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SECONDARY FLOW FIELDS EMBEDDED IN
HYPERSONIC SHOCK LAYERS

By Alvin Seiff
SUMMARY

When a ramp or other compression surface is located in a locally
supersonic region behind a hypersonic bow shock wave, 1t generates a
secondary shock wave. The ramp flow dlsturbance may be viewed as an
embedded Newtonian impact flow if the embedded shock layer is thin. Exam-
ination of the applicability of Newtonian flow theory to cones and wedges
in uniform streams suggests that this theory can be expected to give a
useful approximation to the surface pressures.

A pressure equation based on this concept predicts a number of
interesting things: First, pressures can differ from simple Newtonlan
theory by factors of 1/5 to 3; for example, on flare stabilizers on blunt-
nosed bodies of revolution, pressures are lower than Newtonian and diminish
with inereasing flight speed in the hypersonic speed range. The calculated
pressures vary over the flare surface as a result of the nonuniformity of
its incident stream, and depend on the axial location of the flare. In
the case of a flap mounted on a large-angled blunt-nosed cone, the pressure
coefficlients vary from 1 to 5 through the variasble entropy layer. A
pressure coefficilent of 5 greater than the maximum possible in Newtonian
flow can occur because the compression process is more efficient than a
single shock wave process. On areas of the flap that protrude through
the main bow wave, the pressure coefficlent should revert to the simple
Newtonian value.

Equations are developed for the initial slopes of the normal-force
and pitching-moment curves of a flare stabilizer. In the simplest case
these differ from conventional Newtonian theory by the ratio of local
dynamic pressure to free-stream dynamic pressure. This ratio takes values
as low as 0.1 in some of the examples considered.

INTRODUCTION

A compression corner on the surface of a body in hypersonic flight
wlll generate an oblique shock wave if it is located in a locally super-
sonic region. This kind of flow configuration occurs on flare-stabilized
bodies and on bodies with flap controls, for example. Newtonian theory,



which stipulates that there be a bow shock wave closely wrapped around the
body, fails to provide the secondary shock wave. As such, it may be
appreciably in error even in the hypersonic limit.

For attached flow, two-dimensional flow theory may be used to obtain
pressures on the ramp at the corner, provided the conditions upstream of
the corner are known. Away from the corner, no simple theory exists for
calculating the pressure distribution. Strongly nonuniform stream condi-
tions at the station of the ramp complicate the problem. In reference 1,
a simple theory appropriate to these conditions, referred to as embedded
Newtonian flow theory, was proposed for the case of flare stabilizers.
The purpose of the present note 1s to develop this concept further, to
investigate the conditions for which 1t should be valid, and to show some
predicted consequences in contrasting exemples. Comparisons with conven-
tional Newtonlan impact theory are included. Equations for the initial
normal-force and pitching-moment curve slopes of a flare stabilizer are
derived.

SYMBOLS

Cn pitching moment based on cylinder area and cylinder radius

Cmai initial slope of pitching-moment curve

Cx normal-force coefficlent based on cylinder area
CNai initial slope of normal-force curve
Cp pressure coefficlent, P~ Do
9%
d cylinder diameter
Zf flare length
M Mach number
n coordinate normal to cone surface
P static air pressure
q dynamic pressure, Qgi
r radius normal to body axis of symmetry
rn nose radius of curvature

T temperature
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le

alr velocity

axial distance from stagnation point

angle of attack

ratio of specific heats

cone or ramp half-angle

angle between streamline and surface normal
alr density

azimuth angle

distance from leading edge of flare to its center of pressure

Subscripts

properties In region 1 ahead of ramp shock wave
properties in region 2 behind ramp shock wave
free stream

base

cylinder

leading edge

bow shock wave



EMBEDDED NEWTONTIAN FLOWS

Two flow configurations of the kind under consideration are shown
in sketches (a) and (b). In both cases, compression corners occur in
locally supersonic regions of hypersonic flow fields, and generate
secondary shock waves. Note also that the closely wrapped bow shock wave
assumed in Newtonlan theory is not realized for cases like that in sketch
(a), according to information given in reference 2.

P Zad

Sketch (a) Sketch (b)

Assuming for the moment that the embedded shock layers (regions 2) are
thin, as shown, it seems natural to consider treating the ramp by an
impact flow model, with conditions along the surface of the secondary
shock wave as initial conditions. The validity of the results obtained
would then depend on (1) the thickness of the secondary shock layer, and
(2) the occurrence of attached, as opposed to separated, flow in the
corner. The former point will be treated in some detail in the next
section. The latter point cannot be gquantitatively discussed at the
present state of knowledge. However, it 1s known empirically that a wide
range of ramp angles and Reynolds numbers will support attached flow or
flow which is only locally separated in the vieinity of the corner. For
large ramp angles, or ramp heights which are large compared to other body
dimensions, separated flow will occur. For example, a 90° ramp will
invariably separate the flow. The embedded Newtonlan flow concept could,
in principle, be applied to these cases also, provided the separated flow
boundary can be described.

Methods are available for calculating the properties of the streams
which are incident on the embedded ramps. For example, cases like that
in sketch (a) can be treated by the methods described In reference 3, and
cases similar to that in sketch (b) can be analyzed by the stream tube
method of reference 4. Other procedures are known, as well, by which
these incident conditions can be calculated.

= O\ >



Thickness of the Shock Layer

The limitation to a thin shock layer will now be examined from
previously existing information on simple cones and wedges in uniform
streams. The Newtonlan theory for pressures and forces on pointed cones
is very successful, as shown 1n figure 1, where it is compared with the
results of conilcal flow theory for ideal alr taken from reference 5. The
latter is exact for the surface pressures at zero angle of attack, but
makes use of a linearized perturbation of the zero angle pressures to
obtain cNmi' The accuracy given by the impact theory would certainly be

considered satisfactory for most purposes. The thickness angles of the
shock-layer range from 1° to 8° for the ideal gas flow at infinite Mach
number, and from 10° to 159 for the flow Mach number of 3. These shock
layers may be saild to be thin for purposes of the lmpact theory.

The Newtonlan theory for two-dimensional wedge flow, representative
of conditions immediately behind the compression corner, is shown in
figure 2. The errors are larger than in the case of cone flow. The
shock-layer thickness angles range from 0° to 16° at infinite Mach number
and from 17° to 22° at M, = 3. Reasonsbly accurate predictions occur at
thickness angles below about 150.

It will be noted that the Mach numbers approaching the ramp in cases
of present interest will not ordinarily exceed 3, even for very high values
of the free-stream Mach number. Curves for this Mach number were therefore
included in figures 1 and 2. However, the ldeal gas theories with 7 = 1.4
are not appropriate for hypersonic free flight. It is interesting that
ramp flows like those shown in sketches (a) and (b) differ from usually
considered real gas flows in that the stream approaching the ramp is of
high static temperature. Solutions, such as those glven in reference 6,
for two-dimensional oblique shock waves in real gas are for free-stream
temperatures near room temperature. Some examples of two-dimensional
real-gas ramp flows were calculated for stream conditlons similar to that
in sketch (a) to see how the results would compare with those of refer-
ence 6 and those of figure 2(b). The ramp leading edge was taken to be 2.7
diameters behind the nose of a blunt-nosed cylinder for a free-sticam speed
of 20,000 ft/sec at an altitude of 175,000 feet. This example is consid-
ered in referénce 3 and the local flow velocity, Mach number, and static
temperature in the stream approaching the ramp are 13,400 ft/sec, 3.04, and
7840° R, respectively. The results compare with the ideal-gas solution
and the cold stream real-gas solution in the following way:

Shock-wave angle Density ratio across wave
Ramp This | Ideal | Ref. | This Ideal Ref .
angle case gas 6 case gas 6
100 | 23 .68 27.1° | --- 1.80 1.66 3.8
30° 43.3 52.5° | 35.8° 3.98 3.22 6.8




The results from reference & are for the given velocity incident on the
ramp, 13,400 ft/sec, and the ideal-gas values are for the given incident
Mach number, 3.04. The embedded ramp flow lles between these two. The
shock layer is thinner than for the ideal-gas curves; hence, as would be
expected, slightly improved agreement of the surface pressure coefficient
with impact theory is shown in figure 2(a) by the circular symbols. Excel-
lent agreement with impact theory is shown by the real gas in a cold
stream, square symbol in figure 2(a).

The above considerations, particularly figure 1, show that the shock
layers in embedded ramp flows are, for wide ranges of conditions, thin
enough that a Newtonlan approximation is useful. One final point should |
be made. The shock angle tends to diminish with distance away from the )
compression corner because of two factors: (1) the flow is initially two- -
dimensional and then approaches conical flow, and (2) the static tempera-
ture in the incident stream decreases with increasing radial distance from
the axls of symmetry (ref. 3). The latter acts to make the oblique shock
wave agree more closely with the solution for a cold free stream. If the
shock-layer angle i1s initially small enough to Jjustify the Newtonian
approximation, it willl therefore remain small enough and become smaller.
Equally important, if the angle 1s initially in the marginal range for
impact theory (15° to 200), it can come into the accurate range away from
the corner so that the impact theory may again yield useful results.

Pressure Equation

The pressure equation for embedded Newtonian flow 1s simple in form,
and leads to an insight into the characteristics of embedded ramp flows.
Following the usual line of development for the Newtonian pressure rela-
tion, but using the conditions 1 along the front surface of the ramp shock
wave as Initial conditions, we write

P, - P, = py(uy sin 8)% (1)

thus expressing the condition that pressure In the shock layer must be

that required to bring the momentum normal to the body surface to zero in
region 2. This relation can be rewritten in terms of pressure coefficients
based on free-stream static and dynamic pressure to obtain

P, . P
Cp, = =—2=Cp_+2 L in?



or

ot
Cp = + =2 (2a)
Pz Cpl Qoo pZNewtonian

where C is the pressure coefficient given for this surface
2Newtonian
by usual Newtonian impact theory.

Equation (2) is reminiscent of equations used for estimating tail
effectiveness in airplane design. The tail force 1s analyzed by consid-
ering the local flow conditions, principally speed and downwash angle.
Similarly, in equation (2), the local dynamic pressure, s and local

static-pressure coefficient, Cpl, determine the pressure on the ramp.

As noted earlier, the stream approaching the embedded ramp is
generally nonuniform. On pointed bodies this may be due simply to vari-
ations in the static-pressure field, but with blunt-nosed bodies at
hypersonic speeds, it is largely due to curvature of the bow shock wave,
and the resulting gradients of entropy and total pressure in a direction
normal to the streamlines. The effect of the nonuniform stream on the
ramp is predicted by equation (2) when the varilation in the incident
stream propertiles is inserted. As long as the shock layer remains thin,
the predicted variation should be valid. In examples studied by the
author, the pressure tends to rise with increasing distance along the
ramp, since q; is minimum in the low energy air which passed through

the strong shock wave near the body axis.

RESULTS OF APPLYING EQUATION (2) TO TYPICAL PROBLEMS

The results of applying equation (2) to the flow problems illustrated
in sketches (a) and (b) will now be presented. These two applications
differ in the level of density in the air approaching the ramp; in sketch
(a), it is below free-stream density, and in sketch (b), well above free-
stream density. This difference has a pronounced effect on the incldent
dynamic pressure.

Ramp or Flare on a Cylindrical Body With a Blunt Nose

From reference 3, conditions in region 1 of sketch (a) for the
station 2.7 diameters back on a hemlsphere cylinder at a flight speed of
20,000 ft/sec and 175,000 feet altitude are Cp = 0.023 (pl/pw = 6.4),

1

ql/qoO = 0.13. Theoretical pressure coefficients at the beginning cof

flares originating at this station are:



F1 1 Pressure coefficient from-
£18re angl€  Fouation (2) Newbonian theory

102 0.031 0.0604
200 .053 234
30 .087 .500

These pressures are plotted against flare angle in figure 3.

Calculations of ql/qOo and Cpl show a dependence on flight speed,

for a given location on the body, as is seen in the example in figure .
These values were calculated for real-gas flow at equilibrium by the
machine program method of reference 3. The dynamic-pressure ratio
decreases steadily with increasing flight speed. (As noted in reference 1,
a reduction in dynamic-pressure ratio is also glven by less exact calcula-
tions for an ideal gas, and is attributable to increasing strength of the
bow shock wave with increasing flight speed.) The predicted variation
with flight speed of pressure coefficient at a flare leading edge 1s shown
in figure 5. Contrary to any expectations of a hypersonic "freeze" of
static-pressure coefficients on the flare, the pressure coefficients are
seen to vary significantly with increasing speed over the entire range
considered, although the variation flattens out at the higher speeds.

Equation (2) further predicts an effect on flare pressure coefficient
of location of the flare along the body. The static pressure along the
cylinder diminishes with increasing distance from the nose. (This is
predicted by blast-wave theory and is borne out by more exact theories.)
As a consequence, both Cp, and g, decrease with increasing distance from
the nose, the latter throuéh the effect of static pressure on ailr density.
The magnitude of these effects on flare leading-edge pressure is shown in
figure 6. The static-pressure coefficient changes by more than a factor
of 2 in all cases as the flare is moved rearward.

The effect of stream nonuniformity is shown in figure 7. Variations
with axial position and radial position, both effective in determining
conditions along the flare shock front, act in opposite directions - the
dynamic pressure tends to increase with increasing radial distance from
the axis and to decrease with increasing axial distance from the nose.
Furthermore, the stream static-pressure coefficient, Cp,, decreases with
increasing axial distance from the nose. The net effect for flares with
base diameters equal to twice the body cylinder diameter depends on flare
angle (see fig. 7). On the 10° flare, the predicted surface pressure is
nearly uniform, showing about a 10-percent decrease from the leading edge
to the base. This results from a nearly perfect cancellation of the
opposing effects of position on the static and dynamic pressures ahead of
the flare shock wave. In the cases of the larger flare angles, the static-
pressure term becomes small compared to the dynamic-pressure term - the
latter predominates. Also, on the large angled flares, larger dynamic-
pressure variations occur, because of the short length of the flare.
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With the 30° flare, the surface static-pressure coefficient is predicted
to increase by a factor of 3 from the leading edge to the base.

In brief, these predictions show marked disagreement with simple
Newtonian theory for the static pressure on the flares, important effects
of flight speed in the high-speed range, important effects of axial
location of the flare, and significant variations in pressure over the
surface of the flare.

Control Flap on a Round-Nosed Cone

Turning now from the type of body and flow configuration shown in
sketch (a) to those in sketch (b), the essential difference as noted is
the higher air density in the shock layer ahead of the flap. The flow
velocities, except for the region of the spherical nose and the high-
entropy layer near the surface, are only slightly reduced from free-stream
values, being approximately given by the Newtonian expression,

Uy = Uk cos 8. In figure 8, the results of some unpublished calculations
of the shock-layer flow distributions made by the author for a 30° half-
angle round-nosed cone are given for two conditions, ideal-gas flow at a
Mach number of 10, and real-gas flow at a speed of 33,000 ft/sec at an
altitude of 171,500 ft (M = 29.8). These distributions show large gradi-
ents through the variable entropy layer. In the outer region, the density
and velocity come to relatively constant values which are near those that
would be obtalned with a pointed cone at the same flight conditions. The
dynamic pressure parallel to the conical surface undergoes a sizable vari-
ation with distance from the surface, but is generally higher than in the
free stream, up to a maximum of nine times free-stream dynamic pressure

in these examples. The Mach numbers in the shock layer near the cone

base range from 1.56 at the body surface to 5.71 at the shock wave for

the M = 29.8 flight condition. Corresponding values for the ideal gas

at a flow Mach number of 10 are 1.45 and 3.26. Therefore, a deflected
flap in the shock layer will generate a secondary shock wave.

The result of applying equation (2) to these conditions is shown in
figure 9 for a flap deflected 300 relative to the cone surface. Pressure
coefficient varies strongly through the variable entropy layer, and reaches
values well in excess of 2, the maximum possible pressure coefficient
according to Newtonian theory. This implies merely that a more efficlent
pressure recovery process than those considered by Newtonian theory has
been employed. The efficiency of pressure recovery is still fantastically
small compared to that which could be obtained by isentropic compression
of the gas in the free stream. By comparison of the curves for the two
speed conditions, a sensitivity to speed is indicated which 1s again far
from negligible.

If the flap chord is long enough, it will project through the bow
shock wave of the parent body. At 33,000 ft/sec with the example geome-
try, this will occur with 309 flap deflection when the flap chord is longer
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than about 5 percent of the body diameter. The portion of the flap out-
board of the maln bow wave is expected to revert to a single shock wave
flow configuration, for which simple Newtonian theory applies. The
pressure coefficlent should therefore drop to the Newtonlan value In the
cutboard region of a long flap. The chordwise pressure distribution on
the flap at M = 29.8 would then be rather complicated, beginning at a
pressure coefficlent less than 1, climbing to a plateau value of about 5,
and, near the tralling edge, dropping below 2. It should again be noted
that these considerations are restricted to attached flows. In the event
of extensive separation, still more complicated variations than those
described may occur.

NORMAL FORCE AND PITCHING MOMENT OF A FLARE
AT SMAIIL ANGLE OF ATTACK

On the basis of equation (2), which gives the pressure coeffilcients
on a flare at zero angle of attack, an extension to the case of a small
angle of attack can be made to obtain the initial slopes of the normal-
force and pltching-moment curves. In terms of the angle ¢ between the
local stream direction ahead of the flare shock wave and a normal to the
flare surface,

cp‘2 = cpl + 2 % cos2t (3)

where £ 1s a functlon of the angle of attack, a;, the flare half-angle,
6, and the azimuthal angle, @,

cos £ = cos ay 8in @ + sin oy cos 6 cos @ (4)

The angle of attack a3 1s the projection on the plane of symmetry of

the angle between the local stream direction ahead of the flare shock
wave and the body axis. In the nonuniform stream ahead of the flare, it
should be considered a varliable along with CPl and q -

Integration of the elementary pressure forces around ¢ and along
the length of the flare gives the normal-force equation,

s rb/rc
c=——-—-f
N % tan 8 (

7
Cy cos @ 4 X aq X (5)
1 f 2, ? cp) e To

0

e TN B
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On substitution of equations (3) and (4) into (5), the integral around o
becomes

14 T
C, cos ¢ dp = 2 sin?®s o cos®ay cos @ 4@
o P o %o

T
q
+ sin Ee\jp -+ sin 20y cos2p dp
O qm

b4
q
+2 coszet/h =L sin2a; cos3p A
o %L

g
+U/ﬁ Cp. cos ¢ do (6)
o 1

Equation (6) cannot be integrated unless the distributions of ai,
q,, and Cpl are known and expressible in closed form. Since this implies

a more complete knowledge of the flow field in region 1 at angle of attack
than is avallable, the following assumptions are introduced:

1. Assume Cp1 iﬁdependent of o.

2. Assume O3 = Uge

3. Assume a, independent of .
Errors due to assumptions (1) and (2) are to some extent self-compensating
(as may be seen from their effect on eq. (3)) and in any case should be

small at small angles of attack. With one additional assumption, q,
independent of r, equation (5) may be integrated in closed form to obtain

_ 4 Ty & 2g = 41
Cy = = [ fE) -1 ] sin 20y, cos=0 = a;;CNNewtonian (7

which is 1limited to small angles of attack. Differentiation to obtain
the initial slope yields

.9 Iy N\ _ 4
CNai -2 %o [ <EE> -1 | cos® = %o CN“i Newtonian (8)

These expressions are found to be the Newtonian equations for normal force
of a truncated cone multiplied by the factor, q,/q,-

A more general form of equation (8) is obtained if g, and 6 are
treated as functions of r but not of ¢, which results in
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rp/re

g\ r T ~
c =L A cos29 — d —
Mo L . e ¢ 1o (9)

where ql(r) is the functional dependence of gq, on r. The variation in

dynamic pressure along the flare shock wave is now taken into account, and

flare surfaces of curved profile may be included.

The restoring moment due to the flare, about the flare leading-edge

station as moment center, is expressible, for an elemental portion of the A
flare between x and x + dx, as 6
N
% 1

={ = 0

th_ (% d%hi (10)
f where, as can be seen in the adjoining )

sketch, 1

L

X =x+r tan 8 + % {dx + dr tan 0)
(11)

0

—X

<1
+

In the limit as dx - O, this leads to

&
£

a (T) X r r r
= L =L cos20 (}—-+ — tan 9 ] — d — (12)
A e Te e T¢

which is integrated to obtain

I“b/rc ( ) rb /rc ( ) 2
Cmey = u\/1 L\ X r 299 L 4 2\/P gA—£—-<FL> sin 26 4 =
i 1 4, TYec Te Tra 1 Ao Teo Ta

(13)

Here, as in equation (9), g, and 6 are functions of r but not of ¢.
For constant g, on conical flares, equations (9) and (13) may be reduced
to an expression for center of pressure.

For other moment centers, equation (10) becomes

ac le * X g5
o T g ey '
where x7e 1s the distance from the moment center to the flare leading

edge. On integration, this leads to an additional term on the right-hand
side of equation (13), (x3¢/r¢)Cny, -
i
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’H_%rc_e[<%3_l}<l+tanze>_ = (14)

. Oy, & 3
R N E I [ TR R
Te e c

This becomes the usual expression for center of pressure of a cone when
the cylinder radius r, 1s set equal to zero.

CONCLUDING REMARKS

Hypersonic flow fields having secondary shock waves generated by
ramps embedded within the main disturbed flow field should, according to
present considerations, show some interesting characteristics. For exam-
ple, pressure coefficients in the embedded flow are speed dependent at
hypersonic speeds. Pressures on flares located downstream of a blunt nose
are found to be lower than predicted by simple Newtonian theory - in one
example, about 1/5 as great. Pressures on ramps located in higher pressure
reglons of the flow where the Mach number is still supersonic are found to
disagree in the opposite sense with Newtonian theory. A flap at the base
of a round-nosed cone of 30° half-angle was calculated to have a maximum
pressure coefficlent of 5 compared to a Newtonian pressure coefficient of
1.5. Pressure coefficients in excess of the maximum possible in Newtonian
flow are attributed to a more efficient compression process than a single
shock wave process.

These results were obtained by treating the secondary flow over the
ramp as an embedded Newtonian impact flow. This concept 1s valid for
thin shock layers when the flow is not extensively separated. Available
information on cones and wedges in uniform streams indicates that many
cases of practical interest will satisfy the thin-shock-layer requirement.
The attached-flow requirement cannot be quantitatively discussed at the
present state of knowledge, but it is known that ramps of not too great
angle or height relative to other body dimensions will permit attached
flow at Reynolds numbers in the order of a few million. In cases where
the flow is separated, knowledge of the separated flow geometry may permit
application of this concept to the estimation of pressures for these cases
also.

Anmes Research Center
National Aeronautics and Space Administration
Moffett Field, Calif., Feb. 20, 1962
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Hemispherical nose
175,000 ft alt.
Ug 220,000 fV/sec
A i« =27

( /d)l. e

Newtoniagn
theory

Equation (2)
| ] | |
0 10 20 30 40

Flare half angle, deg

Figure 3.- Comparison of pressures on flares predicted by equation (2)
with those gilven by Newtonian theory.
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Figure 4.- Variation with speed of conditions at a point on the surface

of a hemisphere-cylinder.
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Hemispherical nose
28— 175,000 ft alt

X =

{ /d)]_ . 2.7
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08 -

| | | | 1
0 4 8 12 16 20x10°

Up , ”/sec

Figure 5.- Predicted variation with flight speed of pressure coefficient
at flare leading edge.
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e

Figure 6.- Predicted variation with leading-edge station of static
pressure at flare leading edge.
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Figure 7.- Predicted varlation of static pressure along flare surface.
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Sr M =298
4 -
Equation (2)
3 |
C -
Ptiop M=10
2 |
Newtonian impact theory
I
| | | | J
0 2 4 .6 8 1.0

N/ng

Figure 9.~ Flap pressure coefficients predicted by equation (2) for 300
flap deflectionm.

NASA-Langley, 1962 A—6L41
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