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AND DRAG OF TEIN, SWEPTBACK WINGS lLtTE

~cm~ smp NEAR THE ROOT

By Doris Cohen and Morris D. Friedman

sTRmARY

Formulas are derived by the use of linearized theory for the lift
and drag due to lift, at supersonic speeds, of thin, flat wings having
a discontinuity in the leading-edge sweep, the inboard portion of the.
leading-edge being very highly swept and the outboard portion less so.
Examples are presented to show the effect of the bend in the leading

. edge on the pressure distribution. The lift-curve slope and drag have
been calculated for several families of wings, all with straight trail-
ing edges. For two typical plan forms, the aerodynamic-center location
has been calculated through a limited range of supersonic Mach numbers.

The over-all.characteristics of the wings studied show little
effect of the concentration of sweep near the root, in the absence of
thickness and viscosity, but appesm to be determined primarily by the
sweep of the outer portion. However, there is a shift of the l~t~g
pressure away from the central portion of the wing and toward the lead-
ing edge of the outer portions. “Inmost cases, there will also be a
region of high lift around the trailing edge of the root section. AS
a result, the aerodynamic center is generally farther back than on com-
parable conventional wings. In the limited calculations made, no shift
of aerodynmnic-center location with Mach number was observed. Similar
effects are to be expected on the wing of
of similar plan form.

INTRODUCTION

Considerable interest has been shown

a wing-fuselage configuration

in the use of wing plan forms
incorporating a region of increased leading-edge sweep, similar to a
large fillet, near the wing root. The forward extension of the root

. chord can provide both increased wing depth, with its structural

.
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advantage, and a useful and accessible volume for the installation of
fixed equipment, fuel, air ecoops, or complete power plants, depending
upon the airplane size and purpose. Such a wing plan form 6houl_dbe
particularly useful for an all-wing airplane because of the greater
flexibility allowed in the chordwise location of the major weight
items.

The use of a so-called “cranked” or “crescent” plan form also has
several potential aerodynamic advantages.= Theoretical considerations
indicate that the low-speed stability and control characteristics should
be improved and the high-speed wave drag reduced by increasing the sweep
near the root and decreasing it near the tips. Early attempts to real-
ize these advantages resulted in the experimental wings reported in
references 1 and 2. The wings did, in fact, show good maximum lift and
aileron effectiveness at low speeds, although no extensive comparison
was made with conventional swept wings. Reduction in form drag at high
subsonic speeds was achieved because the wing chord was increased with-
out increasing the thickness. .

As far as is known at this time, no investigation has been made
into the supersonic characteristics of the cranked wing. The present

b

report considers the theoretical forces and moments on such wings due
to angle of attack, for speeds greater than the speed of sound. In
order to reduce the number of variables, the wing plan form has been
kept as simple as possible. In every case, the trailing edge is unswept.
A single bend is introduced into the leading edge at various locations,
and various amounts of sweepback are specified for the inner and outer
portions. The sweep of the inner portion of the wings is always high
enough so that the forepart of the wing lies inside the Mach cone from
its apex. Finally, the wings considered have tips either tapered to a
point (type A of fig. 1) or cut off in the streamwise direction (type B).
The distribution of lift, the total lift, and the drag due to lift are
derived using linearized supersonic wing theory, and some investigation
of the aerodynamic-center location is made.

The applicability of the results to the all-wing airplane with
thickened and lengthened root section has been mentioned. The results
should offer, also, at least a qualitative indication of the distribu-
tion of pressures to be expected on the wing of a wing-fuselage com-
bination of similar plan form, particularly if the fuselage has a
flattened cross section. For information bearing on this point, the
reader is referred to a paper by Morikawa (ref. 3).

lBothstmctm~ ~d aerodp~ic congideratio~s behind the S.ekC_bfOIlOf
the crescent wing are discussed in an article by R. S. Stafford in
the British publication, The Aeroplanej Jan. 2, 1953, pp. 6-7.
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METHOD OF ANALYSIS
.

Approach to the Problem

.

The method of analysis will be described in some detail, since it
is applicable to a more general class of wing than is discussed here.
Basically, the method consists of -thesuperposition of solutions of the
linearized supersonic-flow equations. For the most part, conical-flow
solutions will be employed, in the manner suggested by Busemann (ref. 4)
and Lagerstrom (ref. 5). The method of Mirels (ref. 6) will also be
used, however.

Consider first wing A. Nothing that occurs behind its trailing
edge can affect the flow over the wing itself (since small perturbations
are assumed). Hence, it is permissible to ignore temporarily the posi-
tion of the trailing edge, that is, to assume that the wing extends to

. infinity both laterally and to the rear. Now consider the ird?inite
triangle formed by the downstream extension of the inner portions of
the leading edge. (See sketch (a).) The complete solution for such a

* triangle flying as am isolated wing
is, of course, known (refs. 7, 8,
and 9). However, the accompany-
ing upwash on either side of the
triangle violates the require-
ment of tangential flow over the
outer panels of the complete wing.
We therefore superimpose addi-
tional solutions of the supersonic
flow eqwtions which have the prop-
erty of “caceling” the upwash
within the area of the horizontal
plane occupied by the outer panels,
without introducing any new verti-
cal velocities through the region
occupied by the center triangle. Sketch (a)
This step determines that the flow will conform to the condition of a
flat pbte outboard of the triangle; it is further necessary to intro-
duce a constant downwash in these regions to correspond to the angle
of attack of the wing as a whole. This last must also be achieved
without the introduction of additional downwash inboard of the panels.
The net result is a change in lift on the portion of the original trian-
gular wing within the Mach cone from the apex of each panel, which,
together with the lift on the panels themselves, is to be calculated.
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Notation

‘Ibesymbols used in this report are defined in Appendix A. In
addition to the Cartesian coordinate system (fig. 2) with origin at
the apex of the wing, x axis positive downstream and z axis positive
upward, a conical coordinate eystem in which the location of the origin
is arbitrary will be used. Observed in the xy plane, the character-
istic variable of such a system is the inclination of the line from the
chosen origin xijyi through the variable point x,y, the reference
being the free-stresm direction. For supersonic wing theory, the ratia

of this quantity to the tangent of

fz.//
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Sketch (b)

In keeping with the foregoing

the Mach angle l/~M2 --1 iS most
significant. The conical variable
(see sketch (b)) will therefore be
chosen as

t
- Yi

= B +; 13=rl
- xi

with subscripts to indicate the
location of the origin. For brev-
ity, a line mdcing the angle

tan-l t/@ with the stream will
frequently be referred to as “the
ray t.” The lines t = *1 are
Mach lines, regardless of the
origin.

coordinate system, the sweepback of
the leading edge of the wing is expressed in terms of similar parameters:

ml= p times the tangent of the semiapex angle of the wing, or the cotan-
gent of the angle of sweep of the inner portion of the leading edge

m==p times the

The linear
Appendix A.

cotangent of the angle of sweep of the

dimensions of the wings are defined in

outer portion

figure 2 and

Boundary Conditions for Elementary Solutions

.

.

.

.

The upwash field of the inside triangle can be witten from refer-
ence 8, in terms of the conical variable to = py/x (see fig. 3 and
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.

.

Appendix A) as follows:

W*(to) = :
[to/~ -.(~j-];ml.,to,,l (,)

where E is the elliptic integral of the second kind, with the argument

1l-tea
c+= sin-l

to=kl*

and u has the value

mlVa
%=

~E(~’)

(2)

(3)

The solution required to cancel this field is constructed by the
superposition of a family of solutions with parameter to, each solution
having the following properties:

1. In the infinite sector between any ray f3y= tox and the
outer segment of the leading edge (hatched portion, fig. 4), the
vertical velocity is constant.

2. Between the ray py = tox and the Mach line crossing the
wing from the intersection Xl,yl of the ray with the leading edge,
the vertical velocity is zero. (It is assumed for the moment that
the Mach

3.
nents of

4.

line does not cross the leading edge of the

Along the Mach line just described, all the
the cancellation field vanish.

Ahead of the leading edge (on the right, in
streamwise component of the perturbation velocity is

opposite panel.)

velocity compo-

fig. 4) the
zero.

The foregoing conditions define a conical flow field (ref. 4), that
is, one in which the velocity components are constant along any ray from
the origin or apex - in this case the point x1,Y1. The solution is
therefore expressible as a function of the single variable

(4)

the ratio of the slope of a ray of the field to the inclination of the
Mach lines.
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The conditions specified are the same as for the flow field of a
deflected,triangul.arleading-edge flap, and the required solutions haye
been given in that connection in reference 5. In the sections to
follow, these solutions will be used to build up the required wing plan
forms by the method of superposition, and the resulting lift and drag
will be calculated. Because of differences in detail between the calcu-
lation of the lifting pressure at any point and of the integrated lift
and drag, the remainder of the analysis will be presented with specific
application to each of these problems.

with

LIFT DISTRIBUTION

Suppose the incremental lifting pressure coefficient associated
each elementary solution is

AC.Jx,y,tJ =-; :w(to)qto,t.) (5)

in which W is the constant vertical velocity on the sector and V the
stream velocity. Then the total increase in local lift at a point x,y
due to canceling the upwash on one side of the wing is

[

-rO(X,y)
8 ‘A(ml)~(m=,tm) + 1

J

dWA(to)
T —~(to,t=) dto

v Y m= dto 1 (6)
..

where tm is the value of tl when to = ml, or

tm=~y-sl (7)
x- C1

and -rO(x,y)is the value of to such that

t=(x,y,To) = -1

Since

m2 - ml
xl=— c1

m2 - to
(8)

.

.

.
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and

7

PYl = t+=

setting tl (eq. (4)) equal to -1 gives

m2(x+PY) - (m2-~l)cl
TO(XYY) =

(x+~) + (m,-m=)c=

Also needed for equation (6) is the derivative of WA,

(9)

(lo)

q
W“’(to) = ‘ml~

(to2-m=2)3]2

In addition to canceling the downwash, it is necessary to take into
account the effect of the incidence a of the panel. This effect is
obtained from equation (>) with W = -aV and to . ml, so that the totsJ.
lifting pressure induced at a point x,y by the addition of the panels
to the inner triangle is

ACP(X,Y) =:
{[

wA(ml)1IP(m=,~)+
1

To
a+ —

WA’(to)

}
~(to,tl) dto (1.1)

v v
1

.. If the point x,y is on the inside triangle, the foregoing lift
is added to the lift associated with the original
solution:

4m~uox
cpA(%Y) =

vdm12x2-Pf

triangular-wing

(12)

and, if it lies within the Mach cones from the apexes of both left- and
right-hand outer panels, ACP(X,-y) must also be added. For wing B,
tip corrections will also be derived, so that, for a point near the
center of the trailing edge, the complete expression for the pressure
might be

cp(x,Y)=cpA(x,Y) +ACP(X,Y)+M+, ‘Y) +(Acp)tfp(x,Y) + (Acp)tfp(x,-y)

(13)
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Elementary Solutions

At this point it becomes necessary to specify whether the sweep of
the Mach lines is greater or less than the sweep of the outer segment
of the leading edge, that is, whether u is greater or less than one.
For m.2<1, the solution satisfying the specified conditions is given
by equation (6.6) of reference 5, from which is obtained

[P(to,tJlm2<1 = m2 Pl(to,tl) - to p2(to~tl)

with

Pl(tojtl) =titznm

(14)

(15)

and

J(l+to)(m2 -t=) + /(1 +tl) (IW-to)
P2(to,tl) =

& 10g

(16)
/(I+Iu2) Jto-tl~

The6e functions and the resultant pressure are plotted against tl in
figure 5 for typical values of to and m2. Note that the pressure is
infinite along the subsonic leading edge and also when tl = to, the
hinge-line location in the equivalent co~trol-surfaceproblem.

For m2>l, the solution is identical with that on a vertically
symmetrical wedge, with the lower-surface values changed in sign. The
flow over the wedge, which is required to have a constant vertical
velocity in the region between the leading edge and the extension of
the ray to across the wing (sketch (c)), may be constructed by sub-
tracting from the flow field of a wedge, bounded by the leading edge
and a line in the downstream direction from Xl,yl, the velocities over
a wedge of equal inclination,bounded by the ray to and the line
drawn downstream from Xl,yl. The two component solutions may be
obtained ,fromreference 5, or more readily, from reference 10. The
combined solutions give a pressure proportional to
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.

.

[P(to,h) lm2 >~ =

In2Q1(to,tJ - toQz(toytl)

(17)

vith

Ql(to, h)=

7’%% YI

-Ieadim

Sketch (c)

and

A/(l+ to)(l --t=)+ J(l+ tl)(l -to)
Q2(to,tl) =

& ‘0’

(19)
A/21to - tl[

These functions and the resultant pressure coefficient are plotted in
figure 6.

Formulas and Lift Distribution - Leading Edge Entirely Subsonic

Formulas for ~. If P(’co,tJ (eq. (14)) is substituted in equa-

tion (n), the latter may be integrated (ref. l.1)to give the fo~o~%
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result:

8%
Acp(x,y) =-—

{
mlg(t~To)Gn -

flv

mp(l+ t)
[2E(k) - k12K(k)]

)
2ml(l+m2) g(tjTO)

where

PY
t.y 1 (l+t) (T. ‘t)

g =

(1+ ml) (To +ml)

(20)

and

[

Z(@l,k)
G== K(k) ~ -

ml-t 1 “ ‘l= ’in-’=fOr ‘<-mgdm ‘

-1

[

l+ml
Gp=— K(k) –—E(k)

l-ml 2m1 1
for t= -ml

[
G4=-IC(ls) ~-

Z(94,k)

1

/(t- m~)(To+ ml) for t>ml

t+ml ~J~ ; ‘4= ’in-’J(t+ m=)(70-m1)

The elliptic functions
in Appendix A.

Along the inboard
panel, To reduces to

E(k), K(k), Z(O,k),and Ao(O,k) are defined

.

Mach line y = y*(x) from the apex Cl,sl of the
ml, and ACP takes on the simple form .
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(21)

Ahead of this line the effect of the panel is of course zero, so that
the result is a finite step in the lift distribution. It is interest-
ing to note that> with m2 = 0, equation (21) gives the value of the
decrement in lift along the corresponding Mach line from the outside
corner formed by a streamwise tip on a simple sweptback wing (see
sketch (d) and ref. 12).

Along the boundary between
the outer panel and the inside
triangle, t equals ml, Ga is infi-
nite, and ACP is double-valued.

* However, both the limit of CPA+ACP

as t approaches ml from below,
. and the limit of A% as t

approaches ml from above (where /+
Cp = O) equal
A

\
~m2=0

Sketch (d)

()
mlx 8% u

{

To+ml

[

m2(l+m1)
cpx,~ =-— K- — E+ (2E-k’2 K)

* nv J- 2m= m1(l+m2) 1}

(22)

with the modulus of the elliptic integrals as defined for equation (20)
It will be seen from the numerical results that the lift-distribution
curve goes emoothly through this ~uej although the initial lift dis-
tribution Cp went to infinity along the line t = ml.

A

If the inboard Mach line
from C1,S1 intersects the oppo-
site leading edge as in sketch (e),
fictitious pressure differences
will have been introduced, by the

., use of the conical fields, into the
region ahead of the wing shown
shaded in the sketch. Cancella-

. tion of these pressure differences ----
is necessary in order to satisfy

Sketch (e)



12 NACA TN 2939

the condition of continuity of pressure in the stream. Mathematically,
this is a somewhat formidable task. As the pressures involved are
actually not very great, it will umally be sufficient to perform only
an approximate cancellation, as follows:

Assume ACp to be constant and equal to ACP(@j@) throughout
the shaded region. Then it may be canceled, and the boundary conditions
on the wing preserved, by a single conical field with its origin at
x*,y*. In terms of the conical variable

Y-Y*t* = P—
x- X*

the boundary conditions on the solution are simply,

4U
— =ACP(X*,Y+); -1S t*g -~
v

W=o; -m2<t*<+l

The required solution is obtained by a slight modification of equa-
tion (5.15’b) of reference 5:

[
(ACP)LE (x,Y) = ‘: ACp(X*,y*) COS-l. .

2(m2+t*)-(1-m2) (l- t*)

(l+m2)(l+ t*) -

2m2J2(l-~)

]– 1

l-t*

l+mz m2+ t*
(23)

ThiB term is to be added into equation (13).

Tip effect, wing B.- If the trailing edge of the wing is unswept,
or is swept (either forward or back) but is everywhere supersonic, and
if the tips are tapered to a point, the entire lift distribution due to
angle of attack is given by the foregoing formulas. If the wing is not
fully tapered, but has tips formed by any entirely subsonic curve, the
lift on the portions of the wing included in the foremost Mach cones
from the tip will be modified in a manner best calculated by the method
of reference 6. If the tips are simply cut off parallel to the stream,
the pertinent formula (17a) in reference 6 can be integrated after the
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insertion of ACP from equation (20)2

13

to gfve

(Acp)tfp(%Y)=

mz(l+t)(t+ml)

r

To-t

2m12(l+m2)g2(tj.0) T1-t

in which G4(T=) is obtained by replacing

ps
T1 =

X-p(s-y)

[
2E(k) - k’2 K(k)

1}
(24)

To by

(25)

everywhere in .4, and k has the same value otherwise as in equa-
tion (20). Alongthe Mach line from the tip, T1 equals To and (ACP)

reduces to
tip

( )
x-c~ 4m2~(l+t)(t+m=)

‘Acp)tip ‘~ ‘- ~ = - [
2E(k)-k’2K(k)

1
(26)

mlflV(l+mz)g(t)ro)

At the tip, the right-hand side of equation (24) becomes indeterminate,
but reduces in the limit to -ACP(X,S) as given by equation (20).

IWmerical results.- !Fhelift distribution at M = 6 was calcul-
ated for a wing with semiapex angleequal to tan-= 0.375 (that is,
almost 70° sweep of the leading edge at the root) and ~“ sweep of the
leading edge of the outer panels. With ~ = 1, the sweep parameters
were therefore ml = 0.375 and m2 = 0.9. The linear dimensions of
the wi’ngand the Mach line pattern are shown in figure 7.

21t is assumed in this investigation that the region which has been
referred to as the “inside triangle’tis in fact a triangle, that is,
that the inner portion of the leading edge, extended rearward, inter-
sects the trailing edge rather than the tip. Formulas for the latter
case can be derived by including CPA

in the lift to be canceled at
the tips.
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The resulting lift distribution is shown (fig. 8) in spanwise
sections, that is, for constant values of x. Ahead of and at the
section x = 4, the lift coefficient is merely that (eq. (12)) on the
triangular wing formed by the inner portion of the leading edge. At
x = 4.5, the effect of the bend in the leading edge appears at y = fl.
The resulting step in the lift distribution mentioned earlier is seen
to be quite pronounced. Between the Mach lines, the lift retains the
relatively low value associated with the slender triangle.

At x = 5.5, the Mach lines intersect on the center line of the
wing so that the steps do not appear individually. At x = 8, the Mach
cones overlap and the effect of the outer panels is doubled in the
center. The step at the Mach lines has fallen off considerably in mag-
nitude.

The section at x = 9, otherwisesimilar to the preceding one,
passes through the tip Mach cone. Again the discontinuity in lift
appears at the Mach line. As in the case of the simple sweptback wing
(ref. 12), the tip effect is so large as to destroy the major part of
the lift within the Mach cone.

The span loadings obtained for this wing and for the type A wing
derived from it by cutting off the rearmost portion (x>8) are shown
in figure 9. Also shown is the elliptical span loading of a triangular
wing. In the case of the type B wing, the tip effect appears as a dis-
continuity in the slope of the span load curve.. The bend in the lead-
ing edge does not, however, cause any abrupt change in the shape of the
loading, as far as can be seen.

Aerodynamic center.- The pressure distributions of figure 8 were
used to calculate the aerodynamic-centerlocations for the same wings
for which the span loadings were calculated. The aerodynamic-center
location was also determined at a Mach number of 1.2 and, using slender-
wing theory (ref. 13), at M = 1.0. This last restit is the same for
both plan forms since, according to slender-wing theory, the non-
expanding part of the wing is also nonlifting.

The lengthwise distributions of load, from which the centers of
pressure were calculated, are shown in figure 10, T’nesame curves apply
to both wings up to x = 8, where the type A wing ends.

The aerodynamic-centerlocations are shown in figure 11. The aero-
dynamic center of the type A wing remains essentia~y fixed at x = 6.o4
or 0,735 co for all.three Mach numbers and thus lies considerably
behind the center of area of the wing, which is at x = 0.710 co. The
aerodynamic center of the blunt-tipped wing shifts from x = 6.o4 or
0.604 co at M = 1 to 0.682 co for M = 1.2 and 1.4, but still lies
ahead of the center of area at 0.696 co. These-results may be compared
with the triangular wing, for which the aerodynamic center, according

●

✎

.

.
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.

to linear theory, coincides with the center of area at 0.667 co through-
out the supersonic“speedrange.

Lift Distribution - Leading Edge of Outer Panel Supersonic

Formulas for ACp.- The substitution of the elementary solution

(eq. (17)) for mz>l in the integrals for ACn (eq. (11)) results in
hyperelliptic integrals which cannot be evaluat~d in terms of tabulated
functions, except for the special cases Y = Y*(x) (the inboard Mach
line from Cl,sl) and paints along the leading edge. Along the inboard
Mach line, the result is

ACp(x,y*) =
3~

Along the supersonic leading edge, the
value

(cP)LoE.= J>l
2- [

(27)

pressure is finite, having the

v J
(28)

This latter is the two-dimensional value of the pressure coefficient,
with the angle of attack increased by the local angle of upwash of the
streamlines due to the projecting triangular region at the root.

Along the outer Mach line from the bend in the leading edge, the
pressure is theoretically infinite, since the pressure for the elemen-
tary solution (eq. (17)) does not vanish along tl = 1 for the super-
sonic leading edge, smd the magnitude W is infinite at to = ml. The
resulting infinity is of power 1/2, as was previously found by Morikawa
(ref. 3) for the special case of a concave 90° corner.

The pressure on the wing elsewhere than along the lines just dis-
cussed must be found by numerical integration of equation (11). Since,
with mz > 1, Il?(to,tl)is constant when tl is greater than 1 (fig. 6),
equation (n) may be written, for points ahead of the Mach line from the
bend in the leading edge,

4mz

[

~ + WA(T2)
Zwp(x,y) =

]f
+8

‘O wA’(to)~

&?z 7 (to,tl)dto (29)
v Tz v
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in which

(m2-ml)cl- ma(x-py)
T.=

c

(m2-m~)cl-(x-f3y)
( 30)

is the valueof to such that t1(x,y,T2) = 1.

If the point x,y is behind the Mach line, so that T2 is less
than m=, the presence of the singularity in WA’ at to = m= makes
it advisable first to integrate equation (11) by parts, obtaining

‘(ml) wA(tO)
ACP(X,Y) =:

[
al?(ml,~) +

I
—d~(to,t=)

1
(a)

o v

Tip effect.- If the Mach number, or aspect ratio, or both, are so
large that the Mach lines from the apex of the wing intersect the trail-
ing edge, as in sketch (f), the pressure coefficient in the shaded
region is constant at the two-dimensional value

4m2a

Cp=vzz%
(32)

Then the tip effect can be found
as the result of the superposi-
tion of a single conical flow
field to cancel that pressure in
the region indicated outboard of
the wing tip in the sketch. The
induced decrement in lift will
be, from reference 5,

Sketch (f)

@p)tip (X,y)=
-4m2a Cos ~ m2+ts +*ts

.Jx - ts-~

with

y-s
ts=py-

-C2

(33)

(4)

If a part of the tip section lies within the upwash field of the
forward part of the wing, the effect on the lift distribution may again
be calculated by Mirels’ method. Inserting equations (29) and (31) in

.

.
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equation (17a) of reference 6 and inverting the order of integration
field the following expressions for the tip-induced decrement to the
~ressure coefficient:

For points in region

-8~
(Acp)tip (X,y)=~J~

{

ABDE (see sketch (g))

17

+

J
T1 d%

~(l+t) (T~-t)
T3 (t-to)~(to=-m12)(l+to)(T1-to)

with

E= (x-c=) - p(s-y)

~ = (x-c~)+ P(S-Y)

rh(to) -~1
H(to) = tan-l —

v -h(to)

A
1

Sketch (g)

-rto m22-1 J (~-l) (l+to)A/-+- J(m=+l)(l-tO)A/=”
— log

2m2 l-to= IJ (m=-l)(l+to)- -J(mp+l) (l-to)-!

.
ps- c~t~

h(%) = (m=-l)m,-to
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For points in region BDC, .

‘{&JaH(m’)‘$[“(m’)‘A(’o) ‘“(to)]+(Acp)tiP(x)y)= - ~
.

?LEEi‘4(’1)} (35b)

(See eqs. (2o)and (24).)

Numerical results.- The lift distribution has been calculated for
two spanwise sections of the previously considered wing, with 70° and 48° J
of sweep, at a Mach number of 1.667, so that ml = 0.5 and mp = 1.2.
The Mach line pattern and the resulting lift distributions a; x = 5
and x = 10 are presented in

Method of

figure 12. .

LIFT AND DRAG

Calculating Total Lift

In applying the conical-flows method, the simplest procedure for
calculating the lift is to determine the lift due to each conical field
separately by integrating the expression for the pressure with respect
to the conical variable of that field. Thus the lift on the inside
triangle is found
The result may be

first, neglecting interference effects from the panels.
written

(36)

(It is assumed,as before, that the leading edge of the triangle does
not intersect the tip of the wing.)

An expression for the incremental lift due to each elementary can-
cellation field is derived by integrating equation (5) with respect to tl
over the proper area, which varies with the constant of the field, to.

.

The results are then combined in precisely the mme way, except for the
limits of integration, as in obtaining the expression for Cp. mu-s,if
the integrated lift per elementary cancellation field is given by

.
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~(to) -4 W(to)
—= — — IL(to)

q II w
(37)

the total lift on and due to the outer panels is given by

AL8—=—
q ITp{[ ‘+%%”) ‘fTo ‘*:to) ‘(’0) ‘to} ’38)

ml

which corresponds to equation (11) for the incremental pressure. (A
factor of 2 has been introduced to provide for both right- and left-
hand panels.) The upper limit

of
If
of

‘o=~$ ( 39)

the integral is the value of to at the tip of the leading edge.
the tip is outside the Mach cone from the origin, the integral is
course taken ody to to = 1.

In the case of a wing of type B, it is necessary to take into
account the presence of the tip, not only as it affects the area of
integration, but also as it reduces the pressure at points within the
tip Mach cone. The latter effect, previously calculated by Mlrels’
method, iG more readily computed by the conical-flows method when the
integrated lift is required.

If it is assumed as before that the line to = ml does Dot inter-
sect the tip, it Js necessary to consider the tip-interference effect
in the derivation of ~(to) only. For each elementary upwash-
cancellation field with apex at XIIYI (fig. 13)> the lifting pressme
v=ies conically according to equation (14) or (17) between the Mach
line tl = -1 and the leading
edge tl = mz, extended to infin-
ity. The lift outboard of the
tip must, however, be brought to
zero. For a single conical field, A, .
this is readily accomplished by -
the superposition of other coni-
cal fields in a manner entirely
analogous to the cancellation of
upwash. The necessary formulas
and the details of the procedure
may be found in reference 12.

If the Mach line tl = -1
intersects the leading edge or
the tip of the left-hand wing
panel (as in sketch (h)),
rather than the trailing edge,

/

D E

Sketch (h)
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similar corrections to ~(to) sho~d be made for the l~t cance~ed at
those boundaries. These effects are, however> mathematic~y ~erY
complex and in the calculations to be reported were incorporated) in
an approximate way only, at the end of the computations. Cases in
which these corrections might be any considerable fraction of the total
lift were excluded from consideration.

When the integration of Mp(toytl) iS performed over the area
ABCDEF of sketch (h), it is found to result in terms identical in value
but opposite in sign to terms in the previously derived tip correction.
It is most convenient, therefore, to use for IL(to) in equation (38)
the value from the combined or net lift. The resulting formulas are
listed for the various cases in Appendix B.

Unfortunately, in the general case, substitution of ~(to) in
equation (38) results in incomplete elliptic integralsof the third
kind,whichare as yet untabulatedand exceedinglytediousto compute.
Thereis nothingto be gained,therefore,by performingthe integration
analytically,and the equationis left for numericalevaluation.

In the special case shown in
sketch (i), in which the Mach number
is so high that the entire tip is
outside the Mach lines from the apex
of the wing, the elliptic integrals
become complete, and the resulting
formula is readily computed with the
aid of the tables of reference 11
or 14. In this case the lift-curve
slope of the complete wing is as

\ follows:
/

Sketch (i)

{

-ml sl2
CLa=; ‘~

[
; (l+ Ao)Jw~2+ :( SE-K)] +

2-
r}

m2
m2co 2coc~(m2-ml)- m2(co-c2)2 — (40)

m2-1

where S is the wing area and &, E, and K are the elliptic inte-

grals (Appendix A) with modulus m and, in Ao, the argument
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Method of Computing Drag

.

The drag on a flat-plate wing at an angle of attack is the differ-
ence between the rearward component of the normal-force vector and the
thrust due to leading-edge suction. Using linear theory to evaluate
the first of these forces, we write

D=aL-T (41)

The thrust T is calculated by integrating along the subsonic portion
of the leading edge the streamwise component of the local suction force.
If X,yl(x) are the coordinates of a point on the leading edge and m
is the ratio of the inclination of the leading edge at that point to the
tangent of the Mach angle, then, from reference 8, the contribution to
the thrust at the point X,yl is given by

[ 1
2

dT_=lJ
hi- y~y= U(X7Y) m

axm
(42)

where u is the stresmwise component of the perturbation velocity.

Over the inside portion of the wings under consideration, m = ml,
ml

yl .
ml~x

— x, and u, nesr the leading edge, has the value
P

A1’X2-PY
as in equation (12), from which is obtained

dT Pm
~%zm x;—=— X<cl

ax
(43)

Then the total thrust over the

2
f

C1 dT-#

o

inner portionof the leadingedge is

= &&cl’ J-x” (44)

-9 equation (M) gives the total thrust.If mZ is greater than 1
If m2 is less than 1, there is thrust along the outer portion of the
wing as well.. The velocity u in this region is found from equa-
tion (20). In equation (20), the term containing Gn remains finite
as the leading edge is approached, so that it contributes
the limit of the product in equation (42). The renaining
for the local thrust

nothing to
term gives

dT @

T

i-~
—=—
dxfl

PU.02 — -T(t)
l+m2

(45)
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(l+m~)(t+ml)
FT(t) =

ml2 [ 1

2
2E(k) - k’2 K(k) (46)

1(1-ml)(t-ml).
k= t = m2-(m2-ml)~

(l+m~)(t+ml)’

While it if3not feasible to integrate equation (45) analytically, it
has been found possible to approximate the product XF (t), within the

zaccuracy of our computations,by a linear expression w ich, when inte-
grated, gives

If a portion of the leading edge lies within the Mach cone from
the bend in the opposite leading edge, as in sketch (e), there may be
a considerable effect on the leading-edge thrust on that portion.
Making use of.the approximation of equation_ to modify the strength
of the leading-edge singularity in the pressure, retaining the linear
approximation for xFT(t)) and dropping the square of the small correc-
tion contributedby equation (23), result in an additional term in the

.

thrust:
C2

2
f

dAT~tiz

x+$

21@ ‘ml (1-m2S’2{[_ C2+(c2-@)]~c2(c2-x*)FT(TO)_P%2-~ l+m2
fiml

+

[
Jma ‘*; C2-(C2-+.SK7’=} (~)

The drag is then calculatedly substituting in equation (41) the
thrust given.by equation (44) and, if applicable, equations (47) and (h8).

.

.
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Numerical Results - Lift and Drag.

. The lift and the drag due to lift were calculated for a large
number of wing plan forms, without, however, more than sampling the
possible effects of the numerous parameters. The results are summarized
in figures 14, 15, and 16.

In figure 14, the ratio of inner tc outer slope of the leading
edge, the ratio of c1 to the root chord, and the ratio of S1 to
total semispan are fixed. Comparison is then made Yetween the type B
wing and a conventional sweptback wing of the same area, aspect ratioy
and average sweep through a range of aspect ratios or, alternatively,
through a range of Mach numbers, since any one curve can be interpreted
as showing the effect of Mach number on a specific plan form.

Sketch (j) shows the method of deriving the conventional swept wing
. from the wing of type b. The tip chord was kept unchanged for the com-

parison because of the large loss in lift
caused by the tip effect. The term.
“average sweep” is used in only a general
sense, since no exact equivalence can be
said to exist.

Comparison is also made with a

/type A wing having the same ml ma
and S1/S ratios and approximately the
same cJco ratio. A single calcula-
tion made with Cl/co exactly equal to
the value used for the type B wings
showed this parameter to have little ---- .-
effect under the circumstances.

Sketch (j)

Curves showing the variation with aspect ratio of the lift and
drag of rectangular and triangular wings are included for reference.

For figure 14, the aspect ratio
was changed by the expansion of all
the spanwise dimensions of a basic
wing. In figure 15 the increase in
aspect ratio is obtained by adding
to a basic triangle triangular side-
panels of increasing spanwise extent,
starting at a fixed point back of
the apex of the wing (see sketch (k)).
Thus a family of cranked wing~ of
type A is derived with fixed Cl/c..
and ml, but increasing mz, area,

Sketch (k)
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and aspect ratio. The resulting variations in lift and drag-rise factor
are shown for two values of ml and two values of Cl/co. It should
be noted that, since ml is kept fixed, the variation shown does not
correspond to the effect of Mach number change.

The curves for the sweptback wings in figures 14 and 15 all show
a more or less abrupt break when the leading edge coincides with the
Mach lines, followed by a levelling off of the curves at higher aspect
ratios. In the cases of discontinuously swept wings, the breaks appear
when mp = 1, since ml was kept less than 1 throughout the calcula-
tions. The effect of variations in the sweep angles of the leading
edge is further shown in figure 16, where the aspect ratio is constant,
and only the shape of the leading edge is varied. The cranked wings
considered in this figure are all derived from an aspect ratto 2 tri-
angle by increasing the sweep of the leading edge at the root and adding
compensating area at the tips (see sketch (2)). The results are plotted

Sketch (t)

against the ratio cJco - the chordwise
extent of the region of increased sweep-
for selected values of ml, and cross-
plotted for constant valus of mz.

DISCUSSION OF REXJLT6

The over-all characteristics of the
cranked wings studied show no striking
effects of the concentration of sweep
near the root, at least as far as the
lifting condition is concermed and omit-
ting any consideration of the effect on
the boundary-layer flow. The character-
istics of the wings appe= to be deter-
mined primarily by the sweep of the
outer portion of the leading edge, the

increase in lift in these regions due to the more highly swept portions
ahead being nullified by the decrease in lift in the center due to the
small apex angle of the wing. In fact, the lift on the fully tapered
(type A) wing is just about that on the triangular wing formed by the
extension of the outer portions of the leading edge inward to the center
line. Compared with triangular wings of the same aspect ratio, these
wings show both lower values of the lift coefficient and higher values
of the drag-rise factor. The calculations for the type B wings show a
higher lift-curve slope than for conventional wings of the same average
sweep and aspect ratio as long as the outer portions of the leading edge
are subsonic, but also show ‘nigherdrag due to lift.

The use of a cranked leading edge has a marked effect on the distri-
bution of lfft. Co~arison with the triangular wing having the same
leading-edge sweep as that of the outer panels shows the pressure at

.

.
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. the rear to be essentially unchanged by the addition of the forward
peak within the overlapped Mach cones from the bend in the leading edge,
but to be reduced abruptly ahead of this region, approximately in pro-

. portion to the apex angle of.the wing. The lift near the outer portion
of the leading edge, on the other hand, is increased by the upwash from
the forward area and, if the outer portion of the leading edge is super-
sonic, the theory indicates infinite pressure along the outgoing Mach
line from the bend. Somewhat the same effects may be anticipated behind
the juncture of wing and fuselage in a complete airplane configuration.

The center of pressure of the cranked wing lies behind the center
of area if the tips are tapered to a point, but may lie ahead of the
center of area if the tip chord is a considerable fraction of the root
chord, because of the large loss of lift inside the tip Mach cone. In
the range of Mach numbers investigated there was no movement of the
aerodpamic center with change of speed.

.
Any general conclusions regarding the value of the plan forms

studied would have to take into account the possibilities offered in
the way of a redistribution of thickness and the effect of the variation.
in sweep on the boundary-layer flow. The similarity of some of the plan
forms to those of wing-body combinations suggests also that comparisons
should really be made with such complete configurations, taking into
consideration questions of total drag, weight and useful volume. These
questions, though of prime importance, are beyond the scope of this
report.

Ames Aeronautical Laboratory
National Advisory Conmittee for Aeronautics

Moffett Field, Calif., March 18, 1953.
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APPENDIX A

SYMBOLS

General

free-streamvelocity

free-streamMach number

densityof air

angleof attack,radians

JF=i

horizontal perturbation velocity, positive downstream

vertical perturbation velocity, positive upward

streamwise component of the perturbation velocity along
the center line of a flat triangle at an angle of attack,
with semiapex angle less than Mach angle (eq. (3))

upwash of a flat
semiapex angle

lift

drag

thrust

triangle at an angle of attack a, with
less than Mach angle (eq. (1))

4U
coefficient of lifting pressure, —

v

coefficient of lifting pressure on flat triangle at angle
of attack a, with semiapex angle less than Mach angle
(eq. (12)) ‘

coefficient of
outer panel

coefficient of

wing area

wing semispan

lifting pressure added by presence of each

lifting pressure added by presence of tip

Wing Dimensions
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co

c1

C.2

El

ml

m2

X,y

xl,y~

X2,S

y*(x)

x*,y*

to

tl

t

To>TI~‘2~T3

t*

t~

27

root chord (fig. 2)

streamwise distance from apex of wingto bend in leading
edge (fig. 2)

stresmwise distance from apex of wing to tip of leading
edge (fig. 2)

spanwise distance from wing center line to bend in leading
edge

~ times the slope of the inner segment of the leading edge

~ times the slope of the outer segment of the leading edge

Coordinates

Cartesian coordinates, positive downstream and to the
right of the flight direction, respectively

coordinates of point on the leading edge (eqs. (8) and (9))

coordinates of intersection of ray from Xl,yl with tip
chord

y expressed as a function of x for points along the
inboard Mach line from the point Cl,sl

coordinates of intersection of inboard Mach line from Cl,sl
with the leading edge of the left-hand panel

9 times the slope of a line from the apex of the wing

~ times the slope of a line from X=,yl to the point at
which the pressure is being calculated (eq. (4))

to of the point at which the pressure is being calculated

limiting values of to (-r. given by eq. (lo)> ‘1 bY
eq. (25), others defined where used)

~ times the slope of a line from fi,y+

j3 times the slope of a line from Cl,s= (eq. (7))

ts ~ times the slope of a line from c2,s (eq. (34))
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To

T1,T2,T3

P

P1,P2

Q1,Q2

G=,g

IL

‘T

k

k’

q),O, or *

F(P,k)

E(q,k)

K,K(k)

E,E(k)

z

IiACATN 2959

p timesthe slopeof the line joiningthe apex and the
leading-edgetip (eq. (39))

fl timesthe slopeof the linesfrom Xl,yl to (C2,-S),
(co,-s),and (Co,s), respectively

MathematicalSymbols

functionof tl proportionalto liftingpressure
upwash-cancelingsolution(eqs.(14)and (17))

functionsenteringinto II?for m2<l (eqs.(17)

functionsenteringinto P for LU2>I_(eqs. (3.8)

—

in

and (16))

and (19))

functionsenteringinto Np for m2<l (eq. (20))

functionof to proportionalto thetotallift induced bY
an upwash-canceling solution

function of t entering into the calculation of the
leading-edge thrust (eq. (k6))

modulus of elliptic integrals, defined where used

complementary modulus (~)

argumentof ellipticintegrals,definedwhereused

incompleteellipticintegralof the firstkind of argu-
ment Q and modulus k

incompleteellipticintegralof the secondkind of argu-
ment q and modulus k

completeellipticintegralof the firstkind;that iS)

K=F
()
Z ,k
2

completeellipticintegralof the secondkind;that is>

E=E
()
~jk
2

Jacobian zeta function; Z(~,k) = E(Q,k) - @ F(Q,k)

(KZ(W) is tabulated in ref. 11.) K(k)
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A. function used in evaluating elliptic integral of third
kind, circular case;

Ao(9,k) =:
{
K(k)E (Q,k’) - [K(k)-E(k)]F(Q,k’)

}

(tabulated in refs. 11 and 14)
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APPENDIX B

FO~ FOR LIFT

IL(t~) = - 2s2 P1(to,T1) + s(s+c,to)2 I&@c),T~)-
m2+to

(CO-XL)2
[
(m2-T2)2 P1(to,Tz)-(to-T2)2 p2(tofT2) -

(m2-to)3/2

J,-.. (.@E-’w-’~)-

—J’’2i%‘%%0’~=-to) 1(m2-T3)2

Q

The terms in T1 and T2 vanish when T1 and T2 equal -1. If the Mach

cone from xl,yl does not include the far tip, T1 and T2 are less
than -1 and the inapplicable terms are imaginary. For wings of ‘WP A>

with zero tip chord, T1 equals T2 and T3 equals mz~ and the formula is

accordingly simplified.

For m2 = 1,

~(to) = (CO-X.)2
[
~ ~ 1-T,2 - (to-T2)2 Q2(to,Tz) -

(l-to)(sin-.j~ - si.-l&)- (l-Ts)/~” +

.

.
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.
For m2>lj

,

L(tJ = (co-xl)=
[ (m2-T2)2Ql(to,T2)-(to-T_2)2Q2(to,b)-

J-COS-l 2(1-%)+
m=-Ta

For m2 = CU,

[
~(to) = (CO-CI)2 (to-2T2)sin-1

f

1+T2
— - (to-T=)= Q2(to,T2) +

2

(to-T3)2
log JiJ=J +A/-

J-) m 1
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Figure 1.– Plan forms typical of the two classes considered.
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