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REPORT No. 835

PROPERTIES OF LOW-ASPECT-RATIO POINTED WINGS AT SPEEDS
BELOW AND ABOVE THE SPEED OF SOUND

By Rosert T. JonES

SUMMARY

Low-aspect-ratio wings having pointed plan forms are treated
on the assumption that the flow potentials in planes at right
angles to the long axis of the airfoils are similar to the correspond-
ing two-dimensional potentials. For the limiting case of small
angles of attack and low aspect ratios the theory brings out the
Jollowing significant properties:

(1) The lift of a slender pointed airfoil moving in the direc-
twon of its long axis depends on the increase in undth of the sec-
tions in a downstream direction. Sections behind the section
of mazimum width develop no lift.

(2) The spanunse loading of such an airfoil s independent
of the plan form and approaches the distribution giving a
minimum induced drag.

(8) The Uift distribution of a pointed airfoil traveling point-
Soremost is relatively unaffected by the compressibility of the air
below or above the speed of sound.

A test of a triangular airfoil at a Mach number of 1.75
verified the theoretical values of lift and center of pressure.

INTRODUCTION

The assumption of small disturbances in a two-dimensional
potential flow leads to the well-known thin-airfoil theory
of Munk (reference 1) and the Prandtl-Glauert rule (references
2 and 3) at speeds less than sonic. At speeds above the speed
of sound, application of the same assumptions leads to the
Ackeret theory (reference 4) according to which the wing
sections generate plane sound waves of small amplitude.
As is well known, the Ackeret theory predicts a radical change
in the properties of such wings on transition to supersonic
velocities and these changes have been verified by experi-
ments in supersonic wind tunnels (reference 5).

Both the Ackeret theory and th: Munk theory apply to
the case of a wing having a large span and a small chord.
The present discussion is based on assumptions similar to
those used by Ackeret and Munk but covers the opposite
extreme, namely, the wing of small span and large chord.
In the latter case the flow is expected to be two dimensional
when viewed in planes perpendicular to the direction of
motion.

A theory for the rectangular wing of small aspect ratio
hus been given by Bollay (reference 6). Bollay assumes a
separated, or discontinuous, potential flow similar to the
well-known Kirchoff flow and shows that under these
circumstances the lift is proportional to the square of the
angle of attack. Bollay does not consider the offoct of
compressibility.  The present treatment covers other plan
forms and, although based on different assumptions, is not

TRRET540

inconsistent with Bollay’s theory in the limiting ease of sma
angles of attack.

By limiting the plan forms to small vertex angles, tl
properties of the wings in compressible flow at high subson
and at supersonic speeds are also covered. Tsicn (reference 7
has pointed out that Munk’s airship theory (reference ¢
applies to a slender body of revolution at speeds greater tha
sonic. The lift and moment of such a body are not es
pected to change appreciably with Mach number. Th
present paper gives an analysis of the low-aspect-ratio air
foil based on similar assumptions and shows that little chang
of the lift distribution of an airfoil of pointed plan form lyin
near the center of the Mach cone is to be expected.

SYMBOLS
14 flight velocity
o angle of attack
S wing area \
A aspect ratio (b":g‘,”

z distance along axis of symmetry of pointed airfoi
measured downstream from nose

y spanwise distance, measured from axis of symmetr

z vertical distance from plane of wing

t time

m’ additional apparent mass (spanwise section)

b local span :

e chord

p density of air

q dynamic pressure (%p Vz)

l local lift force (per length dx)

¢, local lift coefficient < qud_x )
D, induced drag

induced-drag coeffici t(-P—‘
induced-drag coefficien oS
L total lift

s lift coefficient <q€5‘>

¢ surface potential

“

0 spanwise-location parameter (cos“‘lTy2

Ap local pressure difference '

M Mach number, ratio of flight velocity to speed of
sound

T.,.  distance of center of pressure from nose of airfoil

Pitching gnoment)

C, pitching-moment coefﬁcient( 4Serns

Lay  lift at Mach number M
Ly lift at zero Mach number
maximum (used as subseript)
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THEORY FOR WINGS OF LOW ASPECT RATIO

The flow about an airfoil of very low aspect ratio may be
considered two dimensional when viewed in cross sections
perpendicular to the longitudinal axis. With this idealiza-
tion, the treatment of the low-aspect-ratio airfoil becomes
exceedingly simple; formulas are obtained that are similar
in some respects to those derived by Munk (reference 8)
and Tsien (reference 7) for an elongated body of revolution.

Perhaps the simplest case from the analytical point of
view is that of the long, flat, triangular airfoil traveling
point-foremost at a small angle of attack. Viewed from a
reference system at rest in the undisturbed fluid, the flow
pattern in a plane cutting the airfoil at a distance z from
the nose is the familiar two-dimensional flow caused by a
flat plate having the normal velocity Ve. (See fig. 1.)
Observed in this plane, the width of the plate and hence the
scale of the flow pattern continually increase as the airfoil
progresses through the plane. This increase in the scale
of the flow pattern requires a local lift force [ equal to the
downward velocity Va times the local rate of increase of
the additional apparent mass m’, or

dm’

l= VaW’

dm’
=Viag

_dz

dt

By a well-known formula from two-dimensional-flow
theory, '

2
m’=rbzp dr

where b is the local width of the plate. Hence

dm’_ b ., db
dz —*2° T dz

and the lift ! per length dz will be given by the expression
l=ra 2 VDL e

Dividing by % V? and by the area b dz gives the local lift
coefficient

db
c,=1ra{25: - (1

When this flow is considered in more detail, it is found from

the two-dimensional theory that the surface potential ¢ is
distributed spanwise according to the ordinates of an ellipse,

that is,
e

=4 Va g sin @ (2)

where cos § = b}J2 and the sign changes in going from the

upper to the lower surface of the airfoil. (See fig. 2.} An
instant later, in the same plane, the ordinates are those of a
slightly larger ellipse, corresponding to an increase of . The
local pressure difference is given by the local rate of increase
of ¢, that is, »

Ap=2p %%

=20V 57 = 3)

where d¢/0b is a function of ¥. Differentiation of ¢ yields
the equation

; b db o
5)"Y
(3
o | % db
Ap_ 2a @b
q sinfdx )

The pressure distribution thus shows an infinite peak along
the sloping sides of the airfoil similar to the pressure peak
at the leading edge of a conventional airfoil. The distribu-
tion along radial lines passing through the vertex of the

triangle (Iines of constant 5%) is uniform (fig. 3), however,

and the center of pressure coincides with the center of area

Equations (1) and (4) show that the development of lift
by the long slender airfoil depends on an expansion of the
sections in’ a downstream direction; hence a part of the
surface having parallel sides would develop no lift. Further-
more, a decreasing width would, according to equation (4),
require negative lift with infinite negative pressure peaks
along the edges of the narrower sections. In the actual flow,
however, the edge behind the maximum cross section will
lie in the viscous or turbulent wake formed over the surface
ahead ; and for this reason it will be assumed that the infinite
pressure difference indicated by equation (3) cannot be de-
veloped across these edges. It is this assumption, coire-
sponding to the Kutta condition, which gives the plate the
properties of an airfoil as distinct from another type ol
body, such as a body of revolution.

Ficure 1.—Flow pattern.

FiGURE 2.—Potential.



With the aid of the Kutta condition, it may easily be
shown that sections of the airfoil behind the section of greatest
width develop no lift. A potential flow satisfying both the
boundary condition and the Kutta condition may be obtained
by the introduction of a free surface of discontinuity behind
the widest section. This surface of discontinuity (fig. 4)
would be composed of parallel vortices extending down-
stream from the widest section of the airfoil as prolongations
of the vortices representing the discontinuity of potential
over the forward part of the airfoil. This sheet, although
possibly wider than the downstream sections of the airfoil,
still satisfies their boundary condition, since the lateral
arrangement of the vortices is such as to give uniform
downward velocity equal to Va over the entire width of the
sheet including the rearward portion of the airfoil. Since
the pressure difference across the airfoil is proportional to
0¢/0z and since this gradient disappears as soon as the
vortices become parallel to the stream, no lift is developed
on the rearward sections.

Integration of the pressures in a chordwise direction from
the leading edge downstream to the widest section will give
the span load distribution and the induced drag. The span
load distribution is

oL J‘
= dx
5 Ap dx
or, from equation (3}, I
oL_, -
3 =2pV¢

TFrom equation (2),

¢=Va b"é“ sin 8

Hence dL/dy is elliptical and independent of the plan form.
With the elliptical span load the induced drag is & minimum
and is equal to 2

~ 7bmas’

D, (5)

A second integration of g—;: dy across the widest section

gives the total lift, which is

L=% pV2ab pas? (6)

(=3

Ap | |
q |

! |
! |
' |
| |
}

V"\/"—-_\__

FIGURE 3.~—Pressure distribution. F1GURE 4.—~Wake.

" calculations of Krienes (reference 10).
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The lift of the slender airfoil therefore depends only on the
width and not on the area. If the lift is divided by %p V28

2
and if the aspect ratio A is considered to be b,,,§, » then

Cr=3Aa (7)
and the induced-drag/coefficient is
% ‘
Op=rii
=Ci ®)

From equation (8) it appears that the resultant force lies
halfway between the normal to the surface and the normal
to the air stream.

It is seen that in the case of a rectangular plan form the
simplified formula (equation (4)) gives an infinite concen-
tration of lift at the leading edge and no lift elsewhere,
whereas a more accurate theory would show some distribu-
tion of the lift rearward. If the rate of increase of the width
becomes too great, the flow cannot be expected to remain
two dimensional. It can be shown by examination of the
known three-dimensional (nonlifting) potential flow aroun
an elliptic disk (reference 9), however, that the two-
dimensional theory gives a good approximation in the case
of an elliptical leading edge, which indicates that the theory

s (=T
4 ' sl
. - ‘Arienes
¢ ]
2ra
2|
. |
/ ;
0 / 2 3

Aspect ratio, 4

FIGURE 5.—Comparison of lift calculated by present theory for elliptical wings of low aspect
ratio with Its of Krienes (ref 10).

is applicable over a large range of nose shapes. In figure 5 is
shown a comparison of the lift calculated by the present
theory for elliptical wings of low aspect ratio with the
results of the more accurate three-dimensional potential-flow
The results are in
good agreement up to aspect ratios approaching 1. Appli-
cation of equation (4) gives a center of pressure on the
elliptical plan form at one-sixth of the chord. Figure 6 also
shows this value compared with values given by Krienes’
theory. In this respect it appears that the agreement is
not so good as for the lift.

EFFECT OF COMPRESSIBILITY

In order to show the effect of compressibility, use will be
made of the theory of potential flow with small disturbances.
Glauert (veference 2) and Prandtl (reference 3) have demon-
strated that, at subsonic speeds, a distribution of potential
satisfying Laplace’s equation will satisfy the linearized
compressible-flow equation if the distribution ¢ (z, ¥, 2) is
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g
3 10 Zh-4c | -—’i
: Len=F Cmaz IF Crax
9
=
:8 €0 ] “Krienes
i
i A —c0
§
40
50 7 z 3

Asoect ratio, A

FIGURE 6.—Comparison of center of pressure calculated by present theory for elliptical
wings of low aspect ratio with results of Krienes (reference 10).

foreshortened along the

direction of motion by the
transformation :

N S
r=yi—mz V7Y

This fact may be applied in a calculation procedure by start-
ing with a fictitious airfoil longer in the z-direction than the
true one and calculating the potential distribution for this
airfoil by methods of incompressible flow. The correct
dimensions and correct distribution of ¢ are then obtained
when the transformation is applied.

. For the long slender airfoil, the potential distribution at

each section is similar to that for an infinitely long body;
therefore d¢/0z and hence the local pressures vary in inverse
proportion to the length. The foregoing calculation pro-
cedure gives a null result in this case, since the pressures
calculated for the fictitious airfoil at A=0 will be reduced
in the same ratio that the length is increased and the Lorentz
transformation to restore the correct length will also restore
the same pressures as those obtained at M=0. Since
0¢/dz is unchanged by the transformation, the normal
velocity component and hence the angle of attack are un-
changed also. These results can be obtained by referring
directly to the linearized equation for the potential

%0 , 0% , 0% :
(1—-M?) 5‘x§+a—yz 5z=0 (9)
(See reference 3.) If the airfoil is sufficiently slender,
%¢/0r* can be neglected in comparison with d¢/0x except
near the edge. Since the lift is proportional to d¢/0x, the
increase of the lift with Mach number can therefore be
neglected in comparison with the lift.

It is important to note that the theory of small disturb-

ances is not limited to subsonic velocities and that, so long
as the term (1—M?) g%g in equation (9) remains small, the

solution in the region of the wing will continue to be given
by the potential (equation (2)). Evidently the Mach num-
ber cannot be increased indefinitely, for then the coefficient
of d%¢/dx? will hecome so large that the first term will no longer
be negligible. The required condition will be satisfied, how-
ever, by adopting a pointed plan form with the vertex angle
so small that the entire surface lies near the center of the

Mach cone (fig. 7). The condition of a small vertex angle
also necessary in order that the potential distribution
equation (2) may apply. In the case of a wing with a blu
leading-edge plan form, abrupt changes in the flow arise
transition to supersonic velocities, and potential flow of t
subsonic type no longer exists.

The lift and lift distribution for rectangular surfaces
supersonic speeds have been calculated by Schlichting (ref
ence 11). Figure 7 shows the variation of lift-curve sl
with Mach number as obtained from Schlichting’s results
rectangular wings of two different aspect ratios and for
range of speeds in which the two Mach cones from the t
do not reach the center of the wing. In the subsonic ran
values given by the Prandtl-Glauert rule are shown. Th
curves are compared with the values indicated by the pres:
theory for a triangular wing lying near the center of
Mach cone. Figure 8 shows the travel of the center of p1
sure for these plan forms. It is to be noted that, with
blunt-leading-edge plan forms, the center of pressure trav
from a point near the quarter chord to a point near the m
chord when the velocity is increased above the speed
sound.

! NP
,' Mach cone-.//
2.0 t L’ L
i

{ AN —

y \,

\

\ N
. NUURNL U P
/ \ ~
| Elliptical !
=251 i
f"' -2 T/ 1 A =2 }/?ecfangu/ar
o L7 v \ N[A=0 (reference i) —[
Y ] \\ N ! 0
: A
\\ : ™~ ~= Triarguiar
\l\ I
\\\ B "0
\\
0 1.0 2.0

Mach number, M )

FiGURE 7.—Variation of lift with Mach number for different plan ferms,
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Freure 8.—"1Travel of center of pressure with Mach number for different plan form



PROPERTIES OF LOW-ASPECT-RATIO POINTED WINGS
TESTS OF A TRIANGULAR AIRFOIL AT SUPERSONIC SPEED

As a test of the foregoing analysis, a small triangular air-
foil in the form of a steel plate with rounded leading edges
was constructed and tested in the Langley model supersonic
tunnel. The tests were made at a Mach number of 1.75.
Figure 9 shows the details of the model and figure 10 sum-
marizes the results of the test. At zero angle of attack a
small lift and a small pitching moment occur, which are pre-
sumably the result of the camber given the airfoil by round-
ing off the leading edges in the manner shown by section
A-A in figure 9. In general, the results are in good agree-
ment with the theory if an allowance is made for this camber,
as shown in figure 10.

CONCLUSIONS

1. The lift of a slender, pointed airfoil moving in the di-

rection of its long axis depends on the increase in width of

the sections in a downstream direction. Sections behind
the section of maximum width develop no lift.

2. The spanwise loading of such an airfoil is independent
of the plan form and approaches the distribution giving a
minimum induced drag.

3. The lift distribution of a pointed airfoil traveling point-
foremost is relatively unaffected by the compressibility of the
air below or above the speed of sound.

T.axGLoty MEMORIAL AERONAUTICAL LABORATORY,
NarioNnaL ApvisoRy COMMITTEE FOR AERONAUTICS,
LaneLEY FieLp, Va., May 11, 1945.

REFERENCES

1. Munk, Max M.: Elements of the Wing Section Theory and of the
Wing Theory. NACA Rep. No. 191, 1924,

2. Glauert, H.: The Effect of Compressibility on the Lift of an Aero-
foil. R. & M. No. 1135, British A. R. C., 1927.

3. Prandtl, L.: General Considerations on the Flow of Compressible
Fluids. NACA TM No. 805, 1936.

4. Ackeret, J.: Air Forces on Airfoils Moving Faster Than Sound.
NACA TM No. 317, 1925,

5. Taylor, G. L.: Applications to Aeronautics of Ackeret’s Theory of
Aerofoils Moving at Speeds Greater Than That of Sound.
R. & M. No. 1467, British A. R. C., 1932,

6. Boilay, William: A Theory for Rectangular Wings of Small Aspect
Ratio. Jour. Aero. Sei., vol. 4, no. 7, May 1937, pp. 294-296.

7. Tsien, Hsue-Shen: Supersonic Flow over an Inclined Body of
Revolution. Jour. Aero. Sei.,, vol. 3, no. 12, Oct. 1938,
pp. 480-483.-

A'l' SPEEDS BELOW AND ABOVE THE SPEED OF SOUND 2

8. Munk, Max M.: The Aerodynamic Forces on Airship Hulls.
NACA Rep. No. 184, 1924,

9. Lamb, Horace: Hydrodynamies.
Press, 1932, pp. 146-153.

10. Krienes, Klaus: The Elliptic Wing Based on the Potential Theory.
NACA TM No. 971, 1941.

11. Schlichting, H.: Airfoil Theory at Supersonic Speed.
No. 897, 1939.

Sixth ed., Cambridge Univ.

NACATM

4"

4
!

Mounting attachment:

L ocorvnrcrriri N
Section A-A
FIGURE 9.—Airfoil tested in Langley model supersonic tunnel.

1 :
Mach cone, ! P
.06 il
L7 Mooe/ /
L &%
.04 —\\\ //
- ~ 13
) Ny / )
2 NG Y Theoretical NS
-8.02 // [slope. 0.02) | 0o §
By 8
S A g
g 7 TV - Theoreticol §
¢ F— Z e
S e l 3
3 % | 3
. 2
. 4 | :
= 0 - el
: A Experimental pitching moment 0E 8‘
/ o £ xperimentadl lift S
") "
/ &
=04 //
i I
-2 -2 =/ 0 / 2 3

Angle of atrack, o, deg «

FIGURE 10,~Test of trinngular airfoil in Langley model supersonic tunnel.
1.75; Reynolds number, 1,600,000,

Mauch nuimber.

U. S, GOVERNMENT PRINTING QFFICE: 174D



/ P
: / N
o Posyiytive‘k diréctions 6f axes and /angleé\ (forces and mqinler;{é) are shown by e;ri"ows
Azis e o kMoh\J\ent abom‘; \é)‘:’is R Angk;, ‘, o Veloeities
- Force S ——— : B
- . ~ Scpar?’%lgl Sos S B : | Linear | -
X 0 axis) ‘ es " .
esguation |72 | bl | Designation | 2| Fosire | Pegieme- |Sym Gomper | doguter|
- y . ) ) RN e 3 axis) )
Longltudma,l ________ X X Rolhng__-_-; L ’ Y——AZ J Roll oo T % P
. Lateral .. .. Y | Y Pitehing....| M Z——X | Piteh._..___. ] v q b
. Normal.____. = __|" % Z AYaw;ng ....... N X—>Y | Yaw....| ¢ W T
" Absoluté coefficients of moment o \ Angle of set of control. surface (rel&‘mve to neutral
L B M , N o posmon), . (Indlcate sur face by proper subscript. )
01_ Om;"—-— S/ 0 — v
, S gbS - . - . ,
(rolling) . (pitching) (yawmg) N
’ S '~ 4 PROPELLER SYMBOLS R
D ~Diameter - B ‘\ : T L P
\p . Geometric pltch : LTS P - Power, absolute coefﬁclent OP— 3D\,5f
D . Pitch ratio I S ’
ZI),Z/ Iliﬂow Velomtsr S o G Speedpower coefﬁclent—\/
Vs Shpstream Velocﬂ‘,y - y e T . 9’ Efficiency
T Thrust absolute coefﬁment 0T~—~—2—D—4 n Revolutlons pers second TPS e
- ) Effectlve helix angle= tan“( )
Q Torque, absolute coeﬂiclent OQ-—;Q—- R & 2”""7" '
. pn D5 : ~
C . . . 5, NUMERICAL RELATIONS
1 hp="76.04 kg-m/s=550 ft-Ib/sec . Cel 11b=0.4536'kg
- 1 metric horsepower=0. 9863 hp = 1kg=2:20461b
-1 mph=0.4470 mps. N 1 mi=1,609.35 m=>5,280 ft -

1mps—2 2369 mph o 7 1m=3.28081ft



