’

NASA TECHNICAL NOTE NASA TN D-6012

LOAN COPY: REVURN °
AT WL (WLOL)
KIRTLAND AFB, N ME

AN ‘gdv) AHVHEIT HO3L

T

NASA TN D-6012

APPLICATION OF A SUPERSONIC
KERNEL-FUNCTION PROCEDURE
TO FLUTTER ANALYSIS

OF THIN LIFTING SURFACES

by Herbert J. szm'ngbam

Langley Research Center
Hampton, Va. 23365

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION . WASHINGTON, D. C. < NOVEMBER 1970



ERRATA
NASA Technical Note D-6012

APPLICATION OF A SUPERSONIC KERNEL-FUNCTION PROCEDURE
TO FLUTTER ANALYSIS OF THIN LIFTING SURFACES

By Herbert J. Cunningham
November 1970

In several places numerical values of generalized masses are given with units of

slug—ft2 and include conversion to units of kg—mz. The numerical values are correct,

but the units should be slugs rather than slug—ftz. The converted numerical values are
not correct for kg units. The following corrections should be made:

Page 13: The third sentence in the section ""Model 1C" should be changed to read -

These masses in slugs (kg) were

[mij] -10%58.0 908  71.9
(846)  (1325) (1049)
Page 15: The sentence beginning on the third line below figure 4 should read —

The resulting masses in slugs (kg) are

[ 55.6 -8.95 -2.68 |
(811) (-130.6)  (-39.1)
[mij _ 106 85.8 1217
(1252)  (-177.6)
Symmetric 65.7
i (959)

Page 31: Lines 8 and 9 in the section "Solution of the Flutter Determinant' should read —
myq = 0.0001905 slug (0.002780 kg), mgy = 0.0003801 slug (0.005547 kg),
mgg = 0.0004918 slug (0.007177 kg), mg4 = 0.0001271 slug (0.001855 kg),

Page 34: The second sentence of the second paragraph should be changed to read —

The numerical surface integrations produced the following matrix in units of slugs
(kg) that can be compared with the values cited previously in the text:

Page 1 of 3
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[ 182 -0.4
(2056) (-6)
356
- - , (5195)
{n‘ij] =169
!
Symmetric

Page 38:

Tn addition, the following corrections should be made:

17.2
(251)

-89.2
(-1302)

472
(6888)

8.6 |
(126)

-29.8
(-435)

41.0
(598)

128
(1868)

Change the three generalized mass values in the table subheadings to —

my, = 0.000357 slug (0.00521 kg)

mgg = 0.000518 slug (0.00756 kg)

mg3 = 0.000264 slug (0.00385 kg)

S
Page L, line 1: The formula for air mass should be <Air mass = p5 nbzd(2b0y)>
y=0

Page 18: Replace figure 7 with the attached figure.

b
for 0:)2 Vit

Issued October 1972

The error was in the ordinate scale
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APPLICATION OF A SUPERSONIC KERNEL-FUNCTION PROCEDURE
TO FLUTTER ANALYSIS OF THIN LIFTING SURFACES

By Herbert J. Cunningham
Langley Research Center

SUMMARY

Lifting-surface theory for supersonic flow, as analyzed by the supersonic kernel-
function method, has been applied to obtain calculated flutter boundaries by a Galerkin
modal flutter analysis. A systematic procedure for calculating the required generalized
aerodynamic forces is described for a planform with subsonic leading and supersonic
trailing edges. Analytical and experimental flutter characteristics are compared for
three flutter-tested models. For two of the models, the analytical flutter speed ranges
from slightly to moderately unconservative over a Mach number range of approximately
1.2 to 3.0. For the third model, the analytical flutter speed is slightly conservative.
The agreement of analytical flutter frequencies with the experimental values is good for
the three models.

INTRODUCTION

An improved numerical procedure for calculating lifting pressures on harmonically
deforming thin lifting surfaces by a supersonic kernel-function method, based on the
linearized theory of unsteady potential flow, was described in reference 1, A lift-
distribution series was developed for planforms with apex forward, subsonic leading
edges, supersonic trailing edges, and (basically) pointed tips. The procedure was applied
to the vibration modes of two root-cantilevered, platelike, low-aspect-ratio wings. For
those wings, the desired or prescribed -downwashes were compared graphically with the
approximate downwashes that result from least-square-error solutions of the downwash
equations. The agreement was good for the smoother downwashes; however, for the
downwash distributions that fluctuated rather abruptly, particularly those for the real
parts of the modes, the approximate downwashes did not follow the prescribed variations
in detail.

The purpose of the present investigation is to further appraise the accuracy and
adequacy of the lift-distribution series and its application in the kernel-function method
by calculating flutter boundaries by a Galerkin modal method for comparison with some
available experimental results from references 2 and 3 and from a model similar to those



described in reference 4. The computer program was extended, compatibly with the lift
distribution series, to calculate generalized aerodynamic forces appropriate for the
Galerkin formulation.

A description of the method of calculating the generalized aerodynamic forces is
presented together with a comparison of analytical and experimental flutter boundaries.
The flutter-equilibrium equations and the procedure for determining the analytical flutter
characteristics and boundaries are described in appendix A. Appendix B gives an example
of a computed flutter case.

Reference 5 is a recent report that treats essentially this same problem, that is,
the lifting-surface integral equation that relates lift and downwash, which is applied to a
planform with subsonic leading and supersonic trailing edges in supersonic flow and
solved by a downwash collocation procedure. Unlike the present work, the first step in
choosing a pressure series was to assume separation of the chordwise and spanwise
variables. Also unlike the present work, the method of reference 5 applies to planforms
with streamwise tips. A flutter calculation was made for comparison with one of the
same experiments (from ref. 2) used in the present work.

SYMBOLS
a speed of sound in test medium
ag’) m weighting factors in the lift-distribution series for mode j (see eq. (9))
b local wing semichord
b wing semichord at root or plane of symmetry
b.75s wing semichord at 0.75-semispan station (y = 0.75s)
d. coefficients in polynomials, where r=90,1,2, . .. (see eqgs. (B1))
G1,Gy analytic integrals (see eqs. (15))
g modal-independent damping coefficient in g;
g; coefficient of structural, solid-friction damping for mode i (see eqgs. (A7)
and (A10})) ‘
g s measured or assigned value of damping coefficient m g



H(x,y,t)

h(x) chordwise distribution of mode-shape deflections approximated for
numerical integration
hi,hj amplitude of natural mode-shape deflection for modes i and j (see,
for example, eq. (1))
Ic(xc),Io(y 0) elements of integrating matrices for chordwise and spanwise inte-
gration, respectively (see eqs. (14) and (16))
Im( ) imaginary part of ()
IiI transfer matrix (see eq. (10) and ref, 1)
i unit of imaginaries, \/-—_1
wa
k reduced frequency with reference length bg, = v
L]-(x,y) nondimensional lift distribution associated with mode j (see eq. (8))
ln,l;k, terms of lift-distribution series where n=0,1, . . ., 5 (see
eqs. (9) and (10))
M Mach number of stream flow, V/a
m, mass per unit area of lifting surface
m;; generalized mass (see eq. (A3))
N number of modes in modal flutter analysis
Ap lifting-pressure distribution, positive with z (see eq. (4))
Apj lifting-pressure distribution per unit qj/2b0 for mode j (see
eqs. (4) and (8))
Q; generalized aerodynamic-force quantity for mode i (see egs. (3) and (5))

vertical displacement of lifting surface, positive with z



X,Y,Z

X’Y’Z

Xe

ij

i

-dimensional and nondimensional generalized aerodynamic forces (see

egs. (5) and (11))
generalized coordinate of motion for mode j, djeiwt
complex amplitude of q;
real part of ()
y coordinate at right-hand wing tip
time

velocity of undisturbed air or other test medium

amplitude of downwash distribution per unit qj / 2bg at lifting surface for
mode j, positive with z (see egs. (6) and (7))

axis system of planforms

nondimensional chordwise, spanwise, and vertical coordinates, referred
to 2b0

x coordinate of points at which integrands are evaluated for numerical
chordwise integration, where ¢=1,2, . . .

nondimensional local section chordwise coordinate, referred to local chord
(see eq. (B2))

y coordinate of span stations at which chordwise integrations are done for
subsequent spanwise integration, where o=1, 2, . , .

mass of air contained in the volume 4nbg, a = 41rpb3

elements of flutter equilibrium equations and flutter determinant (see
egs. (A12) and (A13))

quantity in flutter equation (A12)



i} ratio of mass of semispan wing to air mass (Air mass = p yS—O nbzd(Zboy)>

v number of spanwise integration stations (odd in the present report)

o] density of air or other test medium

Q complex frequency eigenvalue (see eq. (A12))

w circular frequency of harmonic motion

wp chosen base or reference frequency

w; normal-mode natural frequency of mode i

Subscripts:

exp experimental

i,j mode numbers

le value at wing leading edge

m integers associated with exponent m on y™

n integers associated with lift term 1, or 1}

te value at wing trailing edge

th theoretical (analytical)

v highest numbered (usually the most outboard) spanwise integration station
ANALYSIS

Origin of Analysis and Galerkin Modal Formulation
The present report is an outgrowth and extension of the work of reference 1. Its
purpose is to describe a procedure for the calculation of generalized aerodynamic forces
for a Galerkin modal formulation and to report the results of several flutter calculations
made for comparison with experimental results. The planform treated is that shown in



Figure 1.- Perspective view of 1lifting surface and coordinate system.

figure 1. The analysis applies for subsonic leading edges, supersonic trailing edges, and
for (basically) pointed tips. The flutter-equilibrium equations are developed in appen-
dix A, essentially in accord with existing practice, in order to make readily available
the framework in which the aerodynamic forces are applied and from which flutter solu-
tions are obtained.

In the Galerkin method, the location H(x,y,t) of the deformed or displaced surface
is approximated by a finite series of chosen modes (see eq. (7) of ref. 1) that satisfy the
boundary conditions of the structure:

HGsy0 = ) hi(x,y)agt) M
i

where for each mode j, hj(x,y) is the nondimensional mode shape, qj(t) is the dimen-
sional generalized coordinate of motion, and t is time.

The generalized aerodynamic forces required for flutter calculations arise from

simple harmonic motion; that is,
qj(t) = qjelwt (2

where (. is the complex amplitude of qj and w is the circular frequency of har-

monic motion.
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Generalized Aerodynamic Forces

In the Galerkin method, the generalized force Qi is
: 2 (% %
Q; = (2b0> S. ‘S‘ € h; Ap(x,y,t)dx dy (3)
0 X0

where h; = h,(x,y) is defined in equation (1), x and y are nondimensional chordwise
and spanwise coordinates, respectively, 2bgp is the root chord length, s isthe y
coordinate of the wing tip, x;, and x;, arethe X coordinates of leading and trailing
edges, respectively, and Ap(x,y,t) is the lifting-pressure distribution over the lifting
surface that appears in the downwash integral equation, equation (1) of reference 1.

In keeping with the modal representation, the lifting pressure Ap is replaced by
a modal series

q.
apx,y.t) = ) —L ap iy @
7 200

where Ap.(x,y,t) is the lifting pressure that is associated with the deflection in mode j
per unit value of q]./ZbO.

The use of equation (4) in equation (3) leads to a modal series for Qj

Qi = E quij (5a)
i

where

s Xte Ap](x,y,t)

Qi = 2bo 50 yx by —for =W (5b)
le

The lifting pressure Apj is related to the motion in mode j in terms of its associated

downwash wj per unit qj /2bo by the downwash integral equation

Wiyt - (20g)? ‘gnR MC

£
- APJ(E,n,t)K(M,kyx'g,Y‘Tl)dg d77 (6)

\'% 47pV

where & and 7 are dummy variables for x and vy, respectively, and K(M,k,x-£,y-7)
b

w

is the supersonic kernel function in which M is Mach number and k = _0 is the
reduced frequency with reference length by. (The limits of integration TRy "M, EMC»
and 'Sie are given in ref. 1.)



The downwash ratio for mode j is

: t h: i
W](x,y, ) } [8 ];(:;,Y) . iZkhj(X,yilelwt )]

v
The pressures Ap. are expressed in terms of nondimensional quantities Lj(x,y) as
in equation (12) of reference 1

2 .
ApJ(X,y,t) = 477("%’)L](X,Y)elwt (8)

In reference 1, Lj(x,y) is approximated by a linear combination of chosen functions of
the form ln(x,y)‘ym, each with an initially undetermined complex weighting factor ag)m,

?
this relationship, given in matrix form, is

L;(x,y) =Lln(x,y)me { W) } (9)

The 16 complex functions y of reference 1 were chosen to provide good matrix con-
ditioning in least-square-error solutions for the 16 weighting factors a(J)m from the set
of equations for the downwash at selected downwash control points. But in order to
improve computational efficiency at other stages of the overall calculation, the functions
lnym are expressed in terms of 46 real elements Znym through a transformation

matrix III as follows:

o) -7

where the terms l; and the matrix III are given by equation (13) and table I, respec-
tively, of reference 1. (It should be noted that unlike the lift-distribution functions that
are used frequently in the subsonic kernel-function methods, the elemental functions
Z;(x,y) in the present supersonic kernel approach do not feature separation of the chord-
wise and spanwise variables x and Yy.)

Substitution of equations (8), (9), and (10) into equations (5) gives
_ 2 *
Qij = 47pV onij (113)

where

Q’{j - S‘OS dy S:?: hi(};yrrj [III:I {ax(ll,)m} dx (11b)

and Q’i". are the nondimensional generalized aerodynamic-force elements. The surface
integration indicated in equations (11) is carried out by numerical quadrature, first chord-
wise and then spanwise. The procedure that is the most economical of computing time
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is integration of the product of h; and each of the 46 elements in l_l’r"lynj followed by

postmultiplication of the resulting row of 46 integrals by [III:] {ag,)m .

Chordwise integration.- The chordwise integrals are obtained at the span stations
required by the spanwise integration. Two of the lift-distribution terms 1’5 and ZI have
integrable singularities at the wing leading edge. Consequently, the accuracy of the chord-

wise integration is improved if hi(x,y) is replaced by its identity
hy(x,9) = [hy(x,9) = hy(x1,9) ] + hy(xye.9) (12

so that the chordwise integral for any term Z:; becomes

§7te mxaprientax = § U gy - by a))Genax + by 1) S nmpe 09
le le le

The integrand of the first integral is zero at the leading edge, and integration of the second
integral can be performed analytically with high-accuracy.

For any span station, the chordwise integrations of the array of terms Z; are indi-
cated in the following matrix operation:

C—~ C— i

; T
h.(x.,y
cYo
1 (xes¥o) Le(Xe) i )
matrix (1) matrix (2) matrix (3)

j— i
n n
¢ X | Chordwise integrals of
te ,x _ grals o
+ hi(xle’yc) S;{ Ln(x:Yq)dx | = hi} as in eq. (13) (14)
le

matrix (4) matrix (5)

where x, and y o are the x and y coordinates, respectively, of the array of points
along the chord at which integrand quantities are evaluated for span station yg, The
order and dimension of each matrix are indicated with arrows as follows: n; means n
varies from 0 in the first row to 5 in the sixth row; c-~ (or c}') indicates as many
columns (or rows) as there are points X, along the chord; and i~ means that mode i
ranges from 1 to N, the number of modes in the analysis. Each matrix has a designation
for convenience of referral. The elements I;(X¢) in the diagonal matrix, matrix (2),
are the integrating factors for chordwise integration.



The values of the chordwise integrals in the elements of matrix (4) of equation (14)
are found from their analytical expressions that are tabulated as follows for any span
station y;:

n Integral, S‘Xte l;(x,yo)dx
X
e
N Gy
. GyXe + Gy
............. S
9 Glxte - Gy
e e e e e —
G3
1
3
3 2 2
. 2G1Xte + G_lx,lexte_ - qzx le
....... 3
5 3.2
. G1 , %1%
............. : 3
where
2 2
Gy =\%te ~ ¥le
(15)
2 -1 %te
G2 = Xjq cosh }-{—l-g

The numerical integration that is accomplished by the first matrix product in equation (14)
(matrix (1) X matrix (2) X matrix (3)) can be performed by any suitable rule. In the pres-
ent work, Gaussian quadrature was used because of its known accuracy. The choice of
rule determines the locations x. and the associated integrating factor I¢(Xc). The com-
puting program permits other types of numerical quadrature at the option of the user, who
must then supply ""nonstandard” input data for the arrays of x. and Ig(Xc). Often the
deflections hi(xC ,yc) are not known at the points x., and interpolation is necessary.

Spanwise integration.- When the matrix operation of equation (14) is carried out for

the span stations y, in sequence, matrix (5) takes on a third dimension equal to the
number of span stations. The spanwise integration is indicated by the following matrix

operation;

10



O— 10 columns —~
o=

— 7 b
’ ’ ’ ‘ ’ - ’, <
”, ‘ , [0 . 4 . -
* // ‘ 4 ‘ o 2 4 18— . /’ ’ ’
;L — 1 yl 1 . . y]. n‘\‘l —
| Chordwise g= 2 4 18 }
integrals e ' 1 vy v3---73 Surface .
from 4 I6(Yo) = |integrals e
‘ 4
M P 9 4 18 17
1 yv yv e yv
matrix (5) matrix (6) matrix (7) matrix (8)
(16)

where o— (or o) indicate as many columns (or rows) as there are span stations. In
the diagonal matrix, matrix (6), the elements I4(ys) are the spanwise integrating factors
that are the same for all modes. In matrix (7) the number of powers of y, (that is, 10)
was determined by the number of 1lift terms chosen in reference 1. The even powers
shown in matrix (7) apply to spanwise symmetry of lift and motion. The odd powers from
1 to 19 apply to spanwise antisymmetry.

For the present work, the spanwise integrals indicated by equation (16) are obtained
according to Simpson's rule for second-degree parabolas. The wing semispan (y =0 to
y = 8) is divided into an even number of parts (tenths in this example), which results in an
odd number of evenly spaced span stations yg, including both limits. The matrix of inte-
grating factors, matrix (6), for this choice is

1 ]

4

4
0 |5 3 )

2
4
1

L N

where v is the (odd) number of span stations. Here too, the computer program permits
other options for which the user supplies '"nonstandard' input data for the arrays of y o
and I;. The availability of deflections hj is an important factor in the choice of y,.

The result at matrix (8) is 60 elements for each mode. This excess over the
46 elements that are needed because of the choices made at equations (15) to (17) of

11



reference 1 is produced to keep the operation simpler to this point. But for each mode i,
14 elements are discarded, the remaining 46 elements are rearranged, and the matrix of

Q’i“]. is computed as follows:

46 columns -~ 16 columns - - i~
i 45 16 }
Hl Surface |,.,us i} rows| ;9 | _ Q" (18)
integrals | ! n,m ij
matrix (8x)

Each row of the rearranged matrix (8x) is for one of the modes and is obtained from the
elements of matrix (8) for that mode by using the following elements: all 10 elements from
the first row of matrix (8), the first eight elements from row two, all 10 elements from
row three, the first eight elements from row four, the first six elements from row five,
and the first four elements from row six — a total of 46 elements. The elements of

EII], [aflj)m], and [Q;kj:] are complex quantities, in general. Matrices (1) to (8x) all have

real-number elements,
RESULTS AND DISCUSSION

The present procedure for calculating generalized aerodynamic forces has been
applied in a Galerkin modal analysis, described in appendix A, to determine the flutter
characteristics and boundaries of three different flutter-test models for which experi-
mental results were available. These models include the semispan, root cantilevered,,
flat-plate flutter models of reference 2, that is, model 1A with a 70° swept delta planform
and model 1C with an 80° swept delta planform. The third is a flutter model designated
HT-7 that was a variation of the HT series of reference 4, but which was tested subse-
quent to the preparation of reference 4.

Model 1A

The planform of model 1A is shown in figure 2.

Figure 2,- Planform of model 1A.

12



A comparison of complex downwash results for this model was presented in fig-
ure 5 of reference 1 for the first two vibration modes for M =2.0 and k= 0.5. For
the present analysis, all four modes of table II(a) of reference 2 were used. Appendix B
includes a description of how the general mode shape and downwash information was inter-
polated from the limited data of that table. Forty-eight downwash control points were
used, as described in appendix B, rather than the 46 that gave the results in reference 1.

b w
Figure 3 and table I present the stiffness-altitude parameter _"%_2 Y and the

ratio of analytical to experimental flutter frequency as functions of Mach number. The
results of the present kernel-function analysis are plotted for each experimental super-
sonic Mach number, beginning with M = 1.19, except at the upper limit for a subsonic
leading edge, M = 2,92, the analytical point was calculated by using the wing parameters
for the experiment at M = 3.0. The experimental and piston-theory results from ref-
erence 2 are repeated on the figures for comparison. The kernel-function results for
stiffness-altitude parameter fall mostly between the piston-theory results and the experi-
ment (except for M = 1.19), and thus are still slightly to moderately unconservative in
comparison with the experiment. (By unconservative, it is meant that the stiffness
required to prevent flutter determined analytically was found to be less than that deter-
mined experimentally.) The calculation for M = 2.0 is described in appendix B. The
values for the analytical flutter frequency are within 6 percent of the experimental value
for five of the six cases presented and within 11 percent for the other case.

Reference 5 reports the results of a flutter calculation for this same model 1A for
M = 2.0. That calculation used a different pressure-mode series, a different collocation,
and analytically rather than experimentally determined mode shapes and frequencies.
The calculated stiffness-altitude parameter was unconservative by only about 5 percent
in comparison with experimental value and the flutter frequency was within 1 percent of
the experimental value.

Model 1C

The planform of model 1C is shown in figure 4. For this model, calculations were
first made with three modes and with the diagonal generalized mass matrix that was used
in obtaining the piston-theory results in reference 2. These masses in

were slugs (kg)

Emii] =10%[58.0 908 719
(841 (i3as) (loya)
The resulting flutter boundary, in terms of the stiffness-altitude parameter, was widely
unconservative; and the flutter frequency was near the third-mode frequency rather than
being below the second-mode frequency as the experimental value was. The root that

13



Model |A M=2.92

- Sonic
M ieading
edge
Stable

St
Unstable
O | _. 1 1 [ | 1
DA-—--- -~ Kernel function (present)
O——— Piston theory (ref 2)
(5 O-——— Experiment (ref 2)
1.0 A N
\A —_——
Yth
Wexp
St
| . 1 i ( | ]
0 5 i0 1.5 20 25 30

M

Figure 3.- Flutter boundary in terms of stiffness-altitude parameter and ratio of
analytical to experimental flutter frequency as a function of Mach number for

model 1A,

14
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Figure L4.- Planform of model 1C.

originated from mode 3 is the one that became unstable. In view of the serious lack of
agreement between analysis and experiment, it was decided to calculate new generalized
masses on the basis of the interpolations from equation (B3). The resulting masses in

’ are
3\\&%5 (kq)

r“ /)

55.6 -8.95 -2.68
(gn)  (-130.L) (~39.1)

[mi_] 1076 85.8 -12.17
! 63y 2y
Qasa) (-177.¢)

65.7

Symmetric (89-02)

- (959) ~

and their use along with the modal frequencies of model 1C produced the results listed in
table I and plotted in figure 5. Even though the off-diagonal, mass-coupling elements are
small compared with the on-diagonal direct elements, their effect is decisive in deter-
mining the flutter characteristics since they cause the mode 2 root, rather than the mode 3
root, to become unstable. This difference caused a great improvement in the calculated
frequency (three out of five frequencies within 5 percent of the experimental values and
another within 10 percent) and a substantial improvement in the stiffness-altitude param-
eter, although the latter is still somewhat unconservative, as it was for model 1A, The
same comments as for model 1A apply concerning the unconservativeness. A comparison
of tables I and II{c) of reference 2 discloses that the frequencies for the "representative
mode shapes' in table II(c) are noticeably higher than those given in table I therein for the
models actually fluttered. Whether this highet frequency has any significant effect on the
mode shapes is only conjectural., (Incidentally, in table I of reference 2 there are two
incorrect numbers at M = 2.0 for model 1C. The cyclic frequency fs should be 367 Hz
rather than 467 Hz, and density p should be 0.001418 slug/ft3 (0.731 kg/m3) rather than
0.001468 slug/ft3 (0.7566 kg/m3).)

15
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Figure 5.- Flutter boundary in terms of stiffness-altitude parameter and ratio
of analytical to experimental flutter frequency as a function of Mach number
for model 1C.
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Model HT-7

The planform of model HT-7 is shown in figure 6.

N

y
N

3
N
R
N
ALV 1A Y VN NN Y

Figure 6.- Planform of model HT-T7.

In seeking additional flutter experiments to which the present analysis could be
compared, reference 4 was considered. There, the all-movable horizontal-tail models
are of primary interest because, in spite of the cut-off tip, the relative proportion of the
surface area that is affected by the cut-off tips is small and because the models had
neither control surfaces nor leading-edge breaks to complicate the analysis. Unfortu-
nately, there is not sufficient information in reference 4 on mode shapes of the HT (hori-
zontal tail) series. Unpublished data were found, however, on a variation (HT-7) of the
HT series that was successfully flutter tested. The available modal data are listed
herein in table II. The parameters for the flutter experiment were as follows:

M= 1.64, V =1300 ft/sec (396.2 m/sec), p = 0.003305 s1ug/ft3 (1.703 kg/m3),
Dynamic pressure = 2790 1b/ft2 (133.59 kN/m?2), w/wg = 0.683, and V/bOw2 = 2.09.

For this surface, the aspect ratio is 2.50, the taper ratio is 0.3, the sweepback
angles are 50.50 for the leading edge and 45° for the quarter-chord line, and the Mach
number for a sonic leading edge is 1.573, which is the upper limit of the subsonic leading-
edge range in which calculations can be made by the present analysis. Calculations
were made for M = 1.2, 1.3, 1.4, and 1.573 by using the experimental density
p = 0.003305 slug/ft3 (1.703 kg/m3). Figure 7 includes curves faired through the point
@y

a
M = 1.64, and the results obtained from aerodynamic piston theory are obtained from fig-
ure 10 of reference 3 for comparison, A smooth extrapolation of the analytical results to
the Mach number of the experiment yields good agreement for the frequency and a small
conservative margin for the stiffness-altitude parameter,

values obtained for V& and w/ Wg. The experimental values are plotted at

Based on the analyses and the comparisons with experiment that have been pre-
sented, the application of the lifting-pressure series of reference 1 in the present pro-
cedure for calculating flutter characteristics is concluded to be rather accurate and
adequate overall and, therefore, to have useful areas of application,
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Figure 7.- Flutter boundary in terms of the stiffmess-altitude parameter and
ratio of flutter frequency to second natural freguency as a function of
Mach number for an all-movable control-surface model, HI-7.
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CONCLUDING REMARKS

A description is presented of a systematic procedure for obtaining generalized aero-
dynamic forces from the lifting-surface theory by the supersonic kernel-function method

and for using those forces obtained in a Galerkin modal flutter analysis. Analytical flutter
results are presented for three different flutter models and compared with their experi-
mental results,

For two of the models the analytical flutter results in terms of stiffness-altitude
parameter are slightly to moderately unconservative in comparison with the experimental

results, and the flutter-frequency agreement is within 6 percent for eight of 11 cases and

within 11 percent for two of the other three cases. For the third model, analytical results

were obtained over a Mach number range up to 1.573 for which the leading edges are sub-
sonic. A smooth extrapolation of the results to the Mach number of the experiment, 1.64,

yielded good agreement with experimental results for the frequency and a small conserva-
tive margin for the stiffness-altitude parameter.

The procedure presented herein, there-
fore, appears to have useful areas of application.

Langley Research Center,

National Aeronautics and Space Administration,
Hampton, Va., August 19, 1970,
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APPENDIX A

FLUTTER EQUATIONS FROM A GALERKIN FORMULATION AND
SOLUTIONS FOR FLUTTER CHARACTERISTICS

Flutter characteristics and boundaries are determined from the equations of equi-
librium for the structure. Here, those equations of equilibrium are formulated based on
the Galerkin modal approach, beginning from the fundamentals essentially as described

in reference 6.

Mathematical Model

The lifting surface is considered nearly planar with a mean location nearly in the
XY-plane as shown in figure 1. A small displacement or deformation H(x,y,t) of the
surface away from its mean location during flutter is approximated by a finite series, as
indicated in equation (1) (see also eq. (7) of ref. 1). This equation is repeated here for

convenience:
HOGy,H) = ) hy(x,v)ay® (a1)
i

where for each mode j, hj(x,y) is the nondimensional mode-shape distribution and

q.(t) is the generalized coordinate of motion. The start of flutter (neutral-stability con-
dition) is defined by the existence of simple harmonic motion so that qj(t) = c'ijelwt.

Equations of Equilibrium

With the modal representation of equation (A1), the Galerkin procedure results in
the following equations for no internal damping:

2 2 .
939 My - z Q@ my; - Q=0 i=1,2,..)) (A2)
]
where the generalized masses are

2 (5 (%te
my; = (Zbo) 50 SX m hih; dx dy (A3)
le

the generalized aerodynamic force quantity, given as equation (3) previously, is

2 (% (%te
Qi = (Zbo) 5‘0 5 hy Ap(x,y,t)dx dy (A4)
X

le
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APPENDIX A — Continued

and w; is the normal-mode natural frequency of mode i, 2bgy is the root chord length,
m, is the mass per unit area, s is the y coordinate of the right-hand wing tip, X
and X, are the x coordinates of the leading and trailing edges, respectively, and
Ap(x,y,t) is the lifting-pressure distribution over the lifting surface.

e

The first term on the left-hand side of equation (A2) is the generalized stiffness
represented in terms of w; and my;, according to Rayleigh’s principle. This term
reflects the usual assumption that stiffness coupling between modes is negligible, The
second term contains the generalized masses mj; and allows the possibility of mass
coupling between modes. The third term is the generalized aerodynamic force, which

represents the work done on mode i by the aerodynamic forces from the overall motion.

The lifting-pressure distribution Ap in equation (A4) is expressed in terms of the
contributions from the modes j of equation (Al) as

q.
Ap(x,y,t) = Z 2_5]5 Apj(x,y,t) (A5)
i

where Apj iz the lifting~pressure distribution per unit value of q]. /Zbo. Application of

equation (A5) to equation (A4) permits Q; to be separated into a modal series, presented
previously as equations (5a) and (11a), respectively,

Qi = z q]Qlj (A6a)
]

*
Q; = 477,0\/'2on].‘j (A6b)

and the nondimensional generalized aerodynamic-force terms Q’ik. are developed in the
main text (see eq. (11b)).

Structural damping.- Provisions for structural damping are introduced in the
customary way by multiplying the generalized stiffness term, the first term in equa-
tion (A2), by (1 + igi), where g; is the coefficient of structural, solid-friction damping
for mode i. (The unit of imaginaries i= V-1 is not to be confused with the modal sub-
script i=1,2, . .. .) This type of structural damping is characterized by: (1) a
resisting force that is in phase with velocity and proportional to amplitude and (2) mechan-
ical energy dissipated per cycle of vibration, which is proportional to the square of the
amplitude but independent of frequency.

Flutter equations.- Insertion of the damping term (1 + igi) in the first term of equa-
tion (A2) and substitution of equation (A6) in the same equation leads to the following form:
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APPENDIX A — Continued

qiwiz(l + igi)mii - Z qj<cu2mij + 41rpV2b0Q’-1kj> =0 i=1,2,...) (A7
]

The set of equations of dynamic equilibrium represented by equation (A7) contains two
unknowns  and V. The aerodynamic force quantities Qz(j
the reduced frequency k= w_bg that combines w and V. Therefore, w and V can-
not be solved explicitly, and some procedure for searching for solution values is required.
A commonly used method is to group terms dependent on k separately from those con-
taining w only. This grouping is done by dividing equation (A7) by wz and using the

are complex functions of

relations among «, V,and k so that

2 * \
ﬁ 1 +ig,)m —>‘ m--+4nb3gﬂ—0 (i=1,2 ) (A8)
4\ @ ( gi) ii ~.qu ij PRy kz - T he By e e

]

At this point, it can be seen that, for chosen combinations of p and Kk, eigensolutions
can be made for (1/w2). In general 1/w2 will be a complex quantity; if the real part is
positive, the sign of the imaginary part is a qualitative indication of a damped (stable) or
growing (unstable) oscillation. Points on flutter boundaries are obtained from combina-
tions of p and k that result in zero imaginary parts for l/wz, that correspond to
neutrally stable, simple harmonic motion for which the aerodynamic forces are valid.

Equations (A8) are not, however, in a form ready for eigensolution by an eigenvalue

_(em/e)®

subroutine. . To put them in such a form, they are first multiplied by Y
ii

obtain

w2 m;; [W\2 41rpb3 W \2 Q)-k-
B . ij (“B 0/“BY Sj|_ .
ql[- (—w—> (1 + lglﬂ +Z q] m—<—q> + o (‘6—') k—2 =0 (1 = 1, 2, .. .) (Ag)

- ii i
]

where wp is a chosen ""base'" or reference frequency. In order to facilitate the search
in the customary way for eigenvalues of (wB /w)z that are real only, and at the same time
to retain the use of actual or assumed structural damping coefficients g; that are dif- 3
ferent for different modes i, the asymptotic approximation introduced in reference 7 is
adopted; that is, g; is considered to be made up of two parts

;=8 g*8 (A10)

where gi,S is the measured or assigned structural value for mode i,and g is a
modal-independent increment that has the same interpretations as in past usage; that is,
points on a flutter boundary are sought for which g =0, and where g # 0 that value of
g 1is the amount that would have to be added to the structure to permit neutrally stable,
simple harmonic motion. By using equation (A10)
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APPENDIX A — Continued

1+ig, =1+ igi,S +ig ~ (1 + igi,S)(l + ig) (A11)

where the asymptotic approximation appears on the right-hand side of the equation. Sub-
stituting equation (A11) into equation (A9) and dividing by 1 + ig; S resulf in the following
form that is ready for solution by a complex eigenvalue subroutme

-qu+z 39, =0 (i=1,2,.. (A12)

where

2
w

%
r m.. + o 81-]-
ij = Yi\"™j K2

.- (“B/)°
1 mii(1+igi,s)

o= 47prg

Nontrivial solutions (that is, all qj # 0) of the set of equations (A12) are obtained by
setting the determinant of the matrix of the coefficients of the qj's equal to zero, giving
the usual flutter determinant

-Q + Tll Flz e o o I-‘].N
er ~Q + rzz « .. TZN
=0 (A13)
PN]. FNZ « . -9 + INN

where N represents the number of modes used. The eigenvalues £ of the flutter
determinant can be found by any method that is applicable to complex non-Hermitian
matrices. The subroutine used herein is based on that described in reference 8. Chosen
combinations of p and k give, in general, complex values of Q. The positive real
part (wB /w)z gives the frequency, and the ratio of imaginary part to real part gives the
associated g. Thus, finding points on a flutter boundary means selecting combinations
of p and k that resultin g=0.
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Solutions for Flufter Boundaries

In preparation for a flutter-boundary solution, all the input quantities that charac-
terize the structure and the flow are computed or are chosen according to the judgment
of the analyst. These include structural information in terms of mode shapes, frequen-
cies, generalized masses, structural damping coefficients, and locations of control points
at which the downwash ratios for all modes j are obtained as

Wj(x)Y;t) ) 2k>h 14
A= (& 2oy (a14)

A staggered arrangement of control points is recommended as an aid in minimizing
unwanted variations in downwash distributions between control points. (See appendix B.)
Since separation of the chordwise and spanwise variables was not assumed in the pres-
sure distributions l;, none of the published schemes for optimizing the location of con-
trol points are applicable. Often mode shapes hj from tests are not measured at the
locations of the selected control points, and it becomes necessary to interpolate to get

the desired downwash ratios.

Flow parameters that are to be selected include the Mach number, reduced fre-
quency, and air density., The range and sequence in which the parameters are chosen
depend upon the conditions for which flutter characteristics or flutter boundaries are to
be calculated. These include: (a) calculation within a designated range of altitude and
Mach number in the standard atmosphere; (b) more general calculations of variations
among certain parameters, such as among Mach number, mass ratio, and flutter-speed
index; and {c) calculations to be compared with known wind-tunnel results, as in the pres-
ent work. For condition (c), the experimental Mach number is used together with an

initial value of k estimated from

b
= O exp (A15)

where Wexp is the experimental flutter frequency and a is the speed of sound in the
test medium. For this k, the nondimensional generalized aerodynamic forces Q;‘j are
calculated. A flutter determinant is formed for each of a range of values of p beginning
well below the experimental value. ¥or each p, the set of eigenvalues £ is calculated.
The values of g are the ratios of Im(Q)/Re{f) and for sufficiently low p are usually
all negative (with positive Re(Q)); this condition indicates stability. A progressive
increase in p wusually results in one or more of the modes (roots) becoming unstable;
that is, g passes from negative, through zero, to positive. A sufficient range of p
must be used to assure that the critical instability point, which is that point which requires
the greatest stiffness to prevent flutter, is found. If the flutter point thus found does not
occur at the density of interest or if results are desired over a range of density, the
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APPENDIX A - Continued

calculations are repeated for other values of k. In selecting other values of Kk, some

guidance can be obtained from the fact that for a fixed Mach number a flutter boundary
usually is characterized by only a slight variation of dynamic pressure over a substantial
range of density. Furthermore, such flutter boundaries are often also characterized by
a nearly constant flutter frequency w. Thus, where both of these characteristics are
present, p is closely proportional to k2,

Study of equation (A12) indicates that flutter boundaries can be expressed in terms
of four nondimensional quantities as follows: Mach number M, reduced frequency k, .

!
|
1
\
|

mass ratio p, and frequency ratio w /wB, and by combinations of the four. (Mass
ratio p is the ratio of wing mass to the mass of air in a cone or truncated cone that
3 encloses the wing.) For example, by combining either

| w_w_l= v (A16a)
Bk bywp

;

w bsw

| MiVir 2 = 2 By (A16b)
: or

! w b,w

; kI —2 = —OVB\/E (A160)

! the results are measures of stiffnesses required in terms of bowg to prevent flutter
i for agiven M or V,and p (contained in u). The first combination (eq. (A16a)) has
been termed a flutter index or flutter-speed ratio. The second combination (eq. (A16b))
has been called a stiffness-altitude parameter. (See, for example, ref. 2.) The third
combination (eq. (A16c)) is a variation of the second, differing only by the Mach number.

In comparing calculated and experimental results, commonly only two of the four

quantities M, k, pu,and w/wB can be matched. In the present study, M and pu

were matched. Differences between calculated and experimental flutter index or stiffness-
! altitude parameters are interpreted as indicating that the wing stiffness in terms of bOwB
. from the analysis is greater or less than required to match the experimental counterparts.
Differences in flutter-frequency ratio also usually occur. The magnitudes and trends of
these two differences are measures of the adequacy of the analysis as applied to the
experiments in the present study.

In the discussion following equation (A15), the usual trend of eigensolution results
was described. Occasionally, however, one or more eigenvalues £ will indicate an
instability (a positive g) for low p and low k. (Note that the minus sign must be
included with the downwash ratio on the left-hand side of eq. (6). The wrong sign here
can make all modes appear to be unstable, rather than stable,) A flutter instability for
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low k and low p wusually means an essentially single-degree~of-freedom flutter. This
type of instability is revealed by a positive sign of the imaginary part of Q;;, where
mode i is the predominant modal element in the flutter eigenvector, Single-degree
flutter boundaries are usually strongly dependent on how much structural damping is
present. Furthermore, the associated value of p may be so low as to be above the
altitude range of interest, and when k is increased to extend the flutter boundary to
higher p (lower altitude), the imaginary part of Qjj may become negative (stable),
and only the more usual coupled~-mode flutter is then possible.

In appendix B, an example of a flutter calculation is carried through.
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APPENDIX B
A COMPUTED FLUTTER EXAMPLE

To illustrate the calculation of a flutter boundary, the 70° swept delta-wing model
(model 1A of ref. 2) was chosen largely because some comparisons of approximate down-
wash distributions with the called for downwash at 46 downwash control points are already

available in figure 5 of reference 1.

The first major step in computing the flutter boundary for a given wing is to choose
the parameters M and k and to choose the locations of the array of downwash control
po‘ints. In order to solve matrix equation (32) of reference 1 for the weighting factors
agr)n’ the downwash quantities -th ox and -2hj must be supplied for each control
point and each mode. (In the program the imaginary part of the downwash is multiplied

by Kk.)

Location of Control Points and Determination of Downwash

Since four modes were used in this example, it was desired to take advantage of
the full program capacity of 48 downwash control points rather than the 46 with which the
results of reference 1 were obtained. These 48 points were distributed as follows: for
even tenths of the semispan, points were located at 20, 40, 60, 80, and 100 percent of the
local chord; for odd tenths, points were located at 10, 30, 50, 70, and 90 percent of the
local chord; except that at 0.9 semispan no point at 10-percent chord was used, at
0.1 semispan no points at 30- or 70-percent chord were used, and at the plane of sym-
metry a point was located at 3 percent of the local chord.

Values of measured modal deflections are listed in table II of reference 2 for each
tenth of the semispan at the 0.0, 0.25, 0,50, 0.75, and 1.00 local-chord locations for four
modes, The semispan location of the control points of the present analysis correspond
to the measurement points of the model of reference 2; however, the chord locations do
not correspond. It is, therefore, necessary to use some chordwise interpolation scheme
to provide values of deflections and of deflection slopes. A polynomial approximation in
powers of the chordwise coordinate was used for this interpolation; the second and third
chordwise derivatives were made zero as approximations for zero conditions of bending
moment and shear at leading and trailing edges; that is, to use for each span station and

each mode
h(R) = dg + % + dgE2 + . . . + dgk®
and (Bl)
o?n(0) _ 8°n(0) _ o®n(1) _ 8%n(1) _
%2 ax3 ox2 o3
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where x is the local chordwise coordinate with values 0 and 1 at leading and trailing !
edges, respectively. The local chordwise coordinate is '

X -X
- le
R N (B2 !
Ee ~ Fle ) !
The leading-edge conditions cause .
ag = 2g = 0
and equations (B1) become .
h(x) = dy + A% + A8 + dX° + L . . + dgk° ‘
and
(B3)

azh(l) _ a3h(1) -0
ox2 %3

Solutions for the seven unknown coefficients d, are made from seven simultaneous equa-
tions obtained by applying the five deflections and the two trailing-edge conditions. The
slope th/ax needed in the real part of the downwash is

Bhi  on(my o
_3=213i’52@5=.__1__<d +4d,%3 + 5.8 + 6d.%° + 7d.%0 + 8d i") (B4)
9% % ox (Xte—xle) 1 4 5 6 7 8

Some results of this type of interpolation are presented in the following section.

Solution for Weighting Factors aflj)m

H

Values for the downwash quantities -ahj gx and -Zhj for each collocation point
and each mode are supplied along with the (_)ther necessary input data. Equation (32) of
reference 1 is solved for the column of ag,)m for each mode j by a least-square-error
subroutine. Also produced during this type of solution is a matrix of residuals that are
of interest; these are the differences between the called for downwash and the least-square
solution at the control points. Solutions for the ag’)m actually determine distributions R
over the wing of both lifting pressure and associated downwash, Additional values of the
downwash at other points on the wing can be obtained by supplying the input data for those
points, computing the matrix IInm of equation (28) of reference 1, and then carrying out
the multiplication on the right-hand side of equation (32) of reference 1.

Results from such a sequence of operations are shown in figure 8 for four modes of
the example flutter model. In order to display the results more clearly, the delta semi-
span planform is transformed to a rectangle. The short-dash lines indicate the desired
downwash distribution determined by means of the interpolation process described in this
appendix. The real and imaginary parts come from equations (B4) and (B3), respectively.
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----Desired distribution
—— Resulting distribution

(¢) Real part, mode 2. (d) Imaginary part, mode 2.

Figure 8.- Downwash distributions over right semispan for the four modes used in
flutter example for model 1A.

the
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(e) Real part, mode 3.

(g) Real part, mode k.

.72 ‘
(%) iy
V,24 \ 77 s
NamN——

(f) Imaginary part, mode 3.

--=- Desired distribution
— Resulting distribution

X

(h) Imaginary part, mode k.

Figure 8.- Concluded.
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The solid lines indicate the least-square solution obtained by the collocation procedure.
The quality of the comparison of the two is readily observed. The agreement was good
for the smoother downwashes; however, for the downwash distributions that fluctuated

rather abruptly, particularly those for the real parts of the modes, the approximate down-
washes did not follow the prescribed variations in detail.

Generalized Aerodynamic Forces

The nondimensional generalized aerodynamic-force elements Q’f- are calculated
according to the '"'standard" choice; that is, chordwise integration by a 10-point Gaussian
rule and spanwise integration by Simpson's rule. The modal deflections h; are supplied
as input data for each tenth of the local chord at each tenth of the semispan; these deflec-
tions were computed according to equations (B3) on the basis of the mode-shape data from
table II(a) of reference 2, To compute the deflections hj(x¢) at the chordwise-
integration points, a subroutine performs a second-order (parabolic) interpolation from
the input data. (The subroutine can do a first order (linear) interpolation as an option.)

Solution of the Flutter Determinant

In addition to the generalized aerodynamic forces, the input data needed for use in
calculating the flutter-determinant elements are the generalized masses, the modal fre-
quencies and a base frequency, the modal damping coefficients, and a sequence of values
of the air-mass parameter «. The cyclic frequencies f9 and air density in a are
obtained from table I of reference 2 for model 1A at M = 2,0. The frequency wg
(wz = 27f9) is used as wpg, and damping coefficients g; Ss= 0 are used. The same
generalized masses as those for the plston—theory ana1y51s are used: 0.005547

m,; = 0.0001905 slug-## (& kg=#®), m,, = 0.0003801 slug <6 (9—999&5& kg ),
0.007117 0188S
myq = 0.0004918 slug4fP (6:0606667 kgwf), m,, = 0.0001271 slug«® (66001725 kg-aP),

other m1] = 0. A sequence of air densities that extend from well below to well above the
experimental value are used in «. The reduced frequency k of the experiment was
0.283, so a nearby value of k = 0.3 is used initially in the analysis, (A point to be noted
is that reference 2 uses for semichord the value at the 75-percent semispan station

(b.75 s)’ while the present report uses the value at the root (bo).)

As described in appéndix A, for each value of « a flutter determinant is formed
and the eigenvalues 2 are computed. From each §, a damping coefficient g, a fre-
quency ratio w /w and frequency w are obtained, and the product (wB /w)k is a

bowp _ bo¥g
vV vV

Figure 9 shows the damping coefficients g, and the stiffness parameter bow2 /V

as functions of the air-mass parameter «. All four of the g curves depart from the

stiffness parameter since Wy Was chosen as wg-
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Mode 2
g=0
9 0 ‘“' Mode 3 ;
Mode 4 Mode |
- I 1 i 1 1
.8 B
Mode
|
6r

boWp 4t Experiment (9 O
v Df
2

1
0 4 8 12 16 20x10™% slugs

B J
0 5 10 15 20 25 30 grams

Q= 47pr(§5

Figure 9.- Structural demping coefficient g and stiffness parameter boaé/v

as a function of air-mass parameter o for the flutter example. M = 2;
k = 0.3.
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origin into the negative region, thus dynamic stability is indicated. As the air density p
is increased sufficiently, the mode 2 curve passes upward through g =0 and indicates
the value of a for which the mode 2 curve of the stiffness parameter penetrates into a
flutter region.

For the value of k used in this example (0.3), the value of @ is considerably
higher than that of the experiment, which indicates that lower values of k should be
used. Two additional values of k (0.22 and 0.25) were used to enable the plotting of a
flutter boundary through the experimental value of the air-density parameter. The
analytical and experimental results are presented in the following table and in figure 10,

K p | bowa | Pr75s%2 nloe “th
Pexp \ a Wo “exp
0.22 0.85 0.239 0.860 0.921 1.04
Analysis .25 1.08 .25 .862 919 1.04
.30 1.57 .324 .8565 .926 1.05
- . i , ; Lo
Experiment 0.283 1.00 0.320 1.06 0.885 1.00
. . I I
S
Stable
ar Experiment
(k=0.28)
bowp 3
v .
.25
2+ k=0.22
Unstable
| 1 1 1 . 1 - 1 4
0 4 8 12 16 20xI0™ " slugs
I T 1 1 ) I 1 1
(o] 5 10 15 20 25 30 grams
a-= 47rpb03

Figure 10.- Analytical flutter-boundary segment for the ‘flutter exsmple.
M=2; g=0.
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A feature to be noted from the analytical resulis presented in the previous table is that
over the 85-percent variation of the air-density parameter (column 2), the stiffness-
altitude parameter (column 4), and the frequency ratio (column 5) vary by less than

1 percent. In comparison with experimental results, the analytical results are uncon-
servative; that is, they predict this model to flutter when the stiffness-altitude parameter
is less than about 0.86, whereas the experimental results indicate flutter for a stiffness-

altitude parameter less than 1.06.

In searching for reasons why the analytical result is so unconservative, it was
decided to recompute the generalized masses mj; and, thus, make use of the mode
shapes interpolated from equation (B3). The numerical surface integrations produced the

following matrix in units of si-ug-ftf—ékg-mz') that can be compared with the values cited

previously in the text: Sib\%‘s (k%')
[ 182 0.4 17.2 8.6 |
(aLSk)  (-6) (as1) (136)
356 -89.2 -29.8
Emiﬂ =106 ($195) (-1302) (-435)
472 41.0
(Lesg)  ($93)
Symmetric 128
L
(13b8)~
For k=0.25 the results are
. p_ | Po¥ "’.755“)2\{E | “m
Pexp N a ) “exp

0.25 | 1.05 10.272 0.890 l 0.920J 1.04

In comparison to the previous table, the value of the stiffness-altitude parameter is
increased by only about 3 percent toward the experimental value and is still unconserva-
tive. A natural speculation is then to attribute the remaining unconservativeness either
to the analytical aerodynamics or to some unknown and unaccounted for characteristic of
the experimental model, such as internal stresses due to thermal gradients. Thermal
gradients were known to be present in the vicinity of the root, which had been tightly
clamped along its full chord while at room temperature, but quantitative information is
lacking. Another speculative possibility, though a minor one, is that the mode shapes of
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APPENDIX B — Concluded

the models actually flutter tested were a little different from the "'representative mode
shapes'' used here from table II(a) of reference 2. No study has been made of the sensi-
tivity of the analytical-flutter results to variations in mode shape. Such a study would
have a great number of independent variables and is beyond the scope of the present
report.
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2.00
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Y VI_I (Uth
w
Experiment Present exp
ref, 2) analysis
Model 1A

0.82 0.780 0.988

.78 782 .890

.88 .820 .946
1.06 .891 1.024
1.11 1.002 1.018
--- 1.090

1.12 L 1.008

Model 1C

0.90 0.800 1.072

91 .878 .952
1.09 1.01 .966
1.31 1.21 1.035
2.00 1.51 1.197

TABLE 1.- FLUTTER RESULTS FOR MODELS 1A AND 1C

k
Experiment Present
ref. 2) analysis
0.347 0.325
371 .330
.335 .294
.283 .244
.256 .234
-——-- 237
0.812 0.78
.855 .79
743 .67
.BT72 .55
420 378
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TABLE II.- MODE-SHAPE AND OTHER DATA FOR MODEL HT-7*

Normalized deflection at semispan locations (in percent) of —

Chord,
percent 0 10

wq = 2m(

0 |-0.218]-0.192

25 -.148| -.106
50 -.027 .009
75 .0417 .095
100 .188 .230
Wy = 2}f(

0 1.000{ 0.721

25 .549 .408
50 .138 131
75 -.156] -.215
100 -.466| -.482
3= 2

0 0.122| 0.035

25 026 -.044
50 -,084]| -.132
75 -.115¢ -,153
100 -.140 f.laO

20 30
162.5); myy =
-0.158]-0.110

-.058 .013

.044 .093

145 .200

271 .320

0.545| 0.455
307 .27
.136 .149

-.257| -.278

-.487| -.468

-0.053] -0.166

-.1227 -.221

-.179; -.236

-.196, -.232

-.213| -.232

r

40

-0.047
.060
.155
.262
.376

.000518

0.388
.259
.165

-.271

-.418

.000264

-0.335
-.316
-.284
~.249
-.219

50

0.036
.140
.233
.335
442

60

- 0. 000358
= 0.000357 slug-<® (6.006484

0.137
.237
.326
.426
.525

slug <58 (0—0007-956; 850% kg -aof®)

0.350
.257
.182

-.223

-.351

slug-aff (0:0993380' 5663,

-0.454
-.368
-.297
-.241

-.126

*Mass of model, 0.00528 slug (0.0770 kg).

38

0.328
.255
.202

-.073

-.271

~0.505
-.371
-.274
-.154
124

70 80 90
kg -«
0.252| 0.385|0.525
.345 .468 | .607
434 .557| .686
.b27 .644| 765
621 735 .860
0.328( 0.385|0.504
.266 .336 | .466
.234 .309 | .436
175 .300| .415
058 .284 ¢ .400
kg i)

-0.4981-0.37510.075
-.317| -.171 .258
-.195 .080| .474
.118 .395| .629
.388| .600] .798
NASA-Langley, 1970 —— 32

100

0.675
.152
.825
.907

1.000

0.639
.598
.558
.512
497

0.534
.659
757
.868

1.000

L-6808

i)
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