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SUMMARY

T& formulas of s-ubwic and iwperaonic wing them-y for
wurcf: doubkt, and vortex dM%utions are Tm-ewed, and a
%ystemah”cprewntti”on is prmn”ded u%.M relate% these d’i8.trl”-
butions to the prewure and to the reti”oid induced relocity in the
plane of the wing. It is shown that care must be used in freat-
ing the s?-ngulam”ti.esinvolred in. theanalymk and that the oTdeT
of integration is not akoa.gs rerer’k.ble. Concepts suggested by
the irrererdihly of order of integration are dwwn to be useful
in the inrerm”on of w“ngular integral eguati”on8when operational
techniques are used. A number of examples are gi”cen to
illustrate the nwthock prmefited, attention being directed to
supersonic jlight speeds.

IINTRODUCTION

One of the most fundamental approaches to the rmaljtical
investigation of Linearizedwing theory, throughout the sub-
sonic and supersonic rqys, stems from the use of certain
elementary mathematical expressions that are idmtified
uith tho physiceJ pfiperties of sonmes, doubkts, and ele-
mentary horseshoe vortices. By means of these expressions
boundary-wdue probkms involving wings tith thickuew,
cmnber, and angIe of attack can be soked. These problems
naturaIly fti into two categories: one, invohing bodies
with seynunetrid thickness and no lift, is malyzed b-ymeans
of source distributions; and the other, in-ioking Ming plates
tit-bout thickwss, is hrdyzed by means of doublet and
vortex distributions.

MI thes~ distributions require the treatment of singu-
larities in the mathematical analysis. Thus, for subsonic
Mach numbers, the con~pt of the generrdizedprinoipal part
plays an important roIe m the calculation of the induced
~elocities in the pkme of a vortex sheet. k supersonic wbg
t.heo~, the generalized principal part is again used in the
anal@s of vortex distributions, and it has further applica-
tion in t-he treatiat of conical-flow problems. However,
the e.siatence in supersonic flor of pressure diseanti.nuities
(due to Mach, or linearizedshock vi-ayes)brings about another
type of singnlarit.-ythe mathematical analysis of which leads
to the introduction of the finite-part concept. The integrals
in both subsonic and supersonic wing theory thus require
careful attention to the diacontinuities in the integrand and,
M an illustration, indiscriminate use of such standard devices
as irrrersion of the order of integration can lead to incorrect
results.

When direct probkms are invoked, that is, vrhenprescribed
functions are to be integrated (as in the problem of finding
the pressure on a wing with syrometrictd thickness), a guide
to the proper method of calculation is often furnished by
physicaI intuition. However, when in-m.rseproblems arise,

--—

that is, when integral equations are to be inverted (W for
the flat pIate of arbitrary pIan form), the mathematical
methods are more abstract. N’ewrtheless, the sohLt.ionsto_.==
sweral types of inverse aerodynamic probIems have b~n
obtained by reasoning that. required an understanding of .-
the physical nature of the ilovi field. This method of sohl-
tion may be sufficient for the particular problem hwo1-ied ‘.=
but it is difEcuk to generalize. By using the aerodyrwdc
data to construct mathematical boundar~-wdue problems -
requiring the inversion of sin=@r integral equations and by
obtaining these inversions from a purely mathematical
(operational) basis, a technique e~ohe whereby the eti~a
soIutions for two-dimensional subsonic, and threedimen-
siorwdsupersonic wing probkms (e. g., thin airfoiI, conicaI
flow, and Eward solutions) are synthesized. Furthermore,
the solution to the generaI supersonic wing problem is ‘ -
suggested.

The purpose of the present”report is: First, to review the
formulas of linearized wing theory in which source, doublet,
and elementary horseshoe vortex distributions are introduced
and to relate these distributions to the pressure and vertiod ._
induced velocity in the plane of the fig; second, to present
an operatiomd technique that can be used to invert the sin-
gular integral equations appearing in the application of the ‘–
above formulas; and finally, to present certain special
examples which will illustrate the basic concepts.

LIST OF IMPORTANT SYMBOLS

& (E.–k.’?KJ

ohord of a wing

drag coefficient

()

+
~ p, V.%’

()
pressure coefficient —2 +

complete elliptic rntegrd o~seoond kind, modulus k
complete elliptic integral of first Iiind, modulus k
complete elliptic integrals of first andsecond kinds,

.——

respectively, with moduli k.
—

moduli of elliptic integrals

1SWHscdeaX-A12.ATN-2?52,“EomnukforSource,DoubIet.andVortrxDistributionfnSUDWSO!&Il’iingTlmm&rby HarvardLomos Max.A.Hc?askt.andFzmkk?nB. Fdkr.
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Complementary moduli (J~~~)
lift
Mach number in free stream
slope of wing leading edge
cotangent of angle between the T and x =ea
cotangent of angle between the t and z axes

loading coefficient (yressum on the lower surface
minus pressure on the upper surface, divided by
free-stream dynamic pressure)

characteristic coordinates
{ (z–x,)’+ (1–M;) [(y-y,)’+~ }’/’
[(x–z,)’+ (1–M?) (y–y,)q’/’
wing area
maximum thickness of a wing
perturbation velocities in x, y, z directions, respec-

tively
free-stream velocity
Cartesian coordinates

()
angle of attack of wing –~

o

J1l–it!!:l “’

jump in value of the quantity considered acrosw the
2= O plane

()
streamwiseslope of surface ~

—
jl+nl,’ ““ .“ --- ~..~= ._.. -------

l+md
I–rep

x—q

(Y–vl)’+g
oblique coordinate
density of free st~eam
area of integration
perturbation veIocity potential

‘!-z,— .

l%h-yl)’+~ - ‘“ ‘

. .... ... ..

8UBSCSIPTS

1 value of a quantity on the lower surface of a wing (2=0
plane)

u value of a quantity on the upper surface of a wing (z= O
plane)

PART. I—THE THREE FUNDAMENTAL FORMULAS

SOME BASIC R~AT~MAmCAL”F”ORM~LAS ‘“ “-

FIELDEQUATIONFOR SUSSONICFLOW

The basic linearized partial diile.rentialequation governing
a subsonic flow fiekl is derived under. the assumption that
perturbation velociby components are small relabive to the
free-stream velocity V,. Written”ii- terms of the perturba-
tion velocity potential fp(z,y, z) the equation is

(I –Mo’)Pzr+w+~,s=O (1)

where MOis the free-stream .Mach number and the x axis is
parallel to the free-stream direction. Equation (1) is, in ks

normalized form, Laplace%equation in three dimensions. If
a sufficiently thin wing at a small anglo of attack is situated
on or in the immediate vicinity of the w pkmc, the bouud-
ary conditions in the resulting linearized theory may IM tis-
sumed specified at z= O and, by means of Grden’s thwmern
(see, e. g., reference 1), a solution to equation (1) can h
written in the form

(2)
where

/g’=1-Jf~
and

r.= { (X—XJ2+ (l —.Uo*)[(y—yJ*+z’l ) 11*

Equatioti (2) relates the perturbation velocity pohmtitd at ~
point (z, y, 2) in space to the discontinuitics in the potential
and verticaI induced veIocity at the “plane of UN wing.”
Thus, ~=pu —Piand AW=WU—wZ,where the subscripts u nnd
1 denote cmditions on the upper and lower side of the xy
pIane.

In a later section, equation (2) will bc used to obtain m-
pressiona for source, vortex, and doublet distributions iu. ___
subsonic flow. .

FIELD EQUATION FOR SUPERSONIC FLOW

The form of the basic Linearizedpartial differential cqua-
tion’gove~ing supersonic flow fields can be written in tcrme
of the perturbation velocity potentiaI as

(M;-l)p=-p”,-p,.=o (3)

Since ill, is now greater than Onejequation (3) is, in its nor-
malized “form, the wave equation. A solution to equation
(3) that relates the potentitil in space to its jump AP and the
jump of the vertical velocity Aw across the z= O plane has
also been derived by means of Green% theorcrn. .A form of
such a solution, due to Volterra (referenco 2), can bc written

P(x,y,z)=++
u{

Au@, y~ &rcCOSh —
x—~l

r N(Y-V*)*+2*-

Ap(zl, y,)
Z(X—ZJ

[Y–vI)’+@lr. }
dxl d~, (4)

wlme . . .
~=h$:–1

and

T.= { (Z–ZJ’- (MO’– l)[(y–y,)’+z’l }’/’

The area 7 is. that part. of the z= O piano contained within
the Mach forecone from the point (z, y, z); that is, the
area bounded by the line xl= — ~ and the hyperbola
(w–xJ’-/(y(yJy9 %–/9%’=o.

Obviously equations (2) and (4) aro not similar aIthough
the basic equations to which they apply are. A formaI
similarity can be obtained, howover, through the intro-
duction of an integral operator, originated by Hadamard
(reference 3), and referred to as the “finite part.” The.
use of the iinite part and certain oLher teclmiqum ncccssary
ti reduce equation (4) to a form similar to equation (2)
requires some athmtion and a discussion of the mathcmat iml
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cW3icuRieainvolved mill ba given m the following section.
Then an application of t-hem techniques m subsequent
sections w-U make it possible to obtain expressions for

‘source, vortex, and doublet distributions in supemonic flow.

TEE PIMTE PART OF AN- INTEGRAL

In the study of linearized supersonic flow problems, one
is continually conikonted with expressions of the fonp

(5)

The integrals are of this form in the sense that the integraml
is infhite at one (or both) of the limits and this Emit is a
function of the vsriabIe by- which t-he partial derivative
is to be taken. Such an expression is annoying because
the derivative cannot be %uoved” through the integral
sign according to the usual rule, namely,

Direct appIicat-ionof equation (6) to equation (5) obviously
.tiehl.s an unacceptable indeterminate form srnce the term
corresponding to F(x, @ is infinite. One way of avoiding
the difficulty is to integrate equation (5) by parts so that
the radical appears in the numerator of the integral and
then to apply equation (6) to the resulting expression.
Such a procedure can be carried out without the intro-
duction of any new mathematical symbol or concept.
However, this involves unnecessary restrictions on the
integrand and often Ieads to unwieldy forma since the
derivative of the funtion j(x, y) tith respect, to y cm be
cumbersome.

Definition.-.A more dh-ect way of taking the derivative
through the integral sign in equation (5) @ accomplished by
using the integral operator know-n as the finite part-. Con-
sider the simple equality .

a
s

‘dyl
z

“ Z=T=
The finite-part sign can be introduced by the definition

from -whichit follows

‘ dy ._ –~
f a (x–y)’/’ J2=z

m

(8)

The natural extension of this idea is to consider

where A(y) is continuous at z=y and is integrable eIsevrhere
in the range of integration. The evaluation of J can be re-
duced to a form that requires only t-hedefinition introduced
by equation (7). Thus, by adding and subtracting the
same term, J can be written

J=~[Jy@~ ~y+J@) f~#]
a~

and it follows that

f
A(y)dy

J
=A(@-A(Y) dy+A(~) f(z ‘;),,, (10) --

a (x–y)’/’= . (z–y)’/’ .3— —
The find generalization of the definitions given by equa-

tions (7) and (9) is accomphshed by considering the nti de._
rivative of the integrals and, furthermore, by allowing a
functiomd dependence on x of the integrand A First con- .
sider the detition

.-

b ‘A(y)dy “

f( ).% ~=(-1)” ‘“3.2~2n-l)f(.fllf~’/’ - “-”

a ‘ ‘A(y)dy

( )s“z r (11) -
a ~ z—y

The second integ.d can be arpressed in the form ----

= A(y)dy

f s
“A(y) -B(z, Y)dy+ =B(% Y)c@ _.:

. f(z–y)’+’/’= . (z–y)=+~’ . (z–y)”+’/’
(12) “““

where
B(z, y)=A(z) –A’(z)(z–y) + . . . + -

-—
(-l); ’:;-lW (X–y)a-l

—.

and

r @ (–1)’2’
.-

a~=dy

( )sJ= (z–y)’+’’’=3.3 . . . . (2i–1) & . ~~ “-—

‘(2i –1);:(2)’-’/’

Finally repIacing A(y) by A(z, y), equation (1L)
uniquely a fits-part integral provided that

%!F%2’A(Z4=’

again defines “-

Methods of evaluation.-If expressions of the type pre- ..
sented in equation (5) appear in an amdytid development,
it is now- possibIe, by using the finite-part symboI, to take
the partiaI. derivative operation through the integral sign.
Such a process needs no further ampIiflcat.ion. In appIying
the resndtsof such an analysis to the sohkion of some spe-
ciiic problem, however, one is cordronted with the inverse
operation, that is, the problem of evaluat~~ the finite-part
integmds. This can always be done, of course, by means of
tie defitions already given. often, though, such evshm- _
tions c- be simpMied by usir@ one of the two foIlowing

“processes.
The fist proc- is readily outlined. Rewrite equations -~

(8) and (10) in the form -.

f
-h Y) dv=um

J
‘f ‘Z$-y;$’‘) dy–2f+) -:”

a (-w’ * . – ~z—a

and set the indefinite integrrd of
.—-

s
f (% Y) @
(Z–yyn
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equttl to F (r, y)+ C“. It follows that

(13)

w-here

o=lim
[
?p-F(z, y)1 (14)

v \2!-y

The second technique avoids ,thc newsity of evalufiting
the constant C. It depends on the use of the complex vmi-
able and is valid only when j(z, y) is real in the interval
a <Y< b where b is some number greater than z .4gain set
the indcfiite integral of

J
=..

equal to F (x, y)+ C. Now if r. p. stands for the real part
of a function, the evaluation of tlho fhite-part integral is
provided by the equality

~j(% 3M%
f

‘j(x, Y)dv
j= (Z–lw=r”p” @(z–y)’”

=r. p. [F(x, b)—F(z, a)], a<x<b

(15)

As an example of the second technique, consider the
integral

I=
f

z y’dy
f

b yady
●

(~~_y’)8/2=r” P“ ~ (&_y’)8,2

where x<b. From the relation

J
Y2dY – y -arc *in 1!

(x’–#)8@-l/q x

together with equation (15), itfollows that

( )I=r”p”A–m’s+‘–~ ‘“”
A simple extension of this result yielde

f
W/ _ b

~’dy _

: (x’–v?ai’–r” ‘“ f _b~p––”

An applicationl—The above methods oan be applied to give
the following simple but useful result. Let Y=a+ by+ Wz=
(h–fl) (v–h) (–c) and q=4aJ5-b2, then

–2
—— [co(2ct+ b)–c,(bt+2a)] (16)
q~a+bt+ct8

Included in this result is the equality

(17)

which contains the very important identity

: The case of multiple integrak-lhm upplicd tu the
aualysia of single integrals, the above definitionsof the finito
part cqincide with, or are a m-expression of, those given.
originally by Hticlamard (reference 3). Hence,

where ~ was the symbol used by Hadamard to denole cvtil-
uat.ion by finite-part methods. When applied to double

integrals, however, the signs r and
f

arc no longer equiv-

alent. ““Hadamard, as well as A. Robinson (reference 4),
maintains the convention that the order of integration in tlw
operation r is reversible; tha~ ie,2

EF=’EF= ““’”---.
Such a convention requires that all singularitiesfor which ihc
order of integration is irrevemible must be csclud,ed from thc

These singular regio~~ aro then trw~~{~tlarea of integratio-n.
separately, This convcnt,ion has the disadvantage that, in
evaluating multiple integrals, the value of a given intqyal is

f
not independent of succeeding in@rds. The operator -

L
avoids difficulties of this kind ancl each definite integml is
independent of succeeding operations. For example,

but, according to reference 3,

whereas,”according to the same reference,

Although the use of the symbol ~ makes each integration

independent of subsequent integritiom, the order of intc-.
gratlion for operations irwolving tho sign

t
cannot bc rc-

~ersed. Hence,
.

Hdy
Sf

dz f(z, y)# dx dy j(X, y)

For example, the relation

holds while the same integral taken over tho same nrca lm~
in reversed order is

wincetheorderofIntemtIonPP.YSp Important role In the followhu dcvcIomcnt,lnte-
giationflti”titlrrespecttozmdthenwithreepecttoywillhedenofed.fd# .fdff(r, v) while
htegrationrlrstwithrespt to urmdtlrcnwith remet toz wulbedenottif ~ f djfk u).
lvhenthe notation f Jf (r, u) drdr is ti, the order of kdcemf[~ ~ Inr~tw~.
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The operation Wined by the s.pnbql
f

will be used con-

sistentIy throughout the present- report. Henci attention
must alwiyysbe paicIto the order but not to the multiplicity
of integrations. It. can be seen that the tite part of a con-
ventional-t-ype integraI coincides with the vaIue found by
standard methods.

TEE GEN-ERAMZZ.D PE122CIPAL PART OF AZ?-INTEGEAL

Another type of important operation appearing in the
development of both subsonic and supersonic wing theory
appeam impIicity in the expression

wherej(y, z] and its derivati~es me bounded and continuous
in the interval a sys b. In the attempt to simplify 1. by
letting z approach zero before performing the integration, a
second special integral operator w-ii be introduced.

To simplify l., first.integrate by parts

Then since

~ [fz(a,o)+j7(ho)l
10becomes

@bjd f(%o)
J

bful (h o) dyl
y—b y–a— .

~_y, +Irj. (y,o) (20)
.

Definition of the generalized prinoipal psrt.-The eqms-
sion of 10given in equation (20) contains the integral of the
funct.ionf’(yJ/(y-yJ. Such a.nintegration is not, in generaI,
convergent; however, when the integral is so vr%ittenwithout
further qualification it is generally accepted that the singu-
larity occurring in the integrand is to be treated using
Cauchy’s prillc.ipd pmt. Evaluation by such a method is

often indicated by the symboI
$

and is defined by the equa-

tion

or, alternatively,

$hA (yJ dyl a’
s‘—zry .

A (yJ lnly,–y[dy,
a YI—Y

(22)

To assure the convergence of ~e right-hand side of equations
(21) and (22) it is sufEcient but not necessary to assume
that A(yJ k differentiable at the point y,=y and that

elsevihere within the region of integration A@l) is either
continuous or possesses integrable singularities. The con-
cept of t-heCauchy principal part is so weII known that the
symbol on this integral is often omitted, as shall be done
here.

The differential operator in equation (22) Iends itself
readiky to a genaalization of the principal-part concept.
Thus, for the n~~t higher order, the definition (see also,
in t-hisconnection, reference 5)

lb MyJdy~ b’ b
s

b A(yJdyr
x (W–Y]’ W’ =

—=—— A(yJi.n!&Y1ldY1=;
s . Y1–v

(23)

applies and, in general,

a“-Jb A(YJ~YI (24)

Zly’ . yl—y

The generalized principal part can also be expressed in
the form

‘ MM/l _
f J

b .4(YJ–B@/, YK)dyl+~’ B(YIYI)dYJ _
Q/l_y).+L= Q/,-y)=i-L T (Y,-Y)””s a

where

B(y, yJ=A(Y)+* (YI-Y)+ . . . +~:::y) (YI–Y)”-l

and .

l-b dy,
( )s

laf ’ *=
I (l/l-Y)’+L=~ m = YI–Y

The fit n derivatives of A(yJ are assumed to exist aud be
single -ralued at yl=y while elsewhere in the range of inte-
gration NyJ may possess integrable singuhrities. This
definition is in a form that involves no extension beyond
the concept of Camhy’s principal part.

It is possib~eto extend the dehition contained in equation
(24) to include a functional dependency on y in the n-ymerator
of the integrands. Thus, replacing -@) by AQ/, YJ,
equation (24) again defies uniquely a principal-part inte-
graI provided the bt n deri~atives of A(y, yJ with respect
to y and yl exist-at yl=y.

Method of evaluation.-Operations inTolTing the symbol
L~ cm always be performed by means of the detitions

~mt given. However; another method can be used, which
is often simpler to apply. H t-he indefinite integral of -
4d/(Yl-Y)x~I exkk SUOhthat .

J
A(YJ dYl =@@,, y)+c
(yI-y)n+l (25)

then the value of the generalized principal part can be found
by foIIowing the conventiorud rules for substitution of —
limits; thus



1272 REPORT1054—NATIONALADVISORYCO~EE FOR AERONAUTICS

b A(w) dYI =@@, y)- G(a, L!),y#% b
f (%-y)’+’

(26)
e

The proof of this result can be obtained by mathematical
induction.

An application.-Returning to equation (20), since an in-
tegrution by parts yields the relation

4’ f(%)0)~Yl= (b, 0) -f(~, 0)
% J

bA, (%) 0) ~Yl

T (?/1-?/)’ ‘v– –~– @‘V–Y1

the limiting process symbolized by 10 can be expressed as
an integral that contaim only the function evaluated at
2=o and not its derivative. Thus, finally

THE OBLIQUE COORDINATE SYSTEM

Equations (1) through (4) gave the basic partial difTeren-
tia.1equations of wing theory, together with their solutions,
in terms of the usual Cartesian coordinate system, the z
axis extending in the direction of the undisturbed flow and
the y and z axes oriented normal to this direction in such a
way that boundary conditions for the wing can be specified
in the z= O plane. In the study of supersonic flow fields
it is at times mathematically convenient to introduce in
the z= Oplane new coordinate axes making arbitrary angles
with the x and y axes.

TIMgeneral case. Consider the f, q, z coordinate system
(fig. 1) such that the z axis is normal to the plane supporting

Y

.

+
x

FICNJRI!L-Coordinatesystems.

the boundary conditions while $ and q are normal to z and
coincident with the lines x= —mzy and x= nzly. If

IJI=@FZ’J ~2=4iTtm22 (28)

the equations relatiug the two sptems of coordinates are

(29)

while the relation between the differential arms,
mined from the Jacobian of the transformations, is

mi+m~
dxldy,= ~lp, d~,dq,

as deter-

CJO)

: The valhe of r,, as defined under equation (4), bcworncs

where @z=h$of—1. If the variable P. is introduced such Ihal

x—xl
“=(Y-YJ’+~

it follows that in the transformed coordinates
becomes

(3lb)

this vrwiablc

Finally, the differential opc.rater b~bx transforms to

(31C)

The area r over which the integration of equation (4) is to
be taken is still, of course, bounded by the hyperboln r3=0
and the line xl= – ~. The asymptotes to the hyperbolm
become; however,

Figure 2shows how tho area r in the ry phmc transforms to
the ~ plane.
(Although tho $ and q axes are oblique with respect to the
original axial system, no inconsistacy results if the equations
in the transformed variables arc plot tcd rdat ivc to orthogonal
axes.) In case both ml and mg are Ices thfin # (the cnsc.for
which the sketch was drawn), the asympto[w arc skaighl
lines with positive slopes, and the mm is bounded in both the
Eand q directions by the masimum points L, qa and b, T*,
respectively. These maximum points we shwn in the tlgurc
and their analytical expressions arc

J

If the oblique coordinate system is chosen such that ml is
lMS than and mz is greater than ~, one of the ne.ympt.otesin
equation (32) has a slope of opposito sign and the mca r is
unbounded in the ql direction-although ~c,qais still the point
which determines the farthest extent of 7 in the 51dircc.tion.
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On the other hand, if mz is leas than and ml is greater than
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its upper bound in terms of nl. Finally, if both ml and rn~
are greater them P, the area r is not bounded for either
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The characteristic coordinate system.—bother special
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enough to receive a particular notation is the one obtained
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When z is set equaI to zero, the equation for T. and the
form of the area r become especially simpIe. Thus

and the area r, shown in figure 4, is bounded by the straight
lines rl=r, SI=S and rl=sl=— m. —

EmurciL—IntegrationareafncharacteristicsmtemforZ-
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THE THREE FUNDAMENTAL FORMULAS IN SUBSONIC FLOW

The parallelism between the lmsicformulas in subsonic and
supersonic wing theory is so obvious that it is advantageous
to present first the somewhat more classictdresults applying
to the purely subsonic regime. The.“immediate objective is
therefore to present as briefly as possible the exprwsiona for
the perturbation vdocity potential due. to a distribution of
sources, doublets, or elementary horseshoe vortices and then,
by means of these expressions, to relate the pressure and
vertical inducecl velocity in the 2= O plane to the weight of
these diatrihutions.

THE PERTURBATION POTENTIAL AT A POINT IN SPACE

The linearized form of the perturbation -veIocity potential
due to a unit source, elementa~T horseshoe vortex, or dou-
blet situated in a free stream moving at a uniform subsonic
velocity ~“0is given as follows:

Unit source------------------- p=- l/4urG
Unit elementary horseshoe vortex - P= —zvC/4rr,
Unit doublet -------------------- p= —z@/4rr,3

where VCis dcfinecl in equation (3lb) and S2= 1—illo*.
It is well known that a distribution of sources in the z= O

plane splits the streamlines and forms a field symme.trica~iii
u, v, and P above and beIow the source pIane. Hence, the
strength of the eourc.esis related to the term Aw (which, in
turn, is related to the gradient of thickness of the sinndated
body) while the variables u, v, and P are continuous. On the
other hand, a distribution of elementary vorticw or doublets
causes a discontinuity in the strcamwise induced velocity
(or, what arnounh to the same thing, the perturbation
potential) across the reference plane but, at the same time,
causes no division of the strearrdines. The strengths of the
vortices and doublets are therefore related to the termsAuand
AQ, respectively, (which, in turn, are related to the wing
loading), and produce no discontinuities in w. The exact
amdytical form of th~e distributions can be obtained readily
from equation (2).

The source distribution.—The velocity poteutial induced
by R distribution of sources over the z= O plane follows im-
mediately from equation (2) since, by symmetry, Ap must
be zero. In practice, the area over which the sources are
distributed is limited to the area S defined by the plan form.
Hence,

A% Y, 4=+
SS

Aw
~dxldy,

s
(36)

The elementary-vortex distribution,-Equation (1) was
written in terms of the perturbation potential p. It could,
however, after differentiation have been expressed in terms
of any one of the induced velocity components and the so-
luticmin equation (2) would then aIso be expressed in terms
of the particular velocity component chosen. Consider such
a case, taking for tho dependent variable the streamwise
perturbation velociLy instead of p. Equation (2) then be-
comes .

If ~h~“field is to be without sources, both Aw and iklw~il~
vanish. But for an irrotational field lhc equality bAw/bx =
bAu/?lz holds and the first term in the intqyand of (hc~fibovr
equation is zero. By definition

s

r
‘l@,y, 2) dq=p(z, y, 2)

-.

J

;
from which it follows thtit if the operator dx is nppli[vl

to both sides of the resulting equation, t.lm~~latiol~

foIlovm where the area of integration is Iimibxl to the ~ving
plan form, This result. expresses the perturbation vclociLy
potential due to a distribution of elementary kmwshoc
vortices. over a wing plan form in the z= Oplnne.

The doublet distribution,-Tho solution for a doublet dk-
tribution, just as in the case of tho sources, folIows inl-
mediateIy from equation (2), Since the streamlines m-cnot
divided by the doublets the term containing Aw vtinishm.
The doublet “distribution exists, however, not only over tlw
wing area but also over the vortex wake streaming down-
stream behind the wing since the discontinuity in thu po-
tsntial persists in this region. Designating tho wake arm
by tT, the final expression for the pertI.u%ationpotentinl
associated with the doublet sheet becomes

REDUCTION TO THE PLANE OF THE WING

The aerodynamicist is usually interested in the forces on
the surface of the wing itself and, as a consequence, it is
pertinent to consider each of the above formulns in the
limiting .caaa as z approach zero. An wqdicit cxprts.sion
of these reults is given below.

The source distribution.-Tho Iimiting yaluc of equation
(36) as z approaches zero is obtained imtncdiately by simply
setting z equal to zero. The resulting expression is

(39)

where
io=[(x-xJ*+~*(y —yJql/9

Practical interest is usually concentrated on the rclu(iuu
between the pressure on the wing surface and t.hcwing shupo.
Since in linearized theory pressure coefficient CP and wing
slope X=of the upper surface arc known to be

(40)

it folIows, after differentiation of equation (39) with rvspcct
to x, that pressure coefficient is

c,=-::
u

~ dx, dy, (41)
8
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The elementary-vortex distribution,-Ti’hen the strength
of the elementary horseshoe vortices is hmovrnover a wing
plan form, there is no ditliculty in finding the potentiaI in the
:=0 plane since it foLlowshorn a direct integration of the
vortex strength. The pertinent question is, rather, to
cletermine the ~ertical induced velocity in the pkme of the
wing from the giwn vortex strength. If load coefficient is
defined in the usual may

Ap 2AU 4UU–—=7
~– T’o

{42)

the answer to this question requires the evahmtion of the
foIloming limiting proce9s:

If, as in equation (27), the generalized principal part, is
introduced, the required qmession becomes

(43)

The doublet distribution.-In the case of doublet distribu-
tions, the relevant problem requires the e.xp&sion of -rerticd
induced velocity in the plane of the -ring as a functiori of the
doublet strength AP. If equation (38] is cIifTerentirttecl
with respect t.~ z and z is then set equrd to zero, one finds
without difEculty the find formula

(44)

THE THREE FUNDAMENTALFOR%~S IN SUPERSONIC
FLOW

The purpose of this section is to repeat for supemonic wing
theory the developments presented in the preceding section
for subsonic theory. In order to maintain the formal anaIogv,
it is necessary to introduce the concept of the finite pmt.
This latter concept, in turn, introduces into -the analysis
integral expressions containing c.ertah inherent singulam”ties.
Such singularities are, by definition, points a-crosswhich the
order of integration cannot be reversed.~ The study of these
singularities and their effect on the funcIament-aIformulas
suggests the introduction of an oblique coordinate system
defined in the fit section of this report. Hence, the follow-
ing analysis fl be presented in the t, q, z system, while
transformation to t-heCartesian and characteristic systems,
it wilI be remembered, can be made by considering the special
cases

For fit

x? II, z “ml=o, “m= -
}

(45)
r, 8, z ml=mz=p

FoIlowing the development of the basic formulas, u summary
of resultswill be given in terms of the z, v and r,s coordinates.

zMmpmd.sdy, Km inherent efmdsritr * ~ * ~S ovw ~hfch a d@Ie ~w@ k
to k evfdnsted, the dfJTerenabetween th tiw d tie akwti made h one ader and
then over the samearea but rrith revemed order is not zero.

THE PERTUREATIO>- POTSXPIAL AT A POIXT IN SPACE

The velocity potential due to a unit source, a unit-elemen- .
tary horseshoe vortex, and a unit doublet is given as folIows: ._~

LTtiisouce ---------------- P=.—ll%rr.
Unit elementary horseshoe

}

(46)
~ortex-_ --______ ---- _-zvC[2fl=2fl=

L.nit doublet ______________ y=z&/2rr~

where r. and v. are defined in equations @1) and F=.31$— 1.
In this notatio~ the only difference between these expres-
sions and the corresponchrg ones for subsonic flow is the
factor 2. A much more important difference exists, hovr-
ever,in the eflect of the change of sib~ of 1—illOyon reand ~e.

The first task is the e.spreesion of the perturbation ve-
locity potential at a point in space in terms of distributions
of the elementary solutions and this cartbe accomplished by
an appropriate amdysis of equation (4). Just as in the
subsonic case, the source stren@ is given by Am, the Tortes
str~ngth by Au, and the doublet strength by w.

The source” distribution.-The potential induced “hy a
source distribution can be obtained from equation(4) by setting
the term containing @ equal to zero (i. e., by remo~~ alI
the circulation from the flow fieIc[). By means of the nota-
tion ,

x—z~ :(em)+:-(E-&)

“=B \ ~–yjz+zz=fl

&’-’’)-; cJ~+”~+” ’47)

The remainiim espreasion can be.written in the & ~, z co-
ordinate system simpl~ as

It is possibIe to “move” the partial derivative operations .- _
through the integral signs if the equtdity

is used. Obviously, if the operation indicated by equation
(49) is to be applied to equation (48), the order of integration
and the limits on the latter equation must be specided.

Consider the case when the E and q axes are chosen so
that both m, and w are Iess than& The area r is then the
one shown in figure 2. Further consider the case when the
first

(48)
integration-is made with ,respect to ~1. Then, MpIt3tiOII

become; . -—

J:. S
a d~, ~~dq,~w(&, qJ arc cosh ac (50)

where XLand hzare roots of the quadratic expression?’c*(~l)= O
and &, q= are defined in equation (33). It can be shown
t-hatvrhen h=.!j., the equality X1=b applies, and, further,
that the iutegrand of equation (50} does not van@h. Hence,
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the two partial derivatives can be moved through the fist
int.e~al sign without the appearance of the additional term
involving the. derivative of the upper Iimit. It is also not
difficult to show the value of a, ac TIequal to either Xl or
A*is just 1. Hence, the two partial derivatives can aIsQbe
moved through the second integral sign without the appear-
ance of additional terms. Finally, since

1 a a arccoshw=~mccmhw 1
?nI+?nz (

J42~+5
)

=—
‘ ax c r~

the velocity potential at a point (& ~, z) due to a distribution
of sources in the z=O plane can be written

The elementary-vortex distribution,-The potential in-
duced by a distribution of elementary horseshoe vortices
can be derived in a manner analogous to the derivation for
the subsonic case. Thus, the solution given by equation
(4) “is written for the induced velocity u rather than the
velocity po tential.4 Since the flow field contains no sources,
bAu/bz is zero (by the same mgurnent presented for the
subsonic derivation) and the solution can be expressed in
the form

lau =-_
~=ax SS

; AU(Z1, yJdxldyl

T
However, by definition

f

r
p= udx

,-

so the relation becomes

Finally, in terms of the g, q, z coordinate system the equa-
tion for the velocity potential due.. to a distributiou of
elementarj horseshoe rortices in the z= O plane can be

The doublet distribution,-The potential induced by a
sheet of doublets can be obtained from equation (4) by
setting the term involving Aw equal to zero (i. e., by re-
moving aII sources from the flow field). Expressing the
result in the ,$,T, z coordinates, one k

Again it is necessary to carry the pmtiaI derivative opera-
tions through the two integral signs. And again, just m
was the case for the sources, &is requires thah the order
of integration and the limits on the ‘titegrala be specitled.

f,rh~tit tit ~~u~tl~~(4) a be WIi6~m fof u w w~u M p dOmn~~ fo~ow’ ima@]y

In the cam ofsumrsonicflowbswauw04the presenceof thedf.wontlnuftkainuidongMuch
wavesemenecingfromsupersalowlgee.Proofof thevalldltyf~ m40 ef fnbmk hereh
fsfdvenh refwmce6.

Qnce-more consider the case when ml fand ma are both
Iem than p, the area r is the same as thtit shown in figure
2, and the first integration is made with rcspcc.t to ql. ‘1’I]cn

equation (53) becomes

More caution is necessary in moving the derivatiy~~_through
the integrals than was required in the study of the sourco
case, since at :1= tc the nl integral is indeterminate. I 1. is
true that the interval of integration x2, Xl is zero, bu~ it. is
also true that the integrand is infinite, Tlw Wlhl@ Of SUCh _

an jndeterminatc form must be obtained by some prowss
such as the following.

The upper limit to the& integral, :=,is a functio~~-oftho t~~~~
variable%z and ~ (see equation (33)); that is, in functional
notation $==ga(f, z). Replace z in .$=by ~~ thm whm
eis zero ~chas not changed. But if ~=(~,z) is replaced by &(&
-I ~ cwtion (54) and the li~~~taken as Eappromheg
zero, the indeterminate form mentioned above. can be cv.nl-
uated. Hence, ctinsider “

By Ap@jing the operation described by equation (49) rmd -
letting a primed function symbdizc its vrduo at &= ta(~,
~~, “theexpression

.
(56)

is obtained.
The fit term in equation (56) can be grcatly simplified by

use of the mean value theorem. In the limit as egoes to mro
both Al’ and AZ’approach the common vrduc of q.. Thus,
for c very small the variation of AP’ and v,’ in tho range
X1’<ql<Xa’ is slight. The same caunot, of course, bc snid of
l/rJ, since A,’ and AZ’ me the roots of r.’= O. Using tlw
functional notation v:= vJ(v,) find applying the mean value
theorem, one can write for the first term in cquatiou (5G)

Now h-m the definition of r, givcu by equation (31@

which k independent qf is. 13emx, tlm expression given in
equation (57) reduces to

.
~ Aq(&, VJ
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Moving tie pa.rtkd derivatives through the second integral
sign in the last term of equation (56) can be accomplished
by introducing the fhite-ptirt. sign defied previously.
Since

it foLIowsthat

By means of thee equalities, equation (54) cm iinally be
written in the form

(58)

If the area of integration is not. changed but if the order of
integration iareversed, it can be shown by a process identicaI
to the one just described that

(59)

The mea Tused in equations (58) and (59) has been d~ed
as that show-nin figure 2, the axes Eand q both chosen so as
to Lieoutside the.Mach cone from the origin of the C%rtesian
system.., A t-hef and q ~~es approach the Mach lines in the
z, y plane, that is, as m~and ml approach L?,the residuaIterms
in equations (58) and (59) approach @) A9(5a, — cu) and
~)Ap(— C=,TI,), respectively, Which repres~t the j~P ~
potentiaI infl.nitely’far ahead of and to one side of the point
(E,~, z) at,which the potential is being measured. Hence, in
aerodynamic app~cat.ions, the @) AP(&, — co) and @)&
(: co, d can be taken as zero. Thus, vihen th~ .g,~ axes
he aIong the Jlach lines, thereby becoming the r, s sxes of
equations (34), the espressiona for w are without the res-
idue terms and the order of integration is immaterial.
When ml and m2me greater than P the same is true @ e., the
terms (%)AP(.&,?fa)and (%)f%(~b, m) =e _ from watio~

(58) and (59) @spectiveIy) so that the effect of a distribution
of doukdets on the -relocit,ypotential can be summarized as
follows:

For O<m,<fl, OSm,<fl

For O<ml<f?, p <m2S cu —

(60d)

(60f)

There exists an interest@g corollary obtained by sub-
tract~hg equation (60a) from (60b); namely, @at the differ-
ence between an integration of supersonic doublets made .
fit in one order and then in the re~erse order is equaI to the
tierence in the magnitude of the distribution at two points , .;
in the-pkme. 4 -...

EEDGCTIOS TO THZ PLkXE OF TEtZ W2XG

The next problem is to consider the above formtias i-nthe ~
limiting case as z approaches zero.

The somce dis~butioni-The potential in the plane of tie
disturbing source sheets foIIows immediately born equation
(51) by simpIy setting z equal to zero; in this way ‘“”—.

In order to relate the pressure coefficient CPto the slope
Auof the upper surface of the wing (where both CPand XU=e
defined in equation (40)) the operator ,

must be applied to both sides of equation (61). Hence,

The task of moving the partial derivatives through the
two integral signs presents a problem identical to the one
studied in reducing equation (53) to equations (60). Two
inherent singularities in the area occur ‘at the potits b, q=
and h, ~band form, just as ti equatio~ (60), cert~ resid- ._._
da there. In the present discussion, .intereatis cofid to
the case -when z=O. Equation (33) shows immedia@Iy ““
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that the values of g=,q. and #o,~bfor z equal to zero”can be
written

(&?)z-o=(tb)z-o=&

(A.o=(qb)..o=q }

(63)

It can be shown, therefore (the details being omitted since
they are precisely the same M those xlesclibed in the reduct-
ion of equation (53)), that the following relations hold:

For OSm,<f?, OSm,<#

.

(64c)

ff

z(m]+m~ dq,
%-m)+:(w=— d$, “ Ml,%)rJ1l/J2 1 i-$

(64cI)

(64e)

(64g)

The elementary-vortex distribution.-Tl~c reduction of
equation (52), the formula expressing the potential due to a
sheet of elementary horseshoe Vort.iccw,to the plane of the
wing is of Iittle interest since if Au is kuown p=.o can be

f
1’

obtained by the simple relation qz..=3 Au dx, However,
-t-m

if the derivative with respect to z is detcrmimd on both
sides of equation (52) and the limit is found as z npprmu?hcs
zero, the vertical induced velocity in the plane of thr wing
will be related to the vork strength thcrr. In a more
physical sense, this will relate the slope of the lifting surfticr
to the lQad distribution it supports. Such an rquntion is of
basic importance.

The mathematical expression to bc studied is

The evahlation of w can be clivickd into two steps: l?irel,
the procedure necessary in order to carry the dmiwlIin’
through the first iutegral ml, second, the ckdation of I
where

Again the order of integration is importfint. As in tlw
prececling cliscussion of thu doublet sheet (cquntions (53)
tbcmgh (60)) and the source sheet (equations (6I) through
(64)), assume first that the mm of inh’grat ion is thu onr
given in figure 2. Thus, ml is less thtin II and tlwq, inh~gra-
tion is performecl first.

If e is introduced in order to evahmte lhe illtl(itt)rlt~i~lat~!
form, equation (65) is c.xpreseiblein the form

where the terms Xl ancl h arc W roots of the quadra[iv
rc2=0 ancl where the limiting procea9 for emust be pwfornwd
before that for z. As before, the prirwd ~~ression dmmtw
values for the particular case &= &(&@+-d), and equation
(67) recluces to

By means of the mwn value thorcm, th first hum on 1ho
right-hand .sidc of the equation ctin be simplified. Tlw pro-
cedure involved in such an analysis WM outlined i11 tlw
derivation of equation (57). The process USC({hm is i(lcn-
tical and equation (68) becomes

(69)

The term 1, Mind by equation (66), erm IXIrxprwcd ill
a simple form by introducing the notation for the gNmal-
izecl principal part (see cqua tion (27)). This hmn bccmm}s

If the integration of the above cxprmsions hnd l.wcn(dmn
in the opposite order or if the rtinge of nh und tnihl lmn
diflercnt, the residual term would rhangp. This plwnomcna
has been prcsenhvl in connection with both doubk’1 and



souroe distributions rmd is by now familiar. FinaIly, there-
fore, expressions relating the slope of the wing surface to its
loading can be vrritte~

(71C)

(71d)

(71f)

The doublet distribution.-The pertinent problem in this
ease is to find the vertical induced ~eloci~ in the pIane of
the wing as a function of the jump in potentiaI across the
plane.

Consider equations (60) and take the partiid derivative of
both sideswith respect to z; then find the Iiit of the resulting
expression as z approaches zero. If equation (60a) is used,
for example, there results for the tit term

which becomes

.

m)
The second term can be written

tind this reduces to

Since, by equation (17),
.

1279 .=,

—

(73}

.-

the second term in expression (73) vanishes. Finalk, there- ._

fore, the vertical induced ~elocity in the plane of the wing
becomes:

For Osm.l<~, Osmz<~
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SUMMARY OF RESULTS FOB F. C,, AND, w IN THE PLANE OF THE WING;
CARTESIAN-COORDINATE SYSTEM

The special forms of equritions (64), (71), and (74) when
the $,? axes become the Cartesian axes are given in the
following sections. In these cases, ~+w, q~y, mlaO, and
ma+ al.

Potential in terms of vertical velocity, nonlifting case.—

Pressure coefficient in terms of surface slope, nonli.fting
oasea—

-H
+-2 (x–xJxu(z,, yJ

u, ‘y’ ,dq(x-q)’-p’(y-y’)’p’ (76b)

Vertical velocity in terms of loading coefficient, Iifting
case.—

%=k$w%’‘:-”’)A&(:’y’)‘“””(Y–YI) 4(z-zJ’-mY-ii’ ‘ ““[77b)

U,u = — gfdy+r, $’J%yJ
[(x– x,)’– p’(y–y,)’p’

(78b)

SUMMARY OF RESULTS FOR p, C. AND w IN THE PLANE OF THE WING;
CHARACTERISTIC COORDINATE SYSTEM

The. special forms of equations (64), (71), and (74) when
the t, q axes become the characteristic axes are given in
the following sections. In these cases, E+W, q-8, ml+l,
and m2+#.

Potential in terms of vertical velocity, nonlifting case —

1
– U

‘wu(rl,81)
P= — drl dsl

7rhfo. , 4(r-rl)(8-81)
(79)

Pressure coefficient in terms of surface slope, nonlifting
case,—

cj=–~f
-~(r–r,)+(s–s,)

2rfl , J [(r–r*)(L?-sJ]s/2 ‘“@l’ “) ‘r’ ‘sl (80)

Vertkml velocity in terms of loading ooetlicient, lifting
case,— --

Vertical velooity in terms of surface potential, lifting
oase.— .-

M, J
f

d’lr %)

‘==–= ~J [(r–r,)(s–s,)l~t’ ‘rl ‘$1
(82)

PART II—THE DIRECT PROBLEM

DISCUSSION

The term ‘tdirec.tproblem” shallbe.defined herein M a prob-
lem requiring for its solution the evahmtion of intcgrrds wilh
known integrsnds. The three fundmmmtal formulas pre-
sented in pmt 1, equations (64), (71), and (74), apply, respm
tively, to source, vortex, and doublet distributions, and a
consideration of them shows that there arc esscntially only
two different boundary-vahw problems of wing tbcory tbtit..
lead to the direct.classification. In”the firsLof theseproblems
(see equation (64)), ~e pressure cocf3icient is ghwn by m
integral involving the shape of rLwing having thickness, but
no angle of attack, t.w~t, or camber. The .othcr clirectprob-
lem is represented by squations (7I) and .(74), where tho
angle of attack, twist, or camber of a wing having no thickncas
is given ~ terms of.an integration involving, respectively, the
wing loading or its streamwise integral, the discontinuity in
velocity potential. The circumstances of theprwticulmprob-
Iem will determino which of the two alternative formuInq is
to be used.

THE AERODYNAMIC PROBLEM

The stalement of the two problems can be given from q
physical viewpoint as followw

The thickness case.—The thickucss of a wing that is sym-
metrical above and below a horizontal p]anc is given md the
pressuredistribution over the wing is to be determined. Such
problems are of special interest in thc study of wings in a
supersonic flow since their evaluation is necessary for the
calculation of the wave drag.

The lifting case.— The load distribution on a lifting plmw,
a surface without thickness, is given and the slope of the
surface that will support such a loading is to bc determined.

THE MATHE31ATICALPROBLEM

The mat.hematical statement of the two proh]cms can bo
made by referring to the equations eqmssing t1)c [hrcc fun-
damental formulas in the plane of the wing. For the thickn-
ess case, equations (41) or (64) apply, kUis given over the
wing ylan form and C, is to be determined. For tic lifting
case, equations (43), (44), (71) or (74) apply, Ap/q or A@ is
given ovti .Me wing plan form and WMis to bc detcrrnincd.

The solution of problems in the direct classification dcIpwNls
only on the analyst’s facility in evaluating intagrals. .MJhough
the integrations may be quite difficult to perform, this nevcr-
tlwless must be regarded as a question of technique and, in
a mathematical sense, a direct problem is solved.
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PART III-THE INVERSE PROBLEM

INTRODUCTION

The term “inverse probkm” shalI be defined herein es a
problem requiring for its solution the inversion of an integral
equ~tion. In application to the study of problems in aero-
dynamic wing theory, two dMerent boundary-value prob-
Iemsappear in the inverse ckwtication. Th@e are provided,
as was discussed in the presentation of the direct problem,
by the two basic relationships that exist in the three fuuda-
mentd formulas. b those equations the two basic relat.ion-
ships are: Fhet, the pressure is given in terms of an integra-
tion involviug the shape of a wing having thickness but with
no angle of attack, ivzist, or camber; second, the angle of
attack, twist, and camber of a wing having no thickness is
given in terms of an integration involving either the wing
Ioading or the ‘discontinuity in the docity potential.

‘rHEAERODYNAMIC PROBLEM

The physical interpretation of the two types of inverse
boundary-value problems is made as follows.

The thickness case.—The pressure distribution over a
wing that is symmetrical above and below a horizontal plane
is given and the shape of the -wingis to be determined. To
this bare statement of the prob~em, however, must be added
certain auxiliary considerations. For example, it is phyai-
@y evident that solutions yielding -wings with negative
volumes must be excluded. Consideration must also be
given to the question of wing closure. It is apparent that
these two conditions will serve to restrict the arbitrariness
of the pressure distributions which cam be prescribed. Fi-
mdly, the question of the uniqueness of the wing shape arises.
For example, it is known that the thin-airfoil-theory solution
in the two-dimensional case is unique, provided the prescribed
pressure distribution is one leading to a reel and closed wing
section. In the supersonic three-dimensiomd case, however,
these conditions are no longer sticient to guarantee a unique
shape from a given pressure distribution (although the re-
wrse is a.hva~ true, i. e., a given shape produces a unique
pressure). This fact fl be illustrated Iater (Part ~ h-
connection with quasi-conical flo-ivproblems.

The Ming case,—The slope of. a Ml@ pIate, a surface
tithout thickueas, is given and the resulting load distribution
is to be determined. TO insure uniquen”~ in problems of
this type it is sometimes necessary to impose u addi~ional
condition. For example, it is necessary to assume that the
Kutta condition applies to all trailing edges for which the
normal component of the free+ tremn velocity is subsonic.

‘rm3w~mIATlcm P“Rom31

The mathematical statement of the t-ivoproblems can be
made at once. Thus, for the thicbess case, equations (41)
or (64) apply, C3 is given over the area occupied by the wing
plan form and AMis to be detengined. For the lifting case,
equations (43), (44), (71), or (74) apply, w. is given over the
wing plan form and Ap/q is to be determined.

Of course, by definition, the solutions of both of these
problems reqtie the inversion of m integmd equation.
Further, these particular equations are lmown as singular

21~SS74-82

integralequations. complete inversiona to aII the C*S . .
considered ha~e not as yet been obt~ined. Some progress
has been made, however, and *e folIowing section outlines _
one method by means of which certain singular integraI
equations can be inverted . ..—

ON THE INVERSION OF SINGULAR IN!FEGILALEQUATIONS

DEFINITIONS

An integral eqtiation,-Consider the equation

J
~, g(x) K(z, y)dz=w(y) (83)

If W(V) and K(z, y) are given functions and g(z) is unkncwu,
equation (83) is known as rntegrd equation, and more
speciikdly as an integral equation of the first kind. The
path of integration .LIlies along the x axis (in this report only
reel variables are considered although the methods and
results can be generalized to include complex variables) and,
in geimd, can depend on y. The term K(z, y) is known as
t-hekernel of the integral equation.

A singular integral equatiom-An integral equation is
referred to as singular either when the path of integration, ~,
has infinite extent, or when the kernel, K(x, y), is iniinite at
points of the interval ~. In other words, equation (83) is a
singuIar integmd equation if I@ y) is unbounded somewhere
on L1. .

An integmd transform.-~ain consider equation (83). If
both aides of this equation are multiplied by the function
ZI@, y) and integrated tith respect to y along the intervaI
~ (which is, of course, independent of y but can be a function” ‘-’-
of k), the equation is said to have been transformed and ~~._
the operator

J
~H(x, y)dy (84) “‘“

is referr-d to as m integral transform. The resulting
expression

is obviously a function only of k, both z and y being dummy
vmriabks of integration.

INHERENT SING~

An inherent singidarity can be defined ilmt in terms of a . . .
function of two vtiables. Consider the functionj(z, y) and
let the point a, b lie somewhere in the ~ y phme. Then an. . .
iriherent aingulari~ -wilIbe said to exist at the point a, b if

where
X—(Z=e& g—b=q

In other words, a square of width 2e is fist placed on the x, y
plane with a, b at its center, the functionj(z, y) is then eval- -
uated at any point on the boundary of the sqyare and xnulti-
plied by one-fourth the area of the square. FinaIly, in the
bit as the width of the square vanishes, if this product is not
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zero, the function j(z, y) centsins an hherent singularity at
the point a, b.

Such a concept can chviouiy be_genertdized to include
functions of three and more variables. For example, the
function j(xl, W, .... z.) contains an inherent singularity at the
point al, %, .... a~if

lim C“j(cgl+al, e:z+aa, . . . ~eEm+am)*O
e+

where
zf—ai=cgt

RESIDUAIS

Consider a double integration with respect to z ancly ot’ the
function j(xjy) over the area S in the.x, y plane. Perform the
integration of the same function over the same area but with
the order of integrations reversed. The difference between
the results of these two operations will be defined as the
residual. Thus

lqdyj---dzf(%v)– (dZJ@(w) (86)
.

Ordinarily the residual R is zero, since the order of inte-
gration for a double integral is usually immaterial. In the
manipulation of singular integrals and singular integral
transforms, however, a nonwmishing residual often exists.
The evaluation of the residual can be accomplished in the
following manner. Let the point al, blbe an inherent singu-
larity in the area S’. Then the residual from such a point is

Setting et+a,=x and Cq +bl=y, one can write

rs‘,d~ 1 dq IQ ~’j(e~+a,, eq+b,) (87)*— –1

Hence the necessary condition for the e.xistmce of a residual
is the occurrence of an inherent singularity in the area of
integration over which the double integration is performed.
The total residual is the sum of the residualsfrom each inher-
ent singularity in the area involved.

THE NULL TRANSFORM

Deflnition,—The integral operat.or
J

~ H(A, y) dy is said

to be a null transform of order n to the function K(J, y) in
the interval 13 if

where x, x rind,of course, y are on L3.--
Examples,—The operator

(88)

is a null transform of order zero Lo the function

II(X, y) = 1/,ij=--

in the interval z <ys k, ‘1’bus, (em equation (18)),

f

A dy _.
‘ (s9)

The opcmtor
. s ~’(y—z) (h—y)s

.—

k a nulI transform of order zero to the function K(r, y)=
I/(y–x) in the interval ~<ys 1. ThUS

J

I dy
=0, k<x<l (90)

A(y– T)~’(1–@(A-y)

FinalIy, it can be shown from cqua.tion (90) thnt

where a and b are constants, is a null inmsform of or(lw cmu
to the function 2Y(2,y)= I/(y–r) in tho int(’rval a<y<L.

THE INVERSION OF SINGULAR INTEGRAL EQUATIONS BY
MEANS OF NULL TRANSFORMS

Consider an integral equation of the first kind

w(y)=
,S

L,g(x}K(r, @ d.r (92)

such that the kernel K(r, y) tends to infinity as z ripproarltcs
y and let the point X=V lic in ~1. Equation (92) i~, by
definition, a singular integral cquat ion of the firs~ kind.
Apply LOboth sides of this equation the inhgral (ransform

J
~H(h, y) dy so that

Suppose thrit the area LI+ ~ of the double inlvgral is
bounded by a simple closed curvo having the propmLy tbtiI
any line”parallel to the r or y axis crosses its Loundtirl” fit
most twice. For such i-mmea, it is alwwys possible to writr
the reversed form of tlN douhl~ integml in equation (93) m

(94)

where G can be a function of r.and }, and 1.4can be a func~io~l
only of x.

Subtracting expression (94) from tho doubk! intrgra] in
equation (93), one finds
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H
, =4dz @/ g(z)H(A1 y)K(x, y)+l?(k) (95)

m-here l?(k) is, by defmitio~ the residual. Hence, equation
(93) can be rewritten m the form

s k
!P(y)H(x, y)dy=

JrJxm Jyg(x)m, y)K(r, y)+ll(k) (96)

One can now show that if IZ(A, y).K@, y) contains an
inherent singdarity at the point x=y=k, equation (96) is
the inversion to equation (92) when II(L y) is a null trrqs-
form of order one or zero to the kernel K (z, y] in the interval
h.

First, it is necessary to relate l?(k) to g(k). BY the defini-
tion given as equation (87), R(k) can be writ-ten “

s
‘ d@&(&k)K(eC+~ &+k)H~ wH$-R(N= Ro(?+S:ldv _,

SS

1

dg :ldd~g(d+w(eg+x, ●q+h)H(k, Eq+k) (97)
-L

where Ro(k) is the sum of the”remaining residuaIs (if there
are any) from the other inherent singularities that might-
e-sistin the area Ll +L2. This reduces to

R(x)= R.(x) +g@)ll*(A) (98)
vihere

“ss‘d: :,dqt~K(~&+k, ~+x)H(x, eq+x) (99)
-1

If inherent singularities other than the one at x=y=~ exist
in LL+l& they must be at a point on the line z=y. The
residual at such a point say x=y=a., would be the product
of g (a) and l?O*(a), the difference between the two appro-
priate doubIe integrals. Hence, I?O(L)cannot contain g(l).

Ko-iv, if
J

~H(h, y) dy is a nti transform of zero order,

equation (96) becomes

which is an inversion of equation (92). Further, if

J
=3H(X,y)dy

is n IIUU transform of the first order, so that

J
=,H(A, y) K(.r, @@=IXN

equation (96) becomes

(loo)

If ~! is independent of k this already is an inversion of equa-
tion (92). Howe~er, if L4 contains h then, after clivicling
through by d(k) and. taking the derivative with respect to
k, a fit-order differential equation in g(k) results. This is
considered to be an inversion.

THE INVERSION OF SOME PARTICULAR SINGULAR
INTEGRAL EQUATIONS

ABEL’SIXEEGRAL EQUATIOX

Consider the special form of Abel’s integmd equation

J
‘g(r,)dx, a<y

w(y) = —
a Jy-x

Iti has been shomn (see equation (89)) that

(102)

. .

is a null transform of order zero to the kernal l~v~~ in
the i.nterd z SY SK Hence, apply~g tie tra~orm

‘ dy

“f . (~–y)w
-.

to both sides of equation (102), reversing the order of inte-
gration, and noting that

-f&Jd+ dy r 1 +R(k)=lt(h)
. ~y- ~ @_ y)w

(103)
[eaclsone to the result

f
L w(y)dy

(&y)3/2=E@) (104)
.

The only inherent singularity that appears in the area of
integration occurs at. the point z= y= k. The residual is
obtained by integrating o~er the shaded area in figure 5 and
fhding the limit as ● goes to zero.

a

a

L

v

/

FIG?Zi 6.—EegIon ofMcgrutionforeqUdOU (l@.
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Thus

and, since the second double integral is zero, the
mations e@h—x and CT= h—y reduce this to

Finally, in the limit as e goes to zero,

Substitute equation (105b) into equation (104)

(105a)

transfor-

(105b)

and the
inversion of the integral equation (102) can be written

By applying the definition of the finite part, one can rewrite
equation (106) in the alternative form

(107)

which is the form of the inversion usually presented..

THE AIBFOIL EQUATION

The study of the singular integraI equation known as the
airfoil equation is closely associated with the study of bound-
ary-value problems related to Laplace’s equation in two
dimensions, These boundary conditions are sometimes
given aIong a straight line as is the case, for example, in the
linearized study of two-dimensiomd subsonic wings. If the
boundary conditions are given along a suitably prescribed
curve, the curve can, by application of complex variable
concepts, be mapped onto a straight line. For example, the
Joukowski transformation maps a circle in one plane onto
a straight line in another and in both pkmes the governing
formula is the two-dimensional form of Laplace’s equation.
The solution to such boundary-value problems can be reduced
to the inversion of the following singular integral equation:

sbg(x)dx
W(Y)== =~~a<y<b (108)

where a and b are constants.
It has been shown (see equation (91]) that

is a null transform of order one to the kernel 1/(y—z) in the
intervrd a S ys b. Applying this transform to equation
(108), and using the definition of the residual, one obtains

[

.
bw(l/)4(~—w-~) ~v=

.U h–g

——.. . . . . . . . . . . .. .

which reduces to the form

J
b@/)W ‘!/)(Y-a)

h–y J
dy=x bg(x)dx+ft(~) (100)

a a

Agaiq_ the only inherent singularity in the area of in-
tegration is at the point x= g= X. Evaluating the residual
according to equation (87), one finds

and since

this becomes

–’#g(A)~~(b – X)(A–(Z) (iii) -

By the combination of equation (110) with (109), tlm inver-
sion to the airfoil integral equation (108) thus bccomcs

gm= . _-——.—

It is apparent that the inversion to equation (108) provided
by equation (111) is not unique (because of the e.xistenc!cof

J

b

the term g(z) dx which can be thought of as an rirbilrary

constant). dHence, in the application of equation (108) to
physical boundary-value problems it is not sutlicient tc
specify the value of w along the y axis; some additional con-
dition must also be supplied. Examples of such additional
conditions in the study of aerodynamic proldems arc the
specification of closure in the study of twodimensional sec-
tions and the assumption of the Kutta condition along the
trailing alge of two-dimensional lifting surfaces.

THESUPERSONICDOUBLETEQUATION

The general concepts of the method just applied to the
solution of single-integral equations with a singular kernel
can also be used to invert double-integral equations with
singular-kernels. Success in solving th=e mom complicated
forms depends again on the discovery of an appropria~c
integral transform-in this case a double integral transform—
and the usefulness of these operators depends, in turn, cm
both the structure of their integrand and, what is just as
important, the space (now fourdimeneional) of integration.
As it turns out, however, inversions can be ob~ained in many
cases that are of importance in the study of supersonic
aerod~amic problems.

Case l—Supersonic leading edge.—Consider the equation
that givH the vertical induced velocity in the piano of tho
W@ in. term. of the pertwbation velocity potential on the
upper surface of a lifting surface in a supersonic free stream,
equation (82),
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–MO
WW2, %2)=- H Ah, SJ h &

[(r2–@(s,-sJ]’/’
(112)

To,M

The mea r(r2,i32)represents the area within the forecone
from the point r2,s, at which the vertical induced vdoci~
is be~~ measured. The details of the solution to equation
(112) will now be presented for two different types of bound-
aries to the area r (rz,sa), that is, from an aerodynamic
standpoint, for two d.ifikent types of wing pkm forms.

First consider the case when T=TO is an area such as the
one shown in @e 6. The two IinesTl=rz and sI=8z, which
represent the traces of the Mach foreconea from the point
rz, 82,form two bounds of the area while the third is given
by the wing leading edge, the equation for which may be
written as either sl=jO(rJ or ~l=jO*(sJ.

1Vo

- Yi
.’ .

,“
.’

L ‘L&ing edge

%
(a]

(b]

(a)r,,u,plane.
(b) n,s, plane.

FIOtfESZ&—Regfon of!ntegratfanfor~g tith sqmmufc129dhlgedge-

In the present case, it is _aasumed,furthermore, that s,=~,(r,)
is a continuous monotonic function with a negative slope, or,
physically, that the wing has a supersonic type leading
edge.6

The kernel of equation (112) is formed by the prgduct of
two functions, one independent of rl and rz md the other
independent of 81 and S2. It follows, therefore, that if an
integral operator is used t-hat contains the”product of two
linear funct.ions of S*md T2 to the – 1/2 power, there exists
the possibdity of obta!ning a null transform of order zero
according to the equdit.y given as equation (18). One can

.shovr, in fact, that the operator

: Eup2rsonioand snbsonfaedgeshave the proxy W the nmmal compcmmt ofthek22-
5tre0m-ieIomy f2mpersomand Slbsdc, resmctfvaly.

u drtds~

J(7’-TJ(S-SJ=% Js(-hdsi
To(r, s; rl, 82)

(113)

row,@ ro (r, 8) ..-—

is a mdl tmmsform of order zero to the right-hand side of ---
equation ‘(112) where 7.(T, s) is the same mea that appears
in the integrfd equation.

If the tmmsform given by equation (113) is applied to -
equation (112) the res@5ng expression is

-.

Consider next the right-hand side of this equation but
with the T2,Szintegds taken tit. Then by definition of
the residual

‘wbds’ff ‘“(”’’s’~ds’- = ---T Afo ro(r, s; r2, s~i-O (T2, S2; n, %)
~dr, s) T*(W al)

_2fj3 U H iirAdsZ - + .
TM; . %(ru s~ drldsl - ro(r,s; r2,sJro8(r2,s2;Tl,s .

[r,(r, s)+r,(n. x)]

R(r, s) (115) ““’”

‘iThen the integration is made fit with respect to ~z and
82, the mea of integration for these two variables can be . l__~
visualized with the aid of figure 7. In such a case the
points Tl, SI and ~, s are fised and the area is simply the
one which lies in, the forecone from the point. r, .s and in
the a.ftercone horn the point- ~1, sI. This is represented
by the shaded area in the figure. It is apparent from a
study of figure 7 that, -when the edge sz=~o(rJ is a mono-
tonic function as previowdy detid, the r~ and s~ {ntegrals “”
are alwuys taken M.teen the limits rl and r and ~1 and S1
ras~ecticely. Hence, according to equation (18) the inte-

/

l“”
I’#

FI@UREi.—k of Integration far fixed rI, w ,, 8; eqmtfon 010.

~=.:
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~n’alterm on the ~ight-hand side of eqtmtion (115) vanishes
rmd equation (114) becomes

Jr‘“~o&8z=.R(r,”8)
,

ro(r, 8)

(116)

The compIetc inversion of the integral equation can now
be renlized if an expression for ~(r,s) can be obtained in
terms of Ip.(r, 8). The evaluation of this residual term
folIows along lines quite similar to those used in calctiat.
ing the residual for the special form of Abel’s integral equa-
tion given previously. ?Sow, however, them is no longer
a single inherent singularity; rather, the lines ~1= r~= r and
sI= ~a=s are densely covered with them. Fmt consider
an integration made over the region close to the line sI=
8z=ri (i. c., the. sum of the areas a and b shown in fig. 8).

1
(r,; r,)

FIGURE &—Region of Inkg’ration for ovaluatlon of mddmd,equation(116).

Make the substitutions SI=s– w, and sI= s– ma and t.a?-w
the limit as e goes to zero. There results for the portion
of the residual due to the inherent singularities li’a~~(r,8)
along the line .s1=s2=s the equation c
Ra~Jr, s)=

9U03,S) .(117)
(u,– a2)’1’(rl–r,~f’J- .

Tliis becomes, after integrating with respect to a, ancl a~
(which can bc done immediately since the limits of the r,
integral do not now contain rZ and, fllrt~l~’r~since ~herl~m
plane contain9 no inherent singularity}

t The that term cmthe right-handrddecderp3tfou (116)wntributm notblng to the reeldual
elnee it alwage eontahteemfntegral emdvaknt to that in eqwttion(IS)snd,thwefore,fs
identkdysero. Tid8 same phenorwnon 81s0appmred In the study of the resfdualeppenr.
ing in the Inverelon of AM’s Integral rquatlon. (See the development of equation (KM).)

It is ‘now proposed to reverse the order of intograiion of
the clouble integral in equation (118), But tk’ r,, rz pluno
contains an inherent singulmity at the point rz= rl = r. By
definition of the residual from this singularity as //’(r,s), it
follows that

R’(r, ~)=l?’(r,s)

since the integral term is zero by the equality ht. hus bem
used repeatedly. ‘The evaltmtion of n’ (r,s} follows the idrn-
tical line of argument used in obtaining equtition (105b) from
(105~). Hence, setting r,=r–cP2 and r,=;–cP,, and Iutting
ego to zero, one finds

RJr, s)= R’(r, s)=

The part of the residunl in equation (116) centrilmlwl by
the inhercllt.singularityies in th’ arms a and b in figure 8 is,

therefore,
—TM/

2fi
pu(r, s). A similarr~hwlationshows tluit Ihe

singularityirsin the areasc+ b give the snmrresult; nml, finally,
–r.lf:

a calcuht ion for the ar(’a b itself rdsoyields —-2f9 4, 0.

The vrtluc of Ii’ in eqwition (116) is obtain( d I}y wnhining
the rcsuItsfor the various mcas. Hence,

— Zrafo*R= Ra~b+&c-ltb=T M, ~) (120)

Comhuing th resuIt expressed by th last.equation willl
equation (116), one can finally write for tlw invweirm of the
integral equation (112), when ~= TO,tho exproesion

Case 2—Combined subsonic and supersonic leading
edgeso-C70nsidm the equation

vihere 71(r~,SJ is the more complicatd Rrm shown ill figIIrc 9.

Again tl~elines r,=r2 and s,=#2, wljch ar(’ the traces of [k
forecone from the point rz, 82, form two bounds of th arw.
The remaining two boundaries arc formal by LII[:curnw
81=j.(rl) (or in the invefw sense rl =J*(.sI)) and sl=jl(rl}
(or r,=j,*(sJ) whcmj. has the same definition it hd in (Iw
stu{ly of Case 1, that is, a monotonic curve with a nvgfl[iw
slope. ‘rk curves, =jl (r,) is nlso a monotonic function, but
with a positive slope. For convcnienw t]w origin is pl~lre[l
at the point of intwscction of tht.j. ml j’ curves.



INI?EGRALS .AXD 3XTlilGRAL EQUATIONS IN LJMIARIZED

b

%

+ =i
(22)

●

si =fii(ri) -.,

t
[b)ri

(a)11,illmm
~) (n,a Plane.

FojcB~9.—R@on of fn&g@fonforwingwfthcombinedsubmnfu&d wpermnkHI@%

~ physical interpretation of the area r’ with regard to prob-
lems in supersonic wing theo~ is simple. The lines rI=r2
and sI=sZ, as has been mentioned, me the traces of the Mach
forecone from the point T2,s*. The j. and fl curves are the
edges of the wing plan form, the line ~l=~O{rJ representing a
supersonic leading edge’ and the line sl=~l (TJ representing a
subsonic leading edge.

Proceeding exactly as in Case 1, consicler the operator

and find whether or not it ia a null transform of zero order to
the kerneI of equation (122), that is, whether or not the
equality

[S H drzdsz
PZ& %wldsl

[(T,–rJ(s2–8J]’/’,l(rJ(8(8 GJ
=0

Ttru,;)+74-2.s?)]
(123)

is sattied. A study of figure (10) shows that.it is not, since
for a point rl, SIlocated above the line rZ=~,* (s), a portion of
the a~integral becomes

$fcrzl dsz
s (s2–.s1)3/2,”s-s,

WING THEORY 1287
.-=

/ I @, s)

1
F*

FIGURE10.—&ea of fntegratfonfor fixed n, ~ r, q ecLadfon (El).

which is not zero unkss ~1@J ia identics31y equal to s. For
the same reason, portiona of the T2integral will not-vanish for
the point rl, .slso located.

However, the construction of a null transform of zero order _ -
can be accomplished by studying the above failure. Thus,
if the 82integration were carried between the limits SIands,
for every Iocation of the points rl, SI and r, s, the op&rator
Jh(r, S,@frJ(s-sJ “/2d#, would be a nfl transform of zero.
order regardless of the choice of h. The area of integration
producing such a tramform ia simply the one shown in figure
11(a), an area bounded by the hues sZ=S, rz=i-, s2=--lo(T2) and
rz=fA* (.s) where rZ=~Z*(s) ia any line such that j2*(s) ~l*(s).
This area shall be designated as r2(~,.s). When such a trans-
form is applied and the S*integration performed fit, it is
apparent horn figure 11(b) that the limits of the S2integd

FIGURElL–Lntw@fon regfonsforWUMons(MO.

.
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me always SIands, even when the point.T1,S1is Iota-tedabme
the he 7’a=jI*(8). Hence, if the residuaII?(r, s) is defined by
the reIation

the second term on the left-hand side is zero, and equation
(1~~) -form ~~

The evahatiog of the residual in equation (124b) folIows
the same pattern used in Case 1. Thus, after isolating the
line of inherent singularities, li’(~,s) is given”by the expression

B(r, .9)=

which becomes (after set@ sZ=S—-Z and 81=s—eul and
letting ego to zero)

It is now appareut thati after setting f,”(s) =f,”(s) and
h=l~l~ - equation (125) can be evaluated exactiy as
equation (118) was evaluated, so that for these vehws of
~z”andh, R (r,s) =–lM,irpti(r, s). Substituting into equation
(124b), one finds for the inversion of equation (122) the result

—1
SS

WU(r2, s2) dr~d~t
q. (r, 8) =—

mkfo. . ~,{,,,) \’(T—T2) (S—8~

where rais the shaded area in figure 12.
Case 3-Mixed bomdary conditions.-bother

(126)

wry im-
portant kind of integraI,eq~tion which can be edwd dkctIy
by the proper choice of h in equation (1~5) is the “mixed”
type probIem, the boundary vakes of which we ilhstrated
ihfigure 13. In this particular problem w=is known over the
portiorr of the r, s pIme bounded by the curves s=~o(r] and
s=f2(r) (the curve s=fz(r) is a monototic ~ction fib a

positive sIope just Iike s=fl(r)), while o-rer another portion,
bounded by the curms 8=~2(r) and s=f,(r) the quantity

“u(r,’)=%(:+%)’~’r,’) ti~’en “@&coH=w”&h
aerodynamic application to the specification of tha vertical
induced veIocity over the former region and theloading over
the Iatter.) It is also assumed that w.(r, s) is continuous
across the line s=j~(r) and that ~(r, s) vanishes along the
line 8=f1(r), that is, W~1*(8), 8)=0.

Taking for the due of h the e~qnwssion

‘==2(2%+:)

.
.

COMMITTEEFOR &0NAuT10f3

Iv-

\‘ E*

\vil

‘g=fa’’ae

\ Vo
x.

“(b)

(a) & # pkme.
(b) r, 8plane.

Fm CRE13.-Xixed boundary COIWZIOnS.
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‘ and for the area of integration the iegion
@e n(a), one Ends from equation (125)
can be written

3XTEGR.AL EQUATIONS IN LINEKSIZED WING THEORY 1289

T2(r, 8) @oTvn in
that the residutd

The partiaI deri-rative can be taken through the second
integral sign (fit integrating by parts in the case of b/twz)
since ~(fI*(s), s) =0, so that

Part of the boundary condition is that U.U(r, ~) ia given
over the region indicated in figure 1.3. Hence, the residuaI
can be vzritten

The latter of these two terms ia again just Mm the one given
in equation (118) so its”evacuation is immediate. The tit
term may be simplified by reversing the order of integration.
(There is no residual since the point r=r,=r, ia not included
in the area of integration.) Finally, R becomes

J

f2*(4)
R=2p%b-j2*(8)

Z&(?l, S)okl
— 2t@uU(r,s)

fl+ (s) (r—rJ1/f2*(8)-rl

a.n’dthe inversion of thismised t~e probIem can be written .

b equation which does not impose the condition that.
uu(r, 8) be continuous across the line s=j?(r) can readiIy be
developed by using, the operator h= l/~~. This Ieads
directl~ to the result

(128)

THE SUPERSONIC SOUBCE EQUATIOX

The nti transforms to the supersonic doublet equation
vi-me constructed by appIying an integral operator having
an integrand which, when combined viith the kerneI, would
produce the integral

f

dx

[x– b) “~ia- z

and having an area which, when combined -with that of the
iutegraI equation and traversed in reverse order, would pro-

duce the limits a and b on the integral. H one now co~id~ _.
the supersonic source equation (see equation (79))

— 1*
Js

w (rl, SJ dr1d81
p. (rz, sJ=— (129)

irMo
7(r*,@3i(r2

—~~ (8z—&)

it ia apparent that the null tra.naformwilI differ from the
transform used for the supersonic doubIet equa~on only in
t-heexponent of t-heintregrand. Thus, for the area ro(rl, SJ

(see fig. 6) the operator .-

is a null transform of order zero to equation (129), and its
application yields the solution

–-MO
w.(r, s) ==

H
%(% SZ)drd%

[(%TJ (s–sJ]’fi
(130)

To(r, 8)
-—

For the area rl(r,. SJ (see @ 9), the operator

.-

is a nuU transform of order zero. Ita application, under
conditions likeithose specified in the development of equation
(126), yields the inversion

Equation (130) gives ~ertical velocity in terms of a prescribed __
surface potential for a wing with a supersonic leading edge, ...
while equation (131) doea me same for a W@ with a leading .
edge which is partly subsonic and partI-j-supe~onic. Tlie
transform with the area T8(see fig. 12) can also be used to
obtain inversions to equation (129) under conditions such as
those imposed in t-he development ‘of equations (127)
and (128).

DHCUSSION OF NV’EESIOX OF SUPERSONK SOURCE AND DOUBLET
EQUATIONS PBOM A PEXSIC,M. BASIS

Each of the above qxampka used to illustrate the applica-
tion of the ndl transform method to the inversion of double
integral equations represents the solution of a class of super-
sonic probIema. However, most of these adutions are WSII
Imown and were origirdy obtained by reasoning that was
suggested by kmodedge of the physical structure of the
problem. For emmple, the reciprocal @ation betmeen the
source and doublet integral equations

W. (il, .s,)d’L dsl- qu (r,s) =~J-
Ssu. o r“ ~}(r—~J(S—81)

1 032)

-MO
w. (r, s)==

f J
1 YU h SL)dr~ds~ - -

m J [(T–r~ (S–SJ]W
.

when considered with respect to the mea To,has a simple
physicaI meaning. By definition TOia an area bounded by
the Mach forecone and a supersomc leading edge. From a
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plqwical standpoint. it is clear that the flow field at a.point,
affected only by a supersonic edge, On the upper surface of a
wing cannot be influenced by the shape of any part of the
lower surface of the wing. In d.her words, the upper and
lower surfaces are noninteracting. Htice, the upper surface
of a wing does not “know” whether it is the upper surfaco of
a lifting plate that is supporting loading and has no thickness,
or the upper surface of a wing section that is symmetrical
above and below. the z= Oplane. Thus the source equation
must be the inversion to the doublet equation and vice versa,
md from a physical point of view the reciprocal “relation
given by equation (132) is obvious.

The solution to wing problems involving one supersonic
and one subsonic edge, giving an area Of integration for the
integral equations corresponding to the area T1in the pre-
vious discussion, was originally obtained by Evvard (see
reference 7). It should be noted here that the inversions to
the source and doublet equations (equations (126) and (131))
considered with respect to the area r], no longer form recip-
rocal relations.

Finally, the examples presentecLherti-with regard to the
mixed type of problem have rdsobeen del~ved (see references
8 and 9) using more or lees physical arguments. The solu-
tions to these mixed type problems form the basis of a lift
cancellation technique that provides a very useful extension
of Evvard’s original discovery.

ITERATIVE~ETHODSOF SOLUTION

Other types ofpkm forms.—The question that nnturdy
arises from a practical viewpoinb is how the source and
doublet equations can be inverted when the area rl is not of
the two special kinds discussed, or, in other words, when the
wing plan forms are complicated by having more than one
monotonic (in the r, s plane) subsonic edge. The answer
must be that, unless null transforms with respect to these
new integration areas can be discovered, the methods dis-
cussed here will not give the direct inversion to the problem.
Several possibilities remain, however, so that even when the
null transform cannot be found the concepts of the residual,
inherent singularity, etc., can be used to simplify, if not
solve, the supersonic source and doublet integral equations.

IVith respect to the lift cancellation techniques already
mentioned, references 8 and 9 outline these methods in
considerable detail and show how they can be applied to find
the loading on wings in regions affected by two or more
subsonic edges.

Regions influenced by multiple reflections of Mach
waves.—A more direct example of how some of the concepts
presented heretofore can be applied, even when the null
transform is not available, is given by considering the fol-
lowing problem: Find the loading at the point (x, y) on the
flat wing tip shown in figure 14. If the r, s coordinate sys-
tem is used and the operator

(where tho area of integration is region 4 in fig. 14 (b)) “is
applied to the doublet equfition (eqtiation (82)), two results

Y1

.’

+x,
(a)

Wfhg--a”

I..-..
si=#@l)-----” -

(Ieading ea’ge) IN

t r, \

can bc ant.icipatecl: One, since the loading off the wiug is
zero, the residualwill be— 2@uti(r#); and the other, the trans-
formed integral with the 82 (in the nottition of equalion
(124a)) integration performed first.,is zero for all points rl,.9i
lying in regions 2 and 4 in figure 14. Thw.e resuits follow
directly from the discussion presented above in case 3 of
the similarintegralt.ransform applied to the doublet cqumtion
(equation (122)) with the rl area. M’ithout proceeding
f,urther, therefore, it is apparent. that the original intqqwl
equation has been reduced to: (1), an integral of tlw knoswl
function.wti over region 4 in figure 14; and (2), an integral of
the unknown fui.wtionp. over the regions 1 and 3 in ftbwre14.

(It can be shown that the inte~tion over region 3 will also
vanish.) But regions 1 and 3 are ahead of the hlrwh forecone
from (rls). Heni:e, by repeating the above process for regions
farther and farther up (toward the origin) the wing, the
problem .~ush eventuttlly be reduced to one of finding the
solution for an area such as ~1;in other words, to a prohlent
involving only two edges, one subscmic FInd mm supersonic.
Since the latter problem is solvcd, the one co~idercd in this
section iii-also (theoretically nt Ieast) solved.

!l!riangidarplan form wfth subsonic leading edges.,---As a
final exemplification of the preceding concepts, consider the
problem of finding the loading on a flat t.rirtnguhwwing lly-



~“TEGRALS AND 127TEGRAL EQUATIOXS IN LINEM.RISED TVIXG THEORY 1291

ing at u supersonic speed but with both led.ing edges sub-
sonic (see fig. 15). To the supersonic doublet equation
(equation (82)) apply the integral transform

where the areo of integration is region 4 in figure 15(b).
There results

–J J
–1 r

dr, =d8, ‘u ‘r” ‘J =
ZMQ .@ rtfi ~@-rJ (s— SJ

*J21LFW o

% h, d drld%

T,(r% ad
~i(r—rJ (8—sJ [(r2—rJ (sz—8J]3~2

(133)

where 7<(r2,SJ is the original area of integration as shown in
figure la(a). Since u?Uis a constant equal to –I”OQ-,the left-
hand side of equation (133) becomes

IVe
u.-.

.

(a)

\v.

1+mp

(134)

w
s~-vl! r r=-s/p

.?:

. -- ;------- .-. J--

3;
=.- s==.ur=

4:
;

St- r/p. ;
--------------

[:,s]

.
r=-psz~”

.

where p= (1+mP)/(1 —w@?),m be~m the slope of the leading
edge in the x,y phme. Inve&@ the order of integration
and evaluating the resichml, one finds thut equation (133)
can be written

(135) -

where T6is the area shown as region 1 in fia~ 15(b).
Equation (135) is not, of course, theiinversion of the super-

sonic doublet equation for the triangular flat pIate- In fact.,
it simpIy represents the transformation of the doublet equa-
tion, which is a singular integral equation of the first kind,
to a singgar integnd equation of the second kind. How-
ever, this Iatter form has the advantage thtit it is readily
susceptible to the process of iteration. Thus, in the par-
ticular case of equation (135), it-is possible to take as a. fit
appro.sinmt.ionto qu the value

w (r, s) =—:gl[i (136)

and, as the second, the.value

[

1 J $ A-) ‘r’d*’
1–7 .5

m
(r–r,) (s–8J (’$– 1

(137)

and so on. By means of the substitutions

s+rppl+srrl
‘rl= l+pl+ml

‘r+rp L+s#UL

}

(138)

- ‘*1= l+pl+aL

the double integral in the equation for YZcan be evaluated.
Thus, after some manipulation, one Ends7

=2+E,-(1 –k,qK*] –+ (1 39)

where KI ~d l?l are complete elliptic integrals of the tit
and second kinds, respectively, tit-h moduli kl= l/p. Lking
t-heidentity

tNotice that theareaofintegratfo% L e. thearear$,k boundedby the lineswldob represent
the fourrooia to themdfmfsfn the irdegmnd. l“otkealso tfrmttherdue M tbtidude infegrd
faMqwdenf ofr and8 anddependsordy cmthe pacametefk the slope of the Ieadfng edges
in fhe r,aplorm.
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2E,-(l-k,qK,=&- --=- (140)

where 2? has the modulus k =~s, and returning to
the Cartesian coordinate system, one finds for the valuw
Of’ m and (OQ.. . . .,

“’=.;%i9)@- (141)

[
4 ‘oa- ~m%’-y’ 2–”:(1~’’p)] (1 42)

*= T(l+?nfi)

The process of iteration could be continued, and p. would
be expressed as an infinite series of terms containing the
parameter m.fl However, since the terms in the series
expansion are all independent of z and y, or, in the character-
istic system, of r and s, it is more efficient to write ~ in the
form

‘~~’,’)=’w)=’’o:$:-”(’43’
and determine the magnitude of .4 by substituting this
expression into equation (135). There resuIts the equality

*=4Voa A 4TE ~
(X–P l+Tn/r )

from which it can be shown that

A=% (1 +m/3) (144)

Finally, therefore, the velocity potential on the upper
surface of a triangular wing with subsonic Ieading edges
can be written

%(x, Y)=* 4==7 (145)

and the familiar expression for the loading coefficient (see,
e. g., reference 10)follows immediately

------ (146)

The purpose of examining this .part.icular problem was
not, of course, to obtain the solution pr=ented as equation
(145) or (146), since that solution is by now quite wel~
known. Rather, the purpose was to show how the super-
sonic doublet equation could be transformed to a singular-
integrd equation of the second kind and how this equation
COUM, in ttin, be solved by applying an iteration process.
Such a method has far more general applications than are
given here and is by .UOmeans Iimited to problems in which
the flow is conical or quasi-conical.

PART IV—APPLICATIONS

DIRECT PROBLEMS

l’he following three exampIes will serve to illustrate how
the formulas derived in Part I can be used to solve the direct
problems outlined in Part II’. The appIicatious wiU be
limited to supersonic flow problems.

RECTANGULAR WING WITH BICONVEX SECTION

Consider a rectangular, nonlifting wing with a chordwise
section given everywhere by the cquat ion

k=(z) y)=: (C–2Z) (147)

where A. is the slope of the upper surface, c is the chord, and
t is the maximum thickness. The equation for tho pressure
on the surface of such a wing will change form in each of tho
four regions indicated in figure 16. In region 1 the pressure
is the same as for a two-dimensional wing with the same SCC,
tion, and the remaining regionacontsin the t,hrewlimcnsionaI -
or tip effects.

M

I
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-.. ~. *-. ,.- V

. . .
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..”

-.= 1 . .,-. . . . . , .-
. . .. .-C -.. .-

1
3 -.. ,, .

.- ‘.. z
., . . -...

-. .-
4 ‘..

- .“ ‘.

+
s s

12 -1

‘iewk=“Sec7’ion

b“+
FIGc!aE16.—Rect8ngularnonilffhg wing with biconvcx scctiom

The equation for pressure coefficient on the wing can Lo
determined from either equation (76a) or (76b). Equation
(76s), foremrnple, becomes for region 1

From the result given as equation (17), it is apparent that
the integral term is zero and the pressurecoefficient itlregion
1 of figure 16 is simpIy

4t
C“=F “-2X)

(148)

One can “easily show that cquatioi~ (7t3b) yields the smnc
result.

The evaluation of pressure coefficient in rcgiol~s2,3, tmd 4
can be carried out in a similar fashion. A slightly difl’mctlt
approach can be used, however, that is useful in obtuii~ing
results in this ‘and sirniIarproblems. Consi(lm a wing with
regions a~ shown in figure 17. Rcgiona a, b, mid c include
all the area ahead of tlw line xl=x. It is obvious thut ro$is
a pure red number for all q, yl inside region b (i. e., insido



INTEGRALS AND INTEGRAL EQUATIONS IN LINEARIZED WING moRY
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FmmL 17.—Re#oneA fn dbeussfonctr~

the forecone from z, ~) and a pure imaginary number for all
x1,WIinside regions a and c. Further, it is clear from physical
considerations that h is always real on the wing plan form.
Hence, M the symbol ri is introduced to represent the com-
bined area in regions a, b, and c., the area r in equations (76]

Range of z – l>x

1293”

can be replaced by the area r~and the real part.of t-heresult
ti be the correct answer for the pressure coeficient.Y

By means of this concept, pressure coefficient for all
points on the wing cm be writ-tenin the form

or, alternatively,
*

C,(z, y)– #–+t R.P
‘J:*d~’fd’’(’-2z:J-’J “50)

where the letters R. P. indicate that the real part of the inte-
gral ,is to be taken. Evduat.ing, for exampIe, the former
equation one finds .. . .

2(y-s) arc cosh ——
L&/)

C—2X

1
/3(L9+Y) 2@/+$ UC ~o~ &— arc Cos——

P x
(151)

The real and imaginary parts of the arc cosine and arc cosh
terms in t-hisequation ara given in the following table for
alI real vfdues of the mgument.

[~-ddetihbe~- ~tiemttitin-w~k imsglnargwitMn
tksa regionsalso.. However,regimfmustnotbefnchdedsincetherethetermrd fs sgh
red Thederlnitfonofn ado@edfsnsnalIythemk umvenknt. .-

1 –L<x<l
—.—

I<z .—-.------. —— “---.e

~~ =

r (it
aro Gosh z= —

- F ‘“:
.

Z++arc cash (—z)
---

I c1
i arc cos z aro cosh z . ...-’.

—:.<-..
.-

~dt”
L

.... . . .
arc cos x. —_ r—i am Cosh (—3)

-...

~1–p
am Cosz iarccmhz “ ,,.-...-

. —---—-_-------

.f
dt

arc sill z= — –~+i arc cosh (–z)
o cr

aro sin z ‘—; am cosh Z
‘2 . --:

. ,:-.>

Equation (151) contains, at once, the entire schtion to the
wing shown in figure 16. Thus, in region 1 none of the
terms in the braces has a real-part. Hence, equation (148)
foIIows immediately. k region 3 the solution can be
written

‘p=#W-2z@cc0s%Y-

2@(y+s)”arc cosh —
liz+s) }

The solution m region 2 follows from the one given in region
3 by symmetry; and, fkdy, the expression for the pressure
coefficient in region 4 is given by equation (151) wherein
every term is real.

DRAG EEVEESIRILITY THEOREM

The well-known theorem that the drag of a symmetrical
sharp-edged, nonliftiug body is the same in forward and

reversed flight at the same speed (see references 11 and 12~’ ._.
cm be derived in another way using the methods described
in t-heabove sections.

By definitio~ drag coefficient is .

where S is the’area of the wing. Using the real part concept
outlined in the discussion of the preceding example, one can
write

The equation for the drag coefficient in reversed tiht can be
obtained by:

1. Rephming the area Ttby rfi where rf+r{~=il
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2. ,Rotating the rcsialsystem in the.xy plane through 1805
3. Revwsing the signs of L (z, y) and ~~(zl, yJ

There results

(7D,=~Js SHl
A&r, y)&~y R.P. ~y, ‘(?x,

(2,–2)X.(2!,, ys)

Tii roa
s

(1 54)

Suhtrnct.ing equfition (154) from (153).gives

(155)

Since the symbols xl, y,, x, y are dummy variables of integra-
tion, the last term in equntion (155) can be written

But rcviksing the operators J~y, Jdq and ~dy~{z (aIways
preserving the same order within the opera.tion) and sub-
tracting gives

J’y’D’’J’’fdz’A”(’’?)”(’zJ=J=
fdyJd’Jdy’ti’’’’=(’’?:”(zl’y’)

since the residualis zero. Hence, the second term in equation
(155) is the same expressionas the finste-sceptfor the sign and

C.–c.r=o
or

c.= CD, (156)

as was to be shown.

LIFT ON WINGS WITH SUPERSONICEDGES

The lift on any wing can be written. .

L
SS

Ap—= ~ dydx
!2 H

orcover,

J

T.E.Ap ~lz_4*.E—
L.E.~ Vo

(157)

where T. E. and L. E. denote the trailing and leading edges,
respectively, and w..E. iS the VfdUeof the velocity poten-
tial on the upper surface of the wing at the trailing edge.

Consider now a wing with all edges supemonic and a
straight tmfling edge not nec~mily at right angles to the
free-stream direction (see fig. 18). Let the wing be a plate
having arbitrary twistiand cnmber. Then, for a point on
the wing, the velocity potential can be written in the x, y
coordinate system on the basis of equation (121) m

t
x$

FIGt%E 18.–Wing withsupcrwnlcedgrs,

where rt, as in tk previous ~~anlplesl is the arcn on [he

v’ing ahead of the line Xl=x. If the cqualiOn of tk trftilillg

edge is

rl=a+yl tan A

vr~erc a...is some constant, the Talue of tho pO(cIlt iitl at [hc

trniling edge cnn be }vrittcn

where the area of integration is [he wldc wil!g plan form
since the trailing eclge of the wing is supersonic and (he
aftercone from the point at which ~. ~. is being cwnluntcd
cannot intersect the wing. The Lotullift .L on tlw wing mn,
therefore, be written in the fwm

(lGo)

The area S does nob depend on y, so the y intcgmt ion ran
be made fimt and, since the edges arc rdl supmsonir, the
interval SI< y S 82must always conttiin the roots Xl rmd ?tq
of the expression under the rndical. Hence

J
X* dy

h ,@2-tnn’A) (AI-y) (y–k~ “-

and since

then
L –4 JY‘‘~x$.”y!~z[dv,—= ‘(161)
q y’B’–tan*A ~ 1’o

Defining the average angle of atttick Z by the cxprcssio]l

(162)

,,
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“” one can vcrite equation (161] in the alternative form
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(163)

It is interest~~ to notice ~hat the lift. coefhient for t-he

ming just studied is the same as that- for a hvo-dimensional

flat phite flying at an a.ngleof a.ttacli ~ into a free stream,

the speed of which is given by the component of docity

normal to the traiIing edge of the three-dimensional vi-ing.

This result has been derived preciously in reference 13.

INVERSE PROBLEMS

LOW-.4SPECLRATIOEEOTASGULAEWING

It vrilI be noted in the summary of results for the funda-

mental formulas applica.ble to supersonic flovr (equations

(75) through (82)) that the results are presented for both

ordti of integration in t-he x, y coordinate s~tem. Yi%ile

the analysis of direct problems can be earned out in all

cases if, say, the xl integration is shays performed tit, it

may sometimes be more corrrenient to perform the VI inte-

-_gratiomfit. Im the anal-ysis of.imreme -.pmblemsj ho~-emr,

it is much more important that freedom exists in the choice

of the first variable of integration. A good e.xmnple of this

is protided by the follovring approximate derivation af the

loading on a slender (in the strearmrise sense) rectangular

flat plate.

By considering t-he spec.id case Then the ~ chord is

long compared to the span, one can obtain an approximate

solution for the slender fiat pkte by assurn@ the loading

coefficient has the form

(164)

wheres is the semispan (see fig. 19) andj(z/~) is an unknown
function. The function f is to be determined by the con-
dition that WUis constant along the centerline of the wing.
If the solution to such a probIem is to be determined by use
of the doublet or vortex equation, it-is obvioudy important
that. the tit integration be made with respect to Y1 since
the variation of Ap/q with VIis known.

Since Ap[q is given, let the -iortex equation he used and
let equation (164) be placed into (77a). For y=O (and for
tidded simplicity for 9= 1) the mea ~ is shown by the shaded
area in f@re 19 and the result~r equation can be written
for z>s

for O<x<s

t-”-i

t
=1

FmimF.19.—Irkegmtimrareafotslender rectmguhr ~.

Introduce the notation

—

and these equations become,s since a= —wJ T“O,
for 0<6<1 -.

for 1<4

Equations (165) are integral equations of the second &nd
(more specfictiy, Yolterra’s integral equations of t-hesecond . _
kind) and the kernels are regular and bounded everywhere
in the interval of integration. Hence, their solution can be ,
determined readily by numericaI processes. This has been
done and the resuh in terms of the loading coei%cient on -

( )(Ap
the center line —

~ @o=4f(3)
qa o from equation (164)

isshown in figure 20.
,For the purpose of comparison, the esact, linearized mdue

also is shown in the interval where it is known, together - -
with another appro.simate solution obtained by Stevmrtson
(reference 14) usiq a dii7erentapproach. Near the leadiqg
edge, where the comparison with the exact results can be

made, the agreemenk between the exact and approximate
solutions obtained herein ti be poorest because in this
region the spmnrise mriat.ion detites most radically from
the value assumedin the construction of the integral equation. ._

* The symbok B and Efndfcafe elliptic fntegrds, See the table of~Ms. ,
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CONICAL AND QUA51-CONICAL FLOW

Equation (108) and its solution, equation (111), occur
repeatedly in the study of aerodynamics. In fact,, equation
(108) is often referred to as the airfoil equation since it
plays a dominant role in the development of linearized,
two-dimensional, subsonic wing theory, It appears also in
the study of slender wings (reference 15) or winga flying at
near sonic speeds (reference 16) since the boundary condi-
tions lead again to the required inversion of the same type
of integral relationship. In the present section, problems
arising in supersonic conical or quasi-conical flow fields ti
be reduced also to this basic equation.

Several methods exist whereby the solution to conical flow
problems can be determined. The one to be studied here ia
based on the construction of conicrd elements extending
radially from the apex of the field and incIined at M angle
arc tan m to the x axis (see fig. 21(a)). In order to obtain
such an element it is sufhcient to subtract two plan forma
of prescribed loading or thickness, each plan form having one
side directed aIong the x axis while the other sides are inclined
at angles that dtier only infinitesimally.

Consider first the construction of a quasi-conical,’” radial,
lifting element that cmries a load given by the expression

@=@/.
!I

(166)

where C is a constant. The upmsh field of a triangular
plan form such as the one shown in figure 21(b) can be found
by integrating elementary horseshoe vortices over the appro-
priate area r. Thus, using equation (77b), performing an
integration, and maJiingthe substitutions

one finds the result

10AmnlmlfleId fe defined ee one fn which the fndncad velodtkq are ametmt along raye
througha point. In theaubsnanentfmMys4eW eorreawnds to the caw when g-o. QnOef-
ooniwlfieldsme thosein wbfcb K le greatm thunr.ero.

1
v,

m
v

,.,
.“

..”,.,.,.
,.”

.“

.’~
,.”
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-,..
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.“
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‘.
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(a) Llftlngelement.
(bJ‘Rkmsukuwing.

FIGCitE21.-Conekuetimi of eonied clemonk

Equationa (168) can be written in the functiomd notation

w, =j((?, q)

It follows that if the analysis were repeated for a wing with
a slightly larger apex angle, there vioukl htive resuIted

-. -- w.=j(f3+Ae, q)

Subtracting these two expressions for WMgives the increment
in vertical induced velocity due tc a quasi-conical element

Carrying out the operation
making the substitution

ql=o ~:,

indicated by cqutition (169),



and distributing these

IN’T31GRALS AND INTEGRAL EQUATIONS IN LINWRMED

eIements between 191and 60 with
weight C(6), one can flnrdkj-show that the equation

(170)

applies vrhere

The function EI(8, q) has a simpIe pole at 8=7 and the
integraI expression for w. is therefore evaluated as a Cauchy
principal part.

The boundary condition to be satisfied by equation (170)
is that @c=/x’ T-Ois a given polynomial of degree K in the
mriabIe q. Hence, equation (170) is a singular integral
equation with a pole of the same order as that in the airfoiI
equation. In its present form the equation appeam some-
what formidable, but it can be simplified considerably “by a
simple operation. Since flru’,jxc~’ois a.pol-ynornid of d~ee
K, it folio.ws that the (K+ 1)- derivative of the right-hand
member of equation (170) must nmish. Thus, using the
concept of the generalized principal part, one has

(171)

which, by definition can be put-in the form

The function WC(8) is therefore to be found through the
inversion of the integd equation

(172)

But equation (172) is preciseIy the airfoil equation and its
sohdion is given by equation (111}. Hence,

w? (e)=
1

#-j(do–t9)(6J– 8J

so that, finally,

.S

,o~@.’(eo-T) (,–O
A– =

o—q dq
el

1

(173)

Lip 0 F

~ K .+1 b,~—. —
!7 -o~~eo-t?)(8-&)

(174)

where the coefEoients hf are functions of the constants 00and
61but not-of 0. These coefficients must be determined from
known conditions about the surface geometry.

Consider the un-yamed (i. e., t?,= –do). triangukw wing
shown in figure 22. If the loading is to be determined on a
flat plate with such a pkn form &wJzcVO becomes –~
and equation (174) reduces to
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‘.. r- X=/e&l
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‘~-y=mr
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‘.
‘.

— fD4%-
----- wIc/re=-ax
—.–~ufl~.-age~8

1.
Ap

P—qa

—

(a) V7ingplful forra
(b) Load dhtrfbdon at r-l.

FIQmiEZ2.-Laaddlstribuffonon trkngukwlngs-yith~chled twist.

(175)

By symmetry, the coefficient bl in equation (175) must be

zero and bOcan be evaluated by placing equation (175) into

(170) and integrating. There results the solution for the

pressure coefficient shown in figure 22 where a=a and already

presented as equation. (146)..

One can goon to shovi that if, as for a *pitching about -

the apex at a rate a, (see reference 18),

p’lo. –+Q, ~=1w.= —Qx, —=—
Z=vo Vo

(170)

then —

AP _ 4ZQ 2t?&i$

T— V&>@=@
[ 1

(177)

~2tE
-.

where the complete eUipticintegrals K and E have a modulus
equaI to k = ~~. Further, if

—. .—

Ap8hx2
G)

—=— —
L?@

eo4

{

[2%?K–(1+6W!Z]+[– (3–80?K+(4–21901El ff

}“[–560%2+86’:(1 +803KE+(480’–19 W+4)E’I w–~ _ “:

(179)
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where k=-Jl —dog(= ~’1 —mz fiz) is the- rnocIulus of the com-

plete ellipi.ic inie~ali. Th~e solutions are all shown in
figure 22, where in one case a=Q/VO and in the other a=
–h//92.

If the function fwwti/x’lZ is discontinuous”but a polynomial
in each interval of continuity, the solution given as equation
(173) still applies. For example, consider the. case when
K= O rind wJ T’. is a constant that changes sign in crow-
ing the z axis. (See fig. 23.) For simplicity let h= –L90,then
by equation (173)

‘?&
–=+
v,

K= O

-fl~
8

(180)

FIGUM 23.-Loading 0?2dlfhrentidly deflectedtdangUkplate.

Again, as in the de~elopment of equation (175),

(181)

Now, however, the solution must exhibit odd symmetry and
the constant bais zero. The constant 6, can be e~ahlated by
substituting equation (18 1) into equation (170). There
r~ults, finallv,.- ,

Ap 8&9*e—.
!2 /

@\oo2-g2”
(182)

TKMsolution is shoun graphically in figure 23.
The methods described above can also be applied to prob-

lems involviI@ wings with thicknessand without lift. In these
cases one constructs a radial elemenl emanating from the
origin and possessing a quasi-conical thickness distribution

.-

(183)

The derivtition of the induced pressure fkld ~~ssocititcd wi[h

the element follows closely the analysis in the lifting case.
Fmt a trianguhw plan form is considered with mm si[?oIMP.
ing the slope m and the other pmtilM to the frcc%trcanl
direction. The thickness is assumed to have tho form giwm
by equation (183) so that the pressure cocfficicmt cnt~be
obtained from the equation

Make the same notational changes as in the analysis of [1](*
Iifting case; construct the element by taking the partial de-
rivative with respect to t?;and, findIy, distribute weighted
elementi~er the wing plan form by making C a function of
o and integrating with respect to o between the limits 0,
and 00._There results

““”()g‘ ~ =–?(!!+ q
Xp J

80W(@?,(t?, ~)dd (185)
;/9 81

sn t(pt)’dt. ) tl<8<80
-1 (L9-t)’+* #’i=F

The boundary conditions require (B/Z)’CP to be a poly-
nomial of degree Kin T. If the (E+ l)’t dcrivativo of cqun-
t.ion (185) is set uqual to zero, the relation

results. The function C (t?)satisfies the same integral equa-
tion that arose in the lifting case.,and the solution can there- .
fore be written immediately in the form

07h=wc(o= ; ‘ ‘1
bier .— (187j

-0 ~@o- 8)(6—eJ

Again the coefficients b, must be determined from lmowu
conditions about the surface geometry.

Consider first the case when the pressure is constunt over
an unyawed trianguhr plan form

(7,= C,o,

and (b] being zero by symmetry)

w in figure 24. Thus

K=() (188)

(1s9)

Evaluating the constant 60 by substituting equation (189)
into (185), it can be shorn thtit the surftice ordhmte is

(1–Oo?c,o

‘u=2Yng(K-E) “(loo)

where the modulus of K and E is k=l~. Tti “rcsu[ty
which is the equation of an ellipticrtl section, is shown in
figure 24.
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Finally, consider an nruya-ivedtriangular wing for which
the pressure mmiesIinemclyin the x direction. For such a
case

O,=(O..)% K= 1 (191) ‘-”

I
and (61iignin being zero by s-ym.metry)

Au
dz_ ._x bo+bzd~
dx /9 l’O:–P -. (192) -

from -ivhichit immediately folIows by integration

2

+2A7P ‘be+2p2”m2bdarcCo&y

(193)

PIacing equation (192) into (185) and integrating, one can

eventuality sliovr .

cPo= ~2(12:do32 { bo[z~ –E(3– e/)]+ i5,[(do’+do3K-2 e/lq )

(194)

lt is immedititel~- Epparent” that the viing shape required to

support a linear pressure gradient in the x direction is not

unique, that there are, in ftiet, an infhke number, of shapes

that wiJl induce the same p~ure distribution. (The con-

verse, homever, is not true. That is, a given shape has only

one possible clistribution, of pressure.)

Squire (reference 17) conaiderecl the thickness distribution

that is obtained by negkcting the UC hyperbolic function in

equation (193). His result corresponds to the case -ivhen b.
is —2&n2bZand can be written specMcalIy

(195a)

vihere btJ& can be relatecl to the thickness chord ratio of the

vcing and the apex angle. Figure 24 show-a ho-iv equation

(194) can be used to obtain se-red trianguk ring shapes

all having the same liuear pressure distribution. (It is

interesting to note that no combination of b. and b~efits

that w-ill give a rerd viing shape tith zero pressure coefficient .

since the resuhting negati~e ordinates would require the

surface to cross it9elf.]

i4MES AERONAUTICAL LABORATORY,

h’xrco~u ADVISORY COMMITTEE FOR &EROXAUTICS, ‘-

~~OFFETT FIELD, ~ALIF.,~Ct.16, 1950.



1300 EKEPORT 1054—NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

REFERENCES
1. Lomax, Harvard, and Heaslet, hfax. A.: The Application of

Green’s Theorem to the Solution of Boundary-Value Problems
in Linearized Supersonic Wing Theory. NACA Rep. 061,
1960. (FormerlyNACATN 1767.)

2. Heaslet,NlaxA., Lomax,Harva@ and Jones,ArthurL.: Vol-
terra’sSolutionof the Wave Equationas Appliedto Thre&
DimensiorialSupersonicAirfoil Problems. NACA Rep. 889,
1947. (I?ormerlyNACATN 1412.)

3. Hadainar~ Jacques: Lectureson Cautihy’sProblemin Linear
PartialDifferentialEquations. Yale UniversityPress, lfew
Haven,Corn., 1923.

4. Robinson,A.: OnSourceandVortexDistributionsina Linearized
Theory of Steady Supersonic Flow. College of Aeronautic,
CrantieI~ England. Rep. 9, Oct. 1947.

5. Ribner, Herbert S.: Some Conical and Quaei-Conical Flows in
Linearized Supersonic-Wing Theory. NACA TN 2147, 1950.

6. Hedet, Max. A., and Lomax, HarvardI’The Use of Saurce-Sink
and DoubIet Distributions Exten&d to the SoIution of Bound-

. ary-Value Problems in Supersonic Flow. NACA Rep. 000,
1948. (Formerly NACA TN 1515.)

7. Evvard, John C.: Use of Source Distributions For Evaluating
Theoretical Aerodynamics of Thin Finite Wings at Supersonic
Speeds. NACA Rep. 95I, 1950.

8. Goodman, Theodore R.: The Lift Distr~%ution on Conical and
Non-Conical Flow Ragions on”Thii-IFiiiite Wings in a Supersonic
Stream. Jour. Aero. Sci., VO1.16, no. 6, June 1949, pp. 365-274.

9. Mirels, Harold Lift-Cancellation ~echnique in Linearized Super-
sonic-Wing Theory. NACA TN 2145, 1950.

10. Stewart, H. J.: The Lift of a Delta Wing at Supersonic SprcdR.
Quarterly of Applied hfathematim, vol. IV, no. 2, Oct. 1046,
pp. 2462-64.

11. Ton KLrm4n, Theodore: Supersonic Aerodynamics-Principles and
Applications. Jour. Inst. Aero. &i., vol. 14, no. 7, JuIy 1047,
pp. 873-409.

12, Hayes, Wallace D.: Linearized Supersonic Flow. North American
Aviation, Inc., Rep. AL-222, June 18, 1947.

13. Lage~rom, Pace A., and Van Dyke, M. l).: General ConAdera-
tions About Planar and Non-Planar Lifting Systems. Doug-
las Aircraft Company, Inc., Rep. No. SM-13432, June 1949.

14. Stewartson, K.: Supersonic I?low Over an Inclined Wing of Zero
Aspect Ratio. Proc. Carob. Phil. Sot., VOI.46, part 2, AImil
1950, pp. 307-316.

15. Jones, Robert T.: Properties of Low-Aspect-Hatio Poiutcd Win~
at Speeds Below and Above the Speed of Sound. NACA Rep.
835, 1946. (Formerly NACA TX 1032.)

16. Heaslet, Xfas. A.,~omax, Harvard, and Spreitm, John R.: I,incar-
ized Compressible-Flow Theory For Sonic Flight SIWeds. NACA
Rep; 956,1050. (FormerlyNACA TN 1824.)

17. Squire, H. B.: A Theory of the Flovi Over a Particular lVing Itl a
Supersonic Stream. R. A. E. Rep. No. Acre. 2184, 13riiish,
Feb. 1947.

18. Brown, Clinton E. and Adams, Mac C.: Damping in Pitch and
RoU”of Triangular TVings at Supersonic Speeds. NACA Rep. -
892, 1948. (l?ormerly NACA TN 1566.)


