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ERRATA

The Mach number, M, in equation {28a) on page 11, is the free stream Mach
number and not the local Mach number. Equation 528b) on page 12 1s, therefore,
UNNeCeSsary.

As a result of this aberration, Fagures 3,4,5,6 and 7 require correction.
The curve labelled "Modified Theory" in Flo. 3 should be redrawn to pass
through the powmts (0,0.638), (0.1, 0.371), (0.2, 0.303), (0.3, 0.272),
Eo by 0. 2553 éo .5, O. 2&43 ,(0.6, 0.237), (0.7, 0.233), (0.8, 0.231),

0.9, 0.229), (1.0, 0.229 In Flg L, the dashes at the 1eft—hand side of the
figure, which are labelled "Modiafied Result", should be changed as follows: for
B =1, from 0.554 to 0.638; for B = 3, from 0.364 to 0.383., The points of
tangenCy (the crosses) are now approxamately given by £ = 2.5 and not 4 = 3.0,
so that the factor 3/2 in equations (49) to{52) inclusive would be better
replaced by 5/4. This will, however, have a negligible effect on the
calculations.

Finally, the crosses in Figuves 5,6 and 7 are incorrect. The following
changes should be mede, (reading from left to right in each case). In Fig 5:
1492 t0 24155 1475 to 1.80. In Fig 6: 1.84 to 2,03; 1.70 to 1.72. In Fig 7.
0.98 to 1.06; 172 t0 1.87; 1.68 to 1.76; 1.62 to 1.67; 1.47 to 1.50.

The conclusiors 1n section 6 remain unaltered, since the above errors are
all small in comparison with the deviations between linearised theory and
experimente.

Addenda

Although it has besn shown that (24) satisfies (22) together with (21),
the unlqucnsss of%thls solutlon has not been proved A "solution" of (22)
in powers of“& can;be obtained by-successive substitution, the first substi-
tution belng*ﬁggggja~Tt can’'be shown that the series so cbtained corresponds
to the expansigniof (24). It 1s, therefore, probable that (24’ 1s the umique
solution of (ZZQ&va

After equation (4hb) the words "where terms of higher order than e have
been omitted' should be ainserted,
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SUMMARY

The curve cof drag ageanst Mach number for straight-edged wings,
caloulated by using the Linearised theory cf superscnic flow, displays
discontinuities in slope at the varicus Mach numbers for which the edges
are sonic, fThese features, which are net cbserved in practice, are due
to the fact that linearised theory predicts an anfinite pressure along
a subsonic or scnic edge. It is shown that if the linearised equation
of supersonic flow is used to determane the flow over straight-edged
wings, but the linearised boundary condition is replaced by the full
(nen-linear) boundary ocnditicn, these ainfinities disappear snd are re-
placed by plausible volues. On thas basis a simple method is deraved
feor improvang the linearised predicticns of the drag of straight-edged
wings whick exhibits satisfactory agreement with experimental results.

While the technique 1s ncot directly applicable to ridge lines, an
artifice renders them amenable to similar treatment.
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1 Intreducticon

Iinear theory has been used with success to determine the flow over
thin wings at moderate supersonic Mach numbers; a full description of
the methods which have been used is given in Ref.1. In general, the
results obtained for aerodynamic forces and mements are physically
nlausible and agree with experiment as well as can be expected, but there
are cases where the linear theory produces seemingly incorrect results.
These occur in the study of the flow over a wing the planform of which
has straight edges* and/or ridge lines. When the free stream Mach number
is such that the Mach lines are parallel to one of the straight edges or
ridge lines of the wing a discontinuity in slope (vulgarly, a "kank")
appears in the graph of, for example, the wave drag of the wing against
Mach number. Further, the drag curve rises very steeply tc the value at
the discontinuity as the appropriate Mach nunber is approached from helow,
Neither the discontinuities nor the steep rises are observed in practice.

The explanation of this phenomenon lies in the nature of the pressure
distribuiion predicted by linear theory. The flow over a delta wing with
wedge section placed in a supersonic free stream will serve for an example.
If the leading edge of the wing is supersonic, then over the cregion
between the Mach line from the apex and the leading edge the pressure is
constant. This constant value becomes arbitrarily large as the Mach
number decreases until,in the limit, when the leading edge beocomes sonic,
the constant beoames infinite. At this stage the region of constant
pressure has beoame vanishingly small and the pressure close to the
leading edge tendas to infinity as the square root of the reoiprocsl of
the distance fram the leading edge. As the free stream Mach nunber drops
further the pressure still tends to infinity at the leading edge but the
infinity beocomes less severe. This is the case of a subsonic leading
edge and the pressure tends to infinity as the logarithm of the distanoefram
the leading edge., It is this failure of the linear theory to predict
the pressures in the region of straight edges and ridge lines of a wing
correctly, (at any rate for a range of Mach numbers), which leads to the
spuricus discontinuities mentioned above. (Exa.mples of pressure
distributions on linear thecry are drswn in Fig.1).

The reascn why linear theory gives such completely wrong answers
for the pressures near straight edges is usually stated to be that the
deviation of flow quantities (velocities etc,) from their free stream
values js, in actual fact, large, and so the conditions for validity of
the linear theory are not fulfilled, It will be suggested further on
that the answer is nct, perhaps, quite so simple as this; here, it is
sufficient tc note that the pressures near the leading edge may in
reality be much larger than those over the rest of the wing.

Any attempt to eliminate the discontinuities from the linear theory
predictions, (and such an attempt is clearly desirsble), must almost
certainly involve a limiting of the values of the linear theory pressures
near straight edged. This note presents a method for deing thas which
invclves satisfying the full boundary condition on the surface of the
wing as distinet from the linearised boundary coendition; the governing
differential equation is still the linear equation ¢f supersconic flow,

2 An Incompressible Analogy

The appearance of the infinities in the linearised pressure distribu-
tion over a wing with straight edges can be more easily understcod by
ccnsidering a problem in two-dimensional incompressible flow. This

* If the edges are cuspidal, no difficulties arise from the use of
linearised theory. The teohnique described in this note is only
necessary for wings with edges which are not cuspidal.
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problem is the determination of the £low over the body drawn in Fig.2(a).
The line of symmetry of the body (parallel to the free stream velocity)

is taken as the X-axas, X being measured downstreem from the nose of the
body. The Y-axis is taken normal to the X-axis. The equation of the body
is

8X, (1a)

0<X<g X, Y
o
X, <X, T =0K, (10)

where only the upper half of the body has been described, since discussion
of the flow can be confined to the region Y» 0, due to the symmetry of the
problem, The free stream velocity is U and a perturbation velocity
potential, ¢, is introduced so that U + u and v, the total velocities in
the X and Y directioms respectively, are given by

Usu=0(1+¢), (2e)
v =U ¢Y. (zb)

¢ can be determined, without any approximation, by means of a simple
Schwarz-Christoffel transformation., If & << 1, ¢y and ¢Y will, in general,

be mmall compared with one. At X =0, ¥ = O, however, ¢x = -1 sance
X = 0 is a stegnation point.

The flow ocan be approximately determined by a different method. The
boundary condition over the body is that the body boundary be a stream-line,
i.e. that

Py

0<X <X, (1"9‘1; = 8, {3a)
Py

X, <X (“‘95*:; = O, (3o)

Since ¢X is, in general, small compared with one, this may be written asa
linearised boundary ccnditien,

0<X<X (Wrbody =9, (4a)
X, <X ($y)y ody = O (4b)
The preblem can now be solved by distributing sources al the X~axis from

X =0 40 X = » of strength £(X) dX at the point (X,0), f(X) being an undeter-
mined function of X, The potential becumes

¢ =-§,t—/ £(x,) log [(x-X,)% + ¥'] ax,, (5)
Q

if a further approximation is made, namely that ¢x and ¢Y on the body can

be evaluated on the line ¥ = 0, f£{X) ocan then be taken as equal to & if
0 <X« Xo, and equal to zero otherwise, It can then be shown that
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(pluay = 7 20| T2 x] (62)
0<X<X, (ng)body =5 (6b)
X <X (¢Y)body =0 (6c)

qSX on the body now tends to mfinity as X - O {and also as X- Xo); over
moat of the bedy the formula for ¢X is approximately correct but near
X =0 and near X = Xo the formula is quite invalid, The failure near

these points must be caused by the introduction of one (or both) of ihe
two approximations made above, the linearisation of the boundary
condition and the evaluation of ¢ and, ¢ on ¥ = O instead of on the

body. In fack, it is the first of these approximations which causes
the spuricus inflnities in ¢ on the body; for instance, since ¢ = -1
at X = 0, 1t is not penmssa.ble to neglect ¢ in comparison with u.n:.ty

near X = O, If the second of the approx:l.matlons isg made but not the
first, then

f(X )
($xhpoay = f %y (7)

and a known result for a distribution of two-dimensional sources gives

y =t (8)

T (X)) ax
1 —_— 1 |
0<X<X, 5]:1 +:£f X-%, :l-.- £(X) (9a)
o

X <X 0 = £(X) (9b)

o 1?

Hence the following integral eqaticn for £{X) is obtained:

1

of(x ) ax
O<X<Ko, 5[‘1 + —(X——X-T-:l=f(X) (10)
(o]

The sclutidn-of the eqation is approximately £(X) = &, except for small
regions near’ X Oand X =X . If the integral equation were sc¢lved for

£(X) and tHen gy on the body evaluated, using equation (7), it would be
found that ¢X was finite for all X.

3 Supersonic Flow over..a Sweptback Wing with Sonic Leading Edge
%’i— jt
In this" sSection supersonlc flow over a sweptback wing will be
considered., The apex of the wing will be taken as the origin of
cocrdinates with the X-axis parallel to the free stream velccity. The
wing will be assumed to lie approximately in the X-Y plane, i.e, in the
plane 7z = 0, X,Y,% being rectangular ccordinates. The equation of the
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el
(senic) leading edge 1s X = 4+ BY, where B = (Mi - 1)% and M is the free
stream Mach number. The equation of the upper surface of +He wing in the
regicn te be considered is taken as

Z

§(X - BY), Y>0 (11a)

Z = 6(X + BY), Y < 0. (14p)

H

where 0 is a constant smell compared with unity. These equations represent
the upoer surface of a delta wing with a wedge secticn., If the magnitude
cf the free stream velocity is U, then a perturbaticn velocity potential
can be introduced so that U + u, v and w, the velccities an the X, Y and Z
directions respectively, are given by

U+u=v(1+¢) (12a)
v =T gy, (12v)
w=U g, (12¢)

The governing partial differential eqaticn is knovn to be

B° by = byy + b5 (13)

The boundary cenditicn to be satisfied on that part of the wing fer whach
Y > O 18 that there should be ne flow velocity normal te the surface, il.ec.
that

2=0, 8(1+¢,)-Bbp, ~¢,=0, (14)

he beournrdiary condition being applied cn the plane Z = O rather than on the
wing 1iself, A sclution of equation (13) 18 reguired which satisfies
equation (14).

The wntegrals which arise 1n the scluticn of equaticn (13) are
handled .sore easily if the fcollowing tramsfermaticn ¢f cecordinates is made.

X - BY y o LBY
’ ¥2B

s, 2 =53 (15a), (150), (15¢)

The governing partial differential equation becomes

(16)

and ihe sursface boundsry cendition becomes

2 2
B +1 __B -1 _
5[1 * s BT T ¢y} = (17)

An elemental scurce sclution of equation (13) is



-)

ds

a = - 1
¢ x [(X-—X1)2-B2(Y—Y1)2-B2(Z-Z1)2]E

where (X,Y,Z) 15 the position of the infinitesimsl element cf surface,

as, and(}(1, T Z1) are rumning ccordinates., If the problem is sclved
by distributing uources over the surface of the wing, then the sclution

of eqaticn (13) is

£(X,,¥,) a&X,,dY, (16)

[(x-x)%-8%(r-1,)%-8° z°]2
4 1

21
o

S being that part of the wing surface lying within the Mach {cre-cone
from the point (X,Y, Zg The wang surface has been assumed to lie in the
plane Z2 = O and f(X Y) is an unknown functien te be found by substituting
in equation (14). After the transformation of equaticns (15) has been
applied to eqaticn (18), the potential becomes

= ':Efr T (19)

¢ =7 1
(2(z-x ) (y-5,) - 2%]Z

The new arbitrary functicn i1s now to be determined by substituting in
equatien (17).

The equaticn of the wing differs according as to whether ¥ < 0 or
Y > 0, 1.e. a8 to vhether y < x or y > x, and sc will the source distribu-
ticn f(x,y). A consideration of the symmetry of the problem shows that
f{x,y) = f(y,x). The integral for ¢ on the wing can now be written os

“oe(yx,) e, o, F f(xfy)ci:sr1 ax,
i *fzﬂ” (x-x,)% (y- y)z fzvt[f (-x,)F (y-3,)?

considering only that part of the wang for which y > x.

Tc obtain sb and ¢ on the wing it is permissible to differentiate

the above formulae dlrec:{ly, i.e. to put 2z = O in eaation (19) and
differentiate afterwards. After a partial mtegratlon there followa:

¢ ! /’Vf(o’Y1) e ,/x,/x fx,(y,5%,) &y, &,
= - T T - = =
Ve ] Gy V)] Gt Gov)?
x
- “Lff' fx1(x1’y1) dy, o (202)
- A NY * z
. 2‘":0 ]C1 (X-'X1)2 (.Y-y1)2

and



X
¢ 1 /- f(O,X1) C-LC [-/ )'1(y1’x1) d~y1 aX1
== 1 1 1 T
Voo VemyE)  (x-x,)? 7 (x= %)% (y-3,)°
(20v)
X
. ¥ fy1(x1:y1) d-y1 dx
- T T L
v [ - V2 (vev )2
g, mx)E (-3
A knevm result i'er a distribution of scurces gives, on the wing,
3, = f(x,¥) (20¢)

An integral equation for f£{x,y) is obtained when tnesc values of Py qb and
¢, are substitated in equation (17).

From the formula for ¢, it follows that ¢4 (and hence the pressure)
will tend to wnfinity as x tends to zero unless

= 0 (24)

fy £(0,,) 4y,

il
3 (y"'yal)z

The solution of this Abel equation is simply £{0,y) = 0; therefore, the
1infinity in the pressure distribution predicted by linear theory can only
be remecved if f£(x,y), the sclution of the integral equation derived frem
equaticn (17}, is such that £(0,y) = O. Assuming that this is so, the
integral equaticn becomes

6 { 2 X x fx1(!1’x") dy1 B2+1 X y f (X1 ’Y1) dy1 dx
T ff
" f B R 2 LAY § QRN VA

2, 7ty (x1’y1) a7y &

+B .,,B -1 7 -'-‘-f(xs:V)
Z“Bf/ (x )% (y-3, )2 =By 3’=1 (x-x")z a2

(22)

and a sclution of this is required such that £{0,y) = O.

f(x,y) and the varicus flow quantities will be censtant along straight
lines drawn through the apex ¢f the wing, i.e. they will be functions of
x/y enly. If it 1s assumed that £(x,y) vanishes at x = 0 as k{x/y)z, with
a censtent to be determined, then, near x = 0,

k 4
£ x)“‘“‘"%- £ {x,5)~ 5 —=,
x 2 (x)?

i

k il k x
£ (yx) ~ 5 —1 £ (x,y) ~- K5,
T2 Gy v 2 /2
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The varicus integrals in equation (22) can be evaluated without any
difficulty and the following results are obtained,

XX

11 (Y.vx)dydx R

.[f X111 % 1,.,__21{_(2&)2
1

g4 = ) 3\

27 T (kpyy) dygpaxy %
1 Tk X
T 1"2‘2k<§)
(x=x,)% (y-73,)2
3 1 1 -
X

X

Py *
/[ L i 1 "'2k<§)
~x )% (y-y. )2

dd  G-x)%(y-y,)

H P y1)a~'2k G

*

If these are substituted in e quation (22) and x/y allowed to tend to zero
the integral e quation reduces to

of1 - Lt i ] -

i.e. K = —B (23)

'Jt(B2 + 1)
1

Thus, f(x,y) venishes as —-—5"13-——- x) . It is to be expected that, over
'Jt(B +1)

most of the wing surfaece, f(x,y) will be approximately equal to the value

on linearised theory with the ususl linearised boundary condition applied,

and that only in a small region near the leading edge will it depart

significantly from the usual linearised value; this value is f£{x,y) = 8.

A functien satisfying these requirements is

1
- X/ 2
ty) =2 et (24)
(v" +%/y)
where
2
veBtls, (25)

When v> can be ‘neglected in comparlson with X/y, (and this 15 so over mcst
of the wing surface) f(x,y) = 8. There 13, however, a small region near
the leading edge where x/y is of the same order as vé or of smaller order
and. then f£{x,y) differs significantly from 8§, When x/y is sufficiently
small

-9 -



(ot _eczy)._.“ L1 ,@)%' - B (o)

GFezy)E VN e )
1
3¢ that £(x,y) vanishes as -—L@———- )2 .
'IC(B +1) V.

It is shown in Appendix I that the function defined in equation (24)
satisfies the integral equation (22) tc an accuracy of order 8 everywhere on
the wing including the regiocn close to the leading edge where ordinary
linearised theory breaks down. In appendix I the following forrulae for the
partial deravatives of ¢ on the wang are derived:

o=~

2 V2B =1 v
= e ey
"(B" +1) (x+v7y)

A
6 =-Y28 [X\®
y — x \y/

x L

(S

hof-»

95 = &Q sin-1 "_"—-"‘"'ﬂ'x

2y +x)2

Reverting to the original coecrdinates X,Y and Z by using equations (15), it
1s found that

1

A 2 4 2B . =1 v z
X" Ve =TV ty T T 2 ) (x+vy)2 )

s¢ that the X~velccity is given by

1 4
- 3 z
U+u.-.U[1-—--?2—sin1_‘£L2_f_..-%<-§-)}. (26a)

=(B" +1) (x+vy)2
The Y-velocity is glven by

1 1
r_ 2 | 2B . =1 vy? b (x\2
v -_—_U ¢ :U - — ¢ —— 01T _L_I_.— (...) ] R (26‘b)
I \_ V2 x {2 L‘K(B2+ 1) (x+ sz)2 T\

The Z~velocity is given by

]
7
Ww=Ug¢ =U$ :22—Usin_1——23———1=5U[1-—sm —L‘ (26c)
§ (vy+x)® (x+ vy)7

- 10 -
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Over most of the wing surface, i.e. for x/y >> 62, these results reduce
to the ususl linear theory results, but close to the leading edge they
differ markedly frcm the latter results. In fact, at the leading edge

(x/y = O):

2
U+u=—-:-g—--—-— U, v=—2-]-3————U, w=20
(B + % (B” + 1)

Now the component of velocity in the X, Y plane normal to the leading edge
is

- v cosp + (U + u) sinp

here, B = cot™! B and is the Mach angle or, since the leading edge is sonic,
the semi-apex angle of the wing, But along the leading edge

- v cospt + (U +u) sinp = - B2) v 1

(1+3B

+ 2_1_(U+u)=0.
(1 +B89)2

o)y

The theory predicts that, at a point of the leading edge, the flow in the
plane through this point normal to the leading edge is brcught to rest.
The velocity parallel to the leading edge is

B2 B B 1

(B241)  (B21)Z  (B241)  (B241)

(U+u) cosp +v sinu.—.U[ 3.}'—"13 cos {
=

which is simply the comnonent of the free stream velocity along the leading
edge. (The ordinary linearised theory gives this result but predicts an
infinite velocity normal to the leading edge).

From the above formulae for the velocity components it i1s possible
to evaluate the pressure distribution over the wing. The familiar
linearised formula for the pressure coefficient,

P-P
GP=1 2°°=_2¢
zpU

(27)

where p, P, and p are local pressure, the free stream pressure and free

stream density respectively, cannot be used here because, in the vicinity
of the leading edge, ¢x and ¢_ are not necessarily small compared with

one., If q is the speed of the flow, i.e. if

q2 = (U + u)2 +v? +w2,

then
Y/t

cp=;i-2—[i:1+%imz<1-§;)] -1} (28a)

where M, the local Mach number, is given by

- 11 -
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2
% = ) ’ 8b
o -2 q E+w-ﬂ@] (260)

1

lcz‘.
Moo

and ¥ 18 the ratio of the specific heats, The pressure as a function cof

x/y (which varies from O at the leading edge to 1 at the centre line) 1s

plotted in Fag.3 for § = 0.2, M = V2 and ¥ = 1.4; the ordinary linearised
theory curve is alsc drawn.

4 Further Bxamples ¢f Flow over Straight-edged Wings

In this secticn scme wore examples of superscnic flow over wings the
planformas of which have straight edges will be briefly discussed.

4e1 TFlow over a wang with supersonic leading edges

The angle of sweepback of the wing is denoted by Ao and, with
notatien as befcre, the equation of the upper surface of the wing is

Y>0, Z=208(X~Yta Ao) (29a)

Y<0, Z=08X+7Ytan Ao) {29b)

The surface boundary condition can be written as
Z2=0, o(t+g)=-8¢ tand ~-¢ =0 (30)

censiderang only that part of the wing for which Y » 0. If the transforma-
tion cf equations (15) is made, the boundary ccndition becomes

- BtanA°+1 BtanAo—-'! (
511 - = 51
L Y £ V2B ¢Y] % )

The solution of the problem will first be found for ihe region between the
ilach cone from the apex of the wing and the lesding edge. ¢ 1s given, as

above, by
1 £0xypyy) 8y 39y
2 7
[2(-x,)(y-7,) - =°]
S

£)4

£(x,y) being the unkncwn source distribution, and S being that part of the
wing surface lying within tvhe Mach fore-cone frem (X,Y,Z). The equation of
the leading edge (X = Y tan Ao)’ is in the new ccordinates

(B+tanA0)x+(B—ta.nA0)y=0 (32)

¢ becomes fro. Fig. (2b)

Yy X
= o feg7y) & dy; , (33)
" ~j tend [2(x-x,)(y -7,)~ 212

~xcoth

where

-2 -
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B - tan A
0

B 4+ tan Ao (3&')

ta.nﬁ =

Since the flow is locally two-dimensional in the region under considera-
tion flew quantities along lines parallel to the leading edge are constant.
They are also constant along lines through the apex, and so are ocnstant
everywhere in the rogion. This suggests putting f (x,y) = K where K is a
censtant to be determined from the surface boundary condition. ¢ on the
wing surface, (taken to be z = O}, is given by

A
R 4

b
I

N4

J X
f K dx, ‘:‘ly*l
~xcotp —y1tmﬁ V2 (x-x1)2 (Y"'.V.‘)

.—_—-—— ———-——1-[-2(x x )2]
‘x/cotﬂ (y-vy) 4 ) 1 benf

1

2
VoK (x + Y, tanB) ay,
"

1]

'
3
~xcotf (y- 4 )

(y+x cctB)%
22K

- == {(x+y 1;&1.:1(3---u2 tanB) du

7:/2
- _2%21_{ (y+x cotB) (tenp)® f cos20 a6

<

f

- & (y+x coth) (tand)?

Thus,

_ K _ K /B-n-tanA (35)
e R = a

i

Y X B-tanno-;- )
o (350)

¢.Y Vo V2

Substatuting-in the boubdary cendition, equation (31),

X i B+tan A X B-ten A \%
s |1 - 7p (Bten Ao”)(ﬁmc;) + 25 (B tan A1) mA—) J=x,

: PR —%"ﬁ' = e 1T ’ Sy
since on th ey g, as before, .
: 3 H’ AfZs o U rE s
R Sl T P 3‘1 .
el s’)\#_r- z, = f(x’y)‘ e

K is given by
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1
2B(B® - tan® )78

X
2B(B2—ta.n2 Ao)2 + 2B & sec” A
(36)
1
cot A (132 cot® A~ 1)% 6
O QO

1
cot A (B2 cct® A - 1)2 4+ & cosec® A
o o o

1
If & 1s small in compariscen with (B2 cot2 AD - 1)2 this is very nearly the

same regult as is cbigined by crdina.rg linearised theory, (i.e. K = 8); but
when (B cot2 A - 1)Z is at most 0{62), i.e. when the leading edge is
almost sonic, then this result for K differs significantly from that of the

ordinary linearised theory. When the leading edge is sonic the formila
reduces tc X = 0, in agreement with the result of section 3. Using equations
(35) the formulae for the velocity components are

U+u

H

U(1 + 8,) = U(4 +7;E¢x+$¢y)

r 4 c:ot2

A
U1 -~ 2 e } s (373-)
L {cot Ao (B2 cot2 Ao - 1)2 + % 003302 Ao

4 1 N & cot AD
v=U¢ =U(-—¢ +—--¢)-_— T ;
X V2 'x Y2y, [cot A (B2 cot? A - 1)2 + & cosec? Ao]
(370)
1
d cot Ao (332 cot? A - 1)2
w=U¢,=U¢ 5 (37c)

= 5 _32_ 3
[cot A (B® cot A, - 1)? + & cosec Ao]

The pressure coefficlent can now be worked cut from these velocity compenents
in the manner described at the end of section 3., In general it will agree
with the crdinary linearised theory (to within the accuracy of that theory),
but, if the leading edge 1s imagined to bescme closer and closer to a sonic
leading edge, the ordinary linearised pressure coefficient becomes arbitrar-
ily large alcong this edge. The pressure coefficient on the present theory
tends to the finite value given at the end of sectacn 3.

As A tends te zero (in which case the problem beccmes two-dimensional)
K tends to

B 5
B+0 ~ 1+0/B°

which coapares with the cordinary linearised theory result of 0. As might

be expected the two results differ by a term of order 82 only, so that the
vressure coefficients differ in the same way., Although this is thecretically
of nc consequence it is obviously desirable to have the modified theory
agreeing with the linear theory exactly in this limiting case. One way of
achieving this is as follows. Writing (cp)m for the medified pressure
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coefficient and (C_) ¢ for the linearised pressure coefficient, the
quantity P

(®* cot® A - 1)
(0, + [:(cp)6 L e (38)

has the following properties, If the leading edge,is sonic it is equal
te (Cp)m, since (C )& behaves as (B2 cot2 A - 1)™% when the leading edge

is almost sonic. the other hand, when Ao = 0 and the problem 18 two-
dimensional, the above quantity reduces exactly to (c.) £ In fact, thais

quantity never differs significantly from (G )m but it has the advantage

that it is exactly equal to the linearised value in the limiting case of a
two—~-dimensicnal problem,

Over the region of the wing between the Mach cone from the apex and
the centre line f{x,y) 1s nc longer a constant everywhere, although 1%t 1s
gtill constant along lines through the apex. It will start with the value
given by equation {36) on the trace of the Mach cone (X = BY) and, in a
region close te this line, it will fall rapidly to approximately the value
given by ordinary linearz.sed theory, which is simply f(x,y) = 8. The
exact variation of f{x,y) can be found only by sclving a rather complicated
integral equation derived from the boundary condition of equaticn (31).
For the moment it is suffiocient to remark that the pressure coefficient
has a value on the line X=BY which can be obtained from equations (37)
and then also falls rapidly, in a region close to this line, to approxi-
mately the value of ordinary linearised theory.

4.2 TFlow over a wing with subsoniac leading edges

The equation of the upper surface of the wing and the nctation used
are the same as in section 4.1); the surface boundary condition i1s again

BtanAo+1 Btan.f\o—1
6[1 YT V2B P " V2B ¢y]=¢z

There is now only one region to consider since the Mach cone lies outside
the leading edge. Ordinary linearised theory gives for the source distribu-
tion over the wing,

f(x:Y) =8

This leads to logarithmic infinities in qu and ¢ at the leading edge;
these arise because the linearised boundary has geen used instead of the

full boundary condition and these two conditions differ considerably
from one another in the vicinity of the leading edge. If gbx is written

out in terms of £(x,y), as in section 3, it can be shown that g, Will be
infinite at the lesding edge unless f£(x,y) = O there. Thus, the integral
equation for £(x,y) cbtained from eguation (31) must possess a solution

which vanishes alcng the leading edge if the pressure coefficient i1s to
vemain finite there. It will be assumed that such a scolution exists,
At the leading edge, then,
£(x,y) = ¢Z = 0,

and fram equation (31)
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BtanAo+1 BtanAo-1
1+ ¢ = g, =0
V2B x Y2B y

Now the veloecity normel to the leading edge is

(U + u) cosAo—vsonzﬂcosAO [1 +¢X~¢Ytanl\0]

_‘*_ 4 i
= U cos Ao[‘l-t- 778 x {2]3 y) ({2 <" 72 %y tanAoJ

— BtandA 4+ 1 BtanA -1
UccsAoL‘l+ 2 $p - 2 qiy]

Y2 B x V2B

=0

Therefore, as in the oase of a sonic leading edge, the flow at a point of
the leading edge in a plane normel to the edge is brought to rest. The
velocity along the edge 1s

(U +u) sin A +vocosh =Usinhj (1+¢X+¢chtno).

As in section 3 ordinary linear theory does not break down in the deter-
mination of the component of velocaty along the leading edge. In this
case 1t gives

- Zreor A X - BeYcot A
p=- 5 [:(Xcot. A _+¥) cosh 1EeB OV o) {Xcot A 34 cosh ( e ):l
7({1"'32005 AD) B(:{CO&AOQY) B{Agof'A =Y)
Scot Ao -1 (£« BEY cot AO) (x~ B2Yeot Ay)
by =" E'Osh + cosh™? s
7 (1~ B oot Ao)"“ B(X oot A 4 1) BIX cot Ay ~ 7)
(X+ B°Y cot A_ ) (x- B°Y cot A )
$,=~- 5 l——cosh" o el ! 0
¥ (1= Bzcat?AO)i’ l_ B(X cot Ao + 1) B(k cot Ao- T)
and so0
2
e 2 8eot A - (KeB% Yeor A )
U sin M_{1+ ¢ cot A ) =1Usin A 1 - 2 cosh 2 .
o ¢X+ ¢Y ° ° 9{(1-32 cot? Ao)* B(X cot Ao + 1)

Along the leading edge, then, the velocity is

26 cot A 1+B2cot2A——
Us:LnAl:- °

; cosh™! = _J (39)

2 2 =
7{1-B" cot AO)E 2B cct Ao
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The pressure coefficient can now be obtained as at the end of
section 3, To determine the pressure coefficient over the rest of the
wing, £(x,y) would have to be found by satisfying the boundary condition,
equation (31). This condition yields a complicated integral equation for
f‘?:c,y) ; if this were solved it would be found that, except for a small
region close to the leading edge, £(x,y) would be elmost equal to &, its
value on ordinary linearised theory. Close to the leading edge f£(x,y)
would rise rapidly from the value there of zero to approximately the
value 8., The pressire coefficient has a value at the leading edge which
can be obtained from the theory of this section and then falls rapidly
from this value to approximately the ordinary linearised value in a region
olose to the leading edge. Thereafter, up to the centre line, 1t remains
approximately the same as the ordinary linearised value.

L.3 Supersonic flow in the presence of a ridge line

Further difficulties arise in the application of linear theory to
the supersonic flow over thin wings when straight ridge lines are present,
(as in the case of a delta wing of double wedge section), If the ridge
line is sonic or subsonic the pressure coefficient alcng the ridge line is
infinite on linearised theory; if the ridge line i1s supersonic but nearly
sonic the pressure coefficient can become arbitrarily large. The curve
of the drag of the wing plotted against free stream Mach number displays
a discontinuity in slope at the Mach number at which the ridge line
becames sanic; this discontinuity is not obtained in practice. The
presence of this discontinuity can be traced to the use of a linearised
boundary condition which neglects a term not negligible near the ridge
line.

It is not possible direotly to improve the results of linearised
theory by using the technique of this note, The reason for this can
best be demonstrated by an example, that of the flow over the rear part
of a delta wing of double wedge section with a supersonic ridge line.

The trailing edge will be teken to be a line in the X, Y plane normal

to the direotion of the free stream. The flow upstream of the ridge
line will be ignored in this example; the results obtained are unaffected
if its effect is included. The equation of the rear part of the upper
surface of the wing is

2 = - 8X

The origin of coordinates has been moved to the point where the radge
line meets the centre line, and a value of -5 has been taken for the
slope of the rear part of the wing. The boundary condition becomes

v Y (1 + ¢X) + ¢Z = 0.

The transformation of equations (15) turns the above ecquation into

5<1+-1—¢ +-l-¢y)+¢~z = 0. (40)

If the problem of the flow over the wing is solved by distributing sources
over the wing, then the source distribution function in the region between
the trace of the Mach cone from the origin and the ridge line is a
constant, K say, as in section 4.1, Using equations (35), eqation (40)
becomes



- B + tan A \& . B - tan A
2B \B - tan A 2B B+ta.nA

hl
- 2B (8% ~ tan® A)Z 8

e K '

2B(B? - tan® A)E- (B+tanh) 8- (B-tanh)s

1
- (8% - tan® 4 )% 5
(32 - tan? Ao)% -8 (41)

1

Thus, when (B2 - ta.n2 Ao) = 52, the source distribution over a finite region

of the wing becomes infinite, together with the velocity components and
the theory breaks down completely., If the ridge line is subsonic or sonic
the preceding theory gives sensible results for all cases. Nevertheless,
it 1s clear that the theory cannot be applied directly to flow over a wing
with straight ridge lines,

The diffioulty oan be overcome by the following subterfuge. When
ordinary linearised theory is applied to determine the flow over a thin delta
wing of double wedge section the wing is regarded as one delta wing super-
imposed on enother, the first delta wing having a positive slope, and the
seocond having a negative slope. The modified theory already developed in
this note can be used to obtain the flow over the first wing since this
has a positive slope. Again, considering two delta wings of the same plan-
form and with equal and opposite slopes, it is evident that the distribu-
tions of pressure coefficient on ordinary linearised theory will be identical
except for sign, It will be assumed that this result holds true in practice,
so that the pressure coefficient of a wing with negative slope will be every-
where taken as the negative of the pressure coefficient of the wing which
is the image in the X, Y plane of the original wing.

The gustification for this step is first that it is correct on ordinary
linearised theory and it is therefore to be expected that in practice the
pressure coefficients will have approximately the same absolute value.
Seoondly, the method developed in this note is no more than an artifice to
eliminate the spurious discontinuities present in the curve of drag against
Mach number. All that is required of such a method is that it shall
remove the discontinuities and shall replace them by a plausible curve; the
method of {this note does fulfil both these requirements and ihis is its
ultimate justification.

The technique of this note oan be used, then,to obtain the drag of a
delta wing of double-wedge section. As in ordinary linearised theory the
wing is assumed to consist of two deltas superimposed and the technique is
applied to each delta separately. This means that the surface boundary
condation 13 not exactly satisfied since the interference of one delta on
the other is ignored. It can be shown, however, that this interference can
be neglected, without involving an error any larger then that normally
tolerated in linearised theory.

4oy Supersonic flow over a wing of bironvex section

50 far all the wings considered have had regions of constant slope;
the example of this section 15 a wing the slope of vwhich varies. The equation
of the upper surface of this wing is



0<Y<s, Z =2 (X-BY) [1- (X=BY)], << (42a)

~8<Y<0, 2=2 (X+BY) [1~(X4+BY)] (42b)

i

which represents a wing of constant chord, this eonstant being taken as
the unit of length, span 2s, and thickness~chord ratio €. The leading
edge is sonic. The wing is symmetriecal about the line Y = 0 and only
that part of the wing defined by Y » O will be considered. The boundary
condition bhecomes

2¢ [1 - 2(%x = BY)] [1+¢,-Bg) -9, = 0

With the same transformation as before, i.e. that of equations (15),
this becomes

2 2
2e [1 - 2V2B x] 1+B—{§31¢x-—57;-1¢y]-¢z=0 (43)

¢ may be put equal to 951 + 952, where ¢1 and ¢2 both satisfy the linearised
equation of supersonic flow while ¢ 1 satiafiies the boundary condition

2 2
B 4+ 1 _B° -1 . _

and ¢2 satisfies the boundary condition

~ 2 2
-y VoexB |1+ B2t1ly LB =1

voB X V2B Poy |~ Paz = © (440)

¢, satisfies a boundary condition which is the seme as equation (31)
except that 8 has been replaced by 2¢ and so ¢1x’ ¢1y and ¢1z have

effeotively been found already. If 952 is determined by distributing

sources over the wing surface, f(x,y) being the scurce distribution
funetion, ordinary linearised theory givesa

f(x,y) = - 4/2 Bex,

using equations (20c) and (44b)., Now, as in equation (49),

2" fzﬂ (x-x,)a (v - v, B m (x-x,,r% (y-7,)%

and so
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1 vy, dy, dx
¢2=&§—B// 10 11_+Ltf;B/
(x=x,)%(y-y,)? ,

Gon)® (2 )t =
x . s
8eB dee, (- w 8e3 x1(y x1)
L A e -+ dx
i [ (xx, )2 l‘ ’ ](y-xa,)‘;‘ " -/ (x-x,)* !
3 X z 3/
_ 16eB y3/2[ oxy 8B y[ (y-x)% ax,  gep fx (yx,)72
=% (xx )2 F L (xex)? 3® ()
8eR xx1(y_x1)2
" (X“X‘I)‘z— L
X o 3/2
683 Y3/2 [~2(x—x 4° ] 653 / (J(f x1))% ax,
=X

=)

(Y“x)z cosﬁh 8 4o

1 1
=Eyﬁ/2x%-@(y4)2 3 sink) -’£-2+3x2Y ?-xzy}/?
" ) T ()

32eB 3/o % €B - /X z % /2 3/2 %]
= n y}2x2_5-3_ﬁ_ 5(3'3() tanh \y) +5x Yy 3x ¥y

Q‘s_ 3/2 'i 455 (yx) tanh™ k) eB 3/2 %

1
£B + L B 2 - 1
¢2 = ‘lt-ﬁ— x=< ya (x.i.y) - —Ji'-i— (y_x) tanh 1 (%) ]
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Hence,

I 1
_ 2eB y5/2 _ 2eB y%(y-x) , 8B (y-x) tenh™! (_Jg_)z 6eB 3 ¥2
yS y

952}:" P L ® % *TR ¥
x ¥
(45a)
_8B ¥ 1 8B 1 ()2
= S XS YT o+ L (y-x) tanh™ Ky_
while
5 3
6eB L+ 1 2¢B - BB -1 /X2 2eB x/2
¢2y=—f-(-y2x2 ae:x(YX) r (y-x) tank” (y) Tx
NEd v
(45b)
11
=-8-;8t-§x2y2 (J—x)'l: ()

¢2x and ¢2y are 0(e) everywhere, even at the leading edge x = O where,

in fact, they vanish; this means that ordinary linearised theory predicts
a plausible value for the pressure coeffioient (or at least for that part
of the pressure coefficient involving ¢2). The part of the pressure

coefficient involving ¢4can be dealt with by the technique already developed
in this note and so the problem of flow over a wing of parabolic arc section
requires ne extension of the theory.

The above discussion ignores tip effects, If the wing is of large
span it 1s probably sufficiently acaurate to work out the flow in the
region influenced by the tip on ordinary linearised theory; if 1% 1s
felt necessary to improve the linearised results in this region also,
this can be done by using the method of this note since the tip can be
regarded as a subsonic edge.

5 Further Simplifications of the Method

In Fig.4 the pressure coefficlent determined from ordinary linearised
theory, over the wing of section 3 is shown; this wing was a symmetrical
delta wing with sonic leading edge and a constant slope of 8. BC,, is
plotted against Z where

_ 4B ox_1x

for two values of B (B = 1 and 3) and three values of 8 (8 = 0, 0.1 and
0.2). The pressure coefficient is given by

2060t gn e @

ac(B + 1)

on ordinary linearised theory and so & = O is a limiting case in which

-2 =



c =——-~2—“—-z.‘15 (48)
Pox(B® + 1)

On the axis Z = Q0 two points are marked; these are the velues which
the wodifled pressure coefficient takes at the leading edge, using the
theory of section 3. This pressure coefficient at Z = O depends only on
B and not on 8, The pressure coefficient on modified theory beoames
approximately the same as the ordinary linearised coefficient at a very
small value of 51 , this value being 0(67), so that £ is 0(1). A
considerable amount of work would be involved if the pressure coefficient
derived fromeqations (26) was used to work out the drag of the wing. It
is proposed instead to draw the tangent from the point on the axis % = O
which represents the modified pressure coefficient at the leading edge to
the linearised curve and then continue with this curve until the centre
line (Y = 0) is reached. The error incurred in doing this should be
negligible. It 1s possible to simplify the ocaloulation still further.

Each of the linearised curves of Pig.h (drawn for various values of B and

6) has one point marked on it with a cross; this 1s the point at which the
tangent described above touches the curve, It will be seen that to sufficient
accuracy all these points are given by £ = 3, i.e.

885 x _ 4p®  x _BY 5
= = 2
(B2 + 1262 T (g% 4 )% X+ BY
or
1. 3(8° 4+ 1)%° ) )
X 2 ]
boal L)
2
4B
Thus, the pressure coefficient over the wing will be taken as falling
linearly in ;:gg from the modif'ied value at the leading edge to the value

given by ordinary linear theory when X/Y becomes equal to the quantity in
equation (49)., PFrom then until the centre line {¥ = O) the ordinary
linearised curve will be used.

For the cases of subsonic and supersonic edges a similar procedure
18 suggested. Thus, for a supersonic edge the pressure coefficient will be

taken as falling linearly in %:—g—f from the modified value at the Mach line
{deternmned in section &. 1) to the value given by ordinary linear theory
vhen
~ 2 2 .2
%—:Blja-}(i *;) 6] (50)
2B7 cot Ao

and ordinary linearised theory will be used from then on., The factor
-;—2——1—.2—-—* has been introduced since it is to be expected that, keeping
B cot™ A

o
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the free stream Mach number constant and varying the sweepback angle,
the region in which ordinary linearised theory is invalid will become
progressively smaller as the edge becomes more supersonic. FPFor a sub-
scnic edge the pressure coefficient will be teken as falling linearly in
3}5%% from the modified value at the edge (determined in section 4.2) to
the value given by ordinary linearised theory when

. 2 22 .
= tan Ao L‘l +3(B ;D ) cot:2 AOJ (51)

o kol

The factor B2 cot2 Ao has been introduced since it is to be expected that,

keeping the free strean lach number constant and varying the sweepback
angle, the regacn in which ordinary linearised theory is invalid will
become progressively smaller as the edge becomes more subsonic. In some
cases the behaviour of the pressure coefficient in the region lying within
the liach cone from the apex but outside the edge is required; in this
region tan A_ > X/Y > B, The pressure coefficient will be taken as
felling linearly in J}E:g% from the modified value at the edge (determined

in section L.2) to the vaiue given by ordinary linearised theory when

2

2 2
3(3 + 1) 5 cot Ao (52)

2

i b

=ta.nAo-(tanAo-B)

The factor B2 c:ot2 !Lo has been introduced for the same reason as before,

In both these cases ordinary lanear theory is to be used for values of
X/Y respectively greater and less than those given by equations (51) and

(52).

The above formulae may seem arbitrary, and so they are, but they
simply 1nvolve replacing the curve of the modified pressure by one which

B 0, is then incorrect (probably only

has the correct value at =

X+BY X-BY 5
glightly so) for an interval of order 52, and then from 5T = 0(8<) to
X~BY

oy d 1 has an error negligible in a linearised theory.

The calculation of the aerodynamic forces now involves integrating
the pressure coefficient multiplied by the local slope over the wing. The
integration over that part of the wing where the pressure coefficient is
to be taken as having the ordinary linearised value leads to a double
integral which is not very diffioult 4o evaluate, but the integration
over the rest of the wihg does give a rather complicated result. Since
this region is small it 1s possible to meke & further simplification; the
mean of the antegrand at the two extremes of the region (the line given by
the appropriate formula of equations (49) to (52) inclusive, and the edge
itself) is multiplied by the area of the region., The validity of this
approxamation was checked for the examples of the following section, and
was found o be satisfactory.

& Results and Dascussion

It is clearly desirable that the theory should be checked against
experimental determinations of the drag of straight-edged wings; such
determinations are unfortunately, very rare. Ref.2 gives the results of
measurements of , among other things, the drags of certain delta wings.
The wings are of double wedge section, having thickness~chord ratio of
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8% with the maximum thickness occurring at 18% of the root chord measured
from the apex., The measurements were at Mach numbers of 1,62, 1.92 and
2.40, and were made for & range of sweepback angles.

Both theoretical and experimental results are plotted in Figs.5 to 7
inclusive, The ordinary linearised curve is shown as a full line and the
two sharp discontinuities in slope can be seen clearly. Experimental
points are shown by circles and a chain-dotted curve has been drawn
through these points. Finelly, some points calculated using the modified
theory of section 5 are shown by crosses and a dashed line hes been drawn
through these points, Although there is still a sharp rise at the Mach
muyrber at which the ridge line becomes sonic, the modified curve lies
mich closer to the experimental results than does the ordinary linearised
curve.

A few remarks about these figures mist be made here., The customary
form of plotiing has been employed, i.e. GD/ At2 against AB, where A is the

aspect ratio of the wing T +the thickness-chord ratio and Cp, the drag
coefficient, is given by

C =
D touds

3 being the area of the wing and D the drag. The theoretical drag is the
wave drag, of course, whereas the measurements of Ref,2 included skin friction
drag, For each liach number an estimated value of the skin friction drag
coefficient has been subtracted from the experimental result; this value was
00009 for M = 1.62, 0.0085 for M = 1.92 and 0.008 for M = 2.L|-0n The final
point to be mentioned concerning these figures is the construotion of the
modified curve. Five points were calculated for Fig.7 (M = 2,40) end this
enabled the curve to be drawn fairly accurately, but for the remaining two
figures only the points corresponding to a sonic radge line and a sonic
leading edpe were ocalculated. These two points are obviously the two most
important and, together with a knowledge of the ordinary linearised curve and
an example in Pig,7 of a camplete modified curve, there should not be any
difficulty in drawing a curve to pass through these two points and to fair
into the ordinary linearised curve for values of AB both small and large
compared with unity.

Pinally, a brief discussion of the theory of this note will be given.
It is obvious that the theory can be immediately extended to a swept trail-
ing edge; the wing (assuming it to be a fully tapered wing) is regarded as
being composed of three superimposed deltas and the modified theory applied
to each of the deltas. Separating the flow field into three distinct flow
fields in this way means that the surface boundary condition is not exactly
satisfied but, as in seetion 4.3, this results in a negligible error. It
might also be supposed that the extension to the incidence case, 1.€. t0Q
the removal of the discentinuity in slope in the curve of 1ift coefficient
against Mach number, ais very simple; this, however, 1s not the case. Suppose
that the incidence of the wing is a and that the slope at & certain point is
0 while the pressure coefficient at this point is (G )y on the upper surface

and (C_), on the lower surface; (this pressure coeffic:r.ent is the coefficient

on an exact theory) Now the required quantity is GL the lift-curve slope,
and this requires the evaluation first of

‘:(G]ﬁu; (cp)s:lwo _ [GP (5 + a) ;'Gp (6 - “)]wo




or of 'éig (CP) .

In evaluating the drag of straight-edged wings the exact pressure
coefficient was replaced by a modified coefficient which behaved everywhere
in a manner which was at any rate plausible and the results of this section
suggest that this was quite sufficient. The evaluation of the lift-curve
slope, however, involves the derivative of the exact pressure coefficient
and much more care must be exercised in replacing this coefficient by a
"suitably chosen" funotion., It is very doubtful whether any method of

the type employed in this note (that is, any method involving the limiting
of pressures near the leading edge) could justifiably be used to improve
the values of lift-curve slope predicted by linearised theory when a
straight edge is almost sonic. No attempt has been made to do so in this
n0t3|

The justification for the method as applied to the evaluation of the
wave dreg of wings lies almost entirely in the agreement of the results
obtained by the theory with those cbtained by experiment. The agreement
has been shown to be satisfactory. It would have been interesting to have
compared the preasures predicted at the leading edges of delta wings with
those obtained in practice but it is, of course,very difficult to measure
pressures at leading edges and so the comparison cannot be made. All that
can be said is that the overall aerodynamic forces exhibit satisfactory
agreement with experiment, while the method has the advantege that it is
quick and simple to apply in any particular case, It ig, of course, no
longer possible by judicious choice of parameters to reduce the plotting
of the drag of a large class of delta wings against Mach number to a
single curve as can be done using ordinary linearised theory. On the
other hand, it is diffioult to conceive of an improved theory which would
retain this property, and it is certainly more realistic to have GD/A':2
for a fixed Mach nunber varying slightly with T.

LIST OF SYMBOLS

A Aspect ratic
1
B (af - 1)2
Gy, D/ 1pU%s
OL Lift-curve slope
«
c, p-p_/ZpU

(GP) &’(Cp)m Linearised and modified GP respectively, (Section 4.1)

(Gp) Pr (Cp)u GP on lower and upper surface respectively (Section 6)

c Reot chord

D Wave drag

T Source distribution function

X A constant source distribution in section 4.1
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o §go 85

m

¢1 }¢2

tanp =

Defined in Section 3

Local Wiach number

Free stream tlach number

Local pressure

Free stream pressure

Local speed

Area of wing in Figs. 5, 6 and 7
Semi~spaa of wing of Seotion 4.4
Free stream velocity

Local perturbation velocities in X,Y and Z directions respectively
Cartesian coordinates

See Fig.2a

Defined by equations (15)

Incidence
B - tan AG

B + tan A
0
Ratio of specific heats
(Constant) slope of wings at Sections 3 and 4
Thickness~chord ratic of wing of Section L.4

= 482 X

(8° 4 1)6° 7

Sweepback angle of edge

COt}J.::B
2
B o+ 1
v = = 8

Free stream density
Thickness-chord ratio of wing in Figs.1,5,6 and 7
Perturbation velocity potential s

See equations (44)
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APPENDIX 1

The Sclution of an Integral Equation

In this Appendix it will be shown that

nt -—(’—‘/1)—-7 (I.1)

f(x:y) = e
(v + ¥y)
where
BZ+1
y = B b (1-2)
is a sclution to farst order everywhere of
x x, £ (y,,x,)dy, ax xy £ (x,,y,)dy
6{A_B2+1 p/'i x1 1 1 1 _ B2+_1 1 1 1 1 11
' 271:13] 3 5 2% B 5 z
Lo (x“"x1) (y y'l) 3 x1 (X—K1) (y—y.‘)
524 PR fy1(y1’x1)°“y1 RSl 7 f3r1(x1’3’*|)dy1 axy
+29tB// T oE tiab ol ERICR?
84 (x=x)° (3-y,) bk, (x=2,)% (3=v,)
(I.3)
Now ;
v Syf B2 4 82 z
£ (7,%) =- el (1.ha)
1x? (vVx + y) x2 (V% + y)
2 \s82 %
5 B41)6 2
£ _(x,y) = r y (2‘;% —% (I.4Db)
xx® (OPy +x) xf (v7y + x)
1 1
2 2 =
dx? B ) 2
£ (%) = —=> -4 2;‘:% — (I.4o)
x ¥ (v + y) y* (vVx + y)
A 2 2 1
vﬁx BT 41)6 x?
fy(x,y) = a.‘i - _(_2;% pa 2 » (Io}-l’d)
- T—'-'"r‘““‘“’.ft‘y (v ¥y + X) ¥ (Vv + x)
.t " -ﬁv - _v{f,'" .

i

The first mtég:éa.l m equation (I.3) is, using equation (I.4a),

y1 dy*r ax,

1) 8% / 1
Iy (7-y)% 2 (P, 37,)
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None of the integrations in this Appendix offers any difficulty and inter-
mediate steps are omitted. First, then,

x 7 1 ¥ 2 3
/ Yy 9, 5 in=] ("1)5 2V X, o x4 )
ki - Sin —— T Sjn N '1
5 2 2 o L L
(y-5,0% (%) +¥,) VI (v +9)F (1 +v9)% ¥?
Next,
1 'n
xx1 y2 dy, dx /2 ] %
1 =& | sin' | (B sine] ao
(5, )% (y-7,)% x2 (%, +9,) v
00 Iy 1 1 1 o
A
e R
sin | =t
(v x+y)2 - (v? x+y) cosb
-l f sin~1 + }a_e
(14v9)% 3
Hence
£ (y,,x,)dy K7 1
2 % 17 1 %% 2 \e21 -k
Lg?%)- f/ — = - }324-1%8 sin”] {(—) sin e}ae
T (e 2
L4 ex))® () R
1
-1 vx®
e
(Vox4y)® ‘I
_ cin—1 [(v x+y) cosa]dﬁ
(14v )2 Z __l
If X/y 1s at most 0(52) this result is at most 0(53) {1.5a)
Ir ¥y >> 62, this result is 0(62) (I.5b)

The second integral in equation (I.3) is, using (I.4b),

f (JcJI,,y,1 c'iy1 clx

(%4 1) j[y ) : KB 1) 52// + dy‘ =
2mB ] (x—x )2 (y—y,l)i (xﬂx 7’5 -y,|)2 E(p2y1+x)

x4

First,
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y _
/ Yy 4y 48 o

o \Z (2 Yy (m2,4)282 2 \2
X4 (y"f.‘) (V Y1+x1f (B +1) 8 b (X1+V y)

-
—
N

1 2

88° X7 - ey
SN RN 5L Sin 5T
(B™+1)°8 (x1+v y)2 ye(14v°)2

(B 8132 in (_)

Therefore

xy £ (x,Y)dy
B4 17710

/ 1"1—zsin-1<xx -
ZnB | | z T 7 2
o 3!:1 (X"'X_1) (Y'Y.1) +V ¥

2
'RZ f sin~ [(}HV y) cgse] a6
s (1+V) y®
PR R
- 7;2 sin L ky) cosﬂ} 40

If X/y is at most 0(5 ), i.e. Xy = Cvz, where C is at most 0(1), then,
apart from a fantor of 4/=?, the last two integrals become

siri? L ©
C 41 /2

? - 1
/ sin= {(GM) . OOSG} as -f sin™! (0%v cos®) a8
Q

3 (1+v )=

1
sm-1/ C ) /2

%, ¥ LN 3 3
= (C+1) cos0 48 + O(v") ~ C*v | cosB a9 + 0(v”’) = O(v”)

o © 0

=

If X/y >> 82 » it 18 easler to consider the value of the two integrals as
i’ollcrws. They ey be wntten
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[T () @ () e o

. =1 y
gin | ————0~ 1
Xfy 4+ v2)2 14+ L y2)z %
. =1 X X .
- sin [.......__._é_:_. (3;) sme] as
3 (‘I + ¥ )2
/2 L2z 1 1 X2 L
A v) X X  2.F [x\° iV x 2
- gin "———'r-"" cosb (1==c089)?=[=) cosb 1m S = 00”0
d (1+v9)2 V. Y I, 149" Y
ae + 0(92)
/ Sm"1 L_AZ)%OS,.B_ [(‘] -g-;zE vz) ( - X cos 6) <1+v --co£ Y cosza)j]de
g (1492
+ O(vz)
%/ 1 (.Y. - 1) Ve i
_ (}"'/JI)2 cosd * a6
- 3 1 1
o l (1+v )2 144 v2)2<1- X cos%)%(‘l _£ c0529+v25in26)2 ’
x y Y §
+ O(vz)
= 0()’2).
To summarise, this second integral in equation (I.3) is
z
1 - % sin™! (X x2 ) + 0(63), if X/y is at most 0(52), (I.6a)
+°y.
and +
1 -2 5in”! (x xz) £ 0(8%), 2t X/y >> 82, (1.6b)
+y

The third integral in eqation {I.3) is,using equation (I.4c),

-

1 y1(y1,x )d.V1 511 (BL*‘ 1)52 // x, dy11dxl
(xx,)? (3-7,)% 4= B° (x=x,)% (3-7,)% ¥2 (v 9,
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First,

2 z
4 (v x1+y)

X
1 dy 2 -
tan = ———r—

f z "12“1 2 = %‘ z z
g 3% vf O ay)) (vx,4y) v(y-x,)
Therefore,
x x, £ (y,,x,)dy, dx
(BZ 1) fr 1 vy 1 1 1
2nB (x=x,)% (3y,)2
o] 1 1
l
1 1
g _.-1) / (v x+y) l-v X+ )i cose} a8
(1+v )2
The integrand varies between
2 i i
. =1 (voxey)? 7 . =1 v(y-x}?
8in 2% - g T 8. 2r ¥
(14v)y? (1+v7)2 y®
and
. =1 1 il -1 v
s1n ————-r = -2- - 21in ﬁ
(14v%)? (1407)2
sc that the integral may be written
1
-1 vx2
’ sn_nr 3
2(B=1)56 (v x+y) - 0(6) | a0 = (B —1! vx _ 0(62)
2 ® By 2 5
x° By J (v X+)
(I.7)

B2 1-(}13 ) (y) _ 0(62)

The third :Lntegra.l in equation {I.3) then, is at most 0(8 ) when X/y is
at most 0(82), (I.72), and 0(8) when ¥/y >> 82, (I.7b).

The fourth integral in equation (I.3) is, using equation (I.4d),
1
xzdy1,dx

x f‘ x, .
IR R
(x-x % (y-y,)% ¥2 (v%y4x,)

T
2% B *’(x—-x f)a \(y-Y* hE
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First,

£ X
' Y4 2 o )
/ T 5.2 s T ten 2%
2
x1 (y-y1) ‘Y‘l (V y1+x1) (x +V :Y) (I1+V y)
Therefore,
-1 x V2
xy t (x)9,)ay,a sm(x )
{32-1)// v, 1; 1™ Ehae? [ oy
; 5 2 .2
z
27 B (x—x1) (¥ y1) %° B g
2
cos {(x+v V) °Sse} a6
(14v9)2
and is at most 0(5%), (1.8)

Thus, in equation (I.3), if X/y is at most 0(6° ), the first, third and
fourth integrals are at most O(82) while the second is

1
- Fl
1 -2 g5 =2 ) + 0(62);
= 2
+¥y

the left hand side of (I.3) becames then
%
25 sin” ! (:Tiﬁ—-D + 0(62)
7 2
+Vy

which is, to first order, f(x,y). If %/y >> 82, the first and fourth
integrals are 0(52), while the second and third combine to give

1 - % sin”| ((::Zy\)% +0(8%) = 1- %[% - 0(5)] = 0(8).

The left hand side of (I.3) becames then, & + O(82); the right hand side is

also & + 0(8%), if X/y >> 62, Hence, the integral equation (I.3) is
satisfied everywhere to first order by

i
- X/v)2

(v2 4+ %/y)?

From equation (20a)
x x, f (y1,x )dy1 y (x1,ya)dy dx,

Ch f;ﬂf f (x-x ) (55,7 fzw/ f (x—x)2 (y-9,)%

- 1 kX
= \sz i_ _2 (,( x )2_I= _ NSB gin~! vx: -, (1.9)
(B +1) w3 (B +1) (x+v“y)2
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with an error 0(62); here, (I.5)and {1.6) have been used. From
equation {20b)

) ) 7 7 fy1(y1’x1)dy1 ax, ; /xl?’ i‘y1(x1’3’1)a‘5’1 &y
Yy = T Vox o VE (v Y2 W2 e V2 (vv )2
o [ ] (xex )P (pey)? YRR g (ex)® Gy
1
z
. ."%& %) , (1.10)

with an errvor 0(62); here, (I.7) and(I.8) have been used. From
cquations (20c) and (I.1)

1
1 =z

¢ = %? sin -§£*““fr . (I.11)
" (v7y+x)*

Hquations (I.9), (I.10) and (I.11) are valid an the wing only.
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