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By Williem A. Brooks, Jr.
SUMMARY

Analytical solutions are glven for the temperature and thermsl-
stress distributions in thick skins and structural elements such as
angle, channel, T-, and H-sections when heated at a constant rate.
Certain of the analytical solutions are evaluated for selected cross-
sectional proportions. The results are presented in the form of charts
involving dimensionless temperature, stress, and tlme parameters and
therefore are applicaeble for different materlals and heeting rates and
absolute size of the section. The results have been found useful for
analyzing and correlating experimental data.

INTRODUCTION

Interest in the behavior of structural elements exposed to the
heating rates and elevated temperatures of high-speed f£light has resulted
in a great deal of research, both theoretical and experimental, on the
effects of aerodynemic heating. The variable nature of the heat flux
encountered in a typicel flight plan complicates the problem gresatly.
By considering constant heating rates, it is possible to simplify both
theoretical and experimental aspects of the problem and still obtain
valuable information concerning the primary effects of aerodynamic heating.

The present paper conteins one-dimensional solutions for tempera-
ture and stress distributions in thick skins and structural elements
such as angle, channel, T-, and H-sections when heated at a constant
rate. These solutions have been found to be useful for analyzing and
correlating experimental data. (See ref. 1.) Although some of the
solutions have been published previously (for example, refs. 2 to 4),
they are derived herein in order to make the presentation complete.

Certain of the analytical expressions are evaluated for selected
section proportions. The results are presented in the form of charts
involving dimensionless temperature, stress, and time parameters and
therefore are applicable for different materials and absolute size of
the sections.
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SYMBOLS

constants

constants

specific hesat, Btu/lb-oF

modulus of elasticity, psi

thermal conductivity, Btu/ft-sec-°F
length of leg of angle, ft

integer

heating rate, Btu/ft°-sec

thickness, ft

temperature, OF

maximum temperature difference, Op
specific weight, lb/cu 't

coordinates

thermal coefficient of expension, in./in-OF
root of charecteristic equation
strain, in./in.

dimensionless space coordinates
dimensionless length, 1i/to
dimensionless time paremeter, kr/cwt2

Poisson's ratio

thermel stress, psi (positive for tension)

time, sec
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¢ dimensionless temperature parameter, (T - To)é%
Subscripts:

J Junction of elements

o initial

1 element 1

2 element 2

av average

max maximum

min minimum

i integer

TEMPERATURE DISTRIBUTION

In the following sections, temperature distributions obtained by
assuning constant material properties and msking exact solutions of the
one-dimensional heat-conduction equation sre presented. First, the
simple case of a skin, thin in the thermal sense, 18 discussed in order
to introduce some of the dimensionless parameters which are used in the
present paper. Then the solutions for thermelly thick skins are given
and the thin skin is examined as a speciel case of the thick skin.
Finally, the one-dimensionsl temperature distribution in some common

structural shapes is given.

Thin Skin

If it is assumed that a skin is heated on one side, that there is
no varistion of tempersasture through the thickness or in the plane of
the skin, and that there is no transfer of heat through the unheated
face by means of convection or radistion, the differentisl equation
governing the tempersture of the skin can be obtained by equating the

rate at which the skin absorbs heat to the rate at which heat is provided,

or
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cwt &L q (1)

Integration yields

ox

where

.
qav=%f q dr
0

In s convenient dimensionless form, equation (2) becomes, for a
constant heating rate,

¢g=08 (3)

where

= - X
¢ = (T TO)qﬁ

kT
ewte

0 =

The principal limitation of equation (3) is that the variation in
temperature through the thickness must be negligible; or, in the thermal
sense, that the skin be thin. Although this solution is called the "thin-
skin" solution, the actual thickness does not necessarily have to be
small. A thin skin can best be defined by considering it as a specilal
case of & thick plate as is done in the next section.
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A frequent use is made of equation (1) or (2) in the calibration
of the heating rate produced at & given point by a heater arrangement.
The calibration is accomplished by placing a thin skin before the heater
and, with the heater in operation, recording temperature rise as a func-
tion of time. Once the rate of temperature rise has been determined,
the heating rate msy be calculated by using equation (1) if the pertinent
meaterial properties are known.

Figure 1 shows the relation between the hesting rate and the rate
of temperature rise calculated by equation (1) for some of the more
common materigls. A nomograph of equation (l), presented in figure 2,
affords a rapid graphical solution of the equation and is applicable
for more materials than figure 1. The typical material properties
employed in deriving figure 1 and used in figure 2 are given in table 1.

Thick Skin

If a thick plate, shown schematically in figure 3, is subjected to
a constant heating rate on one face, experiences temperature variation
through the thickness only, and experiences no heat tramnsfer at the
unheated face, the tempersture distribution (derived in appendix A and
ref. 2) is given by

2 £ 2
§-o0+l L 2T q)n cos mm nfx (4e)

where

k
¢ = (T = To)a;

6 = kt

cwt2
=<
R t

From equation (L4a), temperature distributions have been calculsted
for a thick skin of any material and thickness subjected to a constant
heating rate. These temperature distributions are plotted in figure 4
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as a function of time for given locations through the thickness and in
figure 5 as a function of locatlon at given times. At large values of
the time parameter 0(8 > O.4), the series term in equation (ha) contrib-
utes a negligible amount to the temperature parameter, which then becomes
a linear function of time. The temperature~-rise rate becomes constant
for any location through the thickness, and the spacewise temperature
gradient 1s independent of time. The result, which can be seen in fig-
ure 4, is that the temperature distribution becomes fixed, with the tem-
perature level of the entire slab incressing uniformly. The temperature-
rise rate at large values of time can also be calculated by considering
only the mass and heat capacity of the skin and the heat input.

The boundary conditions of the present problem, namely, constant
heat input and no loss of heat, preclude the existence of an equilibrium
condition although a quasi-stéady state does exist after an initial tran-
slent period. The term quasi-steady state is employed hereiln to describe
that state in which the temperature-rise rate is constant at all points
through the thickness of the slab and is hereinafter referred to as steady
state. In an actual case there are heat losses through both the heated
and the unheated faces, provided the unheated face does not l1lle in a
plane of symmetry or is not insulated, and an equilibrium state does
exist. The present solution must therefore be considered as an approxi-
mation for actual cases in which the temperature levels are such that
excesslve heat losses are not involved.

One disadvantage of equation (4a) is that it converges slowly at
smaell values of 6. An alternate solution which can be obtalned in the
form of tabulated functions i1s given by the following equation:

9 8 (n - p? (n + 1)2
o 5, (efE o] ] o] ]

n=1,3,

il | IS (n + n)erfc p*a (L4v)
2o 2o

(n - n)erfe

At small values of 8, the first term of the series suffices. However,
as 6 Dbecomes larger, more terms are necessary. Although there may be
some advantage to using equation (4b) for computing temperatures, par-
ticulerly at smell values of 6, equation (4a) is more amenable to
integration and is used to calculate the stresses.
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The average temperature is found by integrating the dimensionless
temperature parameter of equation (4a) over the dimensionless thickness
and the result is

¢av =8

»

which is the thin-skin solution (eq. 3). This result is rather obvious
inasmuch as there are no heat losses and, therefore, all available heat
is employed in raising the tempersture of the mass. If the heating rste
is constant, then the rate of change of the average temperature must also
be constant. In figure 4, the average tempersture is shown as a function
of time by the dashed line. In figure 5, the spacewlse location of the
point at which the temperature is equal to the average temperature 1s
shown by the dashed line. The point at which the temperature is equal

to the average tempersture always occurs in the range ££-§ 1 £ 1, this
3

point being st 17 = L for the steady state, at which time the tempera-
3
ture is a parsbolic function of 7.

The maximum difference in the values of @ for the outer and inmer
surfaces can be obtained from equation (4a) and is

o == (5)

From equation (5) the maximum tempersture difference is found to be

N =

i

at
& (6)

The maximum temperature difference is plotted in figure 6 as a function
of gt for several materials with properties given in tasble I. For a
given heating rate and skin thickness, the temperature difference varies
inversely as the thermal conductivity; that is, materiasls with the larger
values of thermsl conductivity are associsted with -the smaller tempera-
ture gradients. A nomograph of equation (6), presented in figure T,
permits a repid graphical determination of the maximum temperature dif-
Perence between the heated outer surface and the insulated inner surface

of the plate.
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Another interesting feature of equation (ka) is the time required
to obtain the maximum temperature difference. Actually, as an examina-
tion of the series term of equation (4a) will show, the meximum tempera-
ture difference is reached at an infinite time. Practically, however,
1t can be assumed that the steady state is reached when the series term
contributes only a small amount to the solution; for example, 2 percent
of the meximum temperature difference. In figure 8, the time required
to produce 98 percent of the maximum tempersture difference is plotted.
against the skin thickness. The curves for the different materials are
parallel straight lines whose intercepts on the time axis vary inversely
as the diffusivity k/cw. Thus, for a given thickness, the materials
with the greatest diffusivity require the shortest time to reach the
condition at which the maximum temperasture difference exists.

One method of defining a thin skin is to set an arbitrary limit on
the amount of temperature variastion that can be tolerated. With this
method of defining a thin skin, curves such as those shown in figure 9
can be prepared. In this figure steady-state temperature differences
through the thickness are given as percentages of the heated-surface
temperatures. The s0lid lines represent the difference between the
temperatures of the heated face and the insulated face. Any combina-
tion of heated-face temperature Tn=l and. qt/k that lles on or asbove

the line for the tolerable amount of variation represents a thin-skin
solution. For example, assume that the temperature of the heated face
is 1,000° F and that the tolerable amount of temperature difference
between the two faces is arbitrarily chosen as 50° F or 5 percent. So
long as the value of qt/k for the skin under consideration is equal
to or less than 100, a thin-skin solution will suffice.

Angle, Channel, T-, and H-Sections

Consider next an element that 1s & simplified version of integral
construction (fig. 10(a)) which mey be regarded as part of a skin-
stringer or skin~web combination. The idealization employed in the
present analysis is shown in figure 10(b). All lateral surfaces except
that being heated are considered to be insulated. Several such elements
subjected to heating as indicated may be combined to form the sections
shown in figure 11.

It is assumed that there is no temperature veriation through the
thicknesses t] and +tp and that there is no heat loss through the
unheated faces. Because of the discontinuity in the thickness and
heating, it is convenient to consider the section as two elements as
shown in figure 10(b), the element exposed to the heat flux ¢ being
considered as element 2. The following expressions (derived in
appendix A) give the temperature distributions in the two elements:
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s =

where

151( 2 2y, 1,252
L2 LR(2rat?)+L2 2
Y2 e 58 68\t A
afa, 2 bt Y

o t1 S22 T fa t1
P Bn5 cos Bpl
(B ¢ cos Ppby

n _]:+_t3cot|3n§2-<1+—l— an By

Lo 13 82 ty, |

2 5n5 cos Bpn

|

ct

to b £ t1

k
= (P35 - To)—
¢i (1 °qt2

X

=_3:_ = ——
4 v Ll
1 1
;l=_l ;2__2

to %2

2 S2 n=1 t t, t cos Bnls
(—gi + —2->cot Bnbq - (l 4 2L —-2—>ta.n Bnbo

(Ta)

(o)
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In equations (7) the terms Bn &are roots of the following tran-
scendental equation:

t
sin Bpfy cos Bplo + t—2 sin Bpf, cos Bply = O (8)
1

An expression for the aversge tempersture parameter may be found by
integrating equations (7a) and (7b) as follows:

¢av-f gat + 2 f 2 an (5)

Upon performing the indicated integration, the following equation is
obtained:

t
Bov = 2 8 (10)

Again, as in the case of the thick skin, the average tempersture is a
function of the heat cepacity of the section.

The infinite series of equations (7) converge very slowly for small
velues of 6. In order to avoid the tedious procedure of calculating
the temperature for short times from equations (7), it is possible %o
obtain closed-form short-time solutions in terms of tabulated functions.

The following equetions (derived in appendix A) are approximate short-
time solutions for equations (T7a) and (7b), respectively:
2 2
1 (61 - ¢) f1 - (C:L - )
¢, = 8 + —————lerfc - (¢ - &)
t1 2 r
1+ —
t2

2] 2
+(€1-;§) orfe C1+C2 -(§l+§)\/geXP-(gl+C) (11a)

2§ie 4o

X
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] 2] 2
(¢2 - n) ’%exPL-Eghe—nl_ +I:B+-§-€2—Z-n—)—]erfc§—§qi—n-

— —

2
(L + W3 ex|- “‘—i:—”)— (110)

Although these short-time equations give good approximetions to the
maximum end minimum temperstures, they do not satisfy continuity at the
junction of the two elements. For short-time solutions & satisfactory
approximation for the temperature at the Junction is

g, - ¢1I§=§l "2‘ ¢2|n=§2 . c12)

Of course, for long times the series terms in equations (7) become
negligible and a quasi-steady state 1s reached in which the temperature
ig @ linear function of the time parameter. The slope of the linear
relation between the time and tempersture parameters is, at steady state,
determined by the heat capacity of the section. The existence of a
state of equilibrium is precluded by the initial agsumptions as was the
case for the thick plate.

The meximum temperature (at 17 = 0), the minimum tempersature
(at ¢ = 0), and the temperature at the junction of the two elements
(at ¢ =81, m= o) have been calculated for twenty-seven cases (all
T
possible combinations of t—z- =1, 2, and b; {4 = 5, 10, end 20; and
1
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§2 = 10, 20, and 30). In figure 12 the maximum temperature 1s plotted as
a8 dimensionless temperature parameter ¢2,max egeinst the dimensionless -
time parameter 6, each part of the figure being for a different thick- ~
ness ratio tg/tl. In figure 12 a straight line with slope of 1 is identi-
fied as gl = 0. This line is the same as the "thin-skin" solution and
serves as the upper limit for the maximum temperature by representing the
case in which the meximum tempersture of the heated element is not influ-
enced by the presence of the unheated element. This line can also be
represented as {p = o, but in either case, {3 =0 or ¢ = w, the
thickness to cannot be zero or large enough to violate the assumption
that there 1s no gradient through the thickness +tp2. If §o 1s suffi-

ciently large, say of the order of 50, the meximum temperature of the angle
section is only slightly affected by the presence of the unheated leg.

In figure 13 the temperature at the Junction of the two elements is
plotted as & dimensionless parameter ¢J agalnst the time parameter 6.

If 17 = lp, the temperature parameter ¢J is & linear function of ©
glven by the following relation:

By = —+— o (13) g

which is a specilal case of the average temperature parameter

2
t3

=—2 0 (14)

¢av ;l . te

fo %y

l :

For those cases in which -2 > 1, the lower limit is the straight
1
1

1
line defined by equation (13). For those cases where 2 < 1, the upper

1
1
limit is the line defined by equation (13).
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In figure 14 the minimum temperature is plotted as a dimensionless
temperature parameter against the time parameter ©. The upper limit is
the thin-skin solution which corresponds to 17 =0, or §; =0, and the

lower limit is the horizontal axis which corresponds to 1; = . The

minimum temperature of the angle section is more sensitive to changes
in the value of §l than to changes in the value of 5.

THERMAT: STRESSES

In the following discussion, it 1s assumed that the section being
considered is sufficiently far from the ends of the structural element
that conditions at the ends do not affect the stress distribution. The
stresses are determined by elementary elastic theory employing the
assumptions that plane sections remsin plane and that material prop-
erties do not change with temperature. The derivations of the stress
equations are given In sppendix B.

Thick Skin

The stress distribution in an unrestralned thick skin is given by
the equation (see appendix B and ref. L)

£ t
G = = oE - - 2 - - .sz -
T - T T - Tpldy - 12 T-~T dy 15a
( o) f! ( o) ! ( o)y (15a)

where
T = T(y)

with y being measured from the midplane of the plate. If y 1s meas-
ured from the unheated face of the plate, equation (15a) must be replaced

by

BT P 6fr -2\ " (x- 2L _y\ (e
o (z To)+t(t 5) [ To)awte(z t) NGRS TS
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Symmetrical heating.- If the skin is heated at the same rate on both
surfaces, equation (15&7 reduces to

t

- . OF - -2 [2(p.
0= - i(r - 1) tfo (T - To)ay (26)

When equation (La) is substituted into equation (16) and the indicated
integration is performed, the result is

2 o0
of )2 . _ 2 . L, 25 (gyn cos min -n2r2e 1
(orE )qt 2 6 ,r2n=1( g 2 ()

Stress distributions calculated by equation (17) are plotted in fig-
ures 15 and 16 in terms of dimensionless parameters; and, therefore,
the results are applicable to any material for any thickness or time.
In figures 15 end 16, 1 = O corresponds to the midplane of the plate.
The stress distribution is symmetrical with respect to the midplane;
therefore, the stresses are shown only for the half-depth of the plate.

Asymmetrical heating.- If the skin is heated on one surface only,
the resulting unsymmetrical state requires that all terms of equation (15b)
be included. When the temperature-distribution equation (4a) for this
condition is substituted into equation (15b), the resulting stress equa-
tion is

L-w\gk ooy _ ) - L4 B ST (q)n cos mn -n2r20
oLzt < - ) - Lo L S (agn coem onteBo
 o=n2520
Bz S < (18)
ﬂu n=1,3,5, . . . n

Stress distributions calculated by equation (18) are plotted in
figures 17 and 18 in terms of dimensionless parameters. It i1s interesting
to note that, in certain regions of the skin, thé thermal stresses reach
maximum values at relatively short times during transient heating. In
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other regions the maximum stress is not reached until steady state exists.
The inclusion of the last term In equation (le), which term is obtained
by satisfying moment equilibrium, causes the stresses to reach maximm
values at relatively short times.

Angle, Chennel, T-, and H-Sections

If it 1s assumed that material properties do not change with tem-
perature and if elementery theory is employed, simple expressions mey be
derived for the stresses acting on unrestrained sections such as those
shown in figure 11 with the heating as indlcated. The stress equations
are In terms of geometric properties, integrals involving the tempera-
ture distribution, and the local temperatures and are as follows: For
the H-section,

I
Sk 1 - ¢ (198)
CQ —+ —
o I
=K —L - #2 (19b)
oE qtp S
ol F—
&Lty
for the T-section,
of gt g Mo\ \& 3 g2\ t/\ & 5

Ao

(20a)
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% k _ 6 27 N R 20b
aE qto ST <3 L 1 2) & (20m)
Cg—"'—
§2 tl
for the channel section,
0] k 6 2 to I3
—_— = - =11+ ===}~ 21)
odE qts gl t2<3 L tl ;2) ¢l ( a
gah—-+-—
o t1
12— k = 6 (lL-E)Il+
oE gt g 3
qtp g2<l+-§i+2) 2
o t1
C1/q_ 1 b2 _13_
2 2= -1} + = —=f2 - I - (21b)
[§2<g2 ) 6o tl( t, )] 3 @2

for the angle section,

ki R S 3 oty (L - B, + [2f2 £ -1 cefele Iy +
oF qtp & o & 3 &1 t &\
6, El = + | |

t_2§_1<5 £ . 1>13 -4 (222)
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o2 kx _ 3 ot (A - 2\ + (3L -1l +
oE qtp &t l(Fg %) * o ®
§1C2 —_—+ —
CQ 1
L2351 PYOR W W R S 1 TR P (220)
t1 8o ( o T Eo\b2 > &

The integrals I3, Ip, and Iz are defined as follows:

Iy === 14! 23)
i ato 1 (
where
gl t2 §2 T
I' = /; (T - T)at + t—l- j; (T - Ty)an
&1
A R ST AL > (o)
Co
13" = j; (T2 - To)(n -~ E2)dn

/
The quantities Ip and Iz have been calculated for all possible

t

combinations of t—2 =1, 2, end &, ¢ =5, 10, and 20, and §, = 10, 20,
1 .

and 30, and are plotted in figures 19 and 20. Because of its simplicilty,

I; 1is given only in the form of an equation. (See appendix B.)
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EXAMPLE

Temperature Distribution in an Angle

In order to 1llustrate the results of the analysis described herein,
an example 1s presented. The case chosen is %2 =1, & = =10. For
L

the example chosen EL = 1 and the characteristic values are (from
§2
eq. (8))

Bp = (n=l;3:5}'--)

LA
28,

The temperature distribution was calculated by using equations (7) and

is given In figures 21 and 22 as & functlion of time and space, respec-
tlvely. This particular case reaches quasi-steady-state conditions
rather rapidly (6 =~ 150). Note also that the tempersture at the junc-
tion of the two elements that make up the basic angle sectlon is a linear
function of time and is the average temperature of the section.

Stress pistribution

The quesi-steady-state stresses were calculated for the four cases
shown in figure 11 by assuming © = o and using equations (19) to (22).
The results are presented in dimensionless form in figure 25. The
results, which are for unrestrained expansion, indicate that, for the
case chosen, if the H-section is dlvided along either line of symmetry,
the absolute value of the maximum stress on the resulting section is
one-~half that of the H-section. If the H-section is quartered, the
absolute value of the maximum stress on the resulting section is one-
fourth that of the H-section.

CONCLUDING REMARKS

Solutions for the tempersture distributions and thermsl stresses of
structural elements such as plates, channel, angle, T-, and H-sections
when subjected to comnstent heeting rates have been presented. These
solutions and charts obtained from them have been found to be useful in
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analyzing and correlating experimental data. In addition to temperature
distributions, thermal stresses are given in forms involving simple
integral functions of the temperatures.

The temperatures of selected polnts on the element cross sections
have been calculated and presented in dimensionless form for several
geometric configurations. The temperature integrals involved in the .
thermal stress equations have been calculeted for the same configurations
and are also presented in dimensionless forms. By the use of dimension-
less temperature and stress parameters it i1s possible. to employ the
results for different materials and heating rates.

A detailed distribution of temperature and stress is given for a
selected case in order to provide some insight into the nature of the
variation of temperature and stress on the cross section.

Langley Aeronautical ILeboratory,
National Advisory Committee for Aeronautics,

Langley Field, Va., May 27, 1958.
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APPENDIX A
TEMPERATURE DISTRIBUTION

Thick Skin

In figure 3, a schematic diagram of a thick skin heated on one face
is shown. It 1s assumed that there is a variation of temperature through
the thickness but no variation in the plane of the skin. The governing
differentlial equation is

é! kK 0T . (A1)

In addition, it 1s assumed that there 1s a constant heat flux on
one face (y = t) and that there is no heat loss from the other face
(y = 0). The resulting boundary conditions are

oy t, T k
or -0 (AZ0)
oy 0,1
The initial condition is
T(y,0) = To - : (A3)
Expressed in a dimensionless form, equation (Al) becomes
x _Fr ©(Ab)

08 an2

ad
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and equations (A2) are written as

& .= (458)
oy e
I -0 (850)
onlo,s
where
6 = kTt A
ewtl
(A6)

By employlng the laplace transformation the differential equa-
tion (A4) and the boundary-condition equations (A5) may be written as

é-sT+To=o (AT)
d.n2
and
g - (A8a)
d_n 1 ks
= I . (48)
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wvhere
T(n,8) = L {X(n,0)} (49)

The solution of equation (A7) subject to the boundary conditions
(A8) 1is :

- T
’I'=—°-+-9-1_" cosh \Ig'q (AJ.O)

5 k 83/2 sinh\,g

An inverse transform of equation (A10) and the required temperature
expression is

2
T=TO+%9+112_-%-ES (-1)11.‘Mﬂe-n2‘"29 (a11)
2

ﬂ2 n=l n

An elternate form of solution which converges rapidly for small
values of 8 1s obtained by writing equation (Al0) in the following
equivalent form

7.0, gt 1 3 ~yS(n-n) , .-yE(nn)
T SO + - 83/2 n=l,3§. . [e + e _] | (A12)

The inverse transform of -equation (Al2) is

T =T, + at i 2\/-2‘ ex_p[- _(_n;’l)_a. + expl:— _(n + 'I)e:'

X 5-1,3,5, - he 4o
(n - n)erfc(E—\'}_én) + (n + q)erfc(E—-\'}?’l) (A13)

J

I
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The average temperature parameter of the thick skin is found by
rearranging equation (All) and integrating over the thickness, or

1
Por = f ¢ dn (ALL)
o)
yielding
By = © (A15)
The nondimensional tempersture difference, defined as

o = ¢|1,e - ¢'o,e (a16)

may be found by using equation (All) and is

AF =

n-

-n°%20
- _l.". i g e (a17)
22 n=1,3,5, . . . n2

It is obvious that, as © becomes large, the nondimensional tem-
perature difference increases until it reaches its maximum value of

=1
of =2 (A18)
or
=L1gt
AT 5T (A19)

at an infinite time.
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Angle, Chennel, T-, and H-Sections

The idealized angle section of figure 10(b) is next considered.
It is assumed that there is no varistion of temperature through the
thicknesses %7 and to and that there is no heat loss through the

unheated faces. Because of the dlscontinulity in heating and thickness,
the section 1s considered as two elements wherein the temperatures are
governed by the following equations:

Iy (x| OM
—_ = (X)) 2L (A20s)
or ew/y 8y2
Fz (5.) T, 3 (A20b)
or /2 ax2 (ewt)s
subject to the followlng boundary conditions
éEl-(O‘,'r) =0 (A21a)
oy
(k8), 2E(11,7) = -(b)p —B(20,7) (a21D)
—_— s = - —_— T
1 3 1.7 2 ~ 25
T1(21,7) = To(lp,T) (A21c)
oT
axa(O,T) =0 (A214)

The ipitial conditionis -~

T]_(y,o) = T2(x;o) = To (A22)
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If 1t is assumed that the two elements are of the same materisal,
the following dimensionless equations mey be written to replace equa-
tions (A20) and (A21):

a_T.]_- = a_zi : (A23a)
o8 a;E
oMo _ R L I52 (A230)
d6 32 k
il
and
TLi0,6) = 0 (2he)
ot
. o 9Ty = ~ ETE i
‘ % E—(Ql,e) g™ (¢2,9) (A2Lb)
T]_( Clye) = T2(§2)e) (A2Lc)
#2(0,0) = 0 (a2ha)
on
where
0 = kr )
c‘W‘b22
1
¢ =L £ = - (a25)
tp 1 tef
> - X k2
n = % ) th
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If the Laplace transformation is employed, the differential equa-
tions (A23) and the boundary-condition equations (A24) become

N et -0 (426)
at>
T 6T, + 7o + £ T2 _ 6 (A26b)
dn2 s k
and
ﬁ(o) =0 (A27a)
at -
2Py = - ) (427)
to af dn
Ty (81) = To(to) (A27ec)
dT_z(o) =0 (A274)
dn

The solutions of the transformed differential equations (A26) sub-
ject to the boundary conditions (A27) are

=EQ+qt2 1

Ty

Eg sinh \]ECQ cosh \[sf

(A28s)

8 82k

<sinh \]_s'gl cosh ﬁga + :—i sinh \[EQE cosh \[EQ:L)
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_To , Sbof; _ sinh \[8€; coshysq (428b)

& 82k to
sinh ‘J'Egl cosh \[8{p + o sinh JECE cosh \!'Egl
1

The poles of equations (A28) are a pole of order 2 at s =0 and
simple poles at s = -Bn2 , where the terms B, are roots of the following

transcendental equatlon:
t
sin Bn¢y cos Bplo + :b% sin Bnlo cos Bpfy = O (A29)

For cos Bpf; cos Bnga 74 O, Bp 1s given by the following equation:

t
tan Bptp + ﬁ ten Bplp = O (A30)

In the present paper the values % =1 and 3 occur. For the case
1

§_2 =1, Bp ies given by

€1

COSBII;]_:O (n=1,35 .. .)

or

Bn=12mT (n=1,3, 5 ...) (&31)
1
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Co

For — = 3, there are three sets of B,. Two of the sets are

1 ) _—
roots of equations (A30) and (A31), and the third set is given by

cos Bplo = O (n=1,5,7, 11, . . .)

or
5n=§%'£ (n=l;5:7:ll:'--)
(A32)

By a formal spplication of the inversion integral the required tem-
perature distributions are found to be

1§1<2 2y 1,2%
12 z =186 + 28 ) 86 =
(T]_-'I‘)—k—=t—2 ° 2° (8P - N
ety w0 L2 bt €1 ta2\?
ot Co ty 2t
e"ane
o Bn3 cos Bpt
Eén=l ¢ t €. t cos B,€
Ly 2Bleot Bnbo -~ l+—i—2-tan8n§l n>L
e % Ca
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18t o 151(2 2) lLe2tr
=== —=\t,= + 2¢ + = f5s =
(mp-myk -t _2late  BLVE M/ 27 %,
ab t t t 2
2 Tl 2 b e bt
2 1 b2 %@ 6
e-f?’l'129
tl2_ Bn3 cos BpM
®2 {5 ne1
: —gi+t—2cot Bngl - l+ﬁ'._2t n§2 cos Bn§2
b2 £o %y
(A33b)

Because equations (A33) converge slowly for short times, it is
advisable to derive a short-time solutlon for the present problem. This
derivation can be made most readily by eppropriate substitutions in equa-
tions (A28). For small times (large values of s) assume that

sinh \[§§l = cosh \[8§; = % e\’ECl
0 (A3k)
sinh Bty = cosh (Bt = 32. eNsto
J
and
\
cosh \IE§ = %(e\,gg + e'\lgg)
( (435)
cosh \[s1 = %(eﬁn + e-\rS-Tl)
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If the quantities defined in equations (_A35) are substituted into
equations (A28), the result is = -

1+ —=
to
To-To, 214 1 L4ﬁ%ﬂ)+;F@Td (A360)
B k g2 12
1+ —
t1

.
e 1 (& - 8| Gl-ﬁ_
(Tl-To}t = = l:9+—-——2 ]rfc VG

2 4.

2
(51 + Q)\lgexp[- ﬁ%ﬁ—} (A372)
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2
(T2-To)—k-= - = e+(§2_n) erfca-n-
t1
2
(2 - ﬂ)\/'g'exp[_ (Qah; n) ] +

(A37p)

onn)
Tal
n
+
o
S——
r-tlml
5
1
——
e
.F‘I‘O
o | +
=3
S
\V)
| R
I
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APPENDIX B
THERMAL, STRESSES

In the followlng discussion, secondary effects are neglected; theat
is, it is assumed that the section under consideration is sufficilently
removed from the ends of the structural element that the stress distri-
bution is not influenced by the stress-free condition at the ends. ALl
the stresses are determined by elementary elastic theory employing the
assumptions that plane sectlions remain plane and that material properties
do not change with temperature.

If plane sections remain plane, the axial strain at any point can be
written as

e =8+ bx + ¢y (B1)

The stress-strain relsation is

e =L + T - Tp) (2)
3

where, for & free plate with temperature variation through the thickness
only,

E¥* = & (B3)

and for plane stress
E* = E (Bk)

The stress can be expressed as -

o = E*[e, +bx + ¢y - T - To)] (B5)



NACA TN 4306 : 33

The equilibrium equations which must be satisfied are

-J/\ o dA OW
ondi
o

If equation (B5) is substituted into equations (B6) and the indi-
cated integrations are performed, there is obtained the following general
set of equations for determining the values of the constants a, b,
and c:

(B6)

]
(&
N

il
(@]

/

\
Ala. + Blb + Clc = G,Il'
Age + Bgb + Coe = aly' ﬁ (B7)
ABa + B3b + 05c = aIB’

J

The constants A, B, and C are known functions of the gecmetry
of the particular section under comsideration; Iy', In', and 15' are

integrals involving the temperature.
Thick Skin
The thick skin considered in the present paper experiences varia-

tion of tempersture in the thickness direction only. The coefficients
for equation (B7) for the free plate are

5

Ap =1 By =0 cl=1§3

Ay =0 Bo = O Cp =0 ¢ (B8)
t £2

Az = = Bz =0 Cz = 2=

53 3 >°5 |
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The right-hand sides of the equations (B7) are

% h
al,’ = % ;/; (T -"To)dy

alp' =0 ) (B9)

t
g"f (T - To)y dy
t 0 )

N

When equations (B7) are solved for the coefficients a and c
which are then substltuted into equation (B5), the stress is

_ _ _GE g Gz_éft .
o = - " (T - To) + E<t 3) . gT To)dy +

t
2/l _ ¥y -
t2<2 t) j; (T - To)y dyJ (B10)

where y is measured from the unheated surface. If the origin is trans-
ferred to the midplane of the plate; equation (15a) is obtained.

If equation (All) is substituted in equation (B1O), the resulting
stress equation for the unsymmetrically heated plate is

c;(l_Ji)%k; Ca - - B A ST (e s e n2elo

oE qt T~ n=1 o n
20 - e
81 . 2n) > i (B11)
ﬂh n=1,3,5,. « . nh

If the skin is heated symmetrically with respect to its midplane
and there is no variation of temperature in the plane of the skin, the
1ast two of equations (B6) are sutomatically satisfied and b =c = O.
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The first of equations (B6) must be employed to determine a. When
this 1s done, the stress is

t
- L= 1) -2 [2 (7o
R e G S KO S (312)

where y is measured from the midplane of the plate.

If equation (All) is substituted into equation (Bl2), the resulting
stress equation for the symmetrically heated skin is

- 2
o'(l )% ==, 1 + .g_ § (-1)2 cos nim e-n2n:26 (B13)
oF /gt 2 6 72 n=1 n2

Angle, Channel, T-, and H-Sections

The thicknesses of the sections of figure 11 are small enough to
permit the assumption of plane stress. For the general case, the coef-
ficients A, B, and C of equation (B7) are as follows:

\
2
% % % %
L2 % 26, 2 oty
£, toty” tot1 %80
-- 1 By = - Cp = - 221 22
b2 2 2 6 2 - ’
2 2
N Lo e o 22babo ox = - tolo”
57 T 537773 3= 6

(B1h)
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The right-hand sides of equations (B7) are

\
¢ ¢
aly' = fo L(m - mo)ag + 2 fo % (2p - To)an
<)
alp' = a fo (Ty, - (g - ¢)a > (B15)
t §2
ﬂ5=“LA (To - To)(n - ta)an
/

The H-section of figure 11 is the simplest case because of double
symmetry. In this case the constants b and c¢ are zero; therefore,

Ao (p -1 (B16a)
ak €1 t2
ol = + —
Lo %
2o (-1 (B16p)
aE 81 2
bol— + —
o t1

For the T-section of figure 11, the constant b equals zZero and
the stresses are

Clz <§2 ¥ tl)(% §l %) tq T2 (Tl To) (BL7=)
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B [$

= 6 /-2- I, + -gl— I2'> - (T2 - TO) (BlTb)

For the channel sectlon of figure 11, the constant ¢ equals zero
and the stresses are

% _ 6 /2 - N
== 5, >0 +§1_§2> (T1 - Tp) (B18a)
¢ b — ¢ =
Ca 1

- t,  t1
‘ L2220 )1 b - (mp - 1) (B18b)
§2 B 52

The angle section of figure 1l requires the use of gll1 the constants,
and the stresses are

a._ 3 S A P £ .
= §1 " 2gl<§l 5)11 + [2(2 3 1> +
§16of =+ =

§2 t]_

t2 Eg.ﬁ_ -1 o' + Eg El 3.5_ - LIz - (Ty - Tp) (B19a)
t1 6o\ &
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g2 _ 3 B T P - '
—= A 2g1<§2 B)Il + (3512- 1)12 +
§l§2 Z_ + E—
2 %
2800 a _q) b i I (To - Tg) Bl
= == - —= —={l - - - 9b)
t1 & ( €2 ta £2\2 3 27 (

-In order to keep the results in & dimensionless form, rather than

employing the integrals defined by equat
follows are used:

Iy = I3t X

qt

After the indiceted integrations are per
Ip, and I3 are as follows:

ions (15), integrals defined as

- (B20)
2

formed, the equations for I3,

I == £o0 (B21a)
tp £32 1 Cl( 2, 5 2) 1,2t
y t1 N to 12 €1 t2
2 t1| 2 %1 i
e-Bn29
tg 2 By’ i1
t1 f2 n=l t % | cos Bpli
E—]=-+ 2 cot Bplo - [1 + El~—§ tan Bngl\
gg tq 2t
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2
to € 181( 2 2\ 1,2%
=z LRlPeen?) vyt 2

I3 = - l e_iiglc2+ 2 +
_;_l' Eg 12 ¢ EJ_-+t_2.

o B1f 2 % )
2 B
-Ba20 ‘
2> P j R—
£o n=1 [t 4 . % cos Bnls
—l-+—2cot Bnty - l+—}-§ an B lo a

f2 %1 2 B
' (B2lc)

The stresses msy now be written In a dimensionless form by multi-
plying the left-haend sides of equations (B16), (B1T), (B18), and (B19)
by k/qtp and replacing I;' in the right-hand sides by Ij. The

values of Ip and Iz were calculated for all combinations of z-—2 =1,
v : 1

2, and 4, &y =5, 10, and 20, and {p = 10, 20, and 30, by using either

equation (A30), equation (A31), or equations (A30), (A31), and (A32),

which define the cheracteristic value B,. For a given case I; can

be computed from equstion (B2la).
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TABIE I.- TYPICAL MATERIAL PROPERTIES

)

T, OF

Material (a) w, 1b/cu £t | ¢, Btu/1b-COF | k, Btu/sec-ft-°F
Aluminum alloy | 250 173 0.220 0.0228
Magnesium alloy| 250 110 2kt L0145
Copper koo 570 097 .0583%
Titenium alloy 500 280 145 .0021
Stainless steel| 600 4oo .130 .0031
Monel 700 520 .118 . O0kk
Inconel X 800 505 .128 .0028

8Representative of average temperatures in typlecal applications.
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Inconel X
Stainless steel'\\ i
Monel
Copper -
Titanium alloy- N\
Aluminum alloy g /

q/t, 1 |_Magnesium alloy—~—:__\\\\

Btu/ftd-see \%

2 x 104

0 : ' 100 200 300

dT o
e F/sec
Figure 1.- Relation between heating rate and rate of temperature rise

for thin plates of various materials. (See table I for material
properties.)
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daT .
dr’ q, cwW, t,
OF /sec Btu/ft2-sec Btu/ft3-OF rft
1000100 F 10-.01
T Magnesium alloy __
T+ Aluminum alloy—_ - |
Titanium alloy .
T Copper—~__T
Monel—’f:
Stainless steel i
10010 | Itconel x-/100}.001
— -
100—1 1000-+.0001

P

Key: The lines %‘T—-t and 4g-cw Iintersect on P-P.
T

Figure 2.- Nomograph for equation relating heating rate and rate of

temperature rise in thin plate. q = cwt QE'
ar
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Figure 3.- Coordinate system for thick-plate analysis.
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1.0

Figure k.- Temperature history of thick plate subjected to constant
heating rate.
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Figure 5.~ Temperature distribution within thick plate subjected to
constant heating rate.
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qt, 4
Btu/ft—-sec

Copper—

AN

o

Aluminum alloy—\{

Titanium alloy—

/

A

N

/

—Magnesium alloy

\

Monel
: i
Stainless steel

|

50 100

AT, OF

150

Figure 6.- Effect of constant heating rate on maximum temperature dif-
Perence between heated and unheated surfaces of thick plates of

various materisls.

(See table I for material properties.)
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.01+

Monel —

Stainless steel\__

Inconel X7

Titanium alloy—|{

=

001

Key: The lines 2AP-k ang 9-t intersect on P-P.

TN L4306

.01

Figure T.- Nomograph for equation relating heating rate and meximum

temperature difference through thick plate. AT = -;: 31-::9-



NACA TN 4306 ko

100

AN

Inconel X——

Titanium alloy;
Stainless steel——

10 | Monel—\ ' /

7

A&iy

AN

T, sec

N\

Aluminum alloy

NN

Copper—

P

t, in,

\“
\ \\\

1.0

—
A\
™~
(0)
(a8}

Figure 8.- Time required to produce 98 percent of maximum temperature
difference between heated and unhested. surfaces of thick plates of
varipus materials subjected to constent heating rate. (See table I
for #mteria.l properties.)
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Figure 9.- Assigned temperature differences ss function of temperature
: of heated surface of plate end heating rate.
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t2 .5 ///////////////'////////////I/
_f__4'7777777777777777777777777}/ ' *
= X,T VD) g -«

(b) Idealized angle sectilon.

Figure 10.- Angle section employed to investigate temperature and ther-
mal stress distributions in various structural shapes.
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Figure 1l.- Structural shapes formed by combinations of angle sections.
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300 — &
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- 20

200
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fa2,mauc.
100
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(a,) -b—a' = l-
by

Figure 12.- History of maximum temperature of angle section for various
' proportions.
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Figure 12.- Continued.
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Figure 12.- Concluded.
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Figu:ce 13.- History of temperature at Junction of elements of angle sec-
tion for various proportions.
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Figure 13.-~ Continued.
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Figure 13.- Concluded.
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Figure 1lh.- History of minimum temperature of angle section for various
proportions.
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Figure 1l4.- Concluded.
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Figure 15.- Thermal stress distribution in symmetrically heated thick
plate subjected to constant hestling rate.
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Figure 16.- History of stresses in symmetrically heated thick plate
subJected to constant heating rate.



64 NACA TN 4306

1 5 :
6 —
1 — ff ::fE
04—
'02__4 d /
L \
ek

Figure 17.- Stress distribution in thick plate subjected to constant
heating rate on one surface.
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Figure 18.- History of stresses in thick plate subjected to constant
heeting rate on one surface.
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Figure 19.- ¥alues of function I, appearing in stress equations
for angle, channel, and T-sections.
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Figure 19.- Continued.
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Figure 19.- Concluded.
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Figure 20.- Values of function

I3 gppearing in stress equations

for angle and channel sectlons.
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Figure 20.- Continued.
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Figure 22.- Temperature distribution in exemple asngle section.
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(a) H-section.
Figure 23.- Distributlion of steady-state them‘?.l stresses In structural

t 1 B
shapes composed of angle sections. %E =1; § = L = 10.
1
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(b) T-section.

Figure 2%.- Continued.
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(c) Chennel section.

Figure 23.- Continued.



K NACA TN 4306

*NACA -

30 '

20 .
4

10

-10
-20
=30
0 5 10 5

(d) Angle section.

Figure 23.- Concluded.

Langley Field, Vi.




