that is applicable to  complex  non-Hermitian 
matrices.  The  subroutine  used  herein is based on that  described  in  reference 8. Chosen 
combinations of p  and k give,  in  general,  complex  values of a. The  positive  real 
par t  ( U ~ / W ) ~  gives  the  frequency,  and  the  ratio of imaginary  part   to  real   part   gives  the 
associated g. Thus,  finding  points on a flutter  boundary  means  selecting  combinations 
of p and k that  result  in g = 0. 
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APPENDIX  A - Continued 

Solutions  for  Flutter  Boundaries 

In  preparation  for a flutter-boundary  solution, all the  input  quantities  that  charac- 
ter ize   the  s t ructure  and the  flow are computed or are chosen  according  to  the  judgment 
of the  analyst.  These  include  structural  information  in  terms of mode  shapes,  frequen- 
cies,  generalized  masses,  structural  damping  coefficients,  and  locations of control  points 
at which  the  downwash  ratios  for all modes j are obtained as 

A staggered  arrangement of control  points is recommended as an  aid  in  minimizing 
unwanted variations  in downwash distributions  between  control  points. (See  appendix B.) 
Since  separation of the  chordwise  and  spanwise  variables  was not assumed  in  the  pres- 
sure  distributions Z E ,  none of the  published  schemes  for  optimizing  the  location of con- 
t ro l  points a r e  applicable.  Often  mode  shapes  hj  from  tests are not measured at the 
locations of the  selected  control  points,  and it becomes  necessary  to  interpolate to get 
the  desired downwash ratios. 

Flow parameters  that   are  to be  selected  include  the  Mach  number,  reduced  fre- 
quency,  and air density.  The  range and  sequence  in  which  the  parameters  are  chosen 
depend upon the  conditions  for  which  flutter  characteristics or flutter  boundaries are t o  
be  calculated.  These  include: (a) calculation  within a designated  range of altitude  and 
Mach  number  in  the  standard  atmosphere; (b) more  general  calculations of variations 
among  cert,ain  parameters,  such as among  Mach  number,  mass  ratio,  and  flutter-speed 
index;  and  (c)  calculations to be compared with known wind-tunnel resul ts ,  as in  the  pres- 
ent  work.  For  condition  (c),  the  experimental Mach number is used  together  with an 
initial  value of k estimated  from 

k =  Wexp 
aM 

where Wexp is the  experimental  flutter  frequ.ency  and a i s  the  speed of sound  in  the 
test  medium.  For  this k, the  nondimensional  generalized  aerodynamic  forces &*. are 
calculated. A flutter  determinant is formed  for  each of a range of values of p beginning 
well. belGvyl the experimental  value.  For  each p ,  the  set of eigenvalues Q is calculated. 
The - d u e s  of g are   the  ra t ios  of Im(sl)/Re(n)  and  for  sufficiently low p are  usually 
all  negative  (with  positive Re(f2)); this  condition  indicates  st2-bility. A progressive 
increase  in p usually  results  in  one  or  more of the  modes  (roots)  becoming  unstable; 
that is, g  passes  from  negative,  through  zero,  to  positive.  A  sufficient  rwge of p 
n u s t  be  used  to  assure  that  the  critical  instability  point, which is that  point  which requires 
the  greatest  stiffness  to  prevent  flutter, is found. If the  flutter point thus found does not 
occur at the  density of interest   or if resul ts  are desired  over a range of density,  the 
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APPENDIX  A - Continued 

calculations are repeated  for  other  values of k.  In selecting  other  values of k,  some 
guidance  can be obtained  from  the fact that  for a fixed  Mach  number a flutter  boundary 
usually is characterized by  only a slight  variation of dynamic  pressure  over a substantial 
range of density.  Furthermore,  such  flutter  boundaries are often  also  characterized by 
a nearly  constant  flutter  frequency w. Thus,  where both of these  characterist ics are 
present,  p is closely  proportional  to k2. 

Study of equation (A12) indicates  that  flutter  boundaries  can  be  expressed  in  terms 
of four  nondimensional  quantities as follows:  Mach  number M, reduced  frequency k, . 
mass ratio p ,  and  frequency  ratio w/wB, and by combinations of the  four.  (Mass 
ratio p is the  ratio of wing mass  to the  mass  of air in a cone o r  truncated  cone that 
encloses  the wing.) For  example, by  combining either 

o r  

Mkfi-=-fi  WB bOwB 
w a 

w b w  

V 
kf i -=-  W O B f i  

(A16a) 

(A16b) 

(A16c) 

the  resul ts   are   measures  of st iffnesses  required  in  terms of bowB to  prevent  flutter 
for  a given  M o r  V, and p (contained  in p) .  The first combination  (eq.  (A16a)) has 
been  termed a flutter  index  or  flutter-speed  ratio.  The  second  combination  (eq. (A16b)) 
has  been  called a stiffness-altitude  parameter.  (See,  for  example,  ref. 2.) The  third 
combination  (eq.  (A16c)) is a variation of the  second,  differing only by the Mach number. 

In  comparing  calculated  and  experimental  results,  commonly  only  two of the  four 
quantities M, k, p ,  and w/wB can  be  matched.  In  the  present  study,  M  and p 

were  matched.  Differences  between  calculated  and  experimental  flutter  index or stiffness- 
altitude  parameters are interpreted as indicating that the wing stiffness  in  terms of bowB 
from  the  analysis is grea te r   o r  less than  required  to  match  the  experimental  counterparts. 
Differences  in  flutter-frequency  ratio  also  usually  occur.  The  magnitudes and trends of 
these two  differences are measures  of the  adequacy of the  analysis as applied t o  the 
experiments  in  the  present  study. 

In the  discussion  following  equation (A15), the  usual  trend of eigensolution  results 
was  described.  Occasionally,  however,  one  or  more  eigenvalues S2 will  indicate  an 
instability  (a  positive g) for low p and  low k.  (Note that  the  minus  sign  must be 
included  with  the  downwash  ratio  on  the  left-hand  side of eq. (6). The  wrong  sign  here 
can  make all modes  appear  to be unstable,  rather  than  stable.)  A  flutter  instability  for 
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APPENDIX  A - Concluded 1 

low k and  low p usually  means  an  essentially  single-degree-of-freedom  flutter.  This 1 
type of instability is revealed by a positive  sign of the  imaginary  part of Qii, where 
mode i is the  predominant  modal  element  in  the  flutter  eigenvector.  Single-degree 
flutter  boundaries are usually  strongly  dependent  on how much  structural  damping is i 
present.  F'urthermore,  the  associated  value of p may  be so  low as to be  above  the 
altitude  range of interest,  and when k is increased  to  extend  the  flutter  boundary  to j 

higher p (lower  altitude),  the  imaginary  part of Qii  may  become  negative  (stable), 
and  only  the  more  usual  coupled-mode  flutter is then  possible. 

I 
I 

// 
l 

1 
In  appendix B, an  example of a flutter  calculation is carried  through. +' 
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APPENDIX B 

A  COMPUTED  FLUTTER  EXAMPLE 

To illustrate  the  calculation of a flutter  boundary,  the 70' swept  delta-wing  model 
(model 1A of ref. 2) was  chosen  largely  because  some  comparisons of approximate down- 
wash  distributions  with  the  called  for downwash at 46 downwash control  points are already 
available  in figure 5 of reference 1. 

The first major  step  in  computing  the  flutter  boundary  for a given wing is to  choose 
the  parameters M  and  k  and to  choose  the  locations of the   a r ray  of downwash control 
points.  In  order  to  solve  matrix  equation (32)  of reference 1 for  the weighting factors 
anm, (j) the  downwash  quantities - ah. aX and  -2hj  must  be  supplied  for  each  control 
point  and  each  mode. (In the  program  the  imaginary  part of the downwash is multiplied 

J/ 
by k.1 

Location of Control  Points  and  Determination of Downwash 

Since  four  modes  were  used  in  this  example, it was desired  to  take  advantage of 
the  full  program  capacity of 48 downwash control  points  rather  than  the 46 with  which the 
resul ts  of reference 1 were  obtained.  These 48  points  were  distributed as follows:  for 
even  tenths of the  semispan,  points  were  located at 20,  40,  60,  80,  and  100  percent of the 
local  chord;  for odd tenths,  points  were  located at 10, 30, 50, 70, and 90 percent of the 
local  chord;  except  that at 0.9 semispan no  point at 10-percent  chord  was  used, at 
0.1 semispan  no  points  at 30- o r  70-percent  chord  were  used, and at the  plane of sym- 
metry a point was  located at 3  percent of the  local  chord. 

Values of measured  modal  deflections are listed  in  table II of reference 2 for  each 
tenth of the  semispan at the 0.0, 0.25, 0.50, 0.75, and 1.00 local-chord  locations  for  four 
modes.  The  semispan  location of the  control  points of the  present  analysis  correspond 
to  the  measurement  points of the  model of reference 2; however,  the  chord  locations  do 
not correspond. It is, therefore,  necessary  to  use  some  chordwise  interpolation  scheme 
to  provide  values of deflections  and of deflection  slopes. A polynomial  approximation  in 
powers of the  chordwise  coordinate  was  used  for  this  interpolation;  the  second and third 
chordwise  derivatives  were  made  zero as approximations  for  zero  conditions of bending 
moment  and  shear at leading  and  trailing  edges;  that is, to  use  for  each  span  station  and 
each  mode 

h(K) = do + dl% + d2ii2 + . . . + d8x8'] 

and \ 
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APPENDIX  B - Continued 

where ii is the local chordwise  coordinate with values 0 and 1 at leading  and  trailing 
edges,  respectively.  The  local  chordwise  coordinate is 

x - x  - 
X =  

le 
%e - “le 

The  leading-edge  conditions  cause 

a2 = a3 = 0 

and  equations (Bl) become 

and -? h(G) = d + dlZ + d4x + d5x -I- . . . + d8x -4 -5  
0 

i 
Solutions  for  the  seven unknown coefficients  dr are made  from  seven  simultaneous  equa- 
tions  obtained by applying  the  five  deflections  and  the  two  trailing-edge  conditions.  The 
slope 8hj ihr needed  in  the  real  part of the downwash is I 

ahj ah(?) & - 
” - ” (dl + 4d4z3 + 5d5z4 + 6d6x5 + 7d7ii6 + 8d8g7 

t t ~  a~ (%e - Xle) 

Some  results of this  type of interpolation are presented  in  the  following  section. 

Solution for  Weighting Factors a ( j )  
n,m 

Values  for  the downwash quantities  -ah. &x and  -2hj for  each  collocation point 
J /  

and  each  mode  are  supplied  along  with  the  other  necessary  input  data.  Equation (32) of 
reference 1 is solved  for  the  column of a (j) for  each mode j by a least-square-error n,m 
subroutine.  Also  produced  during  this  type of solution is a matrix of residuals  that are 
of interest;  these are the  differences between  the called for  downwash  and the  least-square 
solution at the  control  points.  Solutions for the a 

n,m 
(j)  actually  determine  distributions 

over  the wing of both  lifting pressure  and  associated downwash.  Additional  values of the 
downwash at  other  points  on  the wing can be obtained by supplying  the  input  data  for  those 
points,  computing  the  matrix  IInm of equation (28) of reference 1, and  then  carrying  out 
the  multiplication on the  right-hand  side of equation (32) of reference 1. 

Results  from  such a sequence of operations are shown  in  figure  8  for  four  modes of 
the  example  flutter  model.  In  order  to  display  the  results  more  clearly,  the  delta  semi- 
span  planform is transformed  to a rectangle.  The  short-dash  lines  indicate .the desired 
downwash  distribution  determined  by  means of the  interpolation  process  described  in  this 
appendix.  The real and  imaginary  parts  come  from  equations (B4) and  (B3),  respectively. 
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APPENDIX B - Continued 

( a )  Real  part ,  mode 1. ( b )  Imaginary pa r t ,  mode 1. 

----Desired distribution 
- Resulting distribution 

1 

( c  ) Real  part ,  mode 2. ( a )  Imaginary pa r t ,  mode 2. 

Figure 8.- Downwash dis t r ibut ions  over   r ight  semispan for   the   four  modes used in   t he  
f l u t t e r  example f o r  model lA. 
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( e )  Real part ,  mode 3.  (f) Imaginary part ,  mode 3 .  
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(g) Real part ,  mode 4. (h) Imaginary part ,  mode 4. 

Figure 8. - Concluded. 
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APPENDIX B - Continued 

The  solid  lines  indicate  the  least-square  solution  obtained by 
The  quality of the  comparison of the  two is readily  observed. 

the  collocation  procedure. 
The  agreement was good 

for  the  smoother  downwashes;  however,  for  the  downwash  distributions  that  fluctuated 
rather  abruptly,  particularly  those  for  the  real  parts of the  modes,  the  approximate down- 
washes  did not follow  the  prescribed  variations  in  detail. 

Generalized  Aerodynamic  Forces 

The  nondimensional  generalized  aerodynamic-force  elements &*. are  calculated 
1.3 

according  to  the  "standard"  choice;  that is, chordwise  integration by a 10-point  Gaussian 
rule  and  spanwise  integration by Simpson's  rule.  The  modal  deflections  hi  are  supplied 
as input data  for  each  tenth of the  local  chord at each  tenth of the  semispan;  these  deflec- 
tions  were  computed  according  to  equations (B3) on the  basis of the  mode-shape  data  from 
table II(a) of reference 2. To  compute  the  deflections hi(Xc) at the  chordwise- 
integration  points, a subroutine  performs a second-order  (parabolic)  interpolation  from 
the input  data.  (The  subroutine  can  do a first order  (linear)  interpolation as an option.) 

Solution of the  Flutter  Determinant 

In  addition to  the  generalized  aerodynamic  forces,  the input data  needed  for  use  in 
calculating  the  flutter-determinant  elements  are  the  generalized  masses,  the  modal  fre- 
quencies  and a base  frequency,  the  modal  damping  coefficients,  and a sequence of values 
of the  air-mass  parameter a!. The  cyclic  frequencies f 2  and air density  in a! a r e  
obtained  from  table I of reference 2 for  model 1A at M = 2.0. The  frequency o2 
(w2 = 27rf2) is used as wB, and  damping  coefficients gi,s = 0 are  used.  The  same 
generalized  masses as those  for  the  piston-theory  analysis  are  used: *, oo s.syI 

0.0001905 slug-* ( d k g d ) ,  m22 = 0.0003801 slug-@ (t"+3 

m33 = 0.0004918 s l u g 4  (43&&3%& kg-&, m44 = 0.0001271 s l u g a  (- kg&), 
other  m.. = 0. A sequence of air densities  that  extend  from  well  below  to  well  above  the 
experimental  value are used  in a.  The  reduced  frequency  k of the  experiment  was 
0.283, so a nearby  value of k = 0.3 is used  initially  in  the  analysis. (A point to  be noted 
is that  reference 2 uses  for  semichord  the  value at the  75-percent  semispan  station 
( b m 7 4 ,  while  the  present  report  uses  the  value at the  root (bo).) 

0.00a 80 
0.007 I 1  7 0.00 I 855' = k g 4 ,  

11 

As  described  in  appendix A, for  each  value of a a flutter  determinant is formed 
and  the  eigenvalues 52 a r e  computed.  From  each 52, a damping  coefficient  g, a f re -  
quency  ratio wB/w, and  frequency w are  obtained,  and  the  product (w w k is a 

stiffness  parameter - bowB = bow2 since w was  chosen as wB. 
B I  ) 

V V 2 
Figure 9 shows  the  damping  coefficients  g,  and  the  stiffness  parameter b0w2/V 

as functions of the  air-mass  parameter a. All  four of the g curves  depart  from  the 
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I 1  I- L"A" 
0 5- IO 15 20 25 30 grams 

a = 4rrpbo 3 

Figure 9.- Structural  damping  coefficient g and stiffness  parameter bow,$ 
as  a  function  of  air-mass  parameter a for  the  flutter  example. M = 2; 
k = 0.3. 

32 



APPENDIX B - Continued 

origin  into  the  negative  region,  thus  dynamic  stability is indicated.  As  the air density p 
is increased  sufficiently,  the  mode 2 curve  passes  upward  through  g = 0 and  indicates 
the  value of a! for which the  mode 2 curve of the  stiffness  parameter  pen.etrates  into a 
flutter  region. 

For  the  value of k used  in  this  example (0.3), the  value of a! is considerably 
higher  than  that of the  experiment, which indicates  that  lower  values of k should  be 
used. Two  additional  values of k (0.22 and 0.25) were  used  to  enable  the  plotting of a 
flutter  boundary  through  the  experimental  value of the  air-density  parameter.  The 
analytical  and  experimental  results are presented  in  the  following  table  and  in  figure 10. 

- -  - 

Analysis 

- 

k 

~ 

0.22 
.2 5 
.30 

0.283 

P 
Pexp 

0.85 
1.08 
1.57 

." 

T 1.00 

0 
L- . 

0 

1 
4 

1 -  
5 

bow2 
V 

0.239 
.275 
.324 

0.320 

b.75sW2 
a G 

0.860 
.862 
.855 

1.06 

Stable 

r Experiment 
/ (k.O.28) 

k = 0.22 

Unstable 

~~~ 

W - 
w2 

~ " 

0.921 
.919 
.926 

~ 0.885 
~~ 

1.05 

1 .oo 

I 

8 
I 

I O  

I 

12 16 
1 -I 

20 x ~ ~ - 4  slugs 

IS 20 25 30 grams 
- 1  . J  !___"I 

Figure 10.- Analy-bical  flutter-boundary  segment for the  *flutter example. 
M = 2 ;  g = O .  
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A feature  to be  noted  from  the analytical results presented  in  the  previous  table is that 
over  the  85-percent  variation of the  air-density  parameter  (column  2),  the  stiffness- 
altitude  parameter  (column  4),  and  the  frequency  ratio  (column 5) vary by less than 
1 percent.  In  comparison  with  experimental  results,  the  analytical  results are uncon- 
servative;  that is, they  predict  this  model  to  flutter when the  stiffness-altitude  parameter 
is less than  about 0.86, whereas  the  experimental  results  indicate  flutter  for a stiffness- 
altitude  parameter less than 1.06. 

In searching  for  reasons why the  analytical  result is so unconservative, it was 
decided  to  recompute  the  generalized  masses  mij  and,  thus,  make  use of the mode 
shapes  interpolated  from  equation  (B3).  The  numerical  surface  integrations  produced  the 
following matrix  in  units of that  can be compared with the  values  cited 
previously  in  the  text: 

pig = 10-6 

L 

For  k = 0.25 the  results are 

"_ . .. .. ". . 

b.75sW2 
V F 

In  Comparison t,o the  previous  table,  the  value of the  stiffness-altitude  parameter is 
increased by only  about 3 percent  toward  the  experimental  value and is still  unconserva- 
tive. A natural  speculation is then  to  attribute  the  remaining  unconservativeness  either 
to  the  analytical  aerodynamics OF to   some unknown and  unaccounted  for  characteristic of 
the  experimental.  model,  such as internal stresses due to  thermal  gradients.   Thermal 
gradients  were known to be present  in  the  vicinity of the  root,  which  had  been  tightly 
clamped  along its full  chord  while at room  temperature, but quantitative  information is 
lacking.  Another  speculative  possibility,  though a minor  one, is that  the  mode  shapes of 
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APPENDIX B - Concluded 

1, the  models  actually  flutter  tested  were a little  different  from  the  "representative  mode 

shapes"  used  here  from  table II(a) of reference 2. No study  has  been  made of the  sensi- 
tivity of the  analytical-flutter  results  to  variations  in  mode  shape.  Such a study would 
have a great  number of independent  variables  and is beyond  the  scope of the  present 

~ 

report. 

E/ 
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TABLE I.- FLUTTER  RESULTS FOR MODELS 1A AND 1C 

1.19 
1.30 
1.64 
2.00 
2.55 
2.90 
3 .OO 

1.16 
1.30 
1.64 
2.00 
3.00 

k 

I 1 

Model 1A 

0.82 
.78 
.88 
1.06 
1.11 
"- 
1.12 

0.90 
.91 
1.09 
1.31 
2 .oo 

0.780 0.988 
.782 .890 
.820 .946 
.891 1.024 
1.002 1.018 

1'090 "" I} 1.008 

Model 1C 

0.800 1.072 
.878 .952 
1.01 .966 
1.21 1.035 
1.51 1.197 

~ 

0.347 
.371 
.335 
.283 
.256 
"" 

.234 

0.812 
.855 
.743 
.572 
.420 

Present  
analysis 

0.325 
.330 
.294 
.244 
.234 
.237 
"" 

0.78 
.79 
.67 
.55 
.378 
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TABLE 11.- MODE-SHAPE AND OTHER DATA FOR  MODEL HT-7* 

Chord, h2;-, Normalized  deflection at semispan  locations  (in  percent) of - 
3ercent 30 I 40 I 50 I 60 I 70 1 80 I 90 1 100 

= 0.000357 slug& (dkgkgrtl . w 1  = 2a(162.5); mll 
0.000. s 

”- 

0 
25 
50 
75 

100 

~~~ 

-0.218 -0.192 
-.148 -.lo6 
-.027 .009 

. 

.047 .095 

.188 ,230 

-0.158  -0.110 
-.058 .013 
.044 .093 
.145 .200 
.271 .320 
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.060 
,155 
.262 
.376 
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.140 
.233 
.335 
.442 
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.237 
.326 
.426 
.525 

0 
25 
50 
75 

100 

.” ~ 

. .  

. .  

-0.053 
-.122 
-.179 
-.196 
-.213 

0.252 
.345 

0.385 

.644 .527 
,557  .434 
.468 

.735 .621 

& kg4) 
0.328 

.266 
0.385 

.175 
.309 .234 
.336 

.284 ,058 

.300 

888 kg&) 
. .  

-0.166 -0.335  -0.454  -0.505 -0.498 
-.221 -.316 -.368  -.371  -.317 
“236  -.284 -.297 -.274 -.I95 
“232 m.249 -.241  -.154 .I18 
“232 - . - _. -.219t -.126 1 .124 .388 

. . . .  . .  

-0.375 
-.171 

.080 

.395 

.600 - .. 

0.525 
.607 
.686 
.765 
.860 

3.504 
.466 
.436 
.415 
.400 

0.675 
.752 
.825 
.907 

1 .ooo 

0.639 
.598 
.558 
.512 
.497 

j 
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*Mass of model, 0.00528 slug (0.0770 kg). 

NASA-Langley, 1970 - 32 L-6808 



NATIONAL AERONAUTICS AND  SPACE ADMINISTRATION 
WASHINGTON, D. C. 20546 

OFFICIAL BUSINESS FIRST CLASS MAIL 

NATIONAL AERONAUTICS AND 
POSTAGE AND FEES PAID 

SPACE ADMINISTRATION 

If Undeliverable (Section 158 
Postal Manual)  Do Nor Return i 

NASA SCIENTIFIC AND TECHNICAL PUBLICATION$ 

TECHNICAL  REPORTS: Scientific and  TECHNICAL  TRANSLATIONS:  Information 
technical  information  considered  important,  published  in a foreign  language  considered 
complete,  and a lasting  contribution  to  existing to merlt  NASA  distribution  in  English. 
knowledge. 

TECHNICAL  NOTES:  Information less broad derived  from or of value to NASA  activides. 
in  scope  but  nevertheless of importance  as  a Publications  include  conference  proceedings, * , 
contribution to existing  knowledge. monographs,  data  compilations,  handbooks, 

TECHNICAL  MEMORANDUMS: 
Information  receiving  limited  distribution  TECHNOLOGY  UTILIZATION 
because of preliminary  data,  security classifica- PUBLICATIONS:  Information  on  technology 
tion,  or  other reasons. used by NASA  that  may be of particular 

interest in commercial  and  other  non-aerospace 
CONTRACTOR  REPORTS: Scientific and npplications.  Publications  include  Tech  Briefs, 
technical  information  generated  under  a  NASA TEchnology Utilization Reports and  Notes, 
contract or grant  and  considered  an  important 
contribution to existing  knowledge. 

and  Technology Surveys. 

1 

SPECIAL  PUBLICATIONS:  Information 

sourcebooks,  and  special  bibliographies. 

Details on the availability of these publications may  be obtained from: 

SCIENTIFIC AND TECHNICAL  INFORMATION  DIVISION 

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION 
Washington, D.C. 20546 


