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Abs trac t

This report presents the theory, results and user instruc-

tions for the aerodynamic program. The theory is based on linear

lifting surface theory and the method is the kernel function.

The program is applicable to multiple interfering surfaces which

may be coplanar or non-coplanar. Local linearization is used to

treat non-uniform flow problems without shocks. For cases with

imbedded shocks, the appropriate boundary conditions are added

to account for the flow discontinuities. The data describing

non-uniform flow fields must be input from some other source

such as experiment or a finite difference solution. The results

are in the form of small Linear perturbations about non-linear

flow fields. The method is applied to a wide variety of problems

for which it is demonstrated,to be significantly superior to the

uniform flow method. The program user instructions are given in

the last appendix for easy access.
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A STEADYAND OSCILLATORYKERNEL FUNCTION

METHODFOR INTERFERING SURFACESIN SUBSONIC,

TRANSONICAND SUPERSONICFLOW

By Atlee M. Cunningham, Jr.
Fort Worth Division of General Dynamics

SUMMARY

This report presents the theory, results, and user instruc-
tions for a computer program to calculate steady and unsteady
aerodynamics on interfering surfaces in subsonic, transonic or
supersonic flow. The theory is based on linear lifting surface
theory and the method is the kernel function. The program is
applicable to multiple interfering surfaces which may be coplanar
or non-coplanar. Local linearization is used to treat non-uniform
flow problems without shocks. For cases with imbedded shocks,
the appropriate boundary conditions are added to account for the
flow discontinuities. The data describing non-uniform flow fields
must be input from some other source such as experiment or a
finite-difference solution. The results are in the form of small
linear perturbations about non-linear flow fields. The method is
applied to a wide variety of problems for which it is consistently
demonstrated to be significantly superior to the uniform flow
method.

All equations used in the method are sunmmrized in the
appendices along with detailed derivations. A set of instruc-
tions for using the program is presented in the last appendix
for easy access. The instructions are included in this report
so that reference to pressure function or surface types and
example cases can be easily made.

In addition to the non-uniform flow capability, the program
can be used to obtain uniform flow solutions with a single option
change. Interference effects can be calculated for coplanar,
non-coplanar and intersecting planar surfaces° The aerodynamic
input geometry data format permits the input of arbitrarily
arrayed surfaces which are constrained only to being streamwiseo



Each surface may or may not have an image surface, hence,
asymmetric configurations may be constructed.

The program has a built-in interpolation scheme for struc-
tural mode shapes. The scheme uses a surface spline fit over
various structural surfaces or regions. This will permit inter-
polation of modes for total airplane configurations with all-
movable and vertical surfaces.

Generalized forces can be calculated in unsteady flow and
pressure distributions can be obtained in both steady and un-
steady flow. The solutions obtained are essentially independent
in computer cost of the number of modes or downwash vectors input.
Once the aerodynamic matrices are computed, inverted and saved on
a magnetic tape, they can be used on subsequent problems for very
little cost as long as Mach number, reduced frequencies, and aero-
dynamic geometry remain unchanged. Thus, the method is tailored
for design applications where the structural mode shapes change
continually for structural changes and payload variations while
aerodynamic parameters remain constant.

INTRODUCTION

In recent years, interest has grown considerably in the
desire to fly efficiently in the high subsonic regime. As a
result, the need has increased for better unsteady transonic
aerodynamic tools so that flutter and dynamic response charac-
teristics can be more accurately predicted in this flow regime.
Presently, these characteristics are predicted only with methods
which are based on linearized theory in uniform potential flow.
In addition, since buffet and limit cycle flutter appear to be
similar in experimental flutter and buffet testing, it is impor-
tant that their distinction be better understood.

The characteristic of transonic flow which causes the
greatest difficulty when attempting to apply uniform flow theory

to such problems is the presence of shocks imbedded in the flow.

Such a gradient in velocity as that which exists across a shock

is no longer small, thus, linear theory methods (ref. I) cannot

account for this phenomenon and hence become invalid. Finite

difference methods or other iterative schemes can account for

such discontinuities but they are usually very expensive to use

in terms of computer time required (refs. 2, 3, 4 and 5). More-
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over, if they are used for flutter or dynamic response analyses
where solutions must be computed for i0 or more frequencies, the
computer costs quickly become astronomical°

For example, a simple cantilevered wing flutter analysis
with four natural modes and I0 frequencies could require 20 or
more hours of computer time on an IBM 360/65 for a single flutter
solution° Thus, such an approach is not well suited for solving
unsteady transonic aerodynamic problems in a practical sense.

A study was conducted to investigate the feasibility of
using combined subsonic and supersonic linear theory as a means
for solving unsteady transonic flow problems economically
(ref. 6). In the method developed, a wing over which the flow
was mixed supersonic and subsonic with imbedded shocks was
treated as an array of general aerodynamic lifting surface
(GALS) elements. Each element was allowed to have mutual inter-
ference with the other elements° Also, each was assigned a
different Mach number, either subsonic or supersonic, and its
downwash was modified accordingly. The Mach number distribution
and shock geometry was obtained from either experiment or a
finite difference solution, hence the method was used to predict
unsteady perturbations about known steady mean flows° Once
assembled, the solution proceeded in a manner identical to ordi-
nary aerodynamic interference methods (ref. 7). The frequency
sweep could be performed at about the usual cost of a standard
subsonic or supersonic unsteady aerodynamic analysis which is
less than one hour - usually about I0 minutes - as opposed to
20 hours or more for a finite difference solution. As a result
of the feasibility study the computer procedure documented in
this report was developed.

The theory, results and program utilization are given in
this volume for the subsonic, transonic and supersonic aero-
dynamic program. The program is described in Volume II of this
report. This program is applicable to steady and unsteady flow
over multiple arbitrarily arrayed lifting surfaces. The Mach
range is subsonic, mixed transonic with or without shocks, and
supersonic. In addition to uniform flow subsonic and supersonic
solutions, non-uniform Mach number distributions can be used
which lead to significant improvements in solution accuracy.
The method is based on a kernel function technique which uses
assumed pressure functions with unknown coefficients. By match-
ing flow tangency boundary conditions at the control points, the
unknown coefficients are uniquely determined. The Mach number
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and reduced frequency at the control point are used to calculate

the aerodynamic influence coefficients at that point. The

presence of a normal shock is simulated by a line doublet which

represents the load induced by shock movement. The appropriate

steady or unsteady normal shock boundary conditions, as derived

in this report, are satisfied across the shock along the surface

of the wing. In the application of the transonic method to

several cases, the solutions are shown to be significantly

superior to uniform flow theory solutions with a relatively

small increase in computer costs.

SYMBOLS

a

a

AR

bREF

Cp = P-P_
q_

h(_,_)

i = (-I)%

k - ObREF
U

m --

tan ALE

M-U
a

free stream speed of sound, meters/second

conical coordinate

aspect ratio

reference length, meters - usually ½ wing chord

for 2-dimensional flow or ½ MAC for finite wings

in 3-dimensional flow

wing semi-chord at span station W,

non-dimensionalizedby bRE F

pressure coefficient

mode amplitude at point _,_

non-dimensionalized by bRE F

reduced frequency

Mach number
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MAC mean aerodynamic chord, meters

Pq(_,_) supersonic pressure weighting function
in the plane of the qth surface, non-dimensional

P pres sure, Newtons/meter 2

m

A pq(_f,__) lifting pressure amplitude in the plane

of the qth surface, Newtons/meter 2

dynamic pressure, Newtons/meter 2

r = [(y-w)2 + (z-_)2] ½ non-dimensionalized by bRE F

SO wing semi-span, non-dimensionalized by bRE F

U free stream velocity, meters/second

U,V_W velocity components in the x,y,z directions,

respectively, meters/second

amplitude of the oscillatory downwash

normal to the pth surface, meters/second

Wp <_, y) = Up (_,_)/U

x,y,z cartesian coordinate location of the downwash

point in the kernel function (x is in the

direction of U), non-dimensionalized by bRE F

coordinates in the plane of the pth surface

with _ perpendicular (see fig. 3.)

Xo,Yo,Zo distance from an influence point to the downwash

point, (x- _ ), (y- N ), (z- _ ), non-dimensional

A Cp lifting pressure coefficient

angle of attack, degrees

= I-M 2
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ALE ' ATE

-

_a, _b

8

leading and trailing edge sweep angles, degrees

location of an influence (or integration) point

in the kernel function, non-dimensionalized by bRE F

coordinates in the plane of the qth surface

with _ perpendicular (see fig. 3.)

location of the mid-chord at span station _,

non-dimensionalized by bRE F

b(_) ' so ' s o

limits of the spanwise integration as determined

by geometry and the Mmch hyperbola

chordwise variable of integration, non-dimensional

rotational frequency, radians/second

Subscripts :

L

LE

MC

P

q

TE

xy

OC

local value

leading edge

Mach cone (or hyperbola) boundary

downwash surface

integration surface

trailing edge

local value at point x,y

free stream conditions



TRANSONICFLUTTER AND DYNAMIC RESPONSEANALYSIS

Before proceeding with describing the transonic method,
it is appropriate that a brief discussion be given concerning
the problems associated with transonic flutter and dynamic
response analysis.

In conventional dynamic analysis, the points to be considered
are defined over a Mach number-altitude envelope. Since the
analysis methods use linear theory aerodynamics, there is no
coupling between the unsteady and steady flow fields, and altitude
is accounted for only through the variation of air density. In
transonic flow this is no longer true.

The prediction of unsteady pressure distributions induced by
a surface oscillating in a mixed transonic flow is complicated by
the strong coupling between the steady and unsteady flow fields.
The steady flow fields are in turn drastically modified by Mach
number, altitude, thickness, camber, twist, angle of attack,
planform geometry, interference, and static aeroelastic and
boundary layer effects. For a given Mach-altitude point and a
fixed configuration, however, the only additional variable is the
angle of attack, _. Thus, transonic flutter and dynamic response
analysis must be performed over a three-dimensional envelope as
specified by Mach-altitude-_ conditions.

Transonic analysis is further complicated by the need to
compute unsteady pressures on the entire configuration, that is
both upper and lower surfaces, in most cases. Through changes in
the static aeroelastic deformation and boundary layer, altitude
effects in the shock structure and flow fields are as significant
as those due to Mach number and _ . Thus, a new mean flow field
is needed for each Mach-altitude-_ condition.

The use of finite difference or other iterative schemes such
as those given in references 2, 3, 4 or 5 would pose an obvious
solution to this problem. Assuming that an unsteady verision
could be developed for finite wings, it might be assumed that
about 30 to 60 minutes on an IBM 360/65 would be required for a
single aerodynamic solution (ref. 4). A single solution would,
however, refer to one Mach-altitude- _ -frequency-mode condition.
Thus for a single I0 frequency, 4 mode flutter solution for a
simple cantilever wing, 20 to 40 hours of computer time would be
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required. Expanding this to two Mach numbers, two altitudes, and
two _ 's, the total cost would be 160 to 320 hours of computer
time. This cost is on the order of magnitude of a flutter model
test program and the same cost would be encountered for redesign
evaluations. Since one of the primary objectives for using theo-
retical flutter methods is to reduce costs by minimizing the
requirement of flutter model tests, then the use of the finite
difference approach would defeat its intended purpose°

° Although linear theory methods cannot solve the highly non-
linear mean flow problem, they can solve the small perturbation
problem about the mean flow. Thus, a more realistic and yet
economical approach would be to use the elaborate schemes to
predict the mean flow fields and linear "transonic" theory to
perform the flutter analysis at each Mach-altitude-_ point.
The cost of using linear theory methods is primarily a function
of the number of frequencies and is practically independent of
the number of modes. Also, once the aerodynamic matrices are

calculated, they may be used repeatedly to evaluate design changes

at very little cost.

Returning to the cantilevered wing, for a linear theory

solution of about i minute per frequency, the cost for flutter

analysis would be I0 minutes per Mach-altitude-_ point. For the

total, 4 to 8 hours would be required for the steady mean flow

calculations and 1.33 hours for flutter analyses. Comparing 5.33

to 9.33 hours against 160 to 320 hours, it is clear that the

hybrid approach would be economically very attractive. The re-

suits in this report will also demonstrate that the use of linear

theory would not degrade the accuracy.

THE TRANSONIC KERNEL FUNCTION METHOD

The fundamental problem to be treated in this report is the

development of a technique to solve the integral equation that

relates the normal velocity imposed by boundary conditions with

the load distribution on an arbitrary array of planar lifting

surfaces in a subsonic, supersonic or mixed transonic flow.

The equation may be written as

wp(x,y,z) I Q

U _ 4-_pU2 q_=l
fSq APq(_, 7, $ )K(x-_,y-_,z-$,k,M)ds (I)
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for Q total surfaces. The downwash Wp(x,y,z) is the velocity
normal to the pth lifting surface at control point (x,y,z).
The function _q( # , N , _ ) is the normal lift distribution on
the qth lifting surface at load (or integration) point ( f, N , _ ).
The kernel function K( ) is the influence function which is
actually the velocity field due to an elemental normal load at
point ( # , N , _ ) on the qth surface. The unknown quantity is
_( # , _ , _ ) and _p(x,y,z) is prescribed by the boundary condi-
tions on the lifting surface due to surface slope and motion.

The method used to solve equation (I) in this report is based
on a collocation technique. The unknown pressure function is
assumed to be composed of a series of polynomials weighted by a
user selected weighting function that is characteristic of each
lifting surface. The non-planar kernel function is used for which
the Mach number and reduced frequency are determined by those
values at the downwash control point, x,y,z. The necessary equa-
tions for evaluating equation (i) are given in the Appendix.

The algorithm for linking subsonic and supersonic linear
theory solutions together is based on the following two assump-
tions:

I. The appropriate Mach number for computing downwash

at a point is the Mach number of that point.

.

_bREF
The reduced frequency, k_ =-IT---, is modified

according to the local velocity such that

is held constant. This is approximated as

U M

k L = k_ _L _ k_ --ML

The first assumption is justified by the fact that, for any

given pressure distribution, the integrated kernel function-

pressure function product rapidly becomes independent of Mach

number as distance increases either upstream or downstream from

a loaded region. The second assumption is mandatory since the

physical frequency, _, must be held constant. The use of the

Mach number ratio rather than velocity ratio will result in a

small overestimate (typically about 3% to 4%) of the effect of

velocity change.



With the two basic assumptions, the computational algorithm
becomes a simple problem of testing the Mach number of the down-
wash point. If the downwash point is supersonic, then the self-
induced downwash as well as all interference effects at that point
are computed with the supersonic kernel function regardless of the
interfering surface' s Mach number. Likewise, if the downwash
point is subsonic, the subsonic kernel function at that Mach
number is used. The value of k in the kernel function is also
determined by the local Mach number since the downwash surface
sees the same value of _ regardless of what surface the distur-
bance is emitted from.

The correct form of the downwash-pressure function integral
equation which embodies the above assumptions can be derived from
the nonlinear partial differential equation that governs the flow
potential. The equation in vector form is

where

i _25

a2 _t 2 a2 q • = a2 q" (_-V)

a 2 = ao 2 . _ q2 , ao = stagnation speed of sound

--v$

Let

and

= +

_ix _Ux__

M I = _ - axy = Mxy
Defined at the

downwash point= _bREF = _bREF =
k I kxy

l_x xy
-D--

where Uxy is the mean flow field velocity parallel to the lifting

surface at the downwash point location, (x,y). The first of the

two basic assumptions imples that the derivatives of the mean

flow field velocity components are small relative to velocity

component _Ix' i.e.

i0



(_ixx' 41xy' _Ixz ) ~ (_ly x, _lyy, _ly z)

~(41zx' 41zy' +izz ) ~ _x<< @ix

(2)

Employing equation (2), it is possible to reduce the nonlinear
equation to the following first order nondimensional form for

V25 " MI2 $xx + k12 MI2$ - 2iklMl 2 $x = 0

where

_=
_ix bREF

V = bRE F

_x

_ix

It should be noted that all equations have been defined at the

downwash point.

Next, the acceleration potential equations are developed

also at the downwash point with one exception. The acceleration

potential for harmonic motion is defined as

= io_+ 41 _x
X

It is desired to non-dimensionalize _ with a flow field variable

at the integration point since it is directly related to the

pressure difference. Hence,

if

where _i_ is the mean flow velocity component at the integration

point. The governing differential equation for _ can thus be
written as

ii



V2_ - MI2_xx + k2 M2_ - 2iklMl2_x = 0

for which the well known solution is

(4)

where

I MI ' 1
A O i EXP ik I --

_ = I - MI 2

R]'2= (x-_) + _12 I (y-_) 2 + (z-_)2 1%

The strength factor A is determined from the relationship

Ap Ap "ACp_

Since flow can be assumed as nearly two dimensional in the

vicinity of the downwash point, the relation

-- = __ =_> _- ACp_

is approximately valid where q_ and q_ are the dynamic pressures

at infinity and the integration point, and ACp_ is the integration

point lift amplitude divided by q_. As a result, the solution to

equation (3) is

_-_I _i_ -ikl(X- # _ ACP=c (@,W,_)
- 8= _ix e --_ _Ix

IMI 1oz % E_ i_l_[Ml_-RIJ e'ikl_ d_

where aCp_(@,_,_) is the lifting coefficient at the integration

point. Defining the downwash as

12



W ._= (oz 1i 0+ 0+ _z-- _ + ikz
_ix a_ 0z

The downwash-pressure integral equation becomes

_I_ _ix

• K (x-f, y-q, z-_, kl, MI) dfd_

where the kernel function is defined as

K (x-f, y-q, z-_, k I, MI)

:
iklX

d_

The only difference between the above formulation of the kernel

function and the classical form is that the k I and M I vary with

downwash point location. They are constant over the region of

integration, however, for any given downwash point. These

definitions are consistent with the two basic assumptions.

The presence of the term (_If/@ix) in the integral in
equation (5) violates the first assumption that the downwash

point Mach number dominates the influence functions. Likewise

as the integration points approached the downwash point, this

term would approach unity, therefore its influence could be

negligible. For the purposes of the study summarized in this

report, it has been set equal to unity. The effect could be

significant, however, for integration points in a supersonic

region nearly upstream of a subsonic downwash point. The use

of (@l_/_Ix) # 1.0 should be investigated in future studies to

determine its importance. Also, rather than use (_ix/_l_) in

equation (5),

$1x/_l_ _ Mxy/M

is used which will introduce a small error as previously discussed.
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As a result of the above discussion, the integral equation

that is actually solved by the transonic algorithm is

K(x-_, Y-n, z-S, kxy, Mxy)d(dn

(6)

where dCp_( # , _ ) is the pressure difference at ( # , _ ) divided

by q= . Since the algorithm permits Mxy and kxy to be used in

computing the kernel function, thereby permittihg the kernel

function to change at each downwash point, it is possible to

account for leading edge regions where the flow is continuously

accelerated from subsonic to supersonic.

Shown in figure i is a flow diagram of the current transonic

flow algorithm for unsteady flow. The same logic is applicable

to steady flow. The key ingredient is. the con_non set of surface

types and pressure function types for both subsonic and supersonic

flow as shown in figure 2. The integration schemes are also

compatible with two exceptions. The difference in the chordwise

integration is that in supersonic flow, the limits are from Mach

cone to leading edge whereas in subsonic flow they are from trail-

ing edge to leading edge. In the spanwise integration, both

techniques are identical.

The pressure functions are given as a set of chordwise and

spanwise varying polynomials with a weighting function which is

constructed according to the pressure,type shown in figure 2.

The form is

dpq(_,_) = 4pU2 h(_)2(U) [goq(_) fo (_)
bq(_) S°q - - -

+ glq(__)f I(_) + ...]

where all items are defined in the "Symbols" section except for

gmq(_), fn(_), h(_) and L(__). The coordinates, _, __, are

(7)

14



I
IS-IS+I

i

ICmO

IC"IC+l

, I ,,

< I. 0 /_ MIC _ i .0MIC

<-.ZiS.->
COMPUTE SUBSONIC

UNSTEADY AERO

MATRIX BAND FOR

DOWNWASH POINT "It"

ON SURFACE "IS" FOR

ALL SURFACES

COMPUTE SUPERSONIC

UNSTEADY AERO

MATRIX BAND FOR

DOWNWASH POINT "IC"

ON SURFACE "IS" FOR

ALL SURFACES

ICP (IS) =NUMBER OF
DOWNWASH POINTS

ON SURFACE "IS"

NSURF=TOTAL NUMBER

OF SURFACES

I

i__, IS< NSURF

_ IS=NSURF

• COMPUTE UNSTEADY AIRLOADS,
PRESSURE DISTRIBUTIONS OR

GENERALIZED FORCES

Figure i.- Flow Diagram For Computing Unsteady Aerodynamics

in Mixed Transonic Flow
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TYPE I TYPE 2 TYPE 3

SURFACE TYPES

I

i

_F--_!_-7_ J_
i

CHORDWISE LOADINGSSPANWISE LOAD INGS

1

Figure 2. - Surface and Loading Types for the General

Aerodynamic Lifting Surface Element
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defined in the transformed plane of the surfaces shown in figure 3.

The chordwise functions, h(_ ), are defined as

h({) , Type 1

, Type 2

J 1 , Type 3

h(_) - i

in relation to figure 2.
defined as

, Type 4

The spanwise functions, l(_), are

(8)

L(_) = _/1- _2

,/(_n)= 1

, Type I, surface I only

, Type 2, surfaces I, 2, 3

, Type 3, surfaces 2, 3

, Type 4, surfaces 2, 3

(9)

The chordwise functions, fn( _ ), are simply

fo(_) = Uo(_) = i

fl(_) = Ul(_) + Uo(_) = 2_ + 1

fn(_) = Un(_)+ Un.l(_) (I0)

There are mq total chordwise functions corresponding to _ total

downwash points in the chordwise direction for the qth surface.

17



-I

z, Op)

Downwash
x,_ Point

z,C

Oq

Figure 3. - Basic Geometry and Coordinate Systems

for Interfering Surfaces
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The spanwise functions, gmq(2), contain the unknown coefficients
in the form

gmq(_) = [amoqUo(_) + amlqUl(_) + ... ]
(ii)

where Un(__) are the Tschebychev polynomials of the second kind,

Uo : I
Ul( ) = 2

Un(_) = Un_l(_) - 2__Un_2(_)

There are n--qtotal spanwise functions corresponding to n--qtotal
downwash chords.

These pressure functions are used regardless of Mach number

for subsonic or transonic solutions. For supersonic flow, these

functions may be used or the supersonic weighting function may be
used instead.

If the supersonic weighting function is used, the form is

dpq(_,_) = 4pU2p($,_)[goq(_) fo (_)

+ glg(_-) fl (_) + ''' ]

(12)

where P( $, W ) is the weighting function. The gnq(_) and fn( _ )

are identical to those given for the regular function in

equation (7).

The supersonic weighting function is based on conical flow

theory solutions to the lift distributions on flat swept wings

(ref. 8 ). Some liberty has been taken to simplify the expres-

sions and yet maintain the basic characteristics. The function

has been developed only for simple trapezoidal wings in this

program. The following derivations provide the equations

necessary for wings with or without clipped tips and with sub-

sonic or supersonic leading and trailing edges. No secondary

reflections of the Mach lines are accounted for since they tend

to be of second order effect and can be adequately accounted for

in the collocation solution.
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The basic equation for leading edge and root characteristics
is the delta wing distribution. For a subsonic leading edge,

<im -
tan ALE

we have

I

p(_,_) =
(13)

where

m

a -- xi'71 = Location of leading

edge vertex

thus

(_-_l)tanALE

m $-Xl

For a supersonic leading edge, m >I.0,

p(_',_) - i - _'(a)L(m) -_a
(14)

where _(_) : 1, _< I

m

= 0, a>l

: 1 - _ [- 7.0 ]
L(m)

4m [l.75+I/mJ

( 0>I which appears in the expression for L(m)The term 1.75 +

is the approximation used for the exact function

4me_{ = 7et¢l ,,
PROOT - HE' (m) (I. 75+1/m)

where E' (m) is th_ complete elliptic integral of the second kind

of modulus (l-m2) _.
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A tip correction is included for clipped tips. For a sub-
sonic leading edge, m _ 1.0, the lift distribution behind the tip
Mach line is constant in the streamwise direction. The amplitude,
a function of span only, is given as

m

(15)

where

~ ~xTIP- IP- U )8

= value of "a" along the tip

Mach line at span station

For a supersonic leading edge, m >i.0, the lift distribution

behind the tip Mach line is given as

where

P($'_) = P(_'_)DELTA [2 sin-l_] (16)

P(_'_)DELTA = Delta wing distribution given
by equation (14).

\XTl P-

--value of "_" relative

to forward wing tip.

The functions given above in equations (15) and (16) are exact

shapes as required by conical flow theory.

A final correction to the delta wing distribution is the

subsonic trailing edge term. This term is approximated as a

multiplicative function applied to the delta plus tip term.

The function is

P(_,_) = P(_,_)

DELTA+TIP
(17)
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for 0.0%a"' _ 1.0 where

a _w;

_TE

_-_TE

= (_TEV + _ -_TEV

= __(tan ATE ) + XTE V = _ position of trailing edge

XTEV = _ position of the trailing edge vertex

thus

a Pt!

m _
<I

tan ATE

The form of this approximation is not exactly correct, however,

it seems to be close enough for practical purposes as experience

has shown.

Three examples are shown in figures 4, 5 and 6 for the

supersonic weighting function. The magnitude of the weighting

function is adjusted uniformly in each case so that the shapes

can be compared with other theories or experiment. The first

example in figure 4 is for a rectangular wing, AR=2.0, in steady

flow at M=I.2 and _ =I.0 rad. The solid line is the weighting

function evaluated at the span stations _=0.i, 0.5 and 0.9 with

the equations given in this section. The Mach lines are shown

for clarity. The symbols are values computed by the AFFDL Mach

box program for wing-tail configurations (ref. 9). The second

example in figure 5 is a swept tapered wing of the standard AGARD

wing-tail configuration (the true planform is shown). The con-

ditions are steady flow, M=I.2 and _=I.0 rad. The solid line

is again the weighting function. The symbols are results from

the Woodward finite element method (ref. i0). The disagreement at

the Mach line discontinuities is due to the inability of the

finite element representation to conform to such characteristics

with a reasonable number of elements. The third example shown in

figure 6 is a trapezoidal wing with a supersonic leading edge.

In this case, the leading edge vertex Mach cone intersects the

tip cone. Comparison with the Woodward method and experiment

clearly illustrates the validity of the function.
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M_ = 1.2
a = 1.0 RAD
AR = 2.0

o AFFDL MACH BOX METHOD(REF. 9)
SUPERSONICWEIGHTING FUNCTION

ACp

8

6

4

2

0 /

Figure 4. - Supersonic Weighting Function for

a Rectangular Wing
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WOODWARD METHOD (REF. i0)

SUPERSONIC WEIGHTING

FUNCTION

M_ = 1.2

= 1.0 RAD

C)

0

/

--0.5

TRUE PLANFORM

(AGARD WING)

Figure 5. - Supersonic Weighting Function

for aTrapezoidal Wing with

Subsonic Leading and Trailing Edges
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M_ = 2.01

a = 6.0 °

AR = 1.34

o EXPERIMENT (REF. ii)

SUPERSONIC WEIGHTING

FUNCTION

.... WOODWARD (REF. i0)

ZZ- . 75

Figure 6. - Supersonic Weighting Function for

a Trapezoidal Wing with

Supersonic Leading and Trailing Edges
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METHODOLOGY FOR INCLUSION OF IMBEDDED SHOCKS

This section summarizes how the presence of normal shocks in

the flow is accounted for in the linearized model. The mean flow

field may be non-linear but the perturbations must be small enough

such that their non-linearities are second order effects.

Normal Shock Boundary Conditions

and the Shock Model

In the calculation of unsteady aerodynamic pressures induced

by surface motion in mixed transonic flows, the influence of

imbedded shocks must be accounted for by satisfying the proper

boundary conditions across the shocks on the flow perturbation

potential. The boundary conditions are the Rankine-Hugoniot

relation and the equality of total potential in front of and

behind the shock. The constraint is that the shock movement

necessary to satisfy Rankine-Hugoniot is equal to that necessary

to maintain equality of potential. The resulting boundary con-

dition in steady flow as derived in Appendix D is

where

K

@Ixx + @ixx

Y-I 2
_- +

Y+I M 2 (Y+I)

= Perturbation potential

(IS)

@I = Mean flow potential with shock

, et .
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The superscripts, + and -, refer to conditions just downstream

or upstream of the shock, respectively, as shown in figure 7.

Since the right hand side of equation (18) is determined only by

upstream perturbations and mean flow conditions, the equation

serves simply as an additional constraint on the downstream

perturbations.

Considering equation (18) for a case of downstream excitation

only, such as a control surface deflection, it can be shown that

the existing lifting surface representation must be changed. For

such a case, _" = 4x = 0, and since the downstream region i_ sub-

sonic, 4 T = 0. Thus, in order to satisfy equation (18), _x_ must

be zero; however, this is not the case as shown by experiment.

In order for 4x + # 0, then _+ # 0, thus another potential must be

added to the multiple surface model for mixed transonic flow with

shocks.

The finite potential _+ can be achieved by placing a lifting

line (or line doublet) between the upstream and downstream sur-

faces along the shock location° In reality, this lifting line

represents the lift due to shock movement which is otherwise not

accounted for in the multiple surface model. Without the "shock

doublet", the solution yields a peak in pressures at the leading

edge of the subsonic surface by satisfying the flow tangency

conditions. This peak, however, violates the shock boundary

conditions since _+ = 0, or else it requires that K = 0 in

equation (18). If _+ = 0, the shock movement, _, (shown in

Appendix D, equation (DII)) becomes

4+
= - 0

Ix-_{x

since 4" = 0. Thus, for the case of downstream excitation,

the shock does not move which is contrary to experimental

observations. Also, for K=0, it is implied that

*_xx +P4/lxx= 0

which is inadmissible since the shock movement would be infinite

as given by

,x + "
,Lx+  xx 0
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_x' X<Xs
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I

X S

X

Figure 7. - Mean and Perturbation Flow Potentials

About an Idealized Normal Shock
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(shown in Appendix D, equation (DI3)).

that if the constraint

K,+=0

The final conclusion is

is imposed, satisfaction of the shock boundary conditions becomes

an indeterminant problem. Thus, for the case of mixed flow with

imbedded shocks, these boundary conditions must be satisfied in

order to properly represent the flow fields. They can be satis-

fied only by inclusion of the shock doublet.

The normal shock boundary conditions for oscillatory flow

perturbations are similar to those given in equation (18) for

steady flow. They are also derived in Appendix D and are

expressed as

* 4+ * 4" - ivY- (19)

where

v = 2k(Y-l)
Y+I

K* = K + iv Y-I

-*ix

It can be seen that as k or u goes to zero, the oscillatory

condition reduces to the steady flow condition. This property

is not present in Landahl's boundary condition (equation i0.ii,

ref. 12); however, for

4+ + 4" ~ _[x< < 2ixx ixx

and

k~l.0

the above reduces to Landahl's equation. These conditions are

rather restrictive and are not suitable for cases which involve

flutter or dynamic response analysis.
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The shock doublet is used in the unsteady case in the same

manner as is used in the steady case. The same rationale for its

inclusion is applicable to unsteady flow.

The form of the shock doublet strength is similar to that of

a lifting line. In order to be compatible with the pressure

functions, it is expressed as

A t SHq (5) - 4pU2
bAVG q Soq_(__) [boqUo(__)

+ blqU I(__) + ... ]

where L (__) is the spanwise weighting function given in

equation (9)o The unknown coefficients, bn, are real for

steady flow and complex for unsteady flow.

(20)

Solution Process with Imbedded Shocks

For the solution to be rigorous, the upper and lower surface

solutions for mixed transonic flow should be coupled together

along the edge boundaries of the wing. Such an undertaking was

felt to be too ambitious for the current study, hence, the assump-

tion of decoupled upper and lower surface solutions was retained°

This assumption was justified through examination of experimental

data which indicated that the trailing edge pressure coefficient

does approach zero for small perturbations and it is not too large

for large perturbations. Thus, the trailing edge and tip pressure

coefficients were set to zero as is usually done in lifting sur-

face methods. The leading edge was left alone which resulted in

some problems in the prediction of large perturbations in steady

flow. The adequacy of the decoupled assumption will be discussed

further in the next section on application of the method.

The potentials, 4 + and 4" in equations (18) or (19), are

calculated as shown in Appendix E for both the lifting surface

distributions and the shock doublets. Since the change across

the shock of potential due to interfering surfaces is small,

its effect is neglected° Hence, _+ and _" are calculated only

from the two surfaces adjacent (upstream and downstream) to the

shock. The potential derivatives are calculated with the pressure

coefficient. As shown in Appendix E, the boundary conditions are

satisfied in steady flow according to the expression
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+ K
Cp(xs,Y ) - _ GD(y,y ) + pCp(xs,y ) = 0

and in unsteady flow with

+ K* GD(y,y )Cp(xs,Y ) - _- + pCp(xs,Y ) + -- G (y,y) = 0

The C_ (xs,y) and Cp(xs,y ) are the pressure coefficient values
just aft of and forward of the shock. The G'(x,y) and GD(Y,Y)
are the chordwise integrals of the supersonic and shock doublet
products with the kernel function along the downwash chord at
span station, y. These are the same integrals given in
Appendix B.

The downwash induced by the shock doublets is calculated in
the same manner as is done for surface lift distributions. The
equations given in Appendices B and C are directly applicable
where the chordwise integration is simplified to a one-point
evaluation along the shock doublet. The spanwise integrals are
identical.

The physical problem for a wing in mixed transonic flow is
represented with a "transonic pair" of lifting surfaces as shown
in figure 8. The upstream surface ma_vhave all supersonic flow
or a subsonic leading edge with accelerating flow to supersonic
at the trailing edge just forward of the shock. The downstream
surface must have a leading edge Mach number of less than 1.0

as well as the remainder of the surface. The shock doublet is

located between the upstream and downstream surfaces. The

potential 4 + is calculated only from the shock doublet since the

potential at the leading edge of the subsonic surface is always

zero for linear theory.

The aerodynamic matrix construction for a "transonic pair"

is shown in figure 9. The downwash submatrices All, AI2, A21

and A22 are calculated in the manner discussed in Appendices B

and C. The matrix AID is the downwash induced on the supersonic

surface by the shock doublet and is all zeros as is the matrix

AI2. The A2D matrix is finite and is the downwash induced on the

subsonic surface by the shock doublet. This matrix is calculated

as discussed above. The BSI and BS2 matrices are the contribu-

tions due to the supersonic and subsonic surfaces, respectively,

to the shock boundary conditions. The BSD matrix is the -K_ +

term in the boundary conditions due to the shock doublet. The a I
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Figure 8.

SURFACE I

SHOCK DOUBLET

SURFACE 2

- Geometric Arrangement for a "Transonic

of Lifting Surfaces

Pair"

All

SUPERSONIC OR

SUB TO SUPERSONIC

MATRIX

A21

SUBSONIC INTERFERENCE

OF SURFACE i ON

SURFACE 2

AI2 AID

o o

A22

SUBSONIC

MATRIX

A2D

B,I ",2 B;D

/ t i
(_*:"K*-I C*:) I-K*+)

FOR SUPERSONIC FOR SUBSONIC FOR SHOCK

SURFACE SURFACE DOUBLET

y'

AT EACH

DOWNWASH CHORD

I

al i wl

i

a2 w 2

t

i

bD O i

\

DOWNWAS H ON

SUBSONIC SURFACE

DUE TO SHOCK

DOUBLET

Figure 9. -Matrix Construction for a "Transonic Pair"

of Lifting Surfaces
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and a2 vectors are the usual pressure series coefficients for

both surfaces which are unknown. The b D vector is the shock

doublet strength series coefficients. The WI and W2 vectors

are the known downwash boundary conditions on the two surfaces.

The matrix equation as shown in the figure is solved to obtain

the full vector of unknown coefficients, al, a2 and bD. If

surfaces I and 2 are not a transonic pair, then the shock doublet

and boundary conditions are removed which leaves the usual inter-

ference matrix form

All AI2

A21 A22 a 2

W I

W 2

The effect of using the two different solutions on the same

problem will be discussed in the next section on application

of the method.

APPLICATION TO TRANSONIC PROBLEMS

The computer program was applied to a variety of problems

involving mixed transonic flow over stationary and oscillating

lifting surfaces. The steady flow application demonstrated the

capability of the method for predicting incremental changes to

the steady mean flow lift distribution. The unsteady flow

applications included rectangular and swept trapezoidal planforms

oscillating in both elastic and rigid body motions. The frequency

variation ranged from near steady flow to moderately unsteady flow.

Comparisons were made between theory and experiment for uniform

flow, transonic flow without shocks and transonic flow with shocks.

In addition, a case was considered in which theoretical wall

interference effects were accounted for which led to an improve-

ment in agreement with experiment. Where shocks were used in the

solution, shock movement was shown as 2% of the local chord in

order to illustrate the resulting lift increment.
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Rectangular Wing in Steady Flow

The transonic method was applied to a case for an aspect
ratio 300 rectangular wing in steady flow at M_ =i.0 (ref. 13).
The lift change was predicted for an increment in angle of attack,
An=a2 - _i where _2 = 5° and _i = 0°. Predictions were com-

pared with the sum of the change in lift on the upper and lower

surfaces obtained from experiment as

L U

ACpa _ = ACpa a - ACpa a

where

_C U = CU _ CU ]

Pa P_ 2 Pa I

L = C L CL
CPa Pa 2 Pa i

Zl¢_. = a 2

Such a definition of incremental lift eliminated error due to non

zero lift at _=0 and was consistent with a piecewise linear

representation of transonic flow problems.

Comparison of prediction and experiment is shown in figure i0o

The first solution shown (solid line) is obtained by using the

average of the predicted pressure changes due to _=5 ° for the

local Mach number distributions, ML, at both _=0 ° and _=5 ° .

For a=0 °, the incremental pressures were the same on the upper

and lower surfaces since MLwas about the same on each (symmetric

biconvex airfoil). At a=5 °, separate solutions were run on the

upper and lower surfaces° The need for three solutions stemmed

from the large variation in ML at _=0 ° and at _=5 °. At _=0 °,

ML varied at midspan from about 0.85 at the leading edge to 1.38

at the trailing edge° At a=5 °, the variation was from about 1.28

to 1.39 on the upper surface and from about 0.68 to 1.30 on the

lower surface. In all cases, the control points used were 4 chord-

wise and 6 spanwise. The problem run time was about 12 seconds

of CPU time on the CDC 6600 or a total cost of 36 seconds.
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Figure I0. - Results for an AR 3.0 Rectangular

Wing in Steady Flow at M_ = 1.0
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A second solution is shown (dashed line) obtained with the

same computer program for a uniform ML=0.98 distribution. Com-

parison of the two solutions with experiment clearly demonstrates

the superiority of the transonic solution.

Shown in figure Ii is a comparison of prediction and experi-

ment for the same configuration as considered in figure i0 but for

M_ =0.9. In this case a shock existed at about 70% chord on the

upper and lower surfaces at _=0 °. Again, three solutions were

run for the transonic case in the same manner described previously.

The control points used were 4 chordwise and 6 spanwise in the

supersonic regionand 3 chordwise and 6 spanwise in the subsonic

region° The total number of unknowns was 42 surface pressure

function coefficients and 6 shock doublet function coefficients°

The CPU was 20 seconds on the CDC 6600 or a total of 60 seconds

for the three solutions.

Again, the transonic solution is clearly superior to the

uniform flow solution. Not only that, but the results agree

remarkably well with experiment.

Rectangular Wing Oscillating in Bending

The aspect ratio 3 rectangular wing was treated in the same

manner as in reference 6 with only a change in the aerodynamic

method. The Mach number distribution and control point arrays

are shown in figure 12 along with the results for the (ref. 13)

case of a=0 °, M%0.9, and k_ =0o13 (based on semi-chord). The

solutions shown are for the transonic method with and without a

shock and a uniform flow solution. The Mach number distribution

as shown was assumed to be constant in the spanwise direction.

In this case, the presence of the shock oscillation is clearly

evident in the real part of the solution. Comparison with the

transonic solution in reference 6 shows a significant improvement

in the real part forward of the shock and in the imaginary part

aft of the shock. The use of shock boundary conditions and down-

wash point Mach number in the kernel function resulted in correct-

ing the discrepancies noted in reference 6.
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Swept Trapezoidal Wing With Roll Excitation

This case consisted of a swept trapezoidal wing oscillating

in a roll mode at I00 Hz in an experimental study conducted by

Becker (ref. 14). The actual mode included some bending and

twisting motion which was somewhat difficult to determine from

the data available in reference 14. This problem was discussed

in reference 6 due to the fact that the mode shape used would not

produce a uniform flow solution that would agree with a solution

given by Beckero As a result, a study was made to determine the

mode that would produce a solution that would show satisfactory

agreement with Becker's data at M_ =0.8. These results are shown

in figure 13 with a tabulation of the mode used. The slopes were

all assumed constant in the chordwise direction which probably has

some influence on the results to be given.

The first transonic case for M_ =0.937 and k_ =0o61 (based on

semi-span) was solved with the downwash point array and shock

geometry shown in figure 14. The results are shown in figure 15

where the solid line is the transonic solution with a shock and a

dashed line is the uniform flow solution. The solution given in

reference 6 agreed better with experiment aft of the shock for

both real and imaginary parts; however, those results were ob-

tained with the questionable mode shape as was illustrated by a

gross overprediction of the imaginary part forward of the shock.

As was discussed in reference 6, the experimental data were felt

to be strongly affected by wind tunnel wall interference. These

effects would be stronger aft of the shock and weaker forward of

the shock. Thus, the improved agreement forward of the shock

indicates that the mode shown in figure 13 is more correct. If

the Mach number increases so as to move the shock further aft and

increase its strength, the interference effects should decrease.

The next case for M_ =0.997 and k_ =0.58 was solved with the

downwash point array and shock geometry shown in figure 14. The

results in figure 16 show a significant improvement over those of

reference 6 which supports the suspicion that wall interference

effects are present in the data. These results also exhibit a

reasonable progression for the change in Mach number from 0.8

to 0.937 to 0.997.
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Swept Trapezoidal Wing With an Oscillating Aileron

A low aspect ratio swept trapezoidal wing with an oscillating

inboard aileron in mixed flow was considered as the next case in

reference 6. The conditions were M_ =0.942 and k_ =0.591 (based

on semi-span) and the experimental data was obtained by Bergh,

Tijdeman, and Zwaan (refs. 14 and 15). The configuration and

control point arrays are shown in figure 17. In this case, it

was felt that wall interference effects would not be so signifi-

cant.

The solutions shown in figure 18 include those obtained from

the transonic method with and without shocks and uniform flow

theory. The uniform flow solution agrees quite well with experi-

ment for points on the aileron. Over the remainder of the wing,

however, both transonic solutions are far superior. The most

notable point is the large negative value in the imaginary part

of the measured data at 5=0.55 which is predicted by the theory.

Comparison with the results of reference 6 shows that the improved

method is more realistic at all span stations. Inclusion of the

shock boundary conditions has the greatest effect outboard of the

aileron.

Wall Interference Effects in Oscillatory Flow

The aspect ratio 3 rectangular wing of reference 13 for

M_ =i.0 and k_ =0.12 was chosen to determine if the transonic

theory could be used to predict wall interference effects.

These results are shown in figure 19 at mid-span. The first set

of solutions shows comparison with the AFFDL sonic box method

(ref. I), the uniform flow kernel function solution at M_ =0.98,

and experiment. With exception of the real part near the leading

edge, the solutions essentially agree. The next set shows how

the theory changes when non-uniform flow is accounted for.

(The Mach number varies from 0.80 at the leading edge to 1.39

at the trailing edge.) The last set shows the effect of includ-

ing the first reflection images above and below the wing for non-

uniform flow (assuming 100% reflection).

The solution is most improved over the aft two-thirds when

non-uniform flow effects are included and over the forward third

when wall intereference effects are added. Since the forward

third corresponds roughly to the subsonic region, it is expected
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that in cases where shocks are present, the subsonic region

aft of the shock would be greatly influenced by interference.

This is felt to be the case for the experimental data given in

figure 15. It also appears that the transonic results in

figure 12 would be improved by including wall interference.

CONC LUS ION

An improved kernel function method has been presented in

this report that is applicable to multiple lifting surface

problems in subsonic, transonic and supersonic flow. The method

yields solutions for steady and oscillatory perturbations about

linear or non-linear steady mean flows. Results have shown that

the use of the local Mach number to calculate the kernel function

leads to significantly improved solutions. The oscillatory normal

shock boundary conditions as derived have shown the correct limit-

ing properties as the frequency approaches zero or infinity. For

cases with shocks imbedded in the flow, inclusion of the shock

boundary conditions also led to improved solutions. Inclusion of

an image to approximate wind tunnel wall interference was found

to improve the agreement with experiment for a case involving a

rectangular wing oscillating in M_ =i.0 flow. The comparison of

transonic solutions with linear theory results and experiment

indicated that the effect of using transonic aerodynamics in

flutter and dynamic response analyses could be significant.

General Dynamics Corporation

P. O. Box 748

Fort Worth, Texas 76101, September 30, 1976
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APPENDIX A

THE NONPLANARKERNEL FUNCTION

The nonplanar kernel function is expressed as

e'ikx° [ K2T2"7 R2 _ 0
K(x°'Y°'z°'k'M) =" _- LKITI + r2 J '

, R2<0

where (see figure 3 for definitions of #p and #q)

X 0 = X-_

YO - Y-_

Z 0 = Z-$

r 2 = 2
yo 2 + zo

R2 = Xo 2 + _2r2

_2 = I -M 2

T I = cos(0p-@q)

T2 - (ZoCOSSp-YosinSp) (ZoCOS@q-Yosin@q)

which is valid for either subsonic or supersonic flow.

The k and M values are those at the downwash point.

The distinction between subsonic and supersonic flow is

embodied in the K I and K 2 terms.

For supersonic flow (or supersonic downwash points),

the K I term is deflned as

(Ala)

(Alb)

K I = KII + KI2 (A2)
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where

(_ -ikrulKII = + I) e - Iii

-ikru 2X.,

KI2 = (_- i) e
+ 112

R = (x 2+_2r2) ½

(A2a)

(A2b)

xO - MR

u I = _ _2 r

u 2 =
Xo +MR.

_2r

For Ul_ 0,

ii

Iii ffiikre-ikrul n_=l an Elnnc+ikr

or for Ul< 0,

Ii

Iii = ikre anE
= n-c--ikr

ii

+ 2 [e-ikrul 2 an ]

nffil
and

(A3a)

(A3b)

Ii n

112 = ikre-ikru2 _ anE2nc+ikr
nffil

(A3c)
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where

E1 = e-C _Ull I c

E2 e'CU2

= 0.372

For the K2 term, the following expressions are used for
supersonic flow:

where

K2 = K21 + K22
(A4)

K21 = 3111 - 121 + I
R--_ -_- (l+u2) @ e (A4a)

K22 = -3112 - 122 - 2(Xo _
R

For u I >_0,

ii

121 = ikre-ikrUl _

n=l

or for u I < 0,

r2 ] I e-ikru2i) + [ _2Xo - ikrM 2

[ (i+_)½ ] I (A4b)

bnE 2 n

2nc+ikr

(A5a)

ii 2n

121 = ikre-ikrUl _ bnE1
2no -ik r

n--i

ii

e-ikrul+ 2 - i + _r)2 ..w

n=l
bn j(2nc) 2+(kr) 2

(A5b)
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and
II 2n

122 - ikre'ikru2 _ bnE2
2nc+ikr

n=l (A5c)

The an and bn coefficients in the series summations in

equations (A3) and (A5) are given in table AI. The an set

are those given originally by Laschka (ref. 17) for the

approximation

ii

U _ -ncu
(ig2) ½ - i m an e

n=l

The bn set are those given by Cunningham (ref. 6) for the

approximation

II

u n_ I -2ncu(i+u2)3/2 - I _ = bn e

The expressions for KI and K2 in subsonic flow (or at sub-

sonic downwash points) are similar to but simpler than those for

supersonic flow. The terms are

K I = KII (A6)

and

K 2 = K21

where KII and K21 are defined for supersonic flow in

equations (A2a) and (A4a), respectively.

(A7)

52



TABLE AI. APPROXIMATIONCOEFFICIENTS USED IN THE
KERNEL FUNCTION INTEGRALS KI AND K2

n
m

I

2

3

4

5

6

7

8

9

i0

ii

an bn

0.24186198

-2.7968027

24.991079

-111.59196

271.43549

-305.75288

-41.183630

545.98537

-644.78155

328.72755

-64.279511

3.509407

-57.17120

624.7548

-3830.151

14538.51

-35718.32

57824.14

-61303.92

40969.58

-15660.04

2610.093
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APPENDIX B

CALCULATION OF SELF INDUCED DOWNWASH

Evaluation of the integral given by equation (i) is performed
in two steps. First the chordwise integration is performed in a
manner which varies according to whether the Mach number is sub-
sonic or supersonic. The spanwise integration is then performed
independently of whether the flow is subsonic or supersonic.
This appendix summarizes the manner in which these integrations
are accomplished for equation (i) for q=p, the case of self
induced downwash. A special treatment is given to chordwise
integration in the vicinity of the downwash point.

Chordwise Integration

For steady supersonic flow, the integral equation may be
cast in the form

_"b

. R So (__[/) 2

where
n

,-'x,y" = 8= w(x,y)
U

R2 = Xo 2 + /32r2

_mc = Mach cone boundary in the
transformed coordinate system

Since the kernel function is singular along the Mach cone

boundary, _ = _mc, as (E)'% for E--0, a new chordwise

variable of integration, _, will be defined as

i-9mc+2_

l+_mc

and

(BI)
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where

fmc= _r, Mach cone boundary in the physical coordinate system.

Substituting 6 for _ and multiplying and dividing the integrand
by (i- 6z) _, equation (BI) becomes

__b

w(x,y) = - S_o

I

[ Ix°dJ(12-_mc) (1_62) -½ (i- 62)_p (_,__) _ "

and

__b

w(x,y) = - _o

b(__)d_ (B2a)

(y-_)2 ' __mc< I

i

b(__)d_

_mc _ I (B2b)
(_._)2 ' -

It should be noted that regardless of whether the Mach cone is

forward (@mc<l) or aft (@mc_>l) of the trailing edge, the

chordwise weighting function, (I- 6 2)-½ or (i- _2)-_, is the

same. As a result, the same chordwise integration scheme can

be applied.

The Tschebychev-Gaussian quadrature integration formula,

which is applicable to the chordwise integral in equations (B2)

is

i J

/ (i-_2) -½ f(_)d_ = j _ f(_j)

-i j=I

where

_j= - cos( =) , j=l,2,...J

and f( _#) is expressible as a polynomial of (2J-l) degree or less.
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Now, the chordwise integrals in equations (B2) may be evaluated
in steady or unsteady flow as

J

G(_,__) = b(__) (l+_mc) _ _ (l-_j2)½_p(_j,__)
2S° _ ]- j=l

(Y-_)2K(x-_j,Y-_,0,k,M), -i < _mc < I

= 0 , _mc < -i (B3a)

where

__j = - cos _), j-l,2,...j

__j = ½ I(l+_mc)_j + (_mc-l) l

_j = _jb(__) + _m(__)

and as

C(:_,__)

where

J

= b(_____)_ _ (l__j2)_A_p(_j,__) .
So J j=l -

(Y-_)2K(x-_j,y-_,0,k,M), _mc_l

(B3b)

__j -- - cos It), j--l,2,...j
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The value for J varies according to the downwash point location
as follows:

m

J = 4+i, i = 1,2,...mq

where i is the chordwise downwash point number starting with

i=l at the leading edge and i-_q at the trailing edge. Thus,

as an example for _=5, J varies as

J = 4+1 = 5

J = 4+_q = 9

(leading edge downwash point)

(trailing edge downwash point)

The same value of J is used in equations (B3) at all integration

chords with exception of those near the downwash point for any

given downwash point. When the Mach cone falls forward of the

leading edge, the value of G(_ , _) is set to zero as shown in

equation (B3a).

The chordwise integration for subsonic flow is similar to

that presented above.

i

= -
-I

The integral is of the form

I

[ Xo] b(-_)d_d_f _p(_,__) i+ _- S°([--_) 2
-i (B4)

The most notable difference between equations (BI) and (B4) is

the limits of integration.

is also changed to

where

The chordwise integration formula

i J

f
-I i+_ 2J+l j=l

= £2j-I _), j--l,2 .J
_j - cos_2--_ ''"

The integration is performed by multiplying and dividing by

(i-f)½/(l+ _)½ and using equation (B5). The result for steady

or unsteady flow is

58



J

: 2-'//1 (i- .
j:l

(y- _) 2K (x- _j, y-_, O,k ,M)

The value of J is constant at

for all integration chords except those near the downwash point.

(B6)

Spanwis e Integration

In supersonic flow, the spanwise integral is of the form

-_b

G

where the limits of integration, _a and __b, are the locations

of the intersection of the Math fore cone with ;:he wing leading
edge. Except for a weighting function, (I- __2)@, and the llmits

__a and __b, equation (BT) is identical to the equation for

subsonic flow developed in reference 7. Since equation (B7) is

more general, it is the form used in this report for subsonic

as well as supersonic flow.

(B7)

Let

G(Z,._) = G(Z,_) + (_-I,)G' (_,_') + (_-I_')2G '' (Z,_Y)

_'0 • • o

(B8)
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Adding and subtracting equation (B8) from (BT) yields

-_b

I(_) = f

_Ua

+ (_-y)2G"(-Y'- y) + "'" I

G(y,__) - [G(_y,_y) + (U-_y)G' (_y,_y)

dD

+/
9a

-_b

[ G(y,y) + (U_-$)G'(_Y,_Y) + (__-y)2G"(_,_Y) + ''" I (_-_U)2

(B9)

where the first integral may be evaluated with numerical quadra-

ture integration techniques and the second integral evaluated

analytically o

The quadrature integration is performed with a formula

derived from the equations for function approximation with

Tschebychev polynomials of the first kinds The approximation

to a function g(_') over the interval (-I _ _'_ i) is

S'-I

Co
_.a Ck Tk(_'g(__) = _- + _ )
k=l (B10)

where

S !

Ck = _-i Tk(_s)
s=l

(BII)

-_s = - cos(-_2s-i m) , s=I,2,...S'

S' = total integration chords in the

range -i <_ N <_ I

60



If g(__') is expressible as a polynomial of degree (S'-l) or less
over the interval (-i _< __'<_i), the approximation is exact. The
quadrature integration formula is derived by integrating equa-
tion (BI0) from __'= -i to __'= +I and inserting equation (BII).
The result is

where

i S'

/ g(__')d__ ' = _, _ g(__s) h (__s) (BI2)
-i s=l

SI-I

h(-_s) = _ Tk(__'s)_k
k=0

and

Jo = 1.0

_"k = 0 , k=1,3,5,...

1

-2
Tk(_')d_' = _-I)_+i) , k=2,4,...

-i

The only difference in the quadrature integration formula above

and that used in the subsonic spanwise integral of reference 6
i

is the definition of h(_s).

In order to achieve a more optimum distribution of spanwise

integration points, a coordinate transformation is made such that

the greatest density of integration points is next to the down-

wash chord. This step is particularly necessary for downwash

points near the leading edge in supersonic flow. The transforma-

tion is

_s --_r + (__+I), _ <- yr

3s = _r + (_-i), -_s>" _yr

where

,nr_" _ r=l,2 ._ n=l 3,5
_Yr -- cosk_) , ,.. , , ,...

(BI3)
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and

S = S' = n(2_+l) type i wing in figure 2 (Bl4a)

S = 2S' = 2n_+l) type 2 wing in figure 2 (Bl4b)

S = S' --n(_+l) type 3 wing in figure 2 (Bl4c)

The Yr defined in equation (BI3) are the same as used in subsonic
flow-and are interdigitated with the _s points by the relationship
between _ and S in equations (BI4).

Returning to equation (B9), the integral is evaluated with
equation (BI2) as

S

- _ s_I G(-Yr'_-s)h(_) + Q(Yr)I(_yr)- _- = (yr_ns)l _

where

(BI5)

Q(_r) = G(_Yr,_Yr) Eo(_r) + G'(ITr,y r) E l(_yr)

+ G"(l_r,_Vr) E2(_Yr)

(BI6)

The En(Yr) terms are the differences between the quadrature and

analytic integral evaluations

Eo_r) =

i h(___)d(__ s)

(__a-_r) - (__s'Zr) 2

E1 (Zr) = /_

_ _ s=l

S

= E h(_s)d(_s)
- _ (__s-l'r)

s=l

E2<[r) = <_b-__a) - _
- T s=l

h<Us)d<__s)

(Bl7a)

(Bl7b)

(Bl7c)
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for

d(__s) = I , __a<____s___b

= 0 , __s<__a or __s>__b (Bl7d)

where in the Eo term the Mangler formula was used (ref. 18).

No terms higher than E2 (It) have been found necessary, hence,

the series was truncated at that point.

The same equations are used in subsonic flow by simply

setting the limits at

which maintains continuity from subsonic flow to supersonic flow.

Shown in figure BI are examples of the relationships between

Yr, 7s , _a and 7b. 2 Also shown are hypothetical distributions
of G(yr,_ )/(YrZ_s) which are being integrated° The two

examples illustrate the differences between the treatment of

type i, type 2 and type 3 planforms shown in figure B2. The

differences are embodied in the definition of the spanwise

functions and _ :

7 = _So
type i surface (Bl8a)

7= _-s° (1+7)_ type 2 and 3 surfaces (Bl8b)

- So (1+7) type 2 surface (Bl8c)
7 = q- -

For equation (BlSa), there are S'total integration chords on the

wing and _ = (S'/n-l)/2 downwash chords on the right hand wing.

For equations (BlSb) and (Bl8c), there are 2S' and S' total inte-

gration chords for type 2 and 3 surfaces, respectively, and

= (S'/n-l) downwash chords on the right hand wing.

The G, G' and G" terms are simply calculated as the

coefficients of a quadratic curve fit of the chordwise integrals

at G(_r, _S'), G(_r,_r), and G(_r, _i). The relationship between
these integrals is also shown in figure BI. In unsteady flow,

these terms will have real and imaginary parts.
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Figure BI.- Geometric Relationships in the
Spanwise Integration Scheme
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Chordwise Integration Near and

Including the Downwash Chord

Because of the close spacing of the adjacent integration

chords with the downwash chord in the spanwise integration scheme,

the chor_ise integrations must be extremely accurate in this

region. Thus, all chordwise integrations within a small spanwise

distance of the downwash chord, Yr, are evaluated more precisely

than for those chords outside of this distance. The distance is

taken as _(I-_i ) where Yl is defined by equation (BI3). Thus,

for all _s defined as

([r-A) < __s< (_Yr+A)

where

d= l-_yI

the number of chordwise integration points, J, are defined as

J' = 3J+l

J' = 3J

subsonic integration

supersonic integration

The terms G(Yr, N S), G(Yr,Yr) and G($r, N i) are always included
within this reg{on whic_ results in very accurate estimates of

the G, G' and G" terms required for equation (BI6) for subsonic

flow. For supersonic flow some additional manipulation is needed.

Because the chordwise integrand is singular at f = _mc

for _ # Yr, and is non-singular for _ = _r, a difficulty arises

in the calculation of a value for G(yr,Yr) that is continuous

with G($r,N ) as _-_$r. As a result, a simple but devious means

for calculating G(yr,_r) as a function of G(Yr, N ) was developed
as follows. For simplicity, let - -

GS -- G(yr,_-S) G1 --G(yr,_ l)

Gr = G (_Vr,_Yr)

As a first approximation, Gro, to the value of Gr without actually

calculating the integral, an average value is used

Gs+GI (BI9)
Gr° = 2
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Since the streamwise variation of the kernel function becomes

rapidly independent of @ for N _ Yr, the Gro approximation

actually represents a chordwise integral of the form

[ ]'2b(N) f _p(_#,_yr)(X-#) (x-#) 2 + (I-M2)(A') 2 d#

Gro = So #LEr

where

(B20)

f_' = x-_'

A' = Yr'NS = NI-Yr

and #LEr is the leading edge location at _r.

The exact value required for Gr is
X

Gr = _ J-A_p(f,yr)df
So @LE -

Thus, a correction must be made to Gro. The first correction is

made by removing the singularity portion at @mc without disturb-

ing the leading edge sweep effect as given by @LE. Since the

error in equation (B20) is near the aft limit, #a' , the next
level of approximation, Grl, is

#_'

2b(_)
A_p( #a' ,Yr) J d#

Grl = Gro + So - - fLEr

f
_LEs

f
_LEI

(x-f)[(x-f)2 + (I-M 2)(A')2 I-½__
2

(x-f)[(x-#)2 + (l-_)(A')2]-½d#
• _-

which becomes

Grl = Gr o + 2b(-_)-A_p(_a' ,Yr)
S
O

l[(_a'-_LEr)" _ (X'_LEs)
2
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Now, Grl is approximately

Gr I _- 2b(__) / A_p(_,_Yr)d#

So fLE

Completing the integral from #_, to x yields the final approxi-
mation to Gr

Gr Gs+GI 2sb__o_2 + _p( -f_',_r) (#_'-#LEr)

_ _ (X.#LE S + (I_M 2)( )2 ½ i (X-#LEI)2 + (I-M2) (A')2] ½

+ _P( {_' ,_Yr) +
A_P(x'-Yr) ]

(B21)

The use of equation (B21) in place of (B3a) to obtain Gr in

supersonic flow results in the desired continuity in the chord-

wise integrals used in the spanwise correction terms.
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APPENDIX C

CALCULATION OF INTERFERENCE EFFECTS

The equations presented in Appendix B are used to evaluate

the self-induced downwash in equation (I) when q=p. This Appendix

summarizes the equations for calculating interference downwash in

equation (i) when q#p for which the procedure is essentially the

same as given in Appendix B. The chordwise integration is per-

formed first which for supersonic flow requires a special treat-

ment for a 3/2 power singularity in the integrand along the Mach

hyperbola. The spanwise integral follows which requires treament

of the non-planar kernel function such that the integral converges

to the coplanar case as (z-_)-_0.

Chordwis e Integration

The form of the integral equation for parallel non-planar

surfaces in steady supersonic flow is

_b fmc

:  Xo[f f A_p({,_)- I d_d_

U 4=pU2 qa _LE r2R r2 7 ]
(Cl)

where qa and _b are the left and right hand limits of integra-

tion defined by wing geometry and the Mach hyperbola. If the

chordwise integration is carried out to the Mach hyperbola,

a 3/2 singularity is encountered of the form

LIM [ )2"_2r2] -3/2_-_mc (x-#

Hence, the finite value of the improper integral must be taken.

In order to determine the finite value of the integral,

the differentiation of the potential equation for the downwash

must be considered. Let the downwash be expressed as the

following simplified form:

_b #me

w(x, y) = ¢_ f f BCp(_,_)_(x, _, y,_ ,z, o)d#d_
az

_a fLE
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where _( ) is the potential at point (x,y,z) due to a point

load at (f, 7, 0). Since the differential operator is outside

the integral sign, Leibnitz's rule must be used to perform the

operation
b(t)

dt
a(t)

' ' Ot

b(t)

ot + f --°[gCx't)[dx' cgt
a(t)

The limits a(t) and b(t) are constant in subsonic and coplanar

supersonic flow; thus, their derivatives are zero. For the

supersonic non-coplanar case, however, the derivatives are not

zero. Since the chordwise term is of much greater importance

for interference effects, only the derivatives resulting from

the variation of #mc with z will be accounted for.

(C2)

For the chordwise integral, H(y,N ), a constant pressure

distribution, A_p, will be assumed for simplicity. The integral

may then be expressed as

@mc

H(y,N) = aCp _z @LE
_(x, _,y,_,z ,o)d¢

which, with the application of equation (C2), becomes

= ACpI4(X,@mc,Y,9,z,o ) a¢m____cH(y,n)
l Oz

fmc

a-_ I_b(x'@'y'_'z'°) Id_ (C3)
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For

2U ZoXo

= _ , Xo->_r_(x, f,y,_,z,o) 4=p r2R

it can be shown (after some algebraic manipulations given in

reference 6) that the following is true

0fme 2U

_(X'emc'Y'_'z'°) _z = " 4=p Zo2_2 [LIM I ]r2 e_emc _)

(C4)

The differentiation inside the integral in equation (C3) is the
kernel function

0 2U

Oz _(x,e,y,_,z,o) = 4_p Xo [ 2Zo 2 Zo2_ 2 ]_R 1 " _T'- "

= _ K(x,e,y,_,z o)
4_p

Combining equations (C3), (C4) and (C5) and removing the

singularity yields

H(y,_) -- _ I r2 e_'emc

+

emc

: [K(x, e,Y,_,Z,O)-
eLE

emc

eLE

2XoZo2_ 2

r2R 3

2XoZ o2_ 2

r2R3 ] de

But

emc

/
eLE

+. ,]r2R3 d@ = _ _-_ _mc

de

(C5)

(C6)
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Thus, equation (C6) becomes

H(y,N) AC___U
= 4_p

2Zo2B2

- r2RLE +

_mc

Y K(X, @,y,N,z,o) -

[ 2XoZo2fl 2 ]r2R3 d#

which is the final form for the chordwise integral with a

constant pressure distribution. For a variable A_p( f, N ),

the singularity is treated at the Mach hyperbola, hence,

U

H(y,N) - 4=p

+

2Zo2_2

r2RL E ACp (_mc,__)

@mc

f [ACp(@,__)K(x, _,y,_,z ,o)
fLm

2XoZo2fl
2 ]
ACp(_mc, N )| d#

r2R 3 J

Thus, for steady or unsteady interferefice of non-planar surfaces

the quadrature integration of the chordwise integral becomes

J

Hq(X,_) = So (l+_mc) _ _2 _- (i-_)

j=l

A_pq(_#j,__)K(x-#j,y-N,z-_,k,M)

J

_ T2A_pq(_mc,N ) r2__2 II (l_mc) = E x°(l-_)½]RLE + b(N) -_- _mc < i
j=l Rj3 '

where T2 is defined for equation (AI) and

R2 )2 /32 2= (X-#j - r

_j = - cos _) , j=l,2,...J

__j = ½ [ (l+_#mc) _j + (_mc-l) ]
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For the case of the Mach hyperbola falling aft of the trailing

edge, the 3/2 singularity need not be considered. Hence, the

chordwise integral takes on the form given in Appendix B

J

= So -_- (I-_) A_pq(_j,__) .

j=l

where

K(x-@j,y-_,z-_,k,M) , _mc _I (C7)

_j = - cos =) , j=l,2,...J

For subsonic flow, the chordwise integral is similar to

equations (B6) and (C7)

J

Hq(_,,_) b_) 2fr 2 ½ --- s o _ E(I'_-j) ACpq(_j,__) .

j=l

where J =_q and

K(x-fj ,y-_,z-_,k,M) (C8)

=- cost2j+ I =) , j=l,2,...J

For _ = y,

J = 3_q+l

as discussed in Appendix B.
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Spanwise Integration

The spanwise integral for non-planar interfering surfaces

may be written as

-_b

TI 2T2 ]lq(!) = f Gq(_,_) r2 r4 d_
_a

where the sign f denotes a "Pseudo Mangler" evaluation of the

integral as discussed in reference 6. The Gq(y, N ) function is

the modified chordwise integral

Gq(y,N) =
Hq(y,n)

which will be expanded as

Gq(y,N) = Gq(_y,_y) + (_-_y)G$(_y,_y) + ...

Following the developments of Appendix B, the spanwise integral

is evaluated as

S

-
s=l

where h( __s) and __s are defined in Appendix B

QS(_yr) = Gq(Yr,Yr)IFI(Yr) cos(0p-0q)

+ F3(_Yr) &in(@p-0q) I

+ G_(_r,_r)IF2(_Yr) coS(@p-0q) I
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and

FI(_Yr)
r2 r2

[ rb ra

S

- _- = h(_s) r s 2z2 ] d(_s)r2 -
rs

2

F2(Zr) = _t r2 a + z 2 rrb21 ijr2
ra

S

s=l

h(__s) (_s-Zr)
I 2z 2

r2 r4
rs rs

d(_V}s)

where

F3(l,r) = _z [1 1]r 2 r2
rb ra

S

s=l

d(_s)
r4

rs

d(_s)

d(_s)

, __a_ __s< _b

, __s<_a, __s<_b
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The variables (_, __,z) are all measured relative to the surface
over which the integration is being performed as shown in
figure 3. The perpendicular distance from the surface to the
downwash point is z and it is measured at span station y. The
terms rra, rrb, rrs are

2 2 2
rra = (_r'__a) + z

2 = (_r.Nb)2 z 2rrb _ + _

r2s = _r'__s)2 + z 2

For subsonic flow,

_Na = -I

_-b = +I

This completes the equations necessary to perform the spanwise
integration for interference effects due to a streamwise planar
surface of arbitrary orientation in steady flow.

For unsteady flow, it is necessary to include additional
terms which account for the logarithmic singularity in the
spanwise integrand, k2,_Irl. This singularity is relatively
weak for most problems, i.eo, k< I. The correction terms
developed in subsonic flow (ref. 7) are applicable in this case.
The spanwise integration function, h(_s), is given in Appendix B,
equation (BI2). The form for the unsteady correction terms
becomes

Qq(_r) Qq(Yr) + _2 [= s _ cos(Sp-Sq) Gq(Yr,Yr) Jl(_Yr)

S

s=l

S

s=l

d (__s)h(__s) (Ns-_r)_ rrs
]
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where

Jl(Yr) (_Yr-_a) _ 2_ rra ([r'_b) _ 2= . _ rrb

+ 21-_ol== _ Izol'

J2(Yr) - - _ ra - - -

which completes the equations for unsteady flow.
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APPENDIX D

THE NORMAL SHOCK BOUNDARY CONDITIONS

ON SMALL FLOW PERTURBATIONS

For a mean flow in which strong shocks are imbedded, special

boundary conditions must be satisfied across the shocks on small

perturbations to the mean flow. This Appendix presents the deri-

vation of the shock boundary conditions first for steady and then

for unsteady flow perturbations. These boundary conditions

satisfy the Rankine-Hugoniot condition and continuity of potential
across the shock.

Normal Shock Boundary Conditions for Steady Flow

Referring to figure DI, the upstream conditions are M', _-

and U" (referring to Mach, total potential, and velocity normal

to the shock) and the downstream conditions are M+, _+ and U+.

Beginning with the Rankine-Hugoniot relation as given

by Pai (ref. 19):

or

U+ _ Y-I +.- 2

U- Y+I (M-) 2 (_+i)

u+uit2+ 2 1_+--Y(M-)i(_+I)

(DI)

The velocity change is obtained

AU = U--U +

(D2)

Now, let

U-=l+@ X

From which

(_)_--_-__ ÷... (D3)
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/

Moo

>

I%÷_)x<x

Figure DI.- Flow Variables in the Vicinity of an

Idealized Normal Shock
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From Landahl (ref. 12, equation (1.4)), c2 can be expressed as

c2 - i
M2 (_-l)_x

for first order effects. Thus,

from which the first order terms are

For

U+= 1+4,+

the velocity change is

(D4)

(I+_) (l+_x+)
4-

Substituting equations (D3), (D4) and (D5) into (D2) yields

from which the first order terms are

_- _+_! [(_- i )+(!+,)_;
7+I M2 M 2

Letting

(D5)

(D6)

_=7-i+ 2

7+1 (Y+I)M 2

equation (D6) becomes

6x+ +_C_x = 2 i - i)
7+1 (M2

which differs from the derivation of Landahl by the presence

of _. For _TI, _=i, then equation (DS) would correspond to

Landahl's equation (equation (10.9), ref. 12).

(D7)

(D8)
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The total potentials, _- and _+, are the sum of the mean

potential, _i, plus the perturbed potentials, _,

(D9a)

+
+.++++Ix

where k is the shock displacement as shown in figure DI.

From the condition of equality of potential across the shock,

(D9b)

_b- = _+ (D10)

The following relation between k and

(DII)

since

+
_ = _i

The fundamental assumption which underlies equation (D9) is that

the potential _i is analytically continuous on both sides of the

shock, and that it can be expanded in a Taylor series forward

and aft of the shock° Equations (D9) contain only first order

variation of _ due to a perturbation _, therefore, equation (DII)

is the first order movement of the shock due to _ that is

necessary to maintain equality of potential.

Another relationship can be obtained between _ and _ by

differentiating equations (D9)

+

and substituting into equation (D8). Thus,

+ + + - _
2 1 i)
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which separates into the following for the zero order terms

+ k_lx 2 i_ix + - < I)
y+l M2

and the perturbation terms

_= - 4x ++ _-

41+xy+ _41x x

Equation (DI3) is the first order shock movement due to 4

that is necessary to satisfy the Rankine-Hugoniot relation.

With equations (DII) and (DI3),

to ob rain

can be eliminated

_+ -4-

Ix _Ix

which may be simplified to

(DI2)

(DI3)

4+. K4+ = -_4" - K+-
X X (DI4)

where

K

4+
Ixx + _41xx

1X - 41X

Since the constant K is a function of the mean flow potential

and 6" is unaffected by conditions downstream of the shock,

equation (DI4) represents a constraint on the downstream

perturbation 4 + .

(DI5)
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Normal Shock Boundary Conditions for Unsteady Flow

The Rankine-Hugoniot relation as given in equation (D2) is
also used for unsteady flow. The velocities, U" and U+, are
expressed as

ikt
U- = i + +x- ik_e (Dl6a)

U+ = i + _x ikkelkt (Dl6b)

which includes the shock velocity in the exponential terms°
Landahl has given an expression for the speed of sound in
unsteady flow (equation 1.4, ref. 12) as

2 = i _ (y_l)(@ x + _t )

With equations (DI6) and (DI7), the expression for (I/M') 2
becomes

(DIT)

(c-) 2=__ [i - (?-l)(_x+M2 _)][I- 2(_x" ik_eikt)+ ...]

from which the first order terms are

c-)2 1 [I-u M2 (2 + M2(?-I)) +x + M2(y-l)_t + 2ikkeikt] (DI8)

Substituting equation (DI8) into (D2) yields

- • ]-_(Y-I) _t + 2ikkelkt

i I

I [1-(2M2
+ +x
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from which the first order terms are

4ikA
+ + -

I
eikt = 2(M2Y+I " I)

(DI9)

where

r=2 if-l)
Y+I

Except for the exponential and 4t terms, equation (DI9) is

identical to (DS).

Following the development for steady flow, the total

potentials due to an unsteady perturbation are

_-= @i + keikt _Ix + _- eikt (D20a)

+ ikt eikt
_+ : _i +he _:x + _ (D20b)

The equality of potential condition for unsteady flow yields

equation (DII) for the shock movement necessary to maintain

this condition.

Next, the derivative terms for equation (DI9) are obtained

from equation (D20)

_x 4;x + Aeikt - - ikt: _ixx + _x e (D21a)

4+ = _t + keikt _+ + eikt
x ix ixx + _x (D21b)

_t : ike ikt (A 4ix + _-) (D21c)
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Substitution of equations (D21) into (DI9) yields

• ikt. + + eikt) e_x + _e _ + _x + _x + __k%_=+ _ _kb

• _ 4ik eikt 2 i

from which the first order terms obtained are

- + 2 i

_ix + _ix - _+i (M 2 - i)

and

+x+ +_X + ivy-

N _ m&_xx + M_Ixx + i v _ix 4ik
7+i

where

2(>1)
v= Fk = ?-i k

Equation (D22) differs from its counterpart in steady flow,

equation (DI3), by the terms containing iv .

With equations (DII) and (D22), _ can be eliminated
to obtain

_+ - _- _x+ + _X + i_-

_l+x - _Ix _ix+x + _ixx + i V _Ix - 4ik
"/+l

which may be simplified to

(D22)

(D23)

where

_+- K*_ + = -_ - K*_- - ivy-

K* -

4ik
_l+xx + _Ixx + iU_ix- 7+---_

+

+Ix - _ix

(D24)
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or

2

•K* --K + _[_i+ _ix
(D25)

which completes the normal shock boundary conditions for

unsteady flow.

Comparison of equation (D24) with the boundary conditions

derived by Landahl (equation I0.Ii, ref. 12) shows a significant

discrepancy. However, with the restrictions

k-i

and

2___ _w

>> (PIx.L ""
?-I

(+_x_+ _[_x)

equation (D24) reduces to

4ik_+ = - _x + [ 4ik_x++ (_+ i)(+l_+ -_) (_+l)(+l+ - _l_)

or

4ik_ + 4ik_

"/-i

which is identical to Landahl's equation. Thus, Landahl's

boundary conditions are valid only for high frequency

oscillations and weak shocks as is implied by the restrictions.

Equation (D24) is therefore more general and is necessary for

use with a method which will be used in flutter and dynamic

response analysis.

87



APPENDIX E

CALCULATIONOF POTENTIALS FOR THE
SHOCKBOUNDARYCONDITIONS

The potentials needed for the shock boundary conditions are
the supersonic potential just forward of the shock, _-, due to
the upstream surface and the subsonic potential aft of the shock,
_+, due to the doublet. Also needed are the potential derivatives,
_x and _x+.

The supersonic potential at point x,y,z due to a doublet
sheet lying in the #-N plane is the integral over the sheet:

2 Nb#mcz

% ]_#)2 + _2 r2 AP(#'N) d#dN

(El)

The nature of the term

Z Z
m

r2 (Y-N) 2 + z2

in the integrand is such that

Lim <r-_)= 0Z-_O

y4_N

and

Lim z = Lim _ = o0
Z-_O Z-_O

y=N

Let

_mc

4 x-f

G(y,_7) = " _" "m-_t[ _-'(x-_)2 + _2r2 _P(_:,_7)d_

@LE

(E2)
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Thus,

%

= 1 fa z-_--f - 8_ _2
(E3)

where G(y, N ) has the same definition as given in Appendix B.

In order to treat the singularity in equation (E3), the integrand

is modified as follows:

%
¢ i z

_,-7--- _ f ;2[ _ (Y") - o ( y, y)ld,
_a

_?b zdv
- s_ o (y, y)f

a

The first integral can be evaluated numerically and the second

analytically as

Nb zd_ = tan_ I _ tan_ I

__'_ + z2 z z

Taking the limit z_0 for both integrals leaves

__2__+= !
Ub r - 8 G (y, y), _a<Y < Db (E4)

The same equation is applicable for the doublet line.

The potential derivatives are directly related to the

pressure coefficient forward and aft of the shock. For _x,

the derivative is taken with respect to the aft limit of

integration, hence

+__x=_ ! Cp (x s, y)
U 4 (E5)

where xs is the shock location. Equation (E5) is applicable to

either the supersonic or subsonic regions. Since the shock

boundary conditions are satisfied aft of the shock, the value

of Cp for the shock doublet is zero.
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The normal shock boundary conditions are satisfied with the
following terms in steady flow:

i C; y)
pressure coefficient at the
trailing edge of the super-
sonic region at y.

i
_" = - _G- (y, y) chordwise integral directly

upstream of the shock boundary
condition point, (Xs,Y).

i
_x+ = - _ C_ (x s, Y)

pressure coefficient at the
leading edge of the subsonic
region at y.

I[G'(Y'I y) + GD(Y' y)]I total potential just aft of8 the shock due to the supersonic
region and the shock doublet.

Substituting these quantities into equation (18) or (DI4) yields
K

Cp (x s, y)+ K=_ _ G- (y, y)
or

K

(xs, y) _ _ GD (y, y) + _Cp (x s, Y) = 0

It should be noted that in steady flow, the G-(y,y) term is

cancelled.

For unsteady flow, all of the above terms are the same

except they are complex. Substitution into equation (19)

or (D24) yields

i + K*

-5 Cp (x s, y)+ _ [ G-(y, y)+ G D (Y, Y) I

C; y) + I-- _ (Xs, _ (K* + iv) G" (y, Y)

or

+ K iv

Cp (x s, Y) -_ GD (Y, Y) + _Cp (x s, Y)+-_ G- (y, y) = 0

For unsteady flow, the G-(y,y) term is retained.

(E6)

(E7)
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APPENDIX F

CALCULATIONOF LOCAL MACHNUMBER

The local Mach number, ML, is used extensively in the tran-
sonic algorithm. As a result, it must be inexpensive and simple
to calculate. The input data from which the local Mach number
is obtained must be simple and flexible in format. These require-
ments are satisfied through a two-step procedure which starts with
input values of ML given at even spaced points over the planform
and ends up with a function for ML in the form of Tschebychev
polynomials.

The input data is given at even spaced chordwise intervals,
A _ , starting at the leading edge and ending at the trailing
edge. The chordwise distributions are given also at even spaced
spanwise intervals, A# , starting at the inboard tip and ending
at the outboard tip. The intervals are tied to the total number
of chordwise, _, and spanwise, _, downwash points as follows:

I
(chord fraction)

(semi-span fraction)

There are

+ I values of ML input chordwise at
+ i spanwise stations.

The locations are the sets

1 2
#i = (0, m' m' "'" I) (Fla)

1 2
_j --(0, n' n' "'" i) (Fib)

It is possible to input a single chordwise distribution into the
program which is used at all span stations if desired.
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Next, the input ML are fit with the surface spline procedure
described in Appendix G that is used for structural mode inter-
polationo The surface spline is used to calculate ML2 values at
the optimum fitting points for Tschebychev polynomials of the
first kind, Tn.

The Tn polynomials are defined as

T0(x ) = i
Tl(x ) = x
T2(x) = 2x2-i

Tn(x) = 2x Tn.l(X ) - Tn. 2(x)

over the interval

-l_x<_l

From reference 20, an arbitrary functiDn of x can be expressed
as an N term expansion of Tn(x) as follows:

N-I

cof(x) = _-- + C n Tn (x)

n=l
(F2)

The coefficients, Cn, can be obtained by a simple vector

multiplication

N
2

Cn = _f (x i) Tn (x i)

i=l (F3)

where the x i are roots of the TN+I(X) polynomial,

x i = cos , i -- i, 2, ... N (F4)
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Thus, the new values of ML are calculated at

xi = (Xl, x2 ' ... X_+l) (F5a)

Yj = (Yl, Y2, "'" YN+I) (F5b)

where the x i and yj are calculated with equation (F4) for
N = _-m+l) and (_+i), respectively. The relationships between
the (@, N ) in equation (FI) and (x,y) in equation (F5) are

x+l

N= 2

Since 0 <_ @<_ I and 0 <_ N <_I.

Once the Cn are calculated from equation (F4) with the new
values of ML2, the value of ML at any point on the planform can
be obtained with equation (F2).
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APPENDIX G

STRUCTURALMODE INTERPOLATION

The structural modes are interpolated in the program with a
surface spline fit (ref. 21) which simulates the deflected shape
of an infinite plate pinned at the points which are being inter-
polated from. The scheme is one of the more dependable methods
that is currently available. It has some disadvantages, however,
in that it does not extrapolate well under certain conditions and
it tends to "sag" in cases where there are large spaces between
fitting point groups.

The spline equation is

N

w. = aI + a2x j + a3Y j +_
3 n=l

bn(rnj )21n I(rnj)21
(GI)

For n=l,2,o..N where wj is the function value at point (xj,yj)
and

r 2 2 2
nj = (xn - xj) + (Yn - Yj)

The points (Xn,Yn) are the fitting points. The coefficients

[al,a2,a3,bl,...bN] are determined by equating the wj to the

known deflections at points (xj,yj) = (xn,Yn) for n=l,2,...N.

Three other equations are also satisfied,

N N N

_bn = _Xnbn -- _Ynbn = 0

n=l n=l n=l

to give the necessary N+3 equations to solve for the N+3 unknown

coefficients. With the coefficients known, deflections can then

be calculated at any point desired within the planform.

A scaling and coordinate transformation is performed such

that the (x,y) values never exceed 1.0. A structural surface

is defined in different ways as shown in figure DI. For the

corner points, Xll, Xl 2, Yl and xol , Xo2 , Yo, a point (x,y)
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within the structural surface is transformed to (_, W) as

x-xm

b(y)

= Y-Ym
S

where

Xm

Xll x12 Y " Yl X°l + x°2 Xll x12

2 + 2S

b(y) =

x12 - Xll Y - Yl
+

2 2S Xo2 - Xo12 XI2 + Xlll

Yl + YO

Ym= 2

S = Yo + Yl

2

As can be seen in the figure, use of a square structural surface

simply scales the (x,y) to ( @ , _ ) which are geometrically similar

but less than unity in magnitude. The trapezoidal structural

surface skews the structural points into a square plane which is

sometimes desired. Skewing is not recommended for delta or other

pointed tip planformso
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(XII'YI) (XoI'YO) f=-I

]

I

i

I

I
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I

I

t I
L I

i

.... ,
(KI2 'Y_ -- -(X02 ' f +i

(a) Rectangular Structural Surface

(I(II,YI)

_ / "-_ "-.;.. _xo_._o_

(X02 ,Y0)

(b) Trapezoidal Structural Surface

Figure GI.- Coordinate Transformation

For Structural Surfaces
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APPENDIX H

PROGRAMUTILIZATION AND
INPUT DATA ORGANIZATION

The program is applicable to steady and unsteady flow in all
Mach number ranges, subsonic, transonic and supersonic. It can
be used to obtain uniform flow solutions in both subsonic and
supersonic flow. Non-uniform flow solutions can be obtained for
all Mach ranges including mixed transonic flow with imbedded
shocks. In order to use the non-uniform flow capability, the
Mach number distributions and shock locations are input and must
be obtained from an outside source such as experiment or a finite
difference solution.

Interference effects can be calculated for coplanar, non-
coplanar, and intersecting planar surfaces. The aerodynamic
geometry data format permits the input of arbitrarily arrayed
surfaces which are constrained only to being streamwiseo Each
surface may or may not have an image surface, hence, asymmetric
configurations may be constructed.

The program can be used to calculate generalized forces in
unsteady flow and pressure distributions in either steady or
unsteady flow. The solutions obtained are essentially independent
in computer cost of the number of modes or downwash vectors input.
Once computed, inverted, and saved on a magnetic tape, the aero-
dynamic matrices can be used on subsequent problems for very
little cost as long as Mach number, reduced frequencies, and
aerodynamic geometry remain unchanged° Thus, the method is
tailored for design applications where the structural mode shapes
change continually for structure changes and payload variations
while aerodynamic parameters remain constant.

Presented in the following sections are the detailed instruc-
tions for providing input data to the program. The first section
describes the general arrangement of the data and the second
describes the specific items in the data.
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Deck Arrangement

The major input data classifications are: (i) the library

data which contains structural geometry data and the mode shapes

and (2) the problem data which includes all aerodynamic geometry

and option data. The program can be used to calculate generalized

forces or pressure distributions. The generalized forces can be

obtained only for unsteady flow whereas the pressure distributions

can be obtained for steady or unsteady flow.

Library data organization.- The library data organization

presented below is in the form of card sets, L-N, where L refers

to library data and N is a sequence number corresponding to a

specific function as described. The cards sets may be composed

of one or more cards and their contents are described in the

following section. All card sets are required if library data

is used with exception of L-6 and L-7 which are optional as noted.

Card Set Function

L-I "LIBR" card

L-2 option data

L- 3 cons tants

L-4 structural point locations

L-5 (i)." }

L-5 (NSUR)

structural surface data for "NSUR"

total surfaces

L-6 zero deflextion points - supplied if

option L3#0 on card L-2

L-7 mass data - supplied if L2#0 on card L-2

L-8 mode deflection data
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Problem data organization.- The problem data organization is

presented below in a format similar to that of the library data.

The sets denoted as P-N are mandatory for all problem decks

regardless of whether or not library decks are used. Those

denoted as P(L)-N are used only when the library is used and

P(P)-N are used only when no library is used. Specific contents

of each card set are described in the section following that for

the library data.

Card Set Function

P-I title data

P-2 maj or options

P-3 general aerodynamic data, integer

P-4 general aerodynamic data, real

P-5 (i)

P-6(1)

P-7(1)

P(L)-8(1)

P-9(1)

P-5 (NSURF)

P-6(NSURF)

P- 7 (NSURF)

P (e)-8 (NSURF)

e-9 (NSURF)

integer control data

geometric data

structural surface used

if "LIBR" data is input

Mach distribution data

if ITRANS#O on card P-5(1)

I

J

Data for

aerodynamic

surface no. I

Data for

aerodynamic

surface

no. NSURF
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P(P)-I0(1)

P(P) -i0 (NSURF)

"END" card

downwash vector data for

all surfaces if "LIBR" data

is not supplied

Input Format Description for

Structural and Mode Shape Data Library

In order to have an input library which contains the struc-

tural and mode data for all the following aerodynamic problems,

the first card, L-I, must have the four characters "LIBR" in

cols. 1-4 on the first card. Anything else may follow on that

card, for example:

Cols.

1-4

LIBR

5-80

ARY FOR F-Ill MODES, SWEEP=26 DEG
Card L-I

It is recommended that the cards be sequenced, however, it is

not mandatory.

The second card set, L-2, is two cards in a 6110 format

which contain the following:

Cols. (right adjust all data)

i-i0 11-20 21-30 31-40

NF NSUR NMODES NI=0

L2 L3 L4

where

NF

NSUR =

6110 format

41-50

N2 =0

51-60

LI

total number of structural points at which

mode deflections are given, NF __ 200.

total number of structural surface spline fits

to be used for mode interpolation, NSUR<_ i0.

Card L-2
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NMODES = total number of mode shapes supplied,
NMODES_ 20.

NI=N2=0 = unused constants which must be zero.

LI = 0, a comment card of any format will be expected

at the beginning of each mode shape deck.

0, no comment card is expected.

L2 = 0, no mass data will be input for computing

the generalized masses.

# 0, mass data will be input (see Card L-7).

L3 = 0, no structural points will be modified to

have zero deflection in each mode.

0, "L3" total structural points will be modified

(see Card L-6), L3<_NF.

L4 = 0, pitch and roll modes will not be added.

(a) the pitch mode will be added as mode

"NMODES" + i with deflections (XF(1),

I=i, NF). (see Card L-4)

(b) the roll mode will be added as mode

"NMODES" + 2 with deflections (YF(1),

I=i, NF). (see Card L-4)

The third card set, L-3, is also two cards in a 6FI0.0

format which contains the following:

Cols.

i-I0

XMODE

RHO

(use decimal or right adjust all data) 6FI0.0 format

11-20 21-30 31-40 41-50 51-60

XMASS DH DWI DW2 BREF Card L-3
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where

XMODE

XMASS

DH

DWI

DW2

BREF

RHO

uniform mode deflection multiplier. All mode
deflections are multiplied by this quantity
which is normally

XMODE=I.0

= uniform mass multiplier, normally
XMASS=I.0

uniform multiplier for all deflections
calculated with the spline interpolation.
(These are usually the deflections used to
calculate generalized forces and masses.)
Normally, DH=I.0

uniform multiplier for all slopes calculated
with the spline interpolation. (These are "_
values in steady flow or the real part of the
downwash in unsteady flow.) Normally,

DWI=I.0

= uniform multiplier for all deflections
calculated with the spline interpolation
as the imaginary term in the unsteady
downwash. Normally,

DW2=I.0

reference length in same dimensions as other
geometric data. This value must be the same
as that used in the problem data.

density, slugs/ft 3. If RHO=0, the default
value at sea level is used.

RH0=0.0023769 slugs/ft 3

NOTE: for geometric data input in units
other than inches, a conversion factor
must be input through either RHO or XMASS.
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The next card set, L-4, is composed of as many cards as are

necessary to contain the NF structural point locations in the

following form:

read FORMAT 8AI0 format I

.... i

(input according to FORMAT)

XF(1) I YF(1) i XF(2) li YF(2) Ii XF(3) J_ YF(3) i

• • • t

where

XF(1),YF(1) = X,Y coordinates of the I th structural point.

The XF(1) are used to compute the pitch mode for L4#0

and YF(1) are used for the roll mode.

The next card set, L-5, is composed of NSUR subsets,

each of which contains the following descriptive information

for each structural surface:

Cols. (right adjust all data) 6110 and 6FI0.0 formats

11-20 21-30

IF(I,N) IF(2,N)

31-40 41-50 51-60

IF (NFS (N) ,N)

XOS(I,N) XOS(2,N) YCS(2,N)

i-i0

NFS (W)

• • •

XIS(I,N) XIS(2,N) YCS(I,N)

Card

L-5N,

N=I,

NSUR

where

NFS (N) total number of structural points out of the

NF set that correspond to the Nth structural

surface, NFS(N)<_I00.

IF(I,N) = the structural point number assigned to the

Ith point in the Nth surface.

XIS(I,N) = x coordinate of the inboard leading edge

of the Nth structural surface area.

XIS(2,N) = x coordinate of the inboard trailing edge.

107



XOS(I,N) = x coordinate of the leading and trailing edges

at the outboard tip.

YCS(I,N) = y coordinates of the inboard and outboard

stations.

Referring to figure HI, the spline interpolation scheme

can be used to fit discontinuous structures. The structural

points assigned to each surface may be used in one or more

surfaces. Also, it is not necessary to use all of the NF points.

The structural surface boundary coordinates XIS, XOS and YCS are

used to bound the structural point sets. Normally, they are at

the corners of a square as shown in the figure. Since the corners

are transformed to the corners of a square, the boundary coordi-

nates can also be used to skew or distort the physical coordinate

system as shown in figure H2. The transformed plane is the plane

in which the spline fit is made, hence, the decision to distort

the physical coordinate system should be carefully considered

since the result may be to introduce errors into the interpolation.

As an example, if the corner points of a delta wing are used, then

a simple pitch mode will appear in the transformed plane as a

twisted mode with the pitch angle slope at the root and no pitch

at the wing tip. Spline interpolation will not usually yield a

uniform slope distribution in the physical coordinate system for
such cases.

If option L3#0 in card set L-2, the following data is now

input. Card set L-6 contains the data for modifying several

structural points such that they have zero deflections for all

modes with exception of the pitch and roll modes calculated for

option L4 not zero. The data is input as follows:

Cols.

I-I0

NF2

(right adjust all data) 6110 format

11-20

IF2 (i)

21-30

IF2(2)

31-40

IF2(L3)

41-50 51-60

Card L- 6

where

NF2 number of structural point deflections

to be given in the mass and mode data

following this card set. (NOTE: for

L3=0, NF2--NF)
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IF2 (I) = structural point which will have zero
deflection for all modes input.

This deck permits setting zero deflections at points in addition
to those input with the mode shapes. As a result, NF2 will
usually be smaller than NF and the (XF(1),YF(1)) data given in
card set L-4 will include the locations of the additional L3
points as well as the NF2 points. If desired, NF2 can be the
same as NF and the modal deflections will be zeroed at the IF2(1)
points in place of the values read as input.

If option L2#0, the mass data is read next in card set L-7-

read FORMAT 8AI0 format

(input according to FORMAT)

AMASS(i) I AMASS(2) I .o.

• .. I AMASS(NF2)

Card L- 7

where

AMASS(I) = mass, m±, assigned to the I th structural point.

The generalized masses, Mrs, are computed as
NF2

XMASS*XMODE*XMODE*232.0 ,
Mrs = 32.2*RHO* (BREF**3)

i=l

mihirhis

where hir , his = modal deflections at the i th point for

modes r and s, respectively,

and XMASS and XMODE are input in card set L-3.

The deflections are those to be input in the following set.

Card set L-8 completes the structural library by supplying

the mode shapes. The form is as follows:
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(input according to FORMAT on CARD L-7)

Comment Card for LI=0

H(l,l) IH(2,1) ...

•.o H(NF2,1)

Comment Card for LI=0

H(l, NMODES) H(2, NMODES) ...

... H(NF2, NMODES)

Card L-8

where

H(I,J) = modal deflection at the I th point for the jth mode.

Input Format Description for

Aerodynamic Option and Geometric Data

Problem Decks

The problem decks contain all aerodynamic data and the

structural surfaces used by each aerodynamic surface if the

library is used. If no library is supplied, the downwash is

input in the problem decks• In order to distinguish cards that

are input only when a library is used, these will be denoted as

P(L)-N where N is the problem card set number. For cards used

only when no library is used, the designation will be P(P)-N.

Regardless of how many problem decks are used in a single

computer run, the format which follows will always be used.

If a library is used, all problems following must be set up

for use with a library•

The first card set, P-l, is a two card title set which is

printed at the beginning of each problem in the output. The
format is

Cols.

1-64

TITLE I

TITLE 2

Card P-I
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Like the library data, it is recommended that the problem decks
also be sequenced.

The next card set, P-2, contains the major aerodynamic
option data as follows :

Cols.

i-i0

IOPI

(right adjust all data)

11-20 21-30

lOP2 lOP3

31-40

IOP4

6110 format

41-50 i 51-60IQT IOPLU
Card P-2

where, referring to figure H3,

IOPI _ 0, the aerodynamic matrices will be computed

for all frequencies.

<0, the matrices will also be written on

tape unit " IIOPII ''.

>0, the matrices will be read from tape

unit "IOPI".

IOP2 0, aerodynamic results will be obtained in

the form of pressure distributions,

CL_ , Xcp, Ycp and spanwise distributions

of lift and chordwise center of pressure.

=0, generalized forces will be computed for

"NMODES" total pressure distributions and

"NMODES" total integration modes.

IOP3=IOP4=0, dummy options not used.

IQT =0, generalized forces will not be written

on output tape.

>0, generalized forces will be written on

tape "IQT" if IOP2=0.

IOPLU=0, aerodyDamic matrices written or read from

tape ,,IloPiI,, are in the inverted form.

_0, aerodynamic matrices on tape "IIoPi]"
are in the uninverted form.
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The next card set, P-3, contains integer data which are
common to all aerodynamic surfaces. The format is

Cols. 6110 format

i-i0
L

NSURF

IDNWSH

(right adjust all data)

11-20 21-30 31-40

LS NALP NK

JSUROP

51-6041-50

NW IDUMP Card P-3

where

NSURF = number of aerodynamic surfaces

NSURF_ i0.

LS ¸ = symmetry option.

= 0, symmetric flow.

# 0, antisyrmnetric flow.

NALP = number of alpha or downwash vectors to be input.

If "LIBR" data is input, NALP=NMODES <_ 20.

NK = number of reduced frequencies. NK 50.

NW total number of aerodynamic control points

and shock load functions for all surfaces

(see card P-5)

NW_ i00, steady flow: NW< 70, unsteady flow.

IDUMP # 0, various intermediate printout is provided

such as the downwash and integration point

locations, the uninverted aerodynamic matrices,

and the pressure series coefficients.

IDNWSH = 0, downwash vectors are read if "LIBR" data

is not used.

0, angle of attack in all downwash vectors

is set uniformly to ALPO(IS) (given in set P-6N)

for the ISth surface if "LIBR" data is not used.
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JSUROP = 0, regular pressure functions are used
on all surfaces.

0, supersonic weighting function is used for
totally supersonic flow problems. This cannot
be used for transonic or subsonic problems,
however, the Mach number distribution may be
non-uniformas long as no subsonic regions
are present.

The next card set contains the real data which are common
to all aerodynamic surfaces. The format is

Cols.
I-i0
XMACH

(right adjust all data or use decimal) 6FI0.0 format
11-20 21-30 31-40 41-50 51-60

BREF RK(1) ... Card P-4
... RK(NK)

where

XMACH = M_ , free stream Mach number.

BREF = bref, reference length in same dimensions

as all geometric data.

_bref
m

RK(I) = k_ U= , reduced frequency.

which completes the data common to all aerodynamic surfaces.

The following sets are repeated "NSURF" times and they

begin with card set P-5N given as follows:

Cols.

I-I0

NC (IS)

NTE (IS)

n-20 21-30 31-40
NS(IS) NJ(IS) NSI(IS)

ICHORD(IS)IXI(IS) LSPAN(IS)

(right adjust all data) 6110 format

41-50

ITRANS (IS)

LS_(IS)

KSURF(IS,1) ..o

... KSURF (IS ,NSURF)

51-60

NLE(IS)

ISTYPE(IS)
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where, for the ISth surface,

NC(IS) = number of chordwise pressure functions
or downwash points, NC(IS) <_I0

NS(IS) = number of spanwise pressure functions
or downwash chords, and shock load functions
if KSURF(IS,IS)<0, NS(IS)<_ 15

** For steady flow,

NTR NSURF

JS_ NS(JS) +=I iS =I
NC(IS)*NS(IS) = NW<_i00

For unsteady flow,

NTR NSURF

Ns(Js)+
:I IS=I

NC(IS)*NS(IS) -- NW_ 70

JS -- surface for which KSURF(IS,IS) < 0 (transonic solution)
NTR -- total number of JS surfaces

NJ(IS) = number of chordwise integration points :

NJ(IS) = 0, standard points are used

NJ(IS) > 0, the input number is used

as described below for the option IXI(IS).

NJ(IS) <_ 15

INJ(IS) - 0 is recommended for all cases

NSI(IS) = number of integration chords on both the

ISth surface and its image.

NSI(IS) - 0, standard chords are used

NSI(IS) >0, the input number is used

as described in table HI below for the

option ISTYPE(IS).

NSI(IS)<_31
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ITRANS(IS)

NLE (IS)

NTE (IS)

ICHORD(IS)

ixi(is)

LSPAN (IS)

LSYM(IS)

ISTYPE (IS)

= 0, the Mach number distribution over the

ISth surface is uniform and equal to XMACH

(card P-4).

> 0, the chordwise Mach number distribution

is read from card P-9N and is used at all

span stations.

< 0, the chordwise and spanwise Mach number

distribution is read from card P-9N.

= number of x,y coordinate pairs to be read

for defining the leading edge.

NLE (IS) <_ I0

= number of points for defining the trailing

edge.
NTE(IS) <_ I0

= 1,2,3,4, the type of chordwise pressure

distribution to be used for the ISth surface

as shown in figure H4.

= 1,2,3,4, the type of chordwise downwash

point distribution used and since the chord-

wise integration points are interdigitated,

this option also determines their distri-

bution as well. Table H2 summarizes the

dis tributions.

IXI(IS)=I is recommended Ifor almost all cases

= 1,2,3,4, the type of spanwise loading

to be used for the ISth surface as shown

in figure H4.

= 0, symmetric flow.

0, antisymmetric flow.

= 1,2,3, the type of surface and image

to be used° Type I has continuous

functions across the centerline whereas

types 2 and 3 are independent. The

type 2 spanwise loading can be used with

all three surface types.
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TYPE i TYPE 2 TYPE 3

SURFACE TYPES

ISTYPE (IS)

l(_) h(_)

I

2

SPANWISE LOADINGS

LSPAN (IS)

CHORDWISE LOADINGS

ICHORD (IS)

Figure H4°- Surface and Loading Types in the

Aerodynamic Program
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KSURF(IS,KS) = interference calculation option as described
below and illustrated in figure H5.

For IS = KS :

KSURF(IS,IS) = 0, surface IS is not a transonic surface.

KSURF(IS,IS) > 0, surface IS is the upstream surface in a
transonic pair with a shock along its
trailing edge. The other surface in the
pair is the value of KSURF(IS,IS).
(see figure H5)

KSURF(IS,IS) < 0, surface IS is the downstream surface
in a transonic pair with a shock at its
leading edge. The other surface is the
absolute value of KSURF(IS,IS).
(see figure H5)

For IS # KS,

KSURF(IS,KS) = 0, interference of surface KS on IS will be
calculated but spanwise integration correc-
tion terms will not be calculated. This
option is usually taken if KS is downstream
of or parallel to ISo

< 0, no interference is calculated for
KS on IS.

> 0, interference is calculated with the
spanwise integral correction terms.

The next card set in the NSURF decks is P-6N which contains
the following real data:

Cols.

i-I0

ALPO(IS)

(right adjust all data or use decimal) 6FI0.0 format

11-20 21-30 31-40 41-50 51-60

XV(IS) YV(IS) ZV(IS) THETA(IS) Card P-6N
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Surface I

Shock

KSURF(IS,KS)

KS" i 2 3 4

Surface 2
IS=2

Surface 3
IS =3 I®1®1+_1_]

Surface 4 IS-4

Figure H5. KSURF(IS,KS) For Transonic Flow Over

Interfering Surfaces
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where

ALPO(IS) = uniform angle of attack, in radians,
which is always added to all downwash

vectors for all control pDints that fall

on the ISth surface.

xv(is)
Yv(is)
zv(is)

x,y,z coordinates of the leading edge

inboard tip of the surface (see figure H6).

THETA (IS) = inclination of the surface relative to

the y-axis (see figure H6).

The planform geometry data is given next in card set P-7N

as follows:

Cols. (right adjust all data or use decimal) 6FI0.0 format

I-i0 11-20 21-30 31-40 41-50 51-60
)

KLE (I) YLE(1) XLE(2) YLE (2) ....

... XLE (NLE) YLE (NLE)

KTE(1) YTE(1) XTE (2) YTE(2) ...

... XTE(NTE) YTE(NTE)

Card P-7N

where

XLE(1),YLE(1) = x,y coordinates of the Ith leading edge

break point. It is not necessary for

XLE(1)=XV(IS) and YLE(1)=YV(IS).

XTE(1),YTE(1) = x,y coordinates of the Ith trailing

edge break point°

The dimensions of XLE, YLE, XTE, YTE are the same as all other

input geometric data.

If the structural and mode shape library is used, the

following card must be supplied:

Cols. (right adjust) II0 format

i-i0

NST(IS)
Card P(L)-8N
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where

NST(IS) = the structural surface given in the library

from which deflections and downwash are

calculated for the mode shapes.

If library data is not supplied then this card must be omitted.

If ITRANS(IS)#0, then the Mach number distribution data is

supplied in card set P-9N. For ITRANS(IS) > 0, the chordwise

distribution is assumed constant along the span and the data is

given as

Cols. (right adjust or use decimal)

where

I-i0 11-20 21-30

GMACH(I, I) GMACH(2, I) ..o

... GMACH(Me,i)

6FI0.0 format

31-40 41-50 51-60

Card P-9N

(ITRANS > 0)

GMACH(I,I) = input Mach number at constant percent

chord line I-I

(M--g:-f_1)

Mc = NC(IS) + i

Note that the data is input at constant chord fraction increments

from the leading to the trailing edge. For ITRANS(IS)<0, the

distribution is input at (NS(IS)+I) span stations as follows:

Cols. (right adjust or use decimal)

i-I0 ll-20 21-30 31-40

GMACH(I, i) GMACH(2, I) ..... .

6FI0.0 format

41-50 51-60

GMACH (Mc, i)

• 0 o

GMACH(I, MS) GMACH (2, MS) GMACH (Mc ,MS)

Card P-9N

(ITRANS < 0)
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where

I-i
GMACH(I,J) = input Mach number at the (M---__I) chordwise

J-i
and (_i_i) spanwise locations.

MS = NS(IS) + i

Again, the spanwise distribution is uniformly spaced starting
from the inboardmost station to and including the tip at (i)
increment s. _

This completes the input aerodynamic geometry and option
data and the problem data if the structural library is used.
If the library is not used then the downwash must be input after
all aerodynamic data for all surfaces, if the IDNWSHoption in
card P-3 is not used. For steady flow, the data are input as
follows:

Cols. (right adjust or use decimal) 6FI0.0 format
!

i-I0

ALP(I, i, IS) I 11-20ALP(2, I,IS)

21-30 31-40 41-50

...... ALP (NI, i, IS)

.o. IALP(NI,NALP,IS)

where

Card P (P) - 10NN

k=0

ALP(I,K,IS) = slope (radians) at the Ith downwash point

in the Kth downwash vector on the ISth

surface, from LE to TE, outbd to inbd.

NALP = total number of downwash vectors as input

on card P-3, NALP<_20.

NI = NC(!S)*NS(IS), total number of downwash

points on the ISth surface.
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For unsteady flow, the only change is the addition of deflections:

Cols. (right adjust or use decimal) 6FI0.0 format
i-I0 ' 11-20 21-30 31-40 41-50

ALP(I, I, IS) ALP(2, I, IS) ...... ALP(NI, I, IS)

IH(I,I,IS) H(2,1,1S) ...... H(NI,I,IS)
! . • •

51-6ci
I

ALP(I,NALP, IS) ALP(2 ,NALP, IS)

H(I,NALP, IS) H(2,NALP, IS)

ooo 00o
ALP (NI, NALP, IS )I

H (NI, NALP, IS ) i

where

Card P(P)-IONN
k#0

H(I,K,IS) = deflection (same dimensions as the

geometric data) at the Ith downwash

point in the Kth downwash vector on

the ISth surface.

In both cases, the downwash data are given only after all of the

aerodynamic geometry and option data are completed for all

surfaces. Then, as the format shows, all modal data is input

for each surface together.

The last card in a problem deck signals the program to

continue to the next problem or terminate the job° This is

the "END" card which terminates the job.

Cols.

1-4

ENDb
I

5-60

(JOB WILL BE TERMINATED)

where b is a blank space. For continuation, the characters

in Cols. 1-4 may be anything but ENDb, for example

Cols.

1-4 5-60 Card

PROB LEM I END (CONT. ON TO NEXT PROBLEM) "END"

which will continue the job.
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