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DEVELOPMENT OF A COMPUTER CODE FOR CALCULATING THE

STEADY SUPER/HYPERSONIC INVISCID FLOW AROUND

REAL CONFIGURATIONS

VOLUME 1 - COMPUTATIONAL TECHNIQUE

by

F. Marconi, M.D. Salas and L.S. Yaeger

GRUMMAN AEROSAPCE CORPORATION

SUMMARY

A numerical procedure has been developed to compute the inviscid super/

hypersonic flow field about complex vehicle geometries accurately and effi-

ciently. A second-order accurate finite difference scheme is used to integrate

the three-dimensional Euler equations in regions of continuous flow, while all

shock waves are computed as discontinuities via the Rankine-Hugoniot jump

conditions. Conformal mappings are used to develop a computational grid. The

effects of blunt nose entropy layers are computed in detail. Real gas effects

for equilibrium air are included using curve fits of Mollier charts.

Typical calculated results for shuttle orbiter, hypersonic transport and

supersonic aircraft configurations are included to demonstrate the usefulness

of this tool.

A computer code utilizing this computational procedure is described in

Volume II of this report.
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NOMENCLATURE

SYMBOLS

A,B,C,D,E, F Coefficients of the mappings

a Speed of sound

) Radius of the body in the mapped space

B(Y,z) Radius of the body in the mapped space as a function

of the computational coordinates

c Specific heat at constant pressure

c Specific heat at constant volume

c(9,p) Radius of a wing type shock in the mapped space

C Axial force coefficient (along F.R.L.)

C Drag coefficient

Ĉ (Y,Z) C/Y'Z) = Vl(Y'Z) 2 ̂  l - LC + 1

and C^YjZ) = B(Y,Z)

C Lift coefficientj_i

C Moment coefficientM

C Normal force coefficient (normal to F.R.L.)

C (Y,Z) Radius of £th shock (wing type) in the mapped space
•L

h(r,.2) 6 = h(r,p) defines a cross flow shock in the mapped

space

, hp, h~ Metric coefficients (Fig. 26)

H Stagnation or total enthalpy

H.(X,Z) 8 = H.(X,Z) on cross flow type surface i (i = 1, 6 =

-IT/2 & i = IC+1, 0 = IT/2) in the mapped space

i,j,k Cartesian unit vectors (Fig. h)

I,J,K Unit vectors associated with intrinsic shock coordinate

system

ix



NOMENCLATURE (Continued)

SYMBOLS

1C Number of circumferential regions in cross section

Im Imaginary part

LC Total number of radial regions in cross section

M Mach number or mesh point counter in circumferential

direction (Fig. 11)

MC(i) Total number of mesh points in circumferential region

i (Fig. 11)

MM Mesh point counter in circumferential regions (Fig. 11)

N Mesh point counter in radial direction (Fig. ll)

NC(£) Total number of mesh points in radial region t

(Fig. 11)

NN Mesh point counter in radial regions (Fig. 11)

p Pressure (non-dimensionalized with respect to p )

p
r,9,p Coordinates in the mapped space

Re Real part

T',Q',Z' Coordinates used in geometry interrogation (Fig. 5)

R^ ' Nose radius

s Arc length (surface distance)

S Entropy (non-dimensionalized with respect to cVoo)

S =

T Temperature (non-dimensionalized with respect to T )
00

u3v,w Velocity components in the x,y,z direction (non-dimen-
sionalized with respect to>/P /p 7 (Fig. k)

Uf'v,™ Intrinsic velocity components



NOMENCLATURE (Continued)

SYMBOLS

x,y,z

a

Y

r

c
\
A

SUBSCRIPTS

00

t
i

T

HL

SL

Intermediate mapped spaces (Eq. 1, Fig. 10)

Cartesian coordinates (left-handed system, non-

dimensional i zed with respect to an arbitrary length t

Coordinates in the computational space

Angle of attack

Ratio of specific heats, c /cp' v
o
a /T, effective y

Mapped space (Eq. 1 & Fig. 10)

Characteristic slope

Wing sweep angle

Intrinsic, local, coordinate system

Streamline coordinates (Fig. 26)

Density (non-dimensionalized with respect to poo)

p/p effective temperature

Circumferential angle (Fig. 36)

Gas constant

Free stream conditions

Counter for wing type shocks, £ = 1,2,3, . . .

Counter for crossflow type shocks, i = 1,2,3, • • •

Tangent to a surface

Quantities on the entropy.layer surface

Sea level conditions; all quantities with this sub-

script are non-dimensionalized with respect to their

free-stream values



NOMENCLATURE (Continued)

SUBSCRIPTS

fr Frozen state

EQ, Equilibrium state

Partial derivatives with respect to independent variables are denoted by subscripts.

SUPERSCRIPTS

Unit vector

Predicted value or intrinsic variable

Dimensional quantity (except c (6,2) and C (Y,Z).
jo

Xll



INTRODUCTION

The prediction of the steady three-dimensional inviscid flow fields about

a vehicle is of great interest to the designer. Most data necessary to develop

a high-speed vehicle is presently obtained from wind tunnel tests which are ex-

pensive, slow and sometimes inadequate. The goal of this work was to create a

computer code to be used in the development of supersonic vehicle configurations.

This code should therefore meet three basic requirements. The first is appli-

cability. In order to obtain the required accuracy for the problem of computing

the flow over a wide variety of geometries, for a wide range of Mach numbers and

angles of attack, the Euler-equations must be solved (Fig. l). Small perturba-

tion techniques yield accurate results only for the flow over slender bodies

flying at low supersonic Mach numbers and small angles of attack, while

Newtonian theory yields useful results only for large Mach numbers. Neither of

these theories can yield all the details of the flow even in their range of

applicability.

The second requirement is efficiency. The calculation of the flow field

over a complete vehicle should take no longer than two hours on the C.D.C. 6600

computer. This requirement can only be met by reducing the number of mesh

points needed to obtain an accurate solution and keeping the program logic as

simple as possible. Computational techniques that "capture" the shocks in the

flov field require too many mesh points to obtain acceptable results (ref. 1).

The three-dimensional method of characteristics is rejected because of its

extreme complexity in program logic.

The last requirement is that the code should be a user-oriented tool. This

is in contrast to codes that are tailor-made for a particular configuration

(ref. 2) and codes that must be constantly monitored Ttto nurse the solution

through critical regions" (ref. 3). The designer should only have to specify

the vehicle geometry and flight conditions to obtain reliable results in a

directly usable form (e.g., aerodynamic 'Coefficients, boundary layer inputs,

etc.). The vehicle geometry should be input via techniques that, on the one

hand, are of the same advanced level as those used in the best incompressible,

supersonic and hypersonic three dimensional tools, and, on the other hand,



possess longitudinal and. cross sectional continuity needed when solving partial

differential equations.

Although the general "background of the numerics involved in solving this

problem were available at the beginning of this study, no computer tool for

actually carrying out accurate flow field calculations past realistic con-'

figurations existed.

The only limitation inherent in the present formulation of this problem

is that the Mach number in the marching direction (an axis running from the

nose of the vehicle to its tail, figure 2) must be supersonic at every point in

the flow field. This limitation implies that, first, the free stream Mach

number must be "sufficiently" supersonic and, second, that the geometry of the

vehicle is such that there are no imbedded regions of subsonic flow. The region

around the nose of- blunt nose vehicles can be computed using other existing com-

putational techniques (e.g., ref. U) and once the flow becomes supersonic the

present technique can be applied. In general this limitation means that'com-

pressions in the flow field that cause subsonic Mach numbers cannot be handled.

The•general numerical scheme used to solve this problem has been developed by

Moretti (refs. '5-8). ' It follows a number of basic guidelines:

» A second order accurate finite difference marching technique (satisfying

the C.F.L. stability condition) is used to numerically integrate the

governing partial differential equations

e All shock waves.in the flow field are followed and the Rankine-Hugoniot

conditions are satisfied across them .

9 The intersection of two shocks of the same family is computed explicitly

a Conformal mappings are used to develop a computational grid

« The body boundary condition is satisfied by recasting the equations

according to the concept of characteristics

« The edge of the entropy layer on blunt nose vehicles is followed from

its origin and special devices are used to form derivatives across it

-2-



• Real gas effects are included (equilibrium air) when appropriate,

by using curve fits of Mollier charts

9 Sharp leading edge wings are computed using a local two-dimensional

solution

A computer code has been developed which uses these basic ideas. It is

described in detail in Volume II of this report. This code has been used

extensively to compute external flow fields and has been found to yield

accurate results for a wide variety of complex vehicles (Fig. 2) flying at a

wide range of supersonic Mach numbers (M ~ 2 -» 26) and angles of attack
GO

(a ~ 1 30°). Computed results are presented in this report to demonstrate

and validate this computational procedure.

35

30

25

20

FLOW
DEFLECTION
ANGLE,0

15

10

s
LINEAR THEORY

s ,
11 13 15

Figure 1. - Regions of applicability of inviscid flow theories
(for the surface pressure on a sharp cone).
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HYPERSONIC TRANSPORT

SUPERSONIC AIRCRAFT

Figure 2= - Topical configurations.



PROBLEM DEFINITION

The problem of computing the external flow about a vehicle flying at

supersonic speeds is completely defined by the vehicle geometry and the free

stream Mach number, flow direction and ratio of specific heats (y) for an ideal

gas (NOTE: throughout this report an ideal gas will be assumed; modifications

of the computational technique for a real gas will be discussed in a later

section).

In order to apply the present computational procedure, the free stream

Mach number must be supersonic. It will be assumed first that the geometry has

a plane of symmetry and second that the free stream velocity vector lies in this

plane of symmetry. These two assumptions are not necessary but the present

techniques have noff yet been applied to asymmetric bodies or bodies at yaw.

In order to apply the boundary condition at the vehicle surface (i.e.,

vanishing of the normal velocity) the surface and all its first derivatives

must be defined. Therefore an analytic definition of the geometry is needed,

with continuous first derivatives. The second derivatives of the body geometry

appear explicitly in the present formulation of the problem but continuity is

not necessary. The flow field over geometries with discontinuous slopes, such

as cone-cylinder combinations with sharp expansion corners or geometries with

discontinuous wing-fuselage roots and/or canopy-fuselage connections (Fig. 3)

have been computed with no special treatment. In these cases computational

points on either side of the discontinuity have well defined slopes (the slope

at the corner itself is defined by the limit from one side or the other) ,

therefore as far as the computation is concerned there is a smooth transition

from one point to the next. Although major difficulties have not been en-

countered in these cases, best results are obtained for vehicles on which these

discontinuities are eliminated by fairings. Special treatment of other slope

discontinuities such as sharp leading edge wings will be discussed later.

Since a marching computational technique is employed (i.e., given data on

a plane z = constant, (Fig. k), data on a plane z + h z is computed) a geometry

definition that specifies cross secti'ons in the x,y plane (Fig. 5) at each

value of 'L is required.



In order to define the body geometry as a single valued function of two

variables, a polar coordinate system is used with the pole at a point in each

cross section that will specify the body radius as a single valued function of

the polar angle. Of course, the pole of this coordinate system is a function of

the axial coordinate. A geometry package that fits all these requirements has

been developed by A. Vachris and L. Yaeger (ref. 9).

The main effort in this study is to develop a computational technique that

marches downstream from an initial data plane (z = constant, Fig. k} in which

all the dependent variables are known and the component of the velocity in the

z direction (w) is supersonic.

For the flow near the nose of the vehicle there are efficient methods

available so that the initial data can be easily computed. When the nose of

the vehicle is blunt (Fig. Ua) the three-dimensional transonic blunt-body solu-

tion developed by Moretti (ref. 4) can be used. If the nose is sharp (Fig.Ab)

a region very close to the tip is conical. Input data from the flow field

solution over sharp conical bodies with attached shocks are readily available

(refs. 10 and ll). However, a method, has been described by Moretti and Pandolfi

(ref. 8) for computing sharp conical solutions. With this technique, a blunt

cone solution will asymptote to the sharp cone solution, as the computation

proceeds downstream. So that for sharp nose bodies, the calculation is started

with a blunt nose solution and continued downstream until the sharp cone solu-

tion is reached and then the calculation is restarted with this sharp-nose

solution.

EXPANSION CORNER

//////////////////

WING-BODY
JUNCTION

FUSELAGE-
- CANOPY
CONNECTION

Figure 3- - Geometries with sharp corners.
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SYMMETRY
PLANE

'STARTING (INITIAL DATA) PLANE

x, u, i
BLUNT NOSE VEHICLE

SHARP NOSE VEHICLE

(a)

z, w, k

(b)

Figure U. - Coordinate system definition.
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Figure 5- QUICK geometi-y cross-section definition.
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COMPUTATIONAL FRAME

The definition of a computational grid is one of the most crucial steps

in the building of a numerical technique. The idea of using conformal mappings

to develop the computational mesh in this problem was originally proposed by

Moretti (ref. 5).

Three coordinate systems or spaces will be referred to: the physical

space (x,y,z), a mapped space (r,9,̂ ), and a computational space (X,Y,Z);

figure 6. The physical coordinate system is Cartesian and defines the three

velocity components that are computed. The governing equations are written

in the physical space and then all derivatives are transformed into the com-

putational space where the mesh points are at uniform intervals AX, A-% A^.

Each 2= constant plane in the mapped space is obtained by conformally

mapping the geometry cross sections in the physical space into near circles,

in the mapped space. So that the region bounded by the body and the bow shock

becomes a ring in the mapped space. The corresponding computational space is

obtained by normalizing the radial distance between body and shock (X-direction)

and the circumferential distance between the two symmetry planes (Y-direction)

(Fig. 7). The mapped space serves three purposes: first, it distributes the body

mesh points (which are evenly spaced in the computational plane) so that the

necessary resolution is obtained in regions of large curvature where truncation

'error may otherwise become too large. This is demonstrated in figures 7 and 8

where the mesh points are concentrated near the tips of the wing and the tail

in the physical space. Second, the mapping makes the body and bow shock posi-

tions single valued functions r = b(e,̂ ) and r = c(8,p) in the mapped plane.

Third, since shock waves imbedded in the flow field become mesh lines, the only

chance of success is that their traces in a mapped space are (for the cross flow

shocks) predominantly along lines 6 = constant and (for the wing-type shocks)

predominantly along lines r = constant. This enables one to define a number of

regions in the computational space when more than one shock exists in a cross

section. The dotted lines in figure 9 are extensions of shocks to complete the

boundaries of these regions. The points on either side of these portions of the

boundaries are allowed to pass information across the boundary. The require-

-9-



ments for such a surface are that they meet the shocks at the edge points

(Fig. 9) arid that they do not intersect each other if they are of the same

type. The cross flow surfaces (i.e., extensions of cress flow shocks) are

defined as Q = constant. The constant taken is the value of Q at the last

point on the shock. Since the wing-type shocks intersect each other, points

on their dividing surfaces are taken at the same percent of the distance be-

tween its two neighboring boundaries at its edge shock points, so that no

point on the dividing surface of a wing-type shock gets any closer to the two

adjacent boundaries of the shock than its edge shock points.

Now the transformation (r,0,p) -» (x,y,z) is considered. A series of

algebraic, invertible, conformal mappings have been developed which transform

a wide variety'of cross sections (Fig. 2) into near circles.

Let £ = re , W _ , ^ be intermediate spaces, and G = x + iy (Fig. 10).
-Lj^j ~>}^> ->j

S=re i 9 (a)

w = r -
1 " ' (i)
W = W_ + iE (c)

Wu= W3 + iA (e)

W5= W^ + D
2/(lrt̂ ) (f)

G = W5 + iC . (g)

These mappings give x = f (r,6, j), y = f (r,9,̂ ) while z* = £ completes the

definition of the transformation.

Each coefficient A,B,C,D,E and F is determined by placing the singularities of

the mappings inside the body so as to obtain a near circle in the £-plane.

Therefore these coefficients are functions of the axial .coordinate z. The

coefficients are determined by the geometry. These mappings can handle a wide

variety of vehicles with the coefficients defined as follows:

-10-



A = 0* . (a)

B = i(D3/5JO (b)

(O

" (yl"y

E = (3ia(W ) + Im(W9 )) /2 (e)
1 2k

F = (W. - i2 (f )

where w~ , W and W0
 are the positions of points 1, ̂  and 5 (Fig. 10) in

21 2U 25
the W? plane. These points are computed by inverting equations (l) as

follows, y^ = J(ŷ  - y)2 _ x^

and

(a)

G5 = iy5 (c)

and for K = I,h and 5

W = GK - iC (a)

W? - 4W W. + D2 = 0 (b)
K ?K K

W3 = W^ - 1A (c)

W0
3 - W, W? - B = 0 (d)

t—-ir O V *- V
I\ JV A.

The roots with the largest modulus is used in equations (*rt> and d).

* A = 0 for all applications thus far, A ̂  0 would give the mappings
even greater generality.

-11-



The derivatives A , B , etc., are obtained in a straight forward manner
Z Z

by differentiating equations (2-4) and are functions of x^ , x,. , y , y ,
/ «. \ Z Z Z Z*

and ŷ  (Fig, 10).
z

To obtain r,9 in terms of x,y(atp= z) all of the mappings must be in-

verted. This is a straightforward process that can be carried out using

equations (la) through (ig) (similar to the procedure used in equations (U)).

In order to transform the derivatives in the governing equations from the

physical space to the computational space the first and second derivatives of

all the transformations are needed. The derivatives r , r , 9 , and 9 can be

calculated as follows.

and CG

If C = u + iv, where u = rcos9 and v = rsin9, then

ux -

and from the Cauchy-Riemann conditions

u =-vy x

v = u .
y x •

thus

r = (uu + w )/r (a)
X •**• •*»•

r = (uu + vv )/r (b)y y y" (T)

6 = (uv - vu )/r (d)y y y '

-12-



For the 2-derivatives of the mappings the following results are obtained:"

^ = -Fp/C (a)

W2p = W12 + 1E2 (b)

wl*p = W3;
 + iAr> (d)

(8)

G — W + id (f\
D 52 9

x, = Re (G ) (g)
r ^

y = Im (G ) (h)
f »•

Where A^ = A , B9 = B etc., since z =pand z = 1. Now since r,0, p are
^ z ^- z _i

independent coordinates, it follows that ?" 3 ~ 69- °5 therefore

and 9^ = 0 x +9 y + 0 z=0

solving for r and 0 the following results are obtained
Z Z

rz = ~̂ "v y2 + rx X2^ ^a^
v tf ^

(9)
ez - -(e y + e x ) (b)^ y / x /

The second derivatives of this transformation needed for the body point

calculation are derived in Appendix A.

-13-



The singularities of these mappings are all inside the body so that the

mappings are never evaluated at singular points. It is not necessary that

the mappings be conformal but it has been found that conformal mappings give

the best results in terms of mesh point distribution. It is also not necessary

that r, 85 2 be orthogonal coordinates, in fact in general they are not.

These mappings (equations (l))use simple algebraic expressions and their

coefficients are defined explicitly so that transformation from one space to

another takes a minimum of time. Considerable work has been done to develop

conformal mappings that can map arbitrary cross sections into circles or near

circles (ref. 12). These generalized mappings offer a greater flexibility than

the mappings used herein but would require a large increase in computational

time.

With the mapped plane completely defined, the transformation between the

computational space and the mapped space (X,Y,Z) -» (r,0,p) is required. Con-

sider a cross section (Z = 2= constant) with multiple Shockwaves, e.g.,

(Fig. 9) bow shock, wing shock and tail shock plus two cross flow shocks. The

computational plane is divided into 1C regions in the Y direction, and LC

regions in the X direction, they are ordered as in figure 9« Thg body is

described by r = B(Y,Z) and a wing-type shock as r = C (Y,Z) for H = 1 -» LC
Jo

(H = LC being the bow shock). Similarly, the cross flow shocks are described

as 6 = H. (X,z) for i = 1 -» 1C + 1. (i = 1 is the bottom symmetry plane and

i = 1C + 1 is the top symmetry plane). These surfaces are shocks for some

range of X and Y and arbitrary (dividing) surfaces for other values of X

and Y as described previously.

Now define LC + 1 surfaces such that:

CI(Y,Z) = B(Y,Z)

°/Y'Z) = WY'Z) U= 2,3,... LC +1)

The transformation to the computational plane then can be written as:



x = r
Y = (0-H.)/(Hi+1 - IL) <b) (10)

z= ; (c)

The coordinates X,Y5Z are not orthogonal. The boundary C in the mapped
j&

plane becomes X = 0 in region H and Ĉ +1 becomes X = 1. Similarly, the 1C

regions in the Y-direction in the computational plane are bounded by

Y = 0 and Y = 1.

Inverting this transformation yields the result:

r = x(
6 = Y(Hi+1-H.) + H± ' (b) (11)

P = Z (c)

Again the derivatives of this transformation X ,X ,X_,Y ,Y and Y are& r' e' p' r' 6 p
needed.

First

r = (C - C ) X + C

JJ+1 £ Ji (b)

r, = (Cz - C ) X + Cz (C)

X

eY=(H.+1-H.)

i+l

- i (i)

-15-



The Jacobian of the transformation is defined as:

and thus

J ̂ a(r,9,2)
a(x,Y/z)

r T ~c
X Y 1Z

BX ey ez

X = 1r J
Y = 1
r J

X =

a(x,Y7z)

,Y,Z

ax,Y,z)

Y = I ra(r.Y.2)1
j |_S(X,Y;Z) J

a(r.e.x)
a(x,Y,z)

i a(r,e?Y
j a(x,Y,z

(a)

(b)

(d)

(e)

(f)

(13)

After some algebraic manipulations the above derivatives can be written

in the following form:

(a)+ ̂I'Y + DlCyl

Y = D^X
r 1 r

= I./ [A + YD2Ax - D2Hx.]

xe = Ve

(b)

(d)

(lU)

-16-



X = - [X6z + X6yD3 + C + C D ] (e)
y L x» ,0 _j

+ X 5 'Y - x, -1

Y = D + D. X (f)

where

6 =

6Y =

5Z =

A = Hi+1 - H. (d)

Az = 1^ - H^ (f) (15)

/ ' V A IT ^ / » " / \
- - ^ IAy ~ nv // A IgJ1 A K±

D0 = '

D^ - - (HX_ + YAX)/A

This transformation is a modification of the one used previously "by

Moretti to solve numerical problems, (e.g. see reference U) Singularities

occur when C = C . .. or H. = H. , n and when J = 0. The former occurs whena £ -*• i i 1 + 1
two shocks intersectj this matter will be discussed in the section on

"Treatment of Shocks". The latter case occurs when the mesh lines X = constant

and Y = constant become parallel in the physical plane. This can occur for

certain locations of cross flow shocks. However this problem can be overcome
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by either modifying the conformal mappings so that the cross section in the

mapped plane is "more circular" or using a cross flow shock type surface

(which acts like an extension to a cross flow shock) to control the shape of

the mesh lines.

All shocks are defined in the mapped plane as r = c(9,?) and 8 = h(r,p)

so that C(Y,Z) = c [e(X ,Y,Z),̂ ], H(X,Z)=h [r(X,Y ,Z),̂ ] (where X and Y
S S S S

are either 0 or l) and their derivatives C ,C ,PL. and H_ must be calculated.

The body is defined in the physical plane and an iterative procedure is

needed to describe the body as r = b(o,p) from which B(Y,Z) can be computed.

From the derivatives bn, b_, c., c_, lu and h the calculation of B , C , B ,
o "J. H y. J. r L

and C proceeds as follows.

Using the notation of equations (ll - 13) define

then

cx =ce[H(xs'z)

HX. = hr.

(16)

Where again X (the value of X at the shock C ) and Y (the value ofs A S
Y at the shock IL) are 0 or 1.

Z). ] + H z (X s ,Z) .

(IT)

C z(Y s ,Z) . (d)
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At the points X = X and Y - Y at a cross section Z these equations
S S

result in a set of simultaneous linear equations for JL(X ,Z) and CL(Y ,Z),
Zi S £i S

cs Ŷs (n, -n )-h, ]+c8ft L. s ^- ., ^ y.J ^,

rs(hr -nr.)-V

where as lUCx ,Z) can be computed from equations (l6). For all other points

equations (l6) are used to compute C (Y,Z) and IL(X,Z).

Now the computational plane and its boundaries are completely defined

so that for any mesh point (X,Y,Z) in the computational plane the corresponding

point (x,y,z) in the physical plane and all the necessary transformation de-

rivatives can be computed.
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•COMPUTATIONAL SPACE

: - f = Z

Figure 6. - Three coordinate systems/spaces used<
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Figure 7. - Body mesh point distribution.

PHYSICAL
SPACE

MAPPED
SPACE

Figure 8. - Grid lines (near the body).

-21-



BOW
SHOCK

TAIL
SHOCK

/ \ CROSS FLOW

WING
SHOCK

SHOCK OR BODY

DIVIDING SURFACE

(3,1)

(2,1)

L = 1

i
1

(3,2) 1 (3,3)

_l
i

(2,2)

r

(1,2)

(2,3)

(1,3)

X^

PHYSICAL
SPACE

MAPPED
SPACE

COMPUTATIONAL
SPACE

Figure 9- - Plane Z = Constant in the physical, mapped and
computational spaces.

GIVEN
CROSS SECTION [W4 SPACE

W5 SPACE

W1 SPACE

MAPPED
CROSS
SECTION

SPACE

Figure 10. - Series of mappings.
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COMPUTATION OF REGIONS OF CONTINUOUS FLOW

In the physical plane (x,y,z) the Euler equations are:

wP + yw = -(uP + vP + Yu + Yv ) (a)z z x y x y

wu = -(uu + vu + TP ) (b)z x y x

wv = -(uv + w + TP ) (c)
z x y y'

TP + ww = -(uw + vw ) (d)z z x y'

wS = -(uS + vS ) (e)z x y' ^

where T = T/T̂ , P = ln(p/p ), S = (S-S )/c and all velocities are non-
00 _ _ ''oo —*

dimensionalized with respect to POO/POO (the barred quantities are dimen-

sional), x = x/£, y = y/1, z = z/£ (Z is an arbitrary length),

The equation of state for an ideal gas becomes:

ln(T) = P (y-l) + S (20)
Y Y

The dependent variables are P, S and the Cartesian velocity components

u,v,w (Fig. 1+). Now transforming all derivatives to the computational plane

the following results are obtained.

fx = fXXx + fYYx + fZZx

fy = ^y + fYYy + Vy

f = f YX + f VY + f Z ( c )
z X z Y z Z z

where f is the vector (P,u,v,w,S) and
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X = X r + X fl + X 2 (a)x r x 6 x p^x

Xy = Vy + Vy + y
 (b) (22)

Similar expressions can be written for the Y and Z derivatives. The deriva-

tives of (X,Y,Z) with respect to (r,6,,2) and (r,9,2) with respect to (x,y,z) have

already been discussed in the previous section.

Combining equations (l9a) and (l9e) the following form of the Euler equa-

tions is obtained which are used in the present solution.

PZ = (aHPX+ al2UX+ai3V ̂V̂ lVV̂ lsV*!.̂
 (a)

b21PY+ b22UY}

' (23)
vz
W = -

SZ

where the coefficients appearing in equations (23) are defined in Appendix B.

At a data plane, Z = Z = constant, all the quantities on the right side of

equations (23) are known and therefore the derivative f_ can be computed and
Zj

used to predict the dependent variables at Z = Z + AZ.o

The step size AZ in the marching direction must satisfy the C.F.L. condi-

tion for stability (ref. 13). If \v, are the characteristic slopes in the
.X."'"

X,Z plane and A.Y+
 are the characteristic slopes in the Y, Z plane the

stability criterion is written as follows :

+ AZy+ = AY/\Y_
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Each of these quantities is evaluated for every mesh point at the station

Z = ZQ, and &Z is taken as 1Q% of the minimum of all of these &Z values.

A modified MacCormack, two-level, predictor-corrector finite-difference

scheme (ref. 1^) is used to integrate equations (23). It can be proven that

the MacCormack scheme is accurate to second order for a linear system of

equations. So that the truncation error is of the form.

ar
o -3

where & is a length in the physical plane. In regions where 3 f/d-t is large

the mappings tend to assure ^ -> 0 so that the truncation error remains small,

while keeping the total number of grid points to a minimum.

Equations (23) can be written in the following general form

fZ = [A^fX + WfY (25)

where as previously defined f is the vector (P,u,v,w,S) and [A] and [B] are

matrices of the coefficients of equations (23). With these equations the

MacCormack scheme proceeds as follows.

Level one :

f~(Z' ) = [A]f + [B]fv (all quantities evaluated at Z ) (a)
Zi O A I O

T = f(ZQ) + fz(Z0) AZ (? is the predicted value) (b)

Level two: . (26)

f_ = [A] fy [B]fv (all dependent variables evaluated with (c)
Lt ^ " A. JL

the predicted values and all independent

variables are evaluated at Z = Z + AZ)

f(Z0 + AZ) = (f + f(Z0) + fzAZ)/2 (d)

The fv derivatives are taken one sided in the positive X-direction inA

level one, the fy derivatives in the positive Y-direction. For level two

the direction of these derivatives is reversed.
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This procedure defines all the dependent variables at interior points

of the computational plane ( 1<M<WC(L) and l<MM<MC(l)); figure 11. The body

point calculation and the shock point calculation will be discussed later.

However, note here that all imbedded shock points have two mesh points

associated with them, one for the low pressure side and one for the high

pressure side, both having the same position in the physical plane (Fig. ll).

The low pressure side of all shocks are computed following the•MacCormack

scheme and taking X and Y derivatives into the low pressure region in both

levels. The low pressure side of the bow shock ((M = 'NC.(L), L - LC)) is-

defined by the given free stream conditions. ' -

The points on the symmetry planes (MM =1, 1=1 and MM - MC(l), I = 1C)

are computed using the same scheme and the symmetry conditions Py = v. = v =

S '= 0 and u = 0. 'The points on the internal boundaries that are not shock

points are also computed using the MacCormack scheme. In level one the points

MN=1 and MM=1 are computed, taking the difference between M=l, WN=2 and MM=1,

MM=2 for the X and Y derivatives respectively. After level one quantities at

NC(L) and MC(L) are updated (i.e., f(NC(L),M), = f(l,M)T . and f(N.MC(l))T =li . L+J. 1

f(N,l) ). In level two the points on the other side of the surfaces OT =

NC(L) and MM = MC(l) are computed and afterward the points M=l and MM=1 are

updated.

The modifications to MacCormack's integration scheme were originally found

necessary in the calculation of blunt nose bodies. For blunt nose bodies

derivatives across the "edge" of the entropy layer are not allowed. The entropy

layer calculation will be discussed later, for now assume the position of a

surface X = F(Y,Z) representing, in the computational plane, the edge of the

entropy layer, (Fig. I2a) and all dependent variables on this surface are known.

Across this surface the derivatives Sv, uv, vv and WY become very large as theA A A A
surface approaches the body. In computing these derivatives at the mesh point

N of figure 12b, instead of taking the X derivatives between points N and N + 1

differences are taken between W and the * point which is on the entropy layer
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surface. If the entropy layer surface point becomes very close to the mesh

point (Fig. 12c) the dependent variables at N are set equal to those computed

at the entropy layer surface point since the distance between W and * is too

small to compute Sv, uv, vv and wv between them.
A A A X

In order to calculate the flow field over bodies with blunt nose entropy

layers it was found necessary to use "windward" differencing. Equations (23b,

c, and e) state the variation of u, v and S along a streamline., i.e., the

velocity direction is the characteristic direction of these equations. Accord-

ingly, for the derivatives vv, u and S in these equations, differences are taken
A A A

in a direction determined by the velocity direction in both levels of the

MacCormack scheme (Fig. 13); the same is true for vv, uy and S . If the slope

P^. and/or |3y of the velocity vector is small the derivative direction is changed

between level one and two as usual. Since in equations (23b, c, and e) infor-

mation is carried along streamlines, windward differences satisfy the rule of the

domain of influence, so that windward differences are used even when there is no

blunt nose entropy layer in the computation. The techniques of following the

entropy layer and using windward differences were originally suggested by Moretti

and Pandolfi (refs. 7 and 8). When derivatives are approximated with windward

differencing they are no longer formally second order accurate. But it was

found that windward differencing yields more stable results and the integration

scheme was found to be second order accurate in a numerical experiment.

The calculation of interior points is the most time consuming part of this

computation mainly because it is done many times. The scheme used here keeps

the computational time to a minimum by keeping the total number of mesh points

as small as possible.
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TREATMENT OF SHOCKS

In this section the computation of grid points on the high pressure side

of all shock waves, the detection of imbedded shocks and the intersection of

two same family shocks will be discussed. In this area we draw systematically

from Moretti's extensive research on the treatment of shock waves (ref. 1 and

6).

The bow shock, all wing type shocks (i.e., imbedded shocks which in

general originate near the body and move toward the bow shock, caused by

canopies, wings and vertical tails) and cross flow shocks in the flow field

are computed as discontinuities satisfying the Rankine-Hugoniot conditions.

The bow shock and wing type shocks are defined in the mapped plane by

r = c(0,p) and the crossflow shocks by 9 = h(r,p). At a data plane ZQ all

dependent variables are known, and in addition, the quantities c, c , c ,
8 2

h, h , h are also known. Using equations (l6)to (l8) C(Y,ZO), CY,C ,H(X,ZQ),

ILr and H are computed for all the shocks in the flow field. At Z + AZ the
A Z O

positions of the shock points can be computed by using;

C(Y,ZQ + AZ) - C(Y,ZQ) + CZ(Y,ZQ) AZ (a)

(27)

H(X,ZQ + AZ) = H(X,ZQ) + HZ(X ZQ) AZ (b)

Then C (Y,Z + AZ) and H^XjZ + AZ) are computed using central differences.
1 O A O

With these quantities and equations (l6) c, c , h and h can be computed at
9 r

Z = Z0 + AZ.

After the first level of the MacCormack scheme the predicted values

of the dependent variables on the low pressure side of all shocks are computed

(the variables on the low pressure side of the bow shock being the constant

free stream values). With the low pressure side of the shocks known the high

pressure side is computed by an iterative process.
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A value of h or c is guessed, between the values corresponding to an in-
»• f

finitely weak shock and the value which gives a subsonic, axial Mach number. Once

this guess is made the normal to the shock can be defined. Let

F = r - c(0,2)

or F = 9 - h(r,O
»•

,\

Then the normal to the shock I is given by:

i + Fj + F k)//F 2 + F 2 + F 2 - I. i + I0j + I.k
x. t y u z / v x y z 12 3

where

F = F r ' + F 0 + F 2x r x 9 x 2rx

F = F r + F ft + F02y r y e y p*y

'F = F r + FA9 + F^2
z r . z 9 z yrz

With the normal to the shock defined, the Rankine-Hugoniot conditions can be

applied. Using the subscripts 1 for the low pressure side and 2 for the high

pressure side we have:

-» A
V = V • I (a)

nl X

M = v /AT, (b)n n /v Y 1 v '

p2/Pl - [Mn (Y+l)/2.]/[l + Mn (Y-l)/2.] (c)

) - p / P ] (d)

n - V I (f)
1 n^
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Where M and V are the Mach number and velocity normal to tiie shock and V
n n J-

is the velocity tangent to the shock.

An intrinsic coordinate system is defined at the shock with the three

directions (I5J,K), coordinates (§,H,oo) and velocities (u
/,v',w/) such that I

is normal to the shock and:

K = (I x k)/|l x k| - I^i + K2J + K3k

j = i x k = j^ ± + J23 + jJt

In the EjU) plane the characteristic that intersects the shock from the high

pressure side has a slope

^1 = , = (u w + a /u 2 + w2- a2 ) (29)
ciou ^2 2^

(w^ - a^)

Figure l4 shows the shock, characteristic (in the )̂W plane) and the point

(*) in the Zo data plane where the characteristic originates. The characteristic

slope at the shock point is first evaluated and then the position of the (*)

point is computed using the relations:

(n*=- AZ/(K + MJ (a)

(30)
x* = X SH + ^Jl + ̂  (c)

y* = ySH + |*i2 + (D*^ (d)

Where the subscript SH refers to quantities at the shock at Z + ^Z (Fig.

Dependent variables at the (*) point are obtained by linear interpolation.

A value of the pressure on the high pressure side of the shock is computed

using the compatibility equation along the characteristic:
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B = YW
2 /,- / *~~* 2 . •"-' 22 / \/[a / u + w - a (a)

\ = (u w + a/u2+ w2- a2)/(w2-a2) (b)

R = [(£ - Aw) (v" P^ + yv ) - -y v u ) Y v w 1 (c)

a /u2 + »2 - a2

dr = uV w* - iTgy/ WSH (d)

pdr (e)

PSH
 fjf\P2 - e (f)

Where p,A,j and R are averaged between the * point and the shock point.

The iteration is continued until this value of pressure agrees with that

computed from the Rankine-Hugoniot conditions, for some value of c or h .
s- &

For weak shocks this iteration may converge to a pressure ratio Pp/p, <1,

in these cases the value of c or h which gives PP/P-, = 1 is taken.
/ #• ^ •*-

Cross flow shock points at the body must satisfy the body boundary condi-

tion, that is the velocity normal to the body on the high pressure side of the

shock must vanish. This implies that the shock normal, at the body, must be

perpendicular to the body normal. This condition gives a relationship between

h and h ̂  at the body:
F

h = ( F - h F ) / F f^?1r H 9 Bz r \~>c-i

Where:

F = F Q + F Q + P Q
H Bxyx By y Bz z

TT— fr r 4- F - v + F r
r rBx x By "y "Bz z
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and FBx, FBy, F£z are x, y, z derivatives

of F = r-b(e,2)
D *

and r = b(0,2) defines the body.

After the second level of the MacCormack scheme the corrected, final

values of the dependent variables on the low pressure side of the imbedded

shocks, the values of c and tu computed after the first level, and the Rankine-
s- f"

Hugoniot conditions are used to compute the final values of the dependent

variables on the high pressure side of the shocks *

The first problem encountered when one treats imbedded shocks as dis-

continuities is their detection. There have been a number of techniques pro-

posed (see ref. 6). One of the earliest procedures has been found to be well

suited for the type of shocks encountered in this problem.

Cross flow shocks and wing type shocks are detected in very similar ways.

For cross flow shocks, the pressure distribution is monitored in the Y-

direction and for wing type shocks the pressure distribution is monitored

in the X-direction. At a data plane Z = Z the maximum pressure gradient

Pv for wing type shocks and Pv for crossflow shocks is located. Then a third
A 1

order polynomial is fit through the four mesh points adjacent to the maximum

gradient (Fig. 15). This polynomial takes the form:

X = aQ P
3 + a^ P2 + a2 P + a (33)

Where (X = X for wing type shocks)

(x - Y for cross flow shocks)

and the coefficients a , a , ay and a~ are computed by matching the curve fit

to the four mesh points (Fig. 15). The condition used to determine the origin

of a shock is dX/dP = 0 which implies dP/dX "* «. Applying this condition to

equation (33) yields an equation for P_ of the form:

ao

-33-



When
/ I
/a - 3a,a = 0. This equation has one real root. When this condition

P3
-^ ois satisfied a shock is inserted in the flow field at X,, - a P., + a.. P., +

f o t li

Cross flow shocks are assumed to originate on the body, so that the

pressure distribution is monitored in the Y-direction on X = 0 (the body).

Once a shock is found on the body monitoring is begun at increasing values

of X = constant,

In general it is not known at what value of Y the first shock .point on a

wing type shock will be found so that the maximum pressure gradient Pv at all
-A.

values of Y must be tested until the first shock point is detected. Once a

wing type shock is detected additional shock points are sought at the grid

points adjacent to the end shock points (Fig. l6).

Finally, consider the intersection of two shocks of the same family'. Cross

flow shocks do not move very much (i.-e., h is small) so that a scheme to handle

the intersection of two crossflow shocks is not needed. Wing type shocks are

detected near the body (they are usually caused by compressions on the body)

and they move toward the bow shock, so that they are all of the "same family".

As a shock moves toward the bow shock the region between the imbedded shock and

the body gets larger and the region between the imbedded shock and the bow shock

gets smaller so that mesh points must be moved from the outside region to the

inside region. When the distance between two shocks becomes a small percent

of the total shock layer (l to 5$) at some value of Y (Fig. 17) the two shocks

are intersected. A local, exact, two dimensional calculation is used to compute

the intersection of two shocks. 'The same intrinsic coprdinate system is used as
A.

was discussed in the shock point computation, where I is normal to the outside

shock. In the §,<D plane the intersection of two same family shocks is shown

in Fig. 18. The conditions in regions 1 and h (Fig. 18) are known. The slope

c of the resulting shock is assumed and Rankine-Hugoniot conditions (28) and
ff

the conditions in region 1 are used to compute the conditions in region 2. The

pressure in region 3 is set equal to that in region 2 (since the pressure is
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constant across a contact surface) and the total pressure in region 3 equal

to that of region h (since the total pressure is constant through an expansion

fan). With the pressure and the total pressure in region 3 the Mach number

can be computed. Then from the Prandtl-Meyer expansion relation the flow

direction 6_ is obtained. The iteration is continued until the velocity

direction 6_ matches that computed in region 2.

All the iterations follow the same procedure. Assume we have two

functions of a single variable g(n) and G(TI). The problem is to find the

value of 11 for which g = G. Two values of f] are assumed and two errors

^61 = Sl " Gl^ and ^£2 = g2 ~ G2^ are comPuted- With e1,e2>1'l1
 and \ a linear

variation of g vs T] is assumed to predict the value of 71 which will force
e -» 0.

The assumed value is repeatedly updated in this manner until e -» 0. This

scheme was found simple and fast and in most cases it converges in U-5

iterations. • . • • . . -
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SHARP LEADING EDGE SHOCKS

When a configuration has a sharp leading edge wing (Fig. 19) its wing

leading edge is computed using a local two dimensional solution. The component

of the Mach number normal to the leading edge must "be supersonic in order for

this technique to be applied. Also the wing must be sharp from the root.

The mesh point distribution near a sharp tip is shown in figure 20.

The mappings are not modified for this type of configuration but a cross flow

type surface is inserted starting at the wing tip, in order to have a double

point at the tip, on the top and bottom of the wing.

The shock points at the tip (the case of an expansion fan on one side

and a shock on the other can be handled) are automatically inserted when the

wing starts. All other points on this shock are detected as in the case of a

blunt nose wing. The extensions of the shock are treated as discussed previously.

If the flow direction is such that there is a centered expansion fan on the top

or "bottom of the wing (Fig. 20), the expansion is computed explicitly at the

tip point, and an arbitrary surface is used from the tip to the symmetry plane.

Thus, the expansion fan is computed using the finite difference scheme for all

points except the one at the tip.

The calculation of the tip points utilizes an intrinsic frame of reference

(§,Tl,co), (u',v',wO defined in figure 21. The Tl direction is tangent to the sharp

edge of the wing (hence, also tangent to the shock) so that 7" remains unchanged

across the shock. In the §,u> plane, a local two dimensional wedge calculation

is performed. The conditions on the low pressure side of the shock are known.

A third order algebraic equation (ref. 15) is used to" compute P, the shock

angle, and then the Rankine-Hugoniot jump conditions are used to compute the

dependent variables on the high pressure side of the shock. If the flow is

such that there is a centered expansion fan at the tip point the Prandtl-

Meyer expansion fan equations are used to compute the dependent variables on

the body surface. This calculation is done after each level of the McCormack

scheme.
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This method will not handle the situation in which the Mach number normal

to the leading edge of the wing is subsonic or the situation in which the

wing angle (§, Fig. 21) is large enough to force the shock to be detached.
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Figure 20. - Mesh point distribution, sharp leading edge win§

Figure 21. - Sharp leading edge wing intrinsic frame.

-Uo-



BODY POIIvlT COMPUTATION

The boundary condition at the vehicle surface is u = 0, where u is the

velocity normal to the body. The entropy at the body is computed by using

equation (23e), as for any other mesh point. At the body the coefficient

of S (i.e., a ) in equation (23e) vanishes, so that this derivative does
.A PP

not affect the calculation of entropy on the body.

To compute the pressure on the body the continuity and three momentum

equations (23a, b, c, and d) and the body boundary condition are com-

bined to write a compatability equation along the characteristic (in the X,Z

plane) reaching the wall from the flow field.

pz + aiipx + ai2 ux + ai3
vx + aiH wx = Ri (a)

UZ + a21PX + a22 UX = R2 (b)
(3k)

T»T ~f~ Q "P ~ f ~ Q m "-I- Q T r ~4* Q T*Twz aiu x \2 x a^3 vx ahk wx

where

Rl = -(bllPY + b!2UY + bl3
VY + VY>

R2 = - (b21PY + b22UY}

R3 = - (b31PY + b
33V

Substituting for a p, a and a., equation (3^a) becomes

rz * au PX-.-.if x TX + ^°X = RI



where :

T = u/w and a - v/w

Taking the difference between the product of w with equation (3̂ b) and u

with equation (3Ub) and substituting for a__, a. _, a>2 and a. . the following

result is obtained.

w2Tz + Px(wa21 - ua^) + w
2(Xz + X̂ w2 - XyO) TX

Al1 (36)
+ w TyT X CTY = wR~ - uR,A y x ^ ^Ai

Similarly, taking the difference between the product of w with equation (

and v with equation (3Ud) and substituting for a__, a. _, a.? and a- . the

following result is obtained

2 A (37)
+ w a YT XT = wR- - vR.

X J

The body boundary condition is u" = 0. Since X = constant is the body, this

boundary condition can be written as

u = uX + vX + wX =0x y z

or

TX + aX + X = 0 (38)
x y z

Combining equations (35), (36), and (37) and using equation (38) the

equation for the characteristic slopes can be written in the form

A,
+ = -a T + / a T + VT (vX + uX )+ A + A (39)

w w^ 1 2
w

\ is the slope of the characteristic reaching the wall from the flow field

and the compatibility condition along this characteristic is:

-U2-



[X - YT (uXv + vX )] (p + XP )
A~w -'- y -^ x

+ ^ <Vz + Xy°Z ) +^ (Vx + Vx ) = |

where

R = /X - VT (uX + vX ) \ R.A - VT_ (uX + vX ) \

V V /
1

X

The equation for the body can be written in the form

F = r - B(Y,Z)

Thus the body boundary condition is

This equation holds for all values of Z, thus

o/y + Vx = ' (F
ZZ + CTFyZ + TFxZ^

Wow using equation (lOa) equation (111) becomes

F = r - B = (C - B) X

Thus, differenting equation (hh)

)„ - B IX + (C, - B)Xx

and for X - 0

Fy = (C-t " B)xy

Fy = [(CtV - VX + (Cl - B)xy

F = (C - B)X (a)

TF + o-F + F = 0 (1*2)

X ( U 6 )



Using equation ( U 3 ) and ( U 6 ) in equation ( U o ) , the following result is

obtained

z X . A, ( (C. -B) '+ x X yCTv + x

[X+ - YT x y

Al

This equation is integrated with the same scheme used for interior points with

the X-derivatives computed using three-point end differencing away from the

body.

To compute the velocity components on the body an intrinsic frame
t * " * \ /~ ~ ~\ n

(I,J,K) is used with velocity components (u,v,wj. The vector I is the unit
4\ <\

normal to the body with J and K defined as follows:

I = I-L i + I3 + Ik (a)

J = (I x k)/ I x k - J i + J + Jk (b)

K = I x K - 1 i + KJ + K k (c)

A A "

where i, j and k are defined in figure 4. The x and y momentum equations are

used to compute v as follows. Equations (3̂ b) and 3^c) are integrated using

the MacCormack scheme to obtain u and v and then "v is obtained from the

equation

v = uJ^ + vJ2

From the integrated form of the energy equation the w" component of velocity

can be obtained / — _ __
/ p

w = / 2H - 2YT - v (50)0 Ŷ :
where T is computed from P and S and the equation of state (19). The three

Cartesian velocity components are

u = v J + w K_ (a)

v = v J2 + w K2 (b) (51)

w = \r J-, + w K0 (c)
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Thus, all the dependent variables (P,u,v,w, and S) on the body are defined.

Modifications of this calculation for real gas and entropy layer

effects will be discussed in later sections of this report.



BLUM NOSE ENTROPY LAYER CALCULATION

On blunt nose bodies, as the computation proceeds downstream, the entropy

gradient normal to the body becomes very large. Stream lines that cross a

weaker bow shock and therefore have low entropies approach the body which is

wetted by the stagnation stream line and therefore has a very large entropy.

The pressure gradients at the body remain small as the edge of this layer

approaches the body but the normal derivatives of S,u,v and w become very

large. This physical phenomenon can create numerical problems for a calcu-

lation which does not handle it properly. A technique proposed by Moretti

and Pandolfi (refs. 7 and 8) is used to account for this phenomenon.

In this section, after defining the "edge" of the entropy layer, the

detection of points' on the edge of the entropy layer, the calculation of

the dependent variables at these points and the modification of the body

calculation when the edge becomes close to the body will be discussed.

In figure 22 the entropy distribution (S vs X) in the windward symmetry

planes on two typical geometries at several values of Z (axial stations)

is shown. The *'ed points in figure 22 denote what is called the edge of the

entropy layer. The entropy distributions are similar in other circumferential

planes up to the top symmetry plane. The locus of these * points defines an

"entropy layer surface" as r = RTTT(Y,Z) (Fig. 23). This surface originates
nli

•at the bow shock and moves toward the body as one proceeds downstream.

This surface is not a coordinate surface, so that in the computational

plane the * point will be between two mesh points (Fig. 12) at each value

of Y (it should be noted that this surface does not originate at the same

axial station for all circumferential planes).

The key idea of this procedure is that no derivatives should be taken

across this surface. The method used to insure that the derivatives S uv, vv
A A A

and wv are not taken across this surface when computing the mesh point near
A

it is discussed in the section on interior point computations. The questions

-U6-



remaining are : how the surface is detected and traced and how the dependent

variables are computed on it.

The surface is detected at it's origin, the bow shock. When the entropy

distribution is similar to the one shown in figure 22a (the entropy has a

minimum) the * points at each value of Y is located at the mesh points adja-

cent to the bow shock when the entropy there is a minimum. The surface at

this Y is initiated with the value of the dependent variables at this mesh

point and is tracked separately from this station on. When the entropy dis-

tribution is similar to the one shown in figure 22b (no minimum exists) the

* point at a value of Y is started when the S derivative at the mesh point
A

adjacent to the shock has a minimum (i.e., S sO).
Aj6

The surface r = RTTT(Y,Z) is a stream surface (i.e., a surface containingnL
the same group of streamlines for all axial stations). This means that the

velocity normal to the surface is zero. When at a station Z, all the dependent

variables on the surface and the position of all the * points are known.

Therefore, (R )^ of the surface can be computed using finite differences.

The normal to the surface is

JHL = (r - V x l + <r ~ Vy 3 + (r - Vz* (52)

Since the velocity normal to the surface vanishes

(r - VxU + (r - RHL}yV + (r ' Vzw = ° (53)

From this equation the following result can be obtained

RHLZ = tu(rxXx - (ry - R )Y +
Z Y

V(rxy + (rY - RHLy)

The position of the entropy layer surface at Z + AZ is given by

AZ (55)



Since the pressure is continuous across the surface the pressure at each

* point can be obtained by interpolation using the two adjacent mesh points.

The entropy and crossflow velocity at each * point are computed using the

following relations

Sz = - [Sy/ (uYx + vYy + wYz)]/w (a)

uz = - [T(PyYx + P^) + uy ,(uYx +vYy + wYz)]/w (b) (56)

vz = - [T(PyYy + P ^Xy) + vy/(uYx + vYy + wYz)]/w (c)

where S ' , u ' and vy' are the Y-derivatives on the entropy layer surface.

These three equations are derived by taking a coordinate system ( X ' , Y ' , Z ' )

defined by the following transformation

X' = (r - BVCR^ - B) (a)

Y' = Y (b) (57)

Z ' = Z ( c )

The substantial derivative of any quantity f = (u,v, s) in this coordinate

system is

•f fy/ (uY'x + vY'y + w Y ' z ) (58)

The coefficient of fv
7is zero on the "entropy layer" surface since the

A

velocity normal to that surface is zero, while f ' is the Y-derivative on the

surface and

^ = fv/ (uY, + vY + wY ) + f w (59)
u u j- X ,y L, Lt
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To compute the velocity components an intrinsic coordinate system is

used with unit vectors (l,J,K) defined as follows:

I = (X i + X j + X k)/ /X2 + X2 + X2" *

*N 7 **• ^ \ / •"*

J = (I x k)/ I I x k

K = 1 x J

(a)

(b)

(c)

(60)

The velocity components in the I,J,K directions are called u^v^w. The

streamline slope in the (X,Z) plane is continuous across the entropy

layer surface (just as in the case of a contact surface, where the slope

of the contact surface is the same as that of the streamline adjacent to it

ref. 1 and 8). Therefore (u/w) can be interpolated from the adjacent mesh

points. Moreover, *v - uJ + vJ where u and v are computed from equations

3Vb and 3^c. Next, w and u" are computed- from the following equations

w = /2Ho - 2YT/(Y-l) - "v (61)

u - (62)

Then, from u/,v>}w' and the vectors I,J,K,the velocity components u,v, and w

are computed.

When the entropy layer surface becomes very close to the body (that is

within 1% of the total shock layer thickness, figure 23c and 23d) at some

value of the circumferential coordinate the entropy and the crossflow velocity

Cv) on the body are changed to their values on the edge of the entropy layer.

The pressure at the body remains unchanged. On the body there is a jump in

entropy at the points where the entropy layer surface separates from the

body (Fig. 23c), so that Y-derivatives cannot be taken across these points.
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For grid points that have collapsed Y-derivatives are always taken onto the

entropy layer surface. For the Y-derivative at a grid point that hasn't been

collapsed but is adjacent to a point that has been, a pseudo grid point is

located at the adjacent collapsed point with the blunt nose entropy, and

velocity direction and pressure of the collapsed point.

Changing the body entropy, from the high stagnation-point value to

the low value at the edge of the entropy layer increases the axial Mach •

number and therefore increases the step size (AZ) at which the'computation

can proceed. In some cases the axial Mach number would become subsonic with

the stagnation entropy and the computation would be unable to proceed. This

significant advantage could not have been gained without following the entropy

layer explicitly.
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Moo =10,7= 1.4
a =10°

(a) .5-

X

Figure 22. - Typical entropy distribution

r=R m (Y,Z)

(b)

(c) (d)

(b)

Figure 23. - Entropy surface (physical plane)
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REAL GAS EFFECTS (EQUILIBRIUM/FROZEN AIR)

In some flight regimes encountered by hypersonic vehicles the simple

assumption of air being a perfect gas is not acceptable and real gas effects

must be taken into account. Grossly speaking, real gas effects shift but do

not change the qualitative pattern calculated with perfect gas thermodynamics.

A code for real gas should, therefore, be patterned along the same lines as a

code for perfect gas.

It is in this spirit that the real air problem has been approached.

The salient points of the procedure that has been adopted are:

1. The equations of motion are written using the same dependent

variables as for the perfect gas calculations, namely, the three

velocity components, the logarithm of pressure and entropy.

2. Simple analytical expressions, developed by Moretti (ref. l6), are

used to fit the Mollier diagrams for equilibrium air. The ability

to suddenly "freeze" the fluid with an equivalent ideal gas y

is included.

3. The computational time has not increased out of proportion. The

computational time needed for a perfect gas computation is increased

by a factor of less than 50$> when equilibrium real gas effects are

included.

i|. An accuracy of around ~ 5% is maintained for enthalpies less than

500 x (pSL/PSL) •

5. The parts of the code dealing with gas properties are kept sepa.rat.jci

from the flow calculations so that if necessary the code may be easily

extended to helium, nitrogen, CFi, or supersteam.

The equations of raotioa in nonciimensional form are:
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wP + uP + vP + r(w + u + v ) = 0 (a)z x y z x y' v '

ww + uw + w + TP = 0 (b)2 x y z

W U + U U + V U + T P = O ( c ) , , .
z x y x (63)

w v + u v + w + T P = 0 ( d )
z x y y

wS + uS + vS =0 (e)z x y

Q

where T = p/p and r = a /T. The only difference from perfect gas is in

F and T. The quantity, T is not the temperature except for a perfect gas; it

is T = zT, where T is the temperature and z is the compression coefficient.

Similarly, r is not ~y(c /cVoo )except for a perfect gas. For equilibrium

flow both T and r are obtained at every point via the Mollier fits.

The Mollier fits for T and r developed by Moretti (ref. l6) are written

in terms of enthalpy and pressure.

T = TQ = a + bh + c/(h + d) ( 0 < ii •'< 50, 150 < h < 350) (a)

f = f + feĝ )2 (50 < 5 < 150)

(350 < h < 500) (c)

and
- / 0 *_h < 50,

r = F = (e + § h +' T\eatl)/Eo Il50 < h < 500 (a)

T = roV(T -f feg(h" + m)2) (50 < h < 150) (65)

where

= PSL h p S L > p = F -
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and

t = 12030.872 -.764759(P + 157.7555)
77.938126-P

I = 12.813 + .0871477 CP + 9.M+23)2

d - 250 U - t)/(2t - l - 79. *0

a = (.3176 - la) d

b = 3176 + (l + d/250)(r - 79.4)/250

c = -ad

f = -1.83 + 1.098/(e-'
8686(f -l-

g = -.0038 - .00219̂ 76/(P. + 10.3635)

m = -84/6 - .31*71*4 P (l.- .217̂ 5?)

k = 9.2217 - .05213171(P + 8.0605)2

e = 1.0̂ 59 + .

§ = (12.707 - .̂ 2̂ 528 P) io"5

T) = 1.1828-e

a = -(.001955 + §)/T]

The subscript SL refers to sea level conditions as follows (the bar in the

following equations means dimensional quantities):

PSL
(66)

PSL =

The normalized entropy, S, as a function of enthalpy and pressure is given by

s = (Y --i) s/(£_ (67)



where

/Y = c cvrm oo
*

_S_= 4.82068 In (h) + 11.875 + .0245 h +
IT

1175./(h + 50) + .434294 B P

and

B = - 2307.- (.0042 h - .092)/[1. + e^*°7^ 5*

Since T and p must be obtained as functions of entropy and pressure, the

expression given for the entropy is solved for the enthalpy, and

then with the enthalpy and pressure, T and P are obtained from the

remaining fits.

The interior point computation can be performed by the same procedure

used for perfect gases, except that T and P are computed via the curve fits.

Some changes are necessary in the shock computation. If subscripts 1

and 2 refer to the low pressure side and high pressure side of the shock

respectively, and if V and V™ refer to the velocity components in the

directions of the normal and tangent to the shock respectively then the

jump conditions are given by

Vm •=!• ̂ -/(r̂ ) (a)

Vn2

T (b)

Pl/P2 =
 I + F2̂ 2 (d)

h. +

(68)

*Note: S is the dimensional entropy referenced to 0 Kelvin and 1 atmosphere
of pressure.
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The method of solution follows the same procedure used for a perfect gas.

The shock slope and V are guessed and equation (68a) is used to solve for
n2

Y^ir) . Equation (68d) is then solved for p and from equation (68e) hg

is obtained. The ratio p?/p, is then computed from equation (68c).

A second value for pp/p, is obtained from the curve fits of the Mollier

chart using hp (obtained from Eq. (68e) and pp. An iteration is now per-

formed on Vn until the difference in the two computed values of pp/p, is

sufficiently small. The rest of the calculation is identical to that used

for a perfect gas.

The equilibrium air calculation starts at the nose of the vehicle and

continues until a "freezing plane" (i.e., a plane Z = constant), after which

both the chemistry and vibrational relaxation are assumed fixed (this is called

frozen air in what follows). This freezing station (Z ) is user input. At

the freezing station Z ,, all the dependent variables are related by the Mollier

fits and are in equilibrium. (PEQ, SEQ

frozen equations of state are (ref. 17 )

fits and are in equilibrium. (PEQ, SEQ, UEQ, VEQ, WEQ, TEQ and h. The

Pfr/Pfr

>, = i-xs. II^L_I T (t>) (69)
V U.,

Sfr = -(r-i)
(c)

with the quantities (ft/fĉ ), F and S^p defining the properties of the gas

downstream of freezing station. In order to match the equilibrium state

(i.e., ?„ = P™, S = S u = u _ etc.) at each mesh point one must set:
' ±r £.(* fr Jiitj fr JiH
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(a)

r . (b) (70,
n

EQ

SREF

Downstream of this station, these quantities are constant along streamlines

because they are functions only of the concentration of species which are

in turn constant along streamlines. But since the variation (jĵ /fe ), F and

is small at the freezing plane, they are averaged.

Downstream of the freezing station, equations (TO) are used instead of

the Mollier-curve fits to relate thermodynamic properties.
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SPECIALIZED OUTPUT

Calculations have been added to the procedure which use the inviscid

flow field solution to compute desired results in a useable engineering form

or as an input to other calculations. At the user's option, the flow field

data may be used to calculate aerodynamic coefficients, boundary layer input

quantities, (streamlines, metric coefficients, etc.) and sonic boom data.

Following is a description of the approach used for each of these calcula-

tions.

Aerodynamic Coefficients. Aerodynamic coefficients are calculated, when de-

sired, along with the flow field. Vectored pressures, located at the area

centroid of triangular facets (two such facets between each pair of mesh points

in the previous and current data planes) and directed normal to the facet plane,

are summed at each step over user- specified portions of the vehicle. By mak-

ing use of the body lines (running cross sectional control points) in the

QUICK geometry package, the coefficients C , C , CM>. C , and C can then be

computed from the appropriate direction components of the integrated forces

and moments for virtually any body components (even multiply disjoint sections

such as the body-alone represented by the solid line in Fig.

The pitching moments are referenced to a user- specified position in the

vehicle symmetry plane. Coefficients are expressed in two fashions - (l) re-

ferenced to the surface area integrated thus far for the given component (this

surface area is included in the output), and (2) referenced to a user input

area. In both cases the reference pressure and density are p and pm.
CO -̂

Aerodynamic coefficients and wetted areas are available in terms of the

entire vehicle, its components, and their distributions in z.

Boundary Layer Input Quantities. The boundary layer input quantities are calcu-

lated in two steps. During the flow field computation, integration techniques

are applied to obtain the metric coefficient h , defined herein.

Consider Figure 25, in which the fixed body coordinates (x, y, z), the unit
^» A yv

vectors (i, i^ k). and velocity directions (u, v, w) have been indicated.

Also shown is an inviscid streamline on the surface of the body, and the asso-
*%. A <\

ciated coordinates (5, 11, C,) , unit vectors (?, T), £), and the velocity direc-
*\

tions (u, v, w) . The 11- direction is taken along the streamline, the
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£-direction is perpendicular to the body and n and the E, - direction is perpendi-
A A

cular to both T] and £.

Associated with these two sets of coordinates, (x, y, z) and (§, T], £)}

we have the three scalar factors (h , h?, h ), defined by:

2 2 2 _,_ 2
hl = \ + y5

 + z
?

,2 2 2 2

Now, . A

[u/qi + v/qj + w/qk)

= hg u/q

- h v/q

The body surface normal (£ = ̂ ,i + £?j + ̂ _k) is readily available, and

XC = h3 Cl

y
C =

 h3 ̂ 2

ZC = h3 C3

and since I = T| x £,

C2 h3 = hi
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and,

thus,

In three-dimensions, "between any two points P and P1, we have:

dP = df + dff + d£*

= h^ d§| + hg dT|f| + h.

We get: ^

f | = h l ^

-*

"s Tl O I9T1 2

S§ 9§ 3 SC SC 1

Finally, dot multiplying by the appropriate unit vector (|, T] or ^) we obtain,
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af

911
= h .2 sr

We make the usual assumption of h = 1, which is valid in the absence of

a strong entropy layer. Observing equation (71a), one will note that h is

differentiated with respect to (f) which leads to a multiplier of the tu de-2Z
rivative that corresponds to a cross flow velocity which may vanish, thus mak-

ing an axial marching technique inapplicable to the determination of h- . The

other parts of equation (71) involve (T|) derivatives which lead to an axial

velocity type multiplier which is always non-zero and relatively large for

the cases to which this computational procedure is to be applied.

Equation (Tla) is then recast, using the appropriate transformations

as discussed in the section on the computational plane, to obtain a differen-

tial equation for h... which is integrated at mesh points on the body during

the computation.

The metric coefficient h is then stored in an array and treated the same

as any other flow variable. An exterior calculation then uses this data as

input to trace streamlines on the surface of the vehicle, create the pseudo-

stream surfaces (by taking normals to the body at points along the streamlines

of length 3 x flat plate boundary layer thickness), and interpolate in three

dimensions to obtain all quantities and derivatives of interest in these

surfaces. Normal derivatives are formed numerically.

The method used for tracing streamlines on the body does not rely on simply

stepping in the velocity direction (thus in most cases off the body) and then

arbitrarily "pulling" the new point to a "corresponding" position on the body.
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Instead, a method was devised to work directly with the angular position (0')
s

of the streamline on the body. A differential equation was set up for d0' /dz
S

on the body, and was integrated in a marching fashion.
A.

. * A /*.

Consider the vector triad (N,B,T) as shown in Figure 26. N is the normal

to the body (supplied analytically by our geometry package), B is a body tan-
A

gent lying entirely in the cross sectional plane, and T is also tangent to the
"• A

body, and equals B x N.
A. A f.

N = N i + W j + N k •
x yj z

rf\ A, A.

B = B i + B D + B k
x y z

A. A A

T = T i + T j + T k
x y z.

A

Since B must lie in the x, y plane, B = 0. Also,
Z

and since B is a unit vector,

= 0 = B W + B N
xx y y

2 21 =» ET + B*
x y

Accordingly,

B iz-Nx y7 x y

Finally, since T = B x N,

B = N
y

T = B N
x y z

T = B N
y x z

T = B N - N B
z x y x y
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Now define the velocity directions (u, v, ft) in the (W, B, T) directions.
A ^ A

Since v = ui + vj + wk

yv

t f = V . N = 0 = uW +vN + wW
x y z

A

v = V»B = uB + vB
x y

w = V.T = UT +vT +WT
x y z

In the (r,' 9,' £,') and (x; y,' z') coordinate systems (Fig. 5, o' = z),

we define an elemental length (ds) lying in the x,' y' (or x, y) plane, such

that

We also note that,

Accordingly,

- dz1 * dzw = dFk =dt

v _ els dt ds
w ~ dt dz dz

ds = v/w dz

We can also write

ds2 = dr'2 + r'2 d9'2

which yields

d9' = ds/^f (dr'/de1)2 +

and thus, .^. .
(v/w)

dz yj (dr'/de)2 + r-2

Then, using a second order backwards integration, assuming (d6s/dz)

linear between computational planes (see Figure 27),

ae1 /de1 \ f /de1
 4 /ae1

ae's /<ie ' s \ r/de 's\
~ \<&~ )o + [ V^Hi "

z-zo
Az „
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dz.
we obtain:

dz

This method of integration is used to trace any set of streamlines from

specified positions on the body in the initial data plane. The radial posi-

tion of these streamlines is, of course, supplied immediately by the geometry

package for a given 8'.s

Sonic Boom Data. Sonic boom calculations make use of the same data as the

boundary layer quantity calculation. Another calculation performs a two-

dimensional second order interpolation in given data planes to obtain the

values of flow field variables (p, S, u, v, w) on a data cylinder enclosing

the body, of user-specified radius, whose center line is the z or body axis

(FRL).
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SOLID LINE SEGMENTS CONSTITUTE
THE"BODY"COMPONENT

BROKEN LINE SEGMENTS CONSTITUTE
OTHER AERODYNAMIC COMPONENTS

TYPICAL QUICK GEOMETRY
CONTROL POINTS

Figure 2h. - Example of modular breakup for aerodynamic coefficients.
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Figure 25. - Definition of coordinate system for metric coefficient
calculation.
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Figure 26. - Definition of coordinate system for streamline tracing technique

STREAMLINE

Figure 27- - Diagram for streamline marching procedure.
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TYPICAL RESULTS

During the course of this work the flow fields about a large number of

geometries have been studied. Firstly to be sure that the numerical techniques

used worked for all these configurations, second to compare the results

with existing data, and finally to study flow field phenomenon which can't be

studied through other means. In this section some of the results of these

calculations will be discussed. Most of these results have been presented

previously in references 18 and 19.

In figure 28 the surface streamlines and pressure distribution are shown

for an 80° slab delta wing at 30° angle of attack with M̂  = 9.6. At this

high angle of attack the cross flow velocity expands around the wing tip and

becomes supersonic on the lee side. This velocity component must vanish at

the leeward symmetry plane and therefore a cross flew shock (Fig. 19a) is gen-

erated. The strength of this shock at the body is demonstrated by the stream-

line deflection across it. Figure 26 shows an axial and circumferential sur-

face pressure distribution compared with experimental data (ref. 18). The

Jump in pressure (circumferential distribution) at about 9 = 170° is due to

the cross flow shock. The calculation of this flow from a starting plane

(Z/Rjj =" .8) to the end (Z/Ejj = !5) took about 15 minutes on the IBM 370/168

computer.

Figures 29, 30, 31 and 32 all describe the flow about an early version

of a shuttle orbiter configuration flying at an angle of 30° for M =26.1.
CO

The calculation was performed for an ideal gas, Y = 1.12. Figure 29 shows

the top and side views of the shocks and body, while figure 30 shows the

cross sectional views. The shock pattern in this calculation is quite com-

plex, a strake shock is generated at Z =^ 380 and intersects the bow shock

at Z ̂  it̂ O, a cross flow shock is generated starting at Z =^ 550 and a wing

shock starts at Z = 800 and intersects the bow shock at Z ̂  850. Figure 31

shows the surface pressure variation with surface distance around the vehicle

at several cross sectional stations. Between Z = 800 and Z = 850 there is

a large pressure raise (Fig. 31) due to the beginning of the wing. The large
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peak in pressure at Z = 850 could not be computed without concentrating grid

points in the wing tip region. Near Z = 850 the wing shock intersects the

bow shock and causes an expansion fan which reduces the pressure (at the wing

tip) further downstream. This phenomenon can be observed up to Z = 1050;

while the peak pressure remains unchanged, the expansion moves toward the

windward symmetry plane. The drop in the peak pressure between Z = 1050 and

Z = 1100 is due to the wing tip turning parallel to the flow. Figure 32

shows the radial entropy distribution at three circumferential positions

(X is the normalized radial coordinate). In these figures the thinning of

the entropy layer is shown. This calculation (from Z = 50' to Z = 1280)

took approximately 1.5 hours on the IBM 370/168 using a maximum of 20 x 30

grid points.

Figure 33 shows the surface pressure distribution in the windward sym-

metry plane on the forward portion of the 089-B shuttle orbiter. The calcu-

latLons were performed using equilibrium air thermodynamics (at 215 thousand

feet altitude) and ideal gases at Y = 1.12 and l.U. In each case the Mach

number was 26.1 and the angle of attack was 30 . The trends in the y = 1.12

and real gas cases look very similar, while in the y = l.k calculation the re-

compression (after the nose expansion) seems weaker. In the real gas calcula-

tion the computer running time was increased by approximately 30 percent. Figure

3^ shows the surface streamlines on the 089-B shuttle orbiter. In the figure,

the strength of the cross flow shock is demonstrated by its deflection of the

surface streamlines.

The windward symmetry plane surface, pressure distributions on a modified

version of the current 1̂ 0-C space shuttle orbiter are shown in figure 35 for

M =10.29, Y = I-11? and ot = 20 and 25°. The vehicle was modified for the

computations by increasing the wing sweep from ^5 to 55 (fig- 35) to avoid

subsonic axial Mach numbers near the wing tip which would occur for this

value of Y> This modification has little effect on the windward symmetry

plane pressure distributions. The calculated results are compared with ex-

perimental data (unpublished) obtained at NASA/Ames. The agreement is very

good except near the trailing edge. The under prediction near the trailing

edge is due to a mismatch in lower surface slope (of approximately 5 ) between

the experimental and numerical geometry models.

-68-



The circumferential pressure distribution for this configuration at Z/L =

0.3 is compared with experimental data in figure 36. Again the agreement" is

very good. These calculations required approximately one hour of computing

time on the CDC 6600 using a maximum of 15 x 32 grid points.

Another complex shock pattern is shown in figure 37. The vehicle is a

fighter aircraft and the flight conditions are M = 2.5 and a = 6°. In this
GO

flow field there was a canopy shock, a wing shock and an additional shock due

to a recompression after the canopy. Figure 37c shows a series of cross sec-

tional views in which the intersection of the canopy and bow shocks is evident.

This calculation demonstrated that flow fields containing multiple imbedded

shocks in a cross section can be computed treating all shocks explicitly.

Figure 38 compares the computed and experimental surface pressures on

this vehicle (M^ = 2.2,'a = 5 and 10°). The experiment was run by Grumman

Aerospace Corp. at NASA/Ames and the data are unpublished. This calculation

(from Z = O t o Z = it5) took about 1 hour on the IBM 370/165 computer with a

2h x 29 grid in each cross section.

Figure 39 shows the inlet flow field for a supersonic fighter configura-

tion. The axial station shown corresponds to the inlet forward lip station,

so that this is the flow field ingested by the inlet. The maximum differ-

ence between calculation and experiment is less than 3 percent. The experi-

mental data were obtained from reference 31 and the calculation took approxi-

mately 30 minutes on the IBM 370/165 with a 25 x 30 grid.

Figure ^0 shows surface pressure distributions on the X-15 aircraft top

and bottom symmetry planes. In figure kOa the flight Mach number is 6 and

in figure UObthe Mach number is It. The comparison with the experimental data

is good. The deviation from the experimental results near the vehicle nose

is due to the starting solution which was used (i.e., a conical flow solution

was used to start the calculation).

Figure kl shows a sample of the type of sharp leading edge wing configura-

tion which can be computed. The figure shows the computed shock pattern with

the bow shock intersecting the wing shock.
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Shown in figure k2 is another complex shock pattern. The vehicle is a

hypersonic research aircraft (HSRA) configuration and the flight conditions

are M = 6, Y = 1.2, and a = 0°. As shown in the figure the canopy shock is

generated ahead of Z = 36 and is intersecting the bow shock at Z = 60. A

shock wave is generated by the vertical tail ahead of Z = 50. Figure ^3

shows a lift vs angle of attack curve for the HSRA vehicle. Both the ex-

perimental and Newtonian flow results were supplied by Mr. Lewis Clark of

NASA/LRC. The figure shows that both the Newtonian calculation (with viscous

effects included) and the present one compute lift accurately. The calcula-

tion of the HSRA flow field (M^ = 6 a = 0°) took 1 hour on the IBM 370/168

computer using a 25 x 30 grid.

The metric coefficients of the coordinate system based on the body

streamlines (see figure MO are one of the less, straightforward by-products of

this computation.

On normals to the body, flow quantities and their normal derivatives are

also automatically computed (Fig. ^5) and turn out to be smooth and satis-

factory.
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80° SLAB DELTA WING AT 1^00= 9.6, <* = 30°&7= 1.4
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Figure 28. - Slab delta wing streamlines and surface pressure.
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Moo =26.1 a =30°

7= 1.12

CROSS FLOW
SHOCK
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Figure 29. - 089-B shuttle arbiter shock patterns.

Z = 50.45 Z= 100.30 Z = 150.16 Z = 200.04 Z = 250.84 Z = 301.58

Z = 350.70 Z = 401.05 Z = 452.02 Z = 501.73 Z = 550.74

Figure 30. - 089-B orbiter cross sectional shock patterns.
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Z= 1150.12 Z= 1200.07 Z= 1250.59

Figure 30. - 089-B orbiter cross-sectional shock patterns (contd),
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Figure 31. - 089-B arbiter surface pressure.
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Figure 32. - 089-B orbiter entropy distribution.
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Figure 33. - 089-B orbiter windward plane surface pressure.
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Figure 31'4 • - 089-B orbiter surface streamlines.
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Figure 35- - Windward symmetry plane distribution,
modified lUO-c shuttle orbiter.

= 10.29 7 = 1.4 Z/L = 0.3

NASA-ARC

COMPUTATION

30 60 90 120 180

Figure 36. - Circumferential pressure distribution,
modified lUo-c shuttle orbiter.
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Figure 37. - Aircraft configuration shock pattern.
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Figure 37. - Aircraft configuration shock pattern (contd),
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•> CALCULATED

Figure 38. - Aircraft configuration, top symmetry plane surface
pressure (M = 2 .2) .
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Figure 39. - Flow field at inlet forward lip
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= 2 .2 , a = 5°).
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Figure UO. - X-15 surface pressure.
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Figure Ul. - Sharp leading edge wing configuration shock pattern.
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Figure h2. - Hypersonic research aircraft, shock pattern.
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Figure k2. - Hypersonic research aircraft, shock pattern (contd),
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Figure U3. - Hypersonic research aircraft, lift vs angle of attack.
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-8U-



1.3r

1.2

1.1

1.0 J I I I I I I I

.62,-

.61

.60

.59 I I

2.3,-

W 2.2

2.1 J I I I I

.002

Q-n .001

0.0

dn

o.o r

-.01

-.02 J I I I I

dfQ|
dn

0.0

-.01

-.02 I I 1 I I i i i i
0 .5925 1.7774 2.9623 4.1472

DISTANCE ALONG BODY NORMAL (n)

5.3321

Figure - Boundary layer quantities in pseudo- stream surface in top
symmetry plane, F-111A, M = 2., a = 5°.

-85-



CONCLUSIONS

1. A computer tool has been developed for a high-quality computation of

the inviscid flow field about realistic vehicle configurations at

supersonic and hypersonic speeds.

2. The underlying numerical techniques, while available for simple bodies,

have been expanded, adapted and integrated into a tool. For high-

quality results, all shocks are treated as shock discontinuities and

entropy layers are handled in a special way. Moreover, a crucial element

of the numerical technique evolved is the use of mappings to simplify

the cross sectional shapes in the computational space and efficiently

distribute a relatively small number of mesh points.

3. Equilibrium and frozen air are included.

h. The computer tool automatically produces specialized outputs such as

aerodynamic coefficients, metric factors, normal derivatives in pseudo

stream surfaces and sonic boom data.

5. The initial results obtained from the computer tool for orbiter and

other configurations are quite satisfactory.

6. As an orientation, the machine time expenditure for the flow field past

a typical orbiter configuration at M = 26.1, a = 30 , and for a perfect

gas is about 1.5 hours on the C.D.C. 6600.
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APPENDIX A

Second Derivatives of Mappings

\
G«

(if £ = u+iv)

Uxx =

using the Cauchy-Riemann conditions we can get u = -u , u = -v etc.

Now we can differentiate equations (?) to get:

r = (u u + uu + v v + w )/r - r /r
xr r x xr r x xr ' x'

r =. (u u + uu + u v + w )/r - r /ryr v r y yr r y yr'x yx

r = (u u + uu + v^v + w )/rye e y yr e y ye '
2

9 = ( u v + u v -vu -vu )/r - 29 /rDxr v r x xr r x xr'7 x'

2
9 = ( u v + u u - v u - v u )/r - 29 /r
yr r y yr r y yrx/ y7

2
Q = (u.v + uv - v u - vu _)/r
x9 9 x x0 ex x9

O

9 = (u v + uv - -v u - vu .J/rye e y ye e y ye '
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Now:

= W (W )(W ) + (W )(W )(W w, )
3w2 5Wl̂  3W 1C 54

Then we can get r , r , 9 and 9 by taking the derivatives ofx? y* x? y?
equations (7). In order to get r and 9z2 we take the p derivatives of equations

^ »
(8) and calculate x _ and y_« (again A,.̂  = A , B _ = B , etc. since z = 2),

& *•# *•*• zz *•*• , zz

and we get from (9)

r = - (r y +
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APPENDIX B

Coefficients of Transformed Euler Equations

o ? "?
= w - YT = w - a

A2 = ez + (exu + eyv) w/

AS = ez + exu/w + eyv/w

\ = (9xu + 9yv)/Al

A5 = 9Z + (l>XU + ryv)w/A

A^ = r + r u/w + r v/w6 z x ' y '

= (rxu + ryv)/A;L

\2

YeV

XrA6 + V3
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