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SUMMARY

When a ramp or other compression surface is located in a locally

supersonic region behind a hypersonic bow shock wave, it generates a

secondary shock wave. The ramp flow disturbance may be viewed as an

embedded Newtonian impact flow if the embedded shock layer is thin. Exam-

ination of the applicability of Newtonian flow theory to cones and wedges

in uniform streams suggests that this theory can be expected to give a

useful approximation to the surface pressures.

A pressure equation based on this concept predicts a number of

interesting things: First, pressures can differ from simple Newtonian

theory by factors of 1/5 to 3; for example, on flare stabilizers on blunt-

nosed bodies of revolution, pressures are lower than Newtonian and diminish

with increasing flight speed in the hypersonic speed range. The calculated

pressures vary over the flare surface as a result of the nonuniformity of

its incident stream, and depend on the axial location of the flare. In

the case of a flap mounted on a large-angled blunt-nosed cone, the pressure

coefficients vary from 1 to 5 through the variable entropy layer. A

pressure coefficient of 5 greater than the maximum possible in Newtonian
flow can occur because the compression process is more efficient than a

single shock wave process. On areas of the flap that protrude through

the main bow wave, the pressure coefficient should revert to the simple
Newtonian value.

Equations are developed for the initial slopes of the normal-force

and pitching-moment curves of a flare stabilizer. In the simplest case
these differ from conventional Newtonian theory by the ratio of local

dynamic pressure to free-stream dynamic pressure. This ratio takes values
as low as O.1 in some of the examples considered.

INTRODUCTION

A compression corner on the surface of a body in hypersonic flight

will generate an oblique shock wave if it is located in a locally super-

sonic region. This kind of flow configuration occurs on flare-stabilized

bodies and on bodies with flap controls, for example. Newtonian theory,



which stipulates that there be a bowshockwaveclosely wrappedaroundthe
body, fails to provide the secondaryshockwave. As such, it maybe
appreciably in error even in the hypersonic limit.

For attached flow, two-dimenslonal flow theory maybe used to obtain
pressures on the rampat the corner3 provided the conditions upstreamof
the corner are kno_m. Awayfrom the corner, no simple theory exists for
calculating the pressure distribution. Strongly nonuniformstream condi-
tions at the station of the rampcomplicate the problem. In reference 1j
a simple theory appropriate to these conditions, referred to as embedded
Newtonianflow theory, wasproposedfor the case of flare stabilizers.
Thepurposeof the present note is to develop this conceptfurther, to
investigate the conditions for which it shouldbe valid, and to showsome
predicted consequencesin contrasting examples. Comparisonswith conven-
tional Newtonianimpact theory are included. Equations for the initial
normal-force and pitching-momentcurve slopes of a flare stabilizer are
derived.

SYMBOLS

Cm

%

Cp

d

Zf

M

n

P

q

r

rn

pitching moment based on cylinder area and cylinder radius

initial slope of pitching-moment curve

normal-force coefficient based on cylinder area

initial slope of normal-force curve

pressure coefficient,

cylinder diameter

flare length

Mach number

coordinate normal to cone surface

static air pressure

dynamic pressure, u_
2

radius normal to body axis of symmetry

nose radius of curvature

T temperature
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Ze

s

air velocity

axial distance from stagnation point

angle of attack

ratio of specific heats

cone or ramp half-angle

angle between streamline and surface normal

air density

azimuth angle

distance from leading edge of flare to its center of pressure

Subscripts

properties in region 1 ahead of ramp shock wave

properties in region 2 behind ramp shock wave

free stream

base

cylinder

leading edge

bow shock wave



EMBEDDED NEWTONIAN FLOWS

Two flow configurations of the kind under consideration are shown

in sketches (a) and (b). In both cases, compression corners occur in

locally supersonic regions of hypersonic flow fields, and generate

secondary shock waves. Note also that the closely wrapped bow shock wave

assumed in Newtonian theory is not realized for cases like that in sketch

(a), according to information given in reference 2.

Sketch (a) Sketch (b)

Assuming for the moment that the embedded shock layers (regions 2) are

thin, as shown, it seems natural to consider treating the ramp by an

impact flow model, _-ith conditions along the surface of the secondary

shock wave as initial conditions. The validity of the results obtained

would then depend on (1) the thickness of the secondary shock layer, and

(2) the occurrence of attached, as opposed to separated, flo_ in the

corner. The former point will be treated in some detail in the next

section. The latter point cannot be quantitatively discussed at the

present state of knowledge. However, it is known empirically that a wide

range of ramp angles and Reynolds numbers will support attached flow or

flow which is only locally separated in the vicinity of the corner. For

large ramp angles, or ramp heights which are large compared to other body

dimensions, separated flow will occur. For example, a 90o ramp will

invariably separate the flow. The embedded Newtonian flow concept could,

in principle, be applied to these cases also, provided the separated flow

boundary can be described.

Methods are available for calculating the properties of the streams

which are incident on the embedded ramps. For example, cases like that

in sketch (a) can be treated by the methods described in reference 3, and

cases similar to that in sketch (b) can be analyzed by the stream tube

method of reference 4. Other procedures are known, as well, by which

these incident conditions can be calculated.
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Thickness of the ShockLayer

Thelimitation to a thin shock layer will nowbe examinedfrom
previously existing information on simple conesand wedgesin uniform

streams. The Newtonian theory for pressures and forces on pointed cones

is very successful, as shown in figure i, where it is compared with the

results of conical flow theory for ideal air taken from reference 5. The

latter is exact for the surface pressures at zero angle of attack, but

makes use of a linearized perturbation of the zero angle pressures to

obtain CN_ i. The accuracy given by the impact theory would certainly be

considered satisfactory for most purposes. The thickness angles of the

shock-layer range from i° to 8° for the ideal gas flow at infinite Mach

number, and from i0 ° to 15 ° for the flow Mach number of 3. These shock

layers may be said to be thin for purposes of the impact theory.

The Newtonian theory for two-dimensional wedge flow, representative

of conditions immediately behind the compression corner I is shown in

figure 2. The errors are larger than in the case of cone flow. The

shock-layer thickness angles range from 0° to 16 ° at infinite Mach number

and from 17 ° to 22 ° at M_ = 3. Reasonably accurate predictions occur at

thickness angles below about 15 ° •

It will be noted that the Mach numbers approaching the ramp in cases

of present interest will not ordinarily exceed 3, even forvery high values
of the free-streamMach number. Curves for this Mach number were therefore

included in figures 1 and 2. However, the ideal gas theories with 7 = 1.4

are not appropriate for hypersonic free flight. It is interesting that

ramp flows llke those shown in sketches (a) and (b) differ from usually

considered real gas flows in that the stream approaching the ramp is of

high static temperature. Solutions, such as those given in reference 6,

for two-dimensional oblique shock waves in real gas are for free-stream

temperatures near room temperature. Some examples of two-dimensional

real-gas ramp flows were calculated for stream conditions similar to that

in sketch (a) to see how the results would compare with those of refer-

ence 6 and those of figure 2(b). The ramp leading edge was taken to be 2.7

diameters behind the nose of a blunt-nosed cylinder for a free-stream speed

of 20,000 ft/sec at an altitude of 175,000 feet. This example is consid-

ered in refer@nce 3 and the local flow velocity, Mach number,, and static

temperature in the stream approaching the ramp are 13,400 ft/sec, 3.04, and

7840 ° R, respectively. The results compare with the ideal-gas solution

and the cold stream real-gas solution in the following way:

DensityShock-wave angle

This Ideal Ref.

case gas 6

.6° 27.1 ° ---
23.3043 52.5 ° 35.8 °

ratio across wave

Ramp This

angle case

i0 o 1.80

30o 3.98

Ideal Ref.

gas 6

1.66 3.8

3.22 6.8
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Theresults from reference 6 are for the given velocity incident on the
ramp, 13,400ft/sec, andthe ideal-gas values are for the given incident
Mathnumber,3.04. Theembeddedrampflow lles betweenthese two. The
shock layer is thinner than for the ideal-gas curves_hence, as wouldbe
expected, slightly improvedagreementof the surface pressure coefficient
with impact theory is shownin figure 2(a) by the circular symbols. Excel-
lent agreementwith impact theory is shownby the real gas in a cold
stream, square symbolin figure 2(a).

Theaboveconsiderations, particularly figure i, showthat the shock
layers in embeddedrampflows are, for wide rangesof conditions_ thin
enoughthat a Newtonianapproximation is useful. Onefinal point should
be made. The shockangle tends to diminish with distance awayfrom the
compressioncorner becauseof two factors: (i) the flow is initially two-
dimensional and then approachesconical flow, and (2) the static tempera-
ture in the incident streamdecreaseswith increasing radial distance from
the axis of symmetry(ref. 3). The latter acts to makethe oblique shock
waveagreemoreclosely with the solution for a cold free stream. If the
shock-layer angle is initially small enoughto justify the Newtonian
approximation, it will therefore remain small enoughand becomesmaller.
Equally important, if the angle is initially in the marginal range for
impact theory (15° to 20o), it can comeinto the accurate range awayfrom
the corner so that the impact theory mayagain yield useful results.

PressureEquation

Thepressure equation for embeddedNewtonianflow is simple in form,
and leads to an insight into the characteristics of embeddedrampflows.
Following the usual line of developmentfor the Newtonianpressure rela-
tion, but using the conditions I along the front surface of the rampshock
waveas initial conditions, wewrite

P2 - Pl = Dl(ul sin 8)2 (i)

thus expressing the condition that pressure in the shock layer must be

that required to bring the momentum normal to the body surface to zero in

region 2. This relation can be rewritten in terms of pressure coefficients

based on free-stream static and dynamic pressure to obtain

P2 - P_ ql

Cpe = q_ = Cpl + 2 _ sin2e (2)
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or

Cp2 -- .- op (2a)
q_ 2Newtonian

where Cp is the pressure coefficient given for this surface
aNewtonian

by usual Newtonian impact theory.

Equation (2) is reminiscent of equations used for estimating tail

effectiveness in airplane design. The tail force is analyzed by consid-

ering the local flow conditions, principally speed and downwash angle.

Similarly, in equation (2), the local dynamic pressure, ql' and local

static-pressure coefficient, Cpl , determine the pressure on the ramp.

As noted earlier, the stream approaching the embedded ramp is

generally nonuniform. On pointed bodies this may be due simply to vari-

ations in the static-pressure field, but with blunt-nosed bodies at

hypersonic speeds, it is largely due to curvature of the bow shock wave,

and the resulting gradients of entropy and total pressure in a direction
normal to the streamlines. The effect of the nonuniform stream on the

ramp is predicted by equation (2) when the variation in the incident

stream properties is inserted. As long as the shock layer remains thin,

the predicted variation should be valid. In examples studied by the

author, the pressure tends to rise with increasing distance along the

ramp, since q_ is minimum in the low energy air which passed through

the strong shock wave near the body axis.

RESULTS OF APPLYING EQUATION (2) TO TYPICAL PROEL_4S

The results of applying equation (2) to the flow problems illustrated

in sketches (a) and (b) will now be presented. These two applications

differ in the level of density in the air approaching the ramp; in sketch

(a), it is below free-stream density, and in sketch (b), well above free-

stream density. This difference has a pronounced effect on the incident

dynamic pressure.

Ramp or Flare on a Cylindrical Body With a Blunt Nose

From reference 3, conditions in region I of sketch (a) for the

station 2.7 diameters back on a hemisphere cylinder at a flight speed of

20,000 ft/sec and 175,000 feet altitude are Cpl = 0.023 (pl/p_ = 6.4),

qz/q_ = 0.13. Theoretical pressure coefficients at the beginning of

flares originating at this station are:
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Pressure coefficient from-

Flare angle Equation (2) Newtonian theory

I0 ° 0.031 0.0604

20 ° .053 .234

3o° .o87 .5oo

These pressures are plotted against flare angle in figure 3.

Calculations of ql/q_oand Cpl show a dependence on flight speed,

for a given location on the body, as is seen in the example in figure 4.

These values were calculated for real-gas flow at equilibrium by the

machine program method of reference 3- The dynamic-pressure ratio

decreases steadily with increasing flight speed. (As noted in reference i,

a reduction in dynamic-pressure ratio is also given by less exact calcula-

tions for an ideal gas, and is attributable to increasing strength of the

bow shock wave with increasing flight speed.) The predicted variation

with flight speed of pressure coefficient at a flare leading edge is shown

in figure 5. Contrary to any expectations of a hypersonic "freeze" of

static-pressure coefficients on the flare, the pressure coefficients are

seen to vary significantly with increasing speed over the entire range

considered, although the variation flattens out at the higher speeds.

Equation (2) further predicts an effect on flare pressure coefficient

of location of the flare along the body. The static pressure along the

cylinder diminishes with increasing distance from the nose. (This is

predicted by blast-wave theory and is borne out by more exact theories.)

As a consequence, both Cp. and ql decrease with increasing distance from

the nose, the latter through the effect of static pressure on air density.

The magnitude of these effects on flare leading-edge pressure is shown in

figure 6. The static-pressure coefficient changes by more than a factor

of 2 in all cases as the flare is moved rearward.

The effect of stream nonuniformity is shown in figure 7. Variations

with axial position and radial position, both effective in deter_Zning

conditions along the flare shock front, act in opposite directions - the

dynamic pressure tends to increase with increasing radial distance from

the axis and to decrease with increasing axial distance from the nose.

Furthermore, the stream static-pressure coefficient, Cpl, decreases with

increasing axial distance from the nose. The net effect for flares with

base diameters equal to twice the body cylinder diameter depends on flare

angle (see fig. 7). On the i0 ° flare, the predicted surface pressure is

nearly uniform, showing about a IO-percent decrease from the leading edge

to the base. This results from a nearly perfect cancellation of the

opposing effects of position on the static and dynamic pressures ahead of

the flare shock wave. In the cases of the larger flare angles, the static-

pressure term becomes small compared to the dynamic-pressure term - the

latter predominates. Also, on the large angled flares, larger dynamic-

pressure variations occur_ because of the short length of the flare.



With the 30o flare, the surface static-pressure coefficient is predicted
to increase by a factor of 3 from the leading edgeto the base.

In brief, these predictions showmarkeddisagreementwith simple
Newtoniantheory for the static pressure on the flares, important effects
of flight speedin the high-speedrange, important effects of axial
location of the flare, and significant variations in pressure over the

surface of the flare.
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Control Flap on a Round-Nosed Cone

Turning now from the type of body and flow configuration shown in

sketch (a) to those in sketch (b), the essential difference as noted is

the higher air density in the shock layer ahead of the flap. The flow

velocities, except for the region of the spherical nose and the high-

entropy layer near the surface, are only slightly reduced from free-stream

values, being approximately given by the Newtonian expression,

ul = u_ cos e. In figure 8, the results of some unpublished calculations

of the shock-layer flow distributions made by the author for a 300 half-

angle round-nosed cone are given for two conditions, ideal-gas flow at a

Mach number of i0, and real-gas flow at a speed of 33,000 ft/sec at an

altitude of 171,500 ft (M = 29.8). These distributions show large gradi-

ents through the variable entropy layer. In the outer region, the density

and velocity come to relatively constant values which are near those that

would be obtained with a pointed cone at the same flight conditions. The

dynamic pressure parallel to the conical surface undergoes a sizable vari-

ation with distance from the surface, but is generally higher than in the

free stream, up to a maximum of nine times free-stream dynamic pressure

in these examples. The Mach numbers in the shock layer near the cone

base range from 1.56 at the body surface to 5-71 at the shock wave for

the M = 29.8 flight conditi6n. Corresponding values for the ideal gas

at a flow Mach number of i0 are 1.45 and 3.26. Therefore, a deflected

flap in the shock layer will generate a secondary shock wave.

The result of applying equation (2) to these conditions is shown in

figure 9 for a flap deflected 3 0o relative to the cone surface. Pressure

coefficient varies strongly through the variable entropy layer, and reaches

values well in excess of 2, the maximum possible pressure coefficient

according to Newtonian theory. This implies merely that a more efficient

pressure recovery process than those considered by Newtonian theory has

been employed. The efficiency of pressure recovery is still fantastically

small compared to that which could be obtained by isentropic compression

of the gas in the free stream. By comparison of the curves for the two

speed conditions, a sensitivity to speed is indicated which is again far

from negligible.

If the flap chord is long enough, it will project through the bow

shock wave of the parent body. At 33,000 ft/sec with the example geome-

try, this will occur with 30 ° flap deflection when the flap chord is longer
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than about 5 percent of the body diameter. Theportion of the flap out-
board of the main bowwaveis expectedto revert to a single shockwave
flow configuration, for which simple Newtoniantheory applies. The
pressure coefficient should therefore drop to the Newtonianvalue in the
outboard region of a long flap. The chordwisepressure distribution on
the flap at M = 29.8 would then be rather complicated, beginning at a
pressure coefficient less than i, climbing to a plateau value of about 5,
and, near the trailing edge, dropping below2. It should again be noted
that these considerations are restricted to attached flows. In the event
of extensive separation, still morecomplicatedvariations than those
described mayoccur.

NORMALFORCEANDPITCHINGMOMENTOFA FLARE
AT SMALLANGLEOFATTACK

Onthe basis of equation (2), which gives the pressure coefficients
on a flare at zero angle of attack, an extension to the caseof a small
angle of attack can be madeto obtain the initial slopes of the normal-
force and pitching-momentcurves. In terms of the angle _ betweenthe
local streamdirection aheadof the flare shockwaveanda normal to the
flare surface,

ql
: Cpl + 2 -- (3)qoo

where _ is a function of the angle of attack, _l, the flare half-angle,

e, and the azimuthal angle 3 9,

cos _ = cos _l sin e + sin _i cos e cos (4)

The angle of attack _l is the projection on the plane of symmetry of

the angle between the local stream direction ahead of the flare shock

wave and the body axis. In the nonuniform stream ahead of the flare, it

should be considered a variable along with Cpl and ql"

Integration of the elementary pressure forces around @ and along

the length of the flare gives the normal-force equation,

,ib/rc (_o_ ) r.-_d -'_r (5)CN = 2 Cpe cos q0 dq0 rc rc
tan e -l
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Onsubstitution of equations (3) and (4) into (5), the integral around 9
becomes

_o cos 9 d9CP2 _o_ ql= 2 sin2e _ cos2_l cos q0d9

_ ql sin 2_z cos29d9
+ sin 2edo

_o _ sin2ml cos39 d9
q_!

+ 2 costa8 q_

+ cos 9 d9
Cp I

(6)

Equation (6) cannot be integrated unless the distributions of _z,

q_, and Cpl are known and expressible in closed form. Since this implies

a more complete knowledge of the flow field in region 1 at angle of attack

than is available, the following assumptions are introduced:

1. Assume Cp_ independent of 9.

2. Assume _i = _-

3. Assume qz independent of 9.

Errors due to assumptions (I) and (2) are to some extent self-compensating

(as may be seen from their effect on eq. (3)) and in any case should be

small at small angles of attack. With one additional assumption, ql
independent of r, equation (5) may be integrated in closed form to obtain

] = qlql (rb_ a - 1 sin 2c_ cosec _ CNNewtonia n (7)CN = \rc/

which is limited to small angles of attack. Differentiation to obtain

the initial slope yields

CN_ i = 2 _ \rc/ = _ N_i Newtonian

These expressions are found to be the Newtonian equations for normal force

of a truncated cone multiplied by the factor, ql/q _.

A more general form of equation (8) is obtained if ql and 8 are

treated as functions of r but not of 9, which results in



12

rb/rc
4F _(r) r r

CN_i = dl _q_ cos28 7c d --rc (9)

where q_(r) is the functional dependence of qx on r. The variation in
dynamic pressure along the flare shock wave is now taken into account, and

flare surfaces of curved profile may be included.

The restoring moment due to the flare, about the flare leading-edge

station as moment center 3 is expressible, for an elemental portion of the

flare between x and x + dx, as

d_i : <r_) d_ i
(io)

where, as can be seen in the adjoining

sketch, l

I (dx + dr tan 0)
X = x + r tan 8 + _

(ii)

In the limit as dx _ O, this leads to

A

6
4
i

r ) r r__dCm_ i : 4 ql(r) cos28 x + _cc tan 8 _Jc d rcq_
(12)

which is integrated to obtain

rb/r c

q---_(r) x r cos20 d r + 2y l q1(r) r<_c_a
-- sin 28 d r__

q_ rc rc rc q_ rc

(13)

Here, as in equation (9), ql and @ are functions of r but not of _.

For constant q_ on conical flares, equations (9) and (13) may be reduced

to an expression for center of pressure.

iFor other moment centers, equation (i0) becomes

XZe + X

dCm_ i - rc dCN_ i

where XZe is the distance from the moment center to the flare leading

edge. On integration, this leads to an additional term on the right-hand

side of equation (13), (XZe/rc)CN_ i.
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_ 2 \rc/ I (14)

rb rb I
r-_ -

L J\rc _/_rc/

This becomes the usual expression for center of pressure of a cone when

the cylinder radius r c is set equal to zero.

CONCLUDING REMARKS

Hypersonic flow fields having secondary shock waves generated by

ramps embedded within the main disturbed flow field should, according to

present considerations, show some interesting characteristics. For exam-

ple, pressure coefficients in the embedded flow are speed dependent at

hypersonic speeds. Pressures on flares located downstream of a blunt nose

are found to be lower than predicted by simple Newtonian theory - in one

example_ about 1/5 as great. Pressures on ramps located in higher pressure

regions of the flow where the Mach number is stil_ supersonic are found to

disagree in the opposite sense with Newtonian theory. A flap at the base

of a round-nosed cone of 30o half-angle was calculated to have a maximum

pressure coefficient of 5 compared to a Newtonian pressure coefficient of

1.5. Pressure coefficients in excess of the maximum possible in Newtonian

flow are attributed to a more efficient compression process than a single

shock wave process.

These results were obtained by treating the secondary flow over the

ramp as an embedded Newtonian impact flow. This concept is valid for

thin shock layers when the flow is not extensively separated. Available

information on cones and wedges in uniform streams indicates that many

cases of practical interest will satisfy the thin-shock-layer requirement.

The attached-flow requirement cannot be quantitatively discussed at the

present state of knowledge, but it is known that ramps of not too great

angle or height relative to other body dimensions will permit attached

flow at Reynolds numbers in the order of a few million. In cases where

the flow is separated, knowledge of the separated flow geometry may permit

application of this concept to the estimation of pressures for these cases

also.

Ames Research Center

National Aeronautics and Space Administration

Moffett Field, Calif., Feb. 20, 1962
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Figure 3.- Comparison of pressures on flares predicted by equation (2)

with those given by Newtonian theory.
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Figure 4.- Variation with speed of conditions at a point on the surface
of a hemisphere-cylinder.
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Figure 9.- Predicted variation with flight speed of pressure coefficient

at flare leading edge.
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Figure 6.- Predicted variation with leading-edge station o£ static
pressure at flare leading edge.
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Figure 9.- Flap pressure coefficients predicted by equation (2) for 300

flap deflection.

NASA-Langley, 1962 A-641
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