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NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

MEMORANDUM 4-19-59A

SUPERSONIC AND MOMENT-OF-AREA RULES COMBINED FOR RAPID

ZERO-LIFT WAVE-DRAG CALCULATIONS

By Lionel L. Levy_ Jr.

SUMMARY

The concepts of the supersonic area rule and the moment-of-area rule

are combined to develop a new method for calculating zero-lift wave drag

which is amenable to the use of ordinary desk calculators. The total

zero-lift wave drag of a configuration is calculated by the new method

as the sum of the wave drag of each component alone plus the interference

between components. In calculating the separate contributions each

component or pair of components is analyzed over the smallest allowable

length in order to improve the convergence of the series expression for

the wave drag. The accuracy of the present method is evaluated by com-

paring the total zero-lift wave-drag solutions for several simplified

configurations obtained by the present method with solutions given by

slender-body and linearized theory. The accuracy and computational time

required by the present method are also evaluated relative to the super-

sonic area rule and the moment-of-area rule.

The results of the evaluation indicate that total zero-lift wave-

drag solutions for simplified configurations can be obtained by the

present method which differ from solutions given by slender-body and

linearized theory by less than 6 percent. This accuracy for simplified

configurations was obtained from only nine terms of the series expression

for the wave drag as a result of calculating the total zero-lift wave

drag by parts. For the same number of terms these results represent an

accuracy greater than that for solutions obtained by either of the two

methods upon which the present method is based_ except in a few isolated

cases. For the excepted cases_ solutions by the present method and the

supersonic area rule are identical. Solutions by the present method are

obtained in one fifth the computing time required by the supersonic area

rule. This difference in computing time of course would be substantially

reduced if the complete procedures for both methods were programed on

electronic computing machines.
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_TRODUCTION

The supersonic area rule presented in reference i provides a useful
tool for calculating the zero-lift wave dr_g at supersonic Machnumbers
of configurations consisting of slender bcdies_ thin wings_ and thin
tails. The zero-lift wave drag of a given configuration was shownto
be the average of the wave drag of a series of equivalent bodies of revo-
lution. Since the development of the supersonic area rule_ various
numerical methods_ easily adaptable to punch-card computing machines,
have been developed for calculating the zero-lift wave drag of these
equivalent bodies of revolution. To mention a few_ references 2_ 3_ and 4_
respectively_present methods based on a knowledge of the area distribution_
the first derivative of the area distribution_ and the second derivative
of the area distribution of the equivalent bodies of revolution.

In reference 5 a method was developed for calculating zero-lift wave
drag at low supersonic Machn_bers which does not require a knowledge
of the equivalent bodies of revolution_ but uses_ instead_ a convenient
set of geometric parameters which are solely a function of the area and
momentdistributions of the given configuration. The geometric parameters
consist of double momentsof the area distribution of the given config-
uration calculated about both the streamw_seand spanwise axes of the
configuration. For this reason the metho( of reference 5 is referred to
as the moment-of-area rule. With this method_it is practical to make
zero-lift wave-drag calculations with ordinary desk calculators.

Similar to the supersonic area rule_ the moment-of-area rule also
evaluates a series expression for the zero-lift wave drag. As a result
of a simplifying assumption the moment-of-area-rule series expression
for the wave drag does not converge as ralidly as does that for the super-
sonic area rule. The accuracy and the numberof double moments(terms of
the series) required by the moment-of-ares rule to obtain adequate con-
vergence of the series at supersonic Machnumbers are too great for the
method to be practical with desk calculators. At a Machnumberof i_
however, the number of moments(calculatec about only the span_se axis
of the given configuration) required are _reatly reduced to the point
where desk calculators are practical. It was reasoned_ therefore_ that
if a convenient and systematic technique could be developed for calculating
the momentsof equivalent bodies of revol_tionj the concepts of the
moment-of-area rule at Machnumber i and _he supersonic area rule could
be combined to develop a method for calculating zero-lift wave drag for
a "_de range of Machnumbersby H_ans of crdinary desk calculators.
It is the purpose of this report to present the development and evaluation
of such a method. The method -_ill be evaluated by comparing results
computedby the method developed herein w_th those obtained by other
existing methods of calculation.
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b

B

c

d

z(_,e)

M

Mpk

N

t o

t(x,y)

coefficients of a Fourier sine series expansion of S'(x_[_e

wing span

I - )_

wing chord at the vertical plane of sy_netry

lateral dista_ice between the longitudinal axes of a pair of
bodies of revolution

zero-lift wave drag of a configuration

zero-lift wave drag of a_l equivalent body of revolution of a

confi gulration

tangent of the sweep angle of the 50-percent chord line of any

sheared panel of a wing or tail surface in dimensionless
coordinates

length of a body of revolution

length of &n equivalent body of revolution

free-stream Mach ntunber

moments of the area distribution of a given configuration

(see eq. (9))

moments of the area distribution of an equivalent body of
revolution

number of terms or harmonics used in the calculation of wave

drag

free-stream dynamic pressure

frontal projection of the area distribution intercepted on a

given configuration by a set of parallel oblique planes

tangent to the Mach cones

wing maxim_n thickness at the vertical plane of sy_mT_etry

thickness distribution of a configuration



x_y_}_

[L

T

,(n)

k_m_n,_

p,r,s j

I

L

T

U

W

Cartesian coordinates in the free-stream_ spanwise_ and

thickness directions_ respectively

local dimensionless airfoil-section chord station measured

from the local 50-percent chord

4M - 1

longitudinal distance between tLe lateral axes of a pair of
sheared bodies of revolution

angle defining the orientation of the parallel oblique planes

tangent to the Mach cones (se_ sketch (a))

plan-form taper ratio

dimensionless Cartesian coordin_tes in the free-stream, span-

wise_ and thickness directionl:_ respectively

maximum thickness ratio

dimensionless thickness distrib_ttion of the local airfoil

section

dimensionless thickness distribttion of one panel of a sheared

plan form

spanwise variation of the dimen_ionless airfoil-section thick-

ness along lines of constant )ercent chord

Subscripts

indices of summation

interference conditions

lower panel of a plan fom_ _ < 0

total

upper panel of a plan form_ _ > 0

wing panel alone conditions
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properties of an exposed _ng measuredat or relative to the
average chord at the wing-body juncture

component (body) E or component (body) H

interference, specifically, between bodies E and H or upper
and lower wing panels, respectively

Superscripts

differentiation with respect to a coordinate in the free-
stream direction, except as noted in equation (C2)

dimensionless symbol

METHOD

Basic Methods

Before the present method for calculating zero-lift wave drag is
developed, it is well to review briefly the basic concepts of the two
methods upon which the present analysis is based.

Supersonic area rule.- In reference I the zero-lift wave drag of

configurations consisting of slender bodies, thin wings, and thin tail

surfaces was shown to be the average of the wave drag of a series of

equivalent bodies of revolution. _fnis fact is given analytically by

oo

Z n[An(_,O)]_dO
D(@) = _ _ o

n--i

(1)

which, for convenience, is written

D(_) l /.2_= -- D(_,e)ae
2;r _o

(2)

wh ere

0o

D(_,e) = V q n[A_(p,e)]_
n=l

(_)
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As defined in reference i the term D(_,8) is the zero-lift wave drag,

as the Mach number approaches i, of each e luivalent body of revolution.

For a given free-stream Mach number, or _, each value of 8 specifies

one member of the series of equivalent bo&ies of revolution. The

functions An(_,8 ) are coefficients of a Fourier sine series expansion

of the first derivative of the area distribution of the equivalent bodies

of revolution and are defined by

LO
2 _S(x,_,01 sin(nm)dc_

An(_3'0) = _ bx
(4)

where

z(_,o)
x - cos m (5)

2

The normal cross-sectional area distributi)n of the equivalent bodies of

revolution, S(x,_,0), is obtained as the f:ontal projection of the area

distribution intercepted on the given configuration by a set of parallel

oblique planes tangent to the Mach cones. The term Z(_,0) is the length

of the equivalent bodies of revolution. Tie coordinate system, angles,

and Mach planes are defined in sketch (a).

Sketch (a)

Application of the basic methods is r_stricted to a particular group

of configurations. This group satisfies hae following conditions:



i. Body componentsand wing and tail componentsof a configuration
are, respectively, sufficiently slender and sufficiently thin that only
negligible errors are introduced into the calculation of S(x,_,8) by
assuming the oblique planes to be normal to the horizontal plane.

ii. The area and first derivative of the area distribution of each
equivalent body of revolution must not have discontinuities.

iii. The slope of the area distribution at the ends of each equiva-
lent body of revolution must be zero.

The accuracy of the results obtained by the supersonic area rule
dependsupon the accuracy with which the Fourier coefficients are evalu-
ated and upon the convergence of the series expression for the wave drag
of each equivalent body given by equation (3)- This latter dependency
results from the fact that in practice the infinite series must be
terminated at somefinite number of terms. In references 2 and 3 the
Fourier coefficients are evaluated from a knowledge of the area distri-
bution and the first derivative of the area distribution of the equivalent
bodies of revolution, respectively. In both references N = 25 provides
adequate convergence of the series for configurations which satisfy the
restrictive conditions listed above. In reference 4 it was pointed out
that for configurations which satisfied the above restrictive conditions
but also had singularities at the ends of the second derivative of the
area distribution of at least one componentof the equivalent bodies of
revolution, a larger numberof terms was required to provide adequate
convergence of the series. In this case all of the 49 available terms
were required. Finally, equation (3) must be evaluated for enough values
of 8 to define D(_,8) for integration.

Moment-of-area rule.- Zero-lift wave-drag calculations by the moment-

of-area rule differ basically from those by the supersonic area rule in

the manner in which the Fourier coefficients are evaluated. Unless all

parts of a configuration lie within the nose Mach cone and the forward

Mach cone from the tail, the equivalent body length, Z(_,8), will be

greater than the actual length of the given configuration for some

values of 8. As shown in reference 5, however, by considering stream-

wise body extensions of vanishingly small cross-sectional area, one can

assume the length of each equivalent body of revolution to be constant

and equal to or greater than the length of the longest equivalent body,

say Z. In this manner equation (5) becomes

x = z/2 cos e (6)

As a result of this assumption the moment-of-area series expression for

the zero-lift wave drag does not converge as rapidly as does that for the

supersonic area rule. Upon substitution of equation (6) in equation (4) the

Fourier coefficients can be expanded in a finite series expressible in
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terms of a convenient set of geometric parameters, Mpk , and powers of
cos e such that

n-2

An(_,@) = 2 <2) 2 _ Lmli(_ c°s @)P

p=o

where

n-p-2 2-- p+k

_p = _ gnpk(%) %k
k=o

(7)

(8)

These geometric parameters are double moments of the thickness distri-

bution of the given configuration calculated about both the streamwise

(x) and spanwise (y) axes of the configurstion. The origin of the

coordinate system is located at the center of the configuration as

indicated by the limits of integration in the following expression for

the double moments (hereinafter referred Io as moments):

b

Mr,._k = 'W

2 2

(9)

where t(x,y) is the thickness distribution of the given configuration

and b/2 is the wing semispan. In equation (8), gnpk are constant

coefficients given by

[(_l)½ (n-p-k-_) [(Z/2)(n+p_k)]_ 2k 2P

gnpk = gnkp = tzer° otherwise[(1/2)(n-p-_-2)]_ k_ p_

for even values]

of (n-p-k) l

(lO)

Upon substitution of equation (7) in equation (3) and use of the result

in equation (2), the integration with reslect to e can be accomplished

in closed form. In this manner the zero-lift wave drag at any supersonic

Mach number is expressed in a series in powers of p with coefficients

which are functions of the moments; that is,

oo

11=2

(ii)



where

p=o

(12)

It is practical to detezumine the moments and make subsequemt calcu-

lations of the zero-lift wave drag with ordinary desk calculators. Con-

sequently, calculations by the moment-of-area rule are relatively simple

compared to those by the supersonic area rule. However_ as a result of

using a constant length for each equivalent body of revolutiom, the

moment-of-area-rule series expression for the wave drag does not converge

as rapidly as does that for the supersomic area rule. Therefore, in

order to obtain similar solutions by both methods more terms of the

moment-of-area-rule drag equation must be employed. As pointed out in

reference 5 for the moment-of-area rule and demonstrated in reference 4

for the supersonic area rule_ the convergence of the series can be

improved for each method by calculating the total zero-lift wave drag

as the sum of the wave drag of each component alone plus the interference

between components. For this procedure the smallest allowable length of

each component or pair of components is employed in calculating the

separate wave-drag contributions.

Development of the Method

The present method is developed by combining the concepts of the

moment-of-area rule at Mach number i and the supersonic area rule. This

combination consists merely of calculating the zero-lift wave drag by

the moment-of-area rule at Mach number i for each equivalent body of

revolution. For Mach number i, equation (12) depends only upon the

moments for p = 0, and cam be written

Dn(M=I) = 2 (13)

where

n-2 _k

k--o

(14)

Hence, for Mach number i, equation (ii) becomes



i0

oo

nDn(M=i)D(m-1): [ q
n=2

In view of equation (13), the zero-lift ware drag, at Mach number i, of

the equivalent bodies of revolution required by the supersonic area rule

can be expressed as a function of the mome:its and lengths of the equiva-

lent bodies as

rr 2 V-_

(16)
n:2

where

: (17)

and

Z [2Lno(_3,8) = gnok 7,(i3,()) M°k ('[3'8)
k=o

(18)

In equation (18), the quantities Mok(_,8 ) represent the moments of the

equivalent bodies of revolution calculated about only the spanwise axis

through the rmidpoint of the length of each equivalent body (see eq. (9)

for p -- 0). From a comparison of equation,s (3) and (16) it is clear

that 4 Z(_]8) Dn(13'O) is merely the squ,_re of the Fourier coefficients.

Even though the concepts of the moment-of-_rea rule are employed to

evaluate the Fourier coefficients, it shotr.d be noted that the actual

length of each equivalent body, Z(_,0), is considered (see eqs. (16)

_mud (18)). Finally the zero-lift wave dra,[ of a given configuration is

obtained by use of the results of equation (16) in equation (2).

Convergence problem.- Use of the mome]_ts to evaluate equation (17)

pemmits zero-lift wave-drag calculations to) be made with ordinary desk

calculators. Experience has demonstrated, however, that the magnitude

of the moments are such that six significant figures are required to

obtain accurate results. As a consequence, it is not practical to make

calculations for more than nine terms of _[e series (N = 9) using desk

calculators. In general, as few as nine t_rms will not provide adequate

convergence of the series (see ref. 2). H{}wever, as suggested in ref-

erence 5 and demonstrated in reference 4, ffor any given number of terms

the convergence of the series can be impro_ed for multiple component
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configurations by calculating the total zero-lift wave drag as the sum
of that for each componentalone plus the interference between components.
As a result of the ease in finding Mok(_,0) for the various components
of a given configuration comparedto finding the area, the first deriva-
tive_ or the second derivative of the area distribution of the components,
the present method is more easily adapted to total zero-lift wave-drag
calculations by this technique than are the methods of references 2, 3,
and 4.

Dimensionless drag equations.- Zero-lift wave-drag calculations by

the present method are most conveniently made using a dimensionless

coordinate system. Consequently, the dimensionless quantities and zero-

lift wave-drag equations for the present method are presented in

appendix A. In appendix A the relationship between the dimensional and

dimensionless zero-lift wave-drag equation for airplane-type configura-
tions is shown to be

(19)

whe re

2_ 5 b---- _-,o _ (2o)
J

b c b
_(_b/c, 0) _

n=2

(2l)

b b (22)

)) I [-_, 0 = _ok _(_b/c, 0) k _, 0
k=o

(23)

The subscript i in equation (19) indicates properties of the exposed

wing measured at or relative to the average chord at the wing-body

juncture.

Basic data, moments and lengths.- Success of the present method

obviously depends upon a convenient technique for finding the moments

and corresponding lengths of the various components of the equivalent

bodies of revolution of a given configuration. The area distributions

of body-of-revolution components of a configuration are independent of
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Mach plane orientation. Consequently_ the _oments of body-of-revolution

colr_onents are identical for all equivalent bodies of revolution. Further-

more, _thin the slenderness requirements of the basic methods_ the normal

cross-sectional area distribution of body-of-revolution components,

S(x), and the actual length of the body, Z3 can be employed. Hence

for bodies of revolution

Hok = 7 S(x dx

s

(24a)

or in dimensionless coordinates (see appendLx A)

2£i
i

(S4b)

The area distributions and lengths of _ing and tail components, on

the other h_id_ change with Mach plane orientation. The concept of

"sheared" configurations, which is briefly reviewed in appendix B, can

be employed to find the area distributions of these equivalent-body

components. In reference 4, the contributiDn of wing and tail components

to the area distribution of the equivalent 0odies of revolution was

determined as a function of the tangent of the sweep angle of the

50-percent chord line of each sheared half plan form. For a given Mach

number and Mach plane orientation, this single parameter (K, in dimen-

sionless coordinates) relates each sheared _alf plan form to the proper

equivalent body by the expressions (see appendix B)

K U = Ko - _ _ cos

KL = Ko + _ b7 cos

where K o is the tangent of the sweep angle of the 50-percent chord line

of the given dimensionless plan form; KU anff KL represent the tangent

of the sweep angles of the sheared dimensioaless half plan forms in the

positive and negative _ directions, respectively. As indicated by the

subscripts U and L, these half plan forms nereinafter will be referred

to as the upper and lower sheared half plan forms, respectively. The

single parameter K is also used in appendix C of this report to deter-

mine the moments and lengths of the sheared half plan forms. From

equation (25) it can be seen that the quantities in equations (20) to (23)

which are a function of _b/c and 8 are a function of (_b/c)cos 8.
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Procedure for Applying the Method

General configurations.- The total zero-lift wave drag of any general

configuration is calculated by the present method as the sum of the wave

drag of each component alone plus the interference between all pairs of

components_ as was described in reference 4. For instance_ for a config-

uration with two components_ E and H, the total zero-lift wave drag can

be written

(26)

where the first two terms represent the zero-lift wave drag of each

component alone and are evaluated by equations (20) to (23) using the

subscripts E and H in each of the equations. The last term represents

the mutual interference between the two components and is evaluated by

equation (20) using the subscripts EH and the following equations:

_, e =2 Z_H(_b/c,
]4< G )e ) nDEH n b 8

n=2

(27)

&Hn(_b8) &no(13b b (28)

<o(_ °) Z [-,_,_-,_,0__'_ = gnok MEok

k=o

(29)

n-2

_"_-no _" = gnok 8 (30)

k=o

It is emphasized that all moments are calculated about the midpoint of the

smallest allowable length of each component or pair of components for which

the drag is to be computed. That is_ in calculating the zero-lift wave

drag of each component alone the smallest allowable length is obviously

the separate length of each component. For the interference term_ however_

_ok(_b/c, 8) and MHok(@b/c, 8) are calculated about the midpoint of the

total combined length of any two components.
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Complete wings.- Assume that the total zero-lift wave drag is to

be calculated at a specified supersonic Ma:_h number, Mmax, for a complete

_ng with 0° sweep of the 50-percent chord line (Ko = O) as shown by the

solid lines in sketch (b). With regard to the airfoil section it should

I
KUmm_l Ko,k

....,. /---L U\

Ko, I

\

Sketch (b)

be recalled that at super-

sonic Mach numbers for which

the Mach waves of the flow are

inclined ahead of the wing

leading edge the theory is

applicable for arbitrary air-

foil sections; that is, both

round- and sharp-nosed

sections. On the other hand,

at higher supersonic Mach

numbers for which the Mach

waves of the flow are

inclined behind the wing

leading edge, the theory is

applicable to wings with

K.....' only a sharp-nosed airfoil

section. For the problem
assumed above consider a

wing with sharp edges.

The calculations are initiated by a d_term_ination of the limiting

values of Ku:min a_id KLmax from equation (25) for 8 = 0. The corre-

sponding sheared configuration is shown in sketch (b) by the dashed lines.

(Note that IKUminland IKLmax I are greater than i. If a round-nosed
airfoil section had been considered_

r
i

Dw(K}

I I

these Limiting values would be

restricted to values less than i.)

The qumutity _(_b/c, 8) or Dw(K)

is determined for one wing panel

alone _t arbitrary but sufficient
values of K to define the curve

shown in sketch (c). Addition of the

two expressions in equation (25)

relates the upper and lower wing

panels in ordered pairs

KUm,. -I
i K°:O

Ku + m, : (31)
I I ', -- K

0 I KLmol

By use of equation (31), the data

in sketch (c) are used to make

FKo:. individual or combined plots of the

_'---_ _ H '_ zero-lift wave drag of each wing

Ku,o,o_e_} _ _KL,O,O_} panel _lone as a function

Sketch (c)
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of (_b/c)cos 8 (see sketch (d)). Since

sheared configurations for complete _,e)

wings are symmetrical in _/2, positive

values of (_b/c)cos 8 are more con-

veniently used for the abscissa for

K/2 _ 8 _ O; hence, in sketch (d)

0 !(_b/c)cos 8 ! KLmax- The inter-

ference between wing panels is calcu-

lated as a function of K L but plotted

directly as a function of (_b/c)cos O

as shown'in sketch (d). The total zero-

lift wave drag or the separate contri-

butions can be obtained from the proper

curve in sketch (d) by replotting the

results against 8 for _/2 _ 8 _ O.

The resulting plot is then integrated

graphically and this result is divided

by _/2 to obtain a dimensionless value

of the zero-lift wave drag at Mma x or

(_b/c)max. The drag in pounds is, of

course, given by equation (19). It

will be noted that for a complete wing

(bl/b) and (TI/T) in equation (19) are c

unity.

U_L

+L+UL

U ,upper ponel olone

/

g _ L, lower pone( otone

Ki___ K_o, - B_COSO

interterence

Sketch (d)

for _/2_e _0,

KUmin,I Ko,I

/ \

/ Ko=I

/

//_ \"\ \

_,<--__o ",F.

Ko,-t

Sketch (e)

KLmox , I

The basic data for one com-

plete wing panel shown in

sketch (c) can be used to cal-

culate the drag of each wing

panel of the complete wing shown

in sketch (e). This wing

differs from that of sketch (b)

only by the sweep angle of the

50-percent chord line, Ko = i.

Direction of

oir flow

0 _(Zb/c)cos 8 _ KL2 can be replotted against 8

graphically averaged, and divided

by _/2. In this manner the zero-

lift wave drag can be obtained for

all i _ M _ Mmax or

0 i(_b/c) !(_b/c)max.

Once the zero-lift wave drag is

calculated at Mma x one has inher-

ently obtained the data from which the drag can be calculated for all

i _ M _ Mmax. For example, for i < M s < Mma x equation (25) yields a new

maximum value of (_b/c)cos 8 as KLs (see sketch (d)). Hence, for

(_b/c)2 = KL2 , the portion of the curve in sketch (d) for
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U+L

k

From use of K o = i in equation (31) it is a simple matter to obtain

D(_%b/c, e) from the data of sketch (c) in new ordered pairs for

K o < KL <_ KLmax. With the aid of equatior (25) these results for the

wing panels alone are plotted for 0 <(_b/c)cos 8 <(KLmax - i) as shown

in sketch (f). Because the separate wing

panels of the sheared configurations of the

K o = i plan form combine in different ordered

pairs from those for the Ko = 0 plan form,

the interference between wing panels will be

different for each plan form. Consequently,

additional calculations must be made for the

interference between wing panels for the

K o = i plan form. It should be noted that

the range of Msch numbers covered by the

value (_b/c}cos 8 = (KLmax - Ko) will be
different for each plan form.

(KLrno x - {)

Sketch (f}

Airplane-type configurations.- For a wing-

body combinatioa the zero-lift wave drag of the

body alone is obtained from one set of calcula-

tions, since, as noted earlier, S(x,_,e) for

each equivalent body of this component is

assumed equal t_ S(x). The wing-body inter-

ference is calculated as a function of K or

(_b/c)cos 8 _ averaged graphically for

selected values of _b/c. The exposed wing is

treated in the same manner just described for

a complete wing. In fact, in some instances,

the basic data, Dw(K), for the wave drag of one panel of a complete wing

can also be used to calculate the wave dra_ of each exposed wing panel

alone of si_milar _ings mounted on a body. _%is is possible whenever the

dimensionless plan fo_ of the exposed wim_ p_lel _id of the complete wing

panel are identical. As noted in appendix A, exposed wing pa_lels are made

dimensionless with respect to conditions at the wing-body jtmcture. Hence,
D(K) for a complete wing panel can be used to calculate the wave drag of

an exposed _ing p_el alone for all straight-line plan forms with zero

taper ratio. For example, the wave drag of each of the exposed wing panels

of the wings of sketches (b) and (e) mo_t_d on a body can be computed as

previously described using the data of ske;ch (c) for complete wings.

The interference between exposed wing pane _s must be obtained by addi-

tional calculations since, for a given K, the combined length of both

sheared '_._ngpanels is different for the e cposed and complete dimensionless

_.rings. In computing the drag in pou_ids th_ proper values of (bl/b)
be in erted equatio  (iJ).

Rather than present zero-lift wave dr:_g as a function of Mach number,

it i_'_sbeen fom_d convenient to plot reduc._d drag as a fm_ction of _b/c.
One _'allexpress equation (19) in coefficim_t form as
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qs s o V k-s-,/\-+-,/ (32)

The wing aspect ratio A is given by bs/S and the airfoil-section

maximum thickness ratio, T, is given by to/c. Hence equation (32) can
be written

C-"i-D= _ _ (33)
A-r 2

Since b/c is proportional to aspect ratio, equation (33) is merely an

expression of the linearized supersonic-flow similarity parameters; that

is, the reduced wave-drag coefficient, CD/AT 2, is a function of only _A.

Thus, by making the calculations in dimensionless coordinates for a single

configuration, one inherently computes the zero-lift wave drag for an

entire family of related configurations.

Systems of bodies of revolution.- The principles of the foregoing

analyses of airplane-type configurations can also be applied to systems

of bodies of revolution. One first renders the system dimensionless as

outlined in appendix A. The zero-lift wave drag can be calculated as

noted earlier for each body alone. The interference between all pairs
of bodies can be obtained in a manner similar to that described for

complete wing panels merely by using the parameter $ (see appendix B)

rather than K. A technique for finding the equivalent-body length and

the moments of any two sheared bodies about the Imidpoint of their combined

length as a function of _ can be obtained by following the same

technique outlined in appendix C for the interference between wing panels.

It should be noted; however; that the sheared configurations of a pair of

bodies of revolution are symmetrical in _ rather than _/2 as in the

case of wings and horizontal tails. If an electronic computing machine

is available, more accurate results for systems of bodies of revolution

can be obtained more rapidly by the method of reference 4 than by the

present method.

EVALUATION OF THE METHOD

The accuracy and computational time required of the present method

will be evaluated by comparing zero-lift wave-drag solutions for several

simplified configurations computed by the present method with solutions

obtained by other methods. Sample calculations for the solutions obtained

by the present method are presented in appendix D.
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Accuracy

Single body of revolution.- Consider the very special case of a Sears-

Haack body of revolution at M = i. As shown by slender-body theory in

reference 6, this body has iminimum zero-lift wave drag at sonic speed

for a given length and volume. The area distribution of this body is

given by

S

 o[l
where So is the maximum frontal area of the body and _ is the total

body length.

As shown in appendix A of this report the zero-lift wave drag of a

system of bodies of revolution can be explessed in temns of the dimension-

less drag as

(35)

According to reference 6 the slender-body-theory value of D(_d/Z at

M = i is 9/8. Zero-lift wave-drag calculations by the present method yield

exactly 9/8 (see appemdix D). It is inteIssting to note that the series

expression for the zero-lift wave drag converges absolutely for the term

n = 2. The contribution of all other ter_s is identically zero. This

result further demonstrates that a Sears-H_ack body has minimum zero-lift

wave drag at M : I for a given length and vol_ne. That is_ _o is

proportional to the volume of a configuration (see eq. (9) for p : 0)

_id this moment alone appears only in the n = 2 temn (see appendix A).

d

i

ye Y"

Body

I( 0 I_

t.
-f

Sketch (g)

Pair of bodies of revolution.-

Dimensionless zero-lift wave-drag

values have been calculated at M = i

for the pair of Sears-Haack bodies

shown in sketch (g). Values computed

by the present method (see appendix D)

are tatulated below together with

analytical values obtained by slender-

, B0_yH body theory from reference 4. The
total zero-lift wave drag calculated

by the present method is accurate to

o _, within 5.3 percent of the slender-body-

theory solution of reference 4. As

noted earlier for a single body of

revolution_ values for the bodies
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for bodies in sketch (g),H : z

Drag component Present method Reference 4

Body E alone 1.125 1.125

Body H alone 1.125 1.125

Interference .204 .340

Total 2.454 2.590

alone by the present method are in exact agreement with the analytical
solutions of reference 4 but the interference values agree to within only

40 percent. This large discrepancy for the interference calculation

results from the fact that the moments for this calculation must be

calculated about the midpoint of the cor_ined length of both bodies, a

length longer than that of the individual bodies. As noted in refer-

ence 5, when this occurs the contributions to the drag of the terms

for n > 9 (higher hamnonics) become significant.

Complete wings.- Zero-lift wave-drag calculations have been made for

two fan, lies of complete wings _th biconvex airfoil sections and a

constant thickness ratio from root to tip. One family has a diamond

plan form (Ko = O) and the other a triangular plan form (Ko = I) as

sho_n in sketches (b) and (e), respectively. _:e linearized theory

zero-lift wave-drag solutions for these wings have been obtained in

reference 7 by a step_se integration of the pressures over the entire

wings. The zero-lift wave-drag results from reference 7 and those

obtained from calculations by the present method for N = 9 (see appen-

dix D) are presented in figure i in reduced drag-coefficient form. In

order to evaluate the present method relative to the method of the super-

sonic area rule and the moment-of-area rule, zero-lift wave-drag solutions

for both fa_lies of complete wings were calculated by both latter methods,

the two methods upon which the present method is based. These latter

results are also presented in figure i. Results for the supersonic area

rule are usually obtained by the method of reference 2. In this report,

however, the results for N = 9 were obtained by the technique of the

present method by calculating the total moments of each equivalent body

about the midpoint of the total length of each sheared configuration.

By this approach the equivalent-body zero-lift wave-drag equations for

the present and supersonic-area-rule methods can be shown to be identical

theoretically. Nm_erical calculations by both methods (N : 9) for several

equivalent bodies agreed to w-ithin one half of I percent. Results for

the moment-of-area rule were calculated for N = 9 by the alternative

drag fomnula given in appendix C of reference 5. As indicated in figure i,

for the range of values of _b/c for which data are available, the present

method yields results v_ich differ from the linearized-theory solutions

of reference 7 between i and 6 percent. The data of figure i also

indicate that the solutions obtained by the present method are more

accurate than those obtained by the other two methods. Furthermore,
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solutions obtained by the supersonic area zule are more accurate than
those obtained by the moment-of-area rule. The more accurate solutions
by the present method are a result of calculating the drag of the wings
by parts. Since the solutions obtained by the three "series" methods
were calculated for N = 9 in each case, the relative accuracy of the
solutions obtained by these three methods is associated with the relative
rapidity of the convergence of the series expression of the zero-lift
wave drag for each method. The relative convergence of the series for
the three methods will be discussed subseqnently.

Airplane-type configurations.- The procedures for applying the present

method to airplane-type configurations have been discussed earlier in

this report and in appendix A. Although no calculations have been made

to evaluate the accuracy of the present method for calculating the zero-

lift wave drag of such configurations relative to other methods, it is

felt that differences in such solutions would be comparable to those

discussed above for complete wings. However, it should be noted that,

as discussed in appendix A, some errors_ not present in the case of

complete wings, might be introduced into th_ calculations by the present

method as a result of assuming a constant wing station for the wing-body

juncture when computing the moments of the exposed wing panels. These

errors will be more significant in cases of severely indented bodies and

in cases where the body radius is of the same order of magnitude as the

wing thickness at the wing-body juncture.

Convergence problem.- As mentioned in reference 5, in the Fourier

series analysis of the slope of the area distribution of a configuration

(a type of analysis basic to the present method, the supersonic area rule

and the moment-of-area rule), the series co_verges most rapidly when the

smallest allowable length of the configuration is used in the wave-drag

analysis. The total zero-lift wave-drag re3ults shown in figure i for

the moment-of-area rule used a constant tot_l length as specified in

appendix C of reference 5. The supersonic _rea rule employed the total

length of each individual sheared complete _ing. Use of the individual

total lengths with the supersonic area rule results in a marked increase

in the rapidity with which the series converges. This is indicated in

figure i by the larger values of the wave drag obtained by the supersonic

area rule as compared to those obtained by the moment-of-area rule. The

total zero-lift wave drag was calculated by the present method as the

sum of the wave drag of each wing panel alone plus the interference between

wing panels. The individual length of each wing panel of each sheared

configuration was used for the drag calculations of each wing panel alone

and the combined length of both sheared win_s panels was used for the

interference calculations. In this manner _he present method provided

_ additional increase in the rate at which the series converges. Thus,

the values of the wave drag in figure i for the present method are greater

than those obtained by the supersonic area rule and the moment-of-area rule.
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Regardless of whether the total zero-lift wave-drag calculations are
madeusing the smallest allowable length or the total length of each
sheared configuration, the interference calculations in both cases are
madeusing the total length. On the other hand, calculations of the
wave drag of each wing panel alone are madeusing either the length of
each sheared _ng panel or the combined length of both sheared _ng p_nels.
Hence, the magnitude of the increased accuracy of the total zero-lift
wave-drag calculations afforded by the use of the smallest allowable
length depends upon the ratio of the length of each sheared _,_ngpanel
alone to the combined length of both sheared _ing panels. For convenience
this ratio is desi_uated by e. The smaller the value of e compared
to unity the greater _ii be the improvement in the drag calculations as
a result of using the smallest allowable rather than the total length.
This fact is demonstrated by the data in figure i. Up to a Machnumber
for a sonic leading edge for the diamondplan form (_b/c = i in
fig. i(_)) 6 = I for both '_Tingpanels of all sheared configurations;
hence, the single curve for the results of the present and supersonic-
area-rule methods in this region. For _b/c > i, e is less than i
for o_ly someof the sheared configurations and is also the samevalue
for both _ing panels. In this region, therefore_ only a very slight
improvement in the accuracy of the solutions obtained by the present
method is realized comparedto solutions obtained by the supersonic area
rule. For the triangular plan fo_1 (fig. l(b)) e = i only for 8 = _/2
or for _b/c = O. For all other sheared configurations e < i saudhas
different values for each wing panel. Thus, the accuracy of the solutions
obtained by the present method for the triangular plan form is substan-
tially improved comparedto the accuracy of the solutions obtained by the
supersonic area rule.

In view of the benefits demonstrated above resulting from the calcu-
lation of total zero-lift wave drag by parts, the question naturally _rises
as to the possibility of using this procedure in conjtu_ction with the
supersonic area rule. _ne method of reference 2 can, in fact, be adapted
to such a procedure. %_is, however, is not reco_mne_dedtu_less one is
prepared to accept a two- to threefold increase in work load.

Computing Time Required

The method of reference 7 uses the pressures over the entire _ng
plan fol_r, to calculate total zero-lift wave drag. _ese calculations are
necessarily tedious and lengthy. The actual computational time is not
given in reference 7. Ho,_ever, frola a comparative examination of the
wave-drag equations this method obviously requires more computational
time th'u_ the prese1_tmethod or the two methods upon which the present
method is b_zsed. Furthermore, the latter three methods each employ



22

somegeometric property of the configuration to evaluate the Fourier
coefficients of a series expression for the wave drag. For these reasons
the computational time required of present method is evaluated relative
to only the supersonic area and moment-of-area rules. The computational
time in each case is based on a series for N = 9.

The basic differences in the computational time required of the
moment-of-area rule, the present method, and the supersonic area rule
are a function of the time required by eac_ method to obtain the respective
geometric properties used to evaluate the Fourier coefficients. The actual
time, of course, dependsupon the complexity of each configuration. The
total zero-lift wave-drag calculations for the diamond-plan-forT_ wing by
the moment-of-area rule required 20 man-holrs with desk calculators. By
this method the Mpk for only the origina_ complete wing were required.
Eo gr_phical averaging was required. The l.resent method, applied with
either the smallest allowable or the total length, required i00 man-hours
_ith desk calculators. By this method the Mok(_b/c, @) for 20 sheared
configurations were used. The wave-drag r_sults for these configurations
were graphically averaged. No calculation_ were actually madeby the
supersonic area rule; however, a computing time of 500 man-hours has been
estimated for this methodby the authors oJ' reference 2. This large
estimate wasbased pr!marily upon the determination_ with desk calculators_
of the a,re_ d!stribut_on of the 20 sheared confi_urations and secondarily
upon a _]r_l)hLcal avera(_[nj of the wave-dra_: results.

The basic data for the wavedrag of e_,chsheared wing panel alone
of the diamondplan fo_a was used in the m_._merdescribed in the METHOD
section to obtain the wave drag of each _i_g panel alone of the triangular
plan fo_n. The only additional calculatio_ required to obtain the total
zero-lift wave drag of the triangular plan form by the present method was
that i'or the interference bet'_,eenv__ngpanels and, of course, the graphical
averaging of all results. In this manner(.nly 30 man-hours were required
by the present method to obtain the result', for the triangular-plan-form
wing as comparedto 100 man-hours for the (Aamond-plan-form w-ing. Similar
to the case of the diamond-plan-fo_n wing _.hemoment-of-area-rule calcu-
lations required 20 man-hours for the trial gular plan form. Since the
method of reference 2 does not normally yield the ,_avedrag by parts,
zero-lift wave-drag calculations by this m_thod would also require an
estimated 500 man-hours for the tria_gular..plan-form wing.

'l_ne500 man-hour computation for the _upersonic area rule wasmade
without a knowledge of reference 4 or the ]_resent report which both utilize
the parameter K to organize the basic da_,afor wings. It is reasonable
to expect, therefore, that use of the parai_eter K, and/or making calcu-
lations for related wing by parts, would r_sult in a lower estimate of the
computing time required of the supersonic _,rea rule. Furthermore, the
differences in computing time, of course, _rould be substantially reduced
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if the complete procedures for all methods were programed on electronic

computing machines. It is emphasized, ho'_ever, that the time required

to program each method would be different and is unknown at present.

CONCLUDING REMARKS

A method has been developed for calculating zero-lift wave drag

by combining the concepts of the supersonic area rule and the moment-

of-area rule. The accuracy of the method has been evaluated by comparing

total zero-lift wave-drag solutions obtained for several simplified con-

figurations by the present method T_ith solutions given by slender-body

and linearized theory. The accuracy and computing time required of the

method have also been evaluated relative to the two methods upon which

the present method is based. The follo_ing remarks are warranted as a

result of the development and evaluation of the present method.

Results are obtained by the present method from a series expression

for the zero-lift wave drag which can be evaluated with an ordinary desk

calculator. The total zero-lift wave drag of a configuration is calcu-

lated as the sum of the wave drag of each component alone plus the inter-

ference between components. Total wave-drag results for several simplified

configurations demonstrated that, by calculating the total drag by parts,

nine terms provide adequate convergence of the series. Total zero-lift

wave-drag results obtained by the present method differed from solutions

given by slender-body and linearized theory by less than 6 percent for

all configurations investigated. For nine terms of the wave-drag series,

these results represent an accuracy greater than that obtained by the

moment-of-area rule and greater than or equal to in some isolated cases,

the results obtained by the supersonic area rule. The greater accuracy

of the present method is a direct result of calculating the total zero-

lift wave drag by parts.

The computational time required by the present method was five times

as great as that required by the moment-of-area rule and one-fifth of

that required of the supersonic area rule_ The shorter computing time

of the moment-of-area rule, however, is of no real consequence in view

of the poor accuracy of results obtained by this method. 'The differences

in computing time, of course, would be substantially reduced if the

complete procedures for all methods were programed on electronic computing
machines.

As a result of making the calculations in dimensionless coordinates

the basic data obtained for a configuration at a specified supersonic

Mach number can be manipulated to obtain the total zero-lift wave drag



of the giveu configuration for all lower supersonic Mach numbers with '_

mi_im_i of '_dditional calculatio_is. Furthermore, the basic data for a

given confign__ratio_'_ which is used to calculate the wave drag of each _._ing

panel _o_ie c_ul be m-_lipul'J_ted to provide the wave drag of each wing panel

alo1_e of _i_ er_tire f:u_ily of si::_ih_r _TLngs which differ only in s_eep.

Ame_ Rese_rch Center

_ational Aeron_utics a_d Space A_mini_tration

Ploffett Fie!d_ CaLif., Jail. ]-9, i959
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APPE_,rDIX A

DIMENSIONLESS ZERO-LIFT WAVE-DRAG EQUATIONS

In order to take advantage of the decrease in the number of parameters

resulting from similarity considerations_ _id to facilitate the calcula-

tions, the quantities defined in the M_THOD section ca_ be made

dimensionless.

AIIRPLA_,_-TYPE CONFIGURATIONS

Complete Wings Alone

As shown in appendix B of reference 5_ all x coordinates can be

divided by the half-chord of the _-_£ngat the vertical plane of s_muetry,

c"2; all y coordinates can be divided by tke se_mispan of the complete

-<in6_ b/2; and all z or thickness coordinates, t, can be divided by

the _ing maximum thickness at the vertical plane of s_!_etry, to . I_!

this manner the dimensionless quantities and their relationship to the

correspon&ing dime_mional quantities can be defined as follov._s: %_e

dimensionless Cartesian coordinates are defined by

2x

c

2y

b

z t(x,y) _ t(_,Tl)

s = t-_ or m(_,_) - to to

(A1)

'The moments for the equivalent %odies of revolution c t:: be written ,,.,_t}_

the aid of equation (9)_ for p = 0_ as

Mok(5,_9 ) =_2rC /"_" f s t(x,¥,[},8)xkd-x dy (A;__)

2

With the definitions of equation (AI), equation (A2) is made dimensionless

as follows :



,"6

to (b) (2) k+1

t(_b/c,e)

=2_// °_ .:(_b/c, o)
o

For the _lo(B,8) of equation (18)

(A3)

%-, e =
Lno(_3,8)

c
k:o

Heilce

b

(A4)

(AS)

Finally, the relationship between the dime:isional and dimensionless zero-

lift wave drag for an equivalent body of r..wolution of a complete wing is

given by (see eq. (16))

I)(_,o) : _q o 5 b (A6)

whe re

5 b c b_, e = • , nD n e
t(pb. c, O) Z__ .,

n :2

Inspection of equation (2) indicates that ?or a given configuration

(AT)

(AS)

whe re
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2_ _o

Wings in the Presence of Bodies

For a given configuration the present method requires separate calcu-

lations of the _¢ave drag of each component alone. He_ce, the T] lirmits

of integratio_- in equation2 (A3) for one panel of _n exposed _ing (or tail)

would be from the wing-body jmscture, T1 = NI(_), to the wing tip, _ : I.

Calculation of the moments is obviously simplified if the _ limits of

integration are constant from 0 to 1. 'This is accomplished by assuming

a constant wing station for the wing-body ju_cture which is an average

v£ing station of the actual juncture and by rendering the resulting exposed

wi_g pa_el dimensionless with respect to the conditions at this averaged

wing-body juucture. Use of the averaged _¢ing-body juncture rather than

the contour of the actual wing-body jtmcture has been fotuld to have a

negligible effect upon the drag calculations except in cases of severe

body indentatior_s asld in cases where the body radius is of the same order

of magnitude as the _%n6 thick1_ess at the wing-body jtulcture. %T_us,

the x coordinates can be divided by the half-chord of the wing at the

j_icture, cz/2 , the y coordinates can be divided by the semispan of the

exposed wing, bl/2 , a_d the thickness coordinates can be divided by the

-_fing maximum thick_ess at the j_cture, t m. In this manner equation (AS)

can be written

(A10)

Most practical _dng (or tail) plan forms have straight leading and trailing

edges; hence_ bl/c I = b/c. It is convenient, therefore, to write equa-

tio_ (AIO) in a fom_ sinmlar to that of equation (AS); that is,

-- o \. (All)

wh e r e

t o

c
(A12)
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SYS'TEMS OF BODIES OF RE 10LUTION

Single Body of Revolltion

_=< moments of _._sinsle body of revo]_ution are deterrrined from the

arcu _istribution or the I__od_y _zs given by e iuation (24-a); theft is,

_'_ s(_):_ke.:%k : _ ,

2

(lb)

It i::,co_ivenient, therefore_ to render a boiy of revolution dimensionless

by cktviding the x coordinates by the hL_!f-body length_ _,,/2,and by

dividing the area distributia_! by the maximwn frontal area of the body, So .
_us

_ 2x |
b ]

(Az_)

S(_) = s(:,:) _ s(_
So So

In this ......,._uo_e__the dimensionless moments of e£u_ztion (AI-'_)c_n be defined

[iS

_4ok 2 _i[Tbk :
So( %/'2'k+i/ : W _-i" g({)[kd[ (A£'3)

E.:uzttio_:s_for _:o, Dn, _i._a',_'D for a single body of revolution _re obt:J.ined

rro,,_o<_tio_:_ (A_), (A), _:_d(AT), re_peo_iveb_, W rep_._oi_:_to(b,'')
and c/2 by S o and %,/2, respectively. A si:_gle body, of course, is

independent of _ _md _. Hence, from. equat:.on (-%6) or (Ab) the relatio_:-

N',ip between the &<mensiona! and dimensionl,,_s_ " t_ero-l_ift ,,.:ave dru,q for _

sin61e body of revolution is given by

D = _<! (_)s5 (A16)



_£:'0,,, Or" More 13o_;ies of Re,,oluo__o:_

Ind/',,idu_L di!_iensio::le_s coor'c_in:zte Systelr:s _re use<i to c_zlk{'u!'.:te

-the w'._ve cir:_<_of cu<:}_ Levi "_.lonu. _o cal<<,rtlate t.]'_ei;_terferen,:e bet_ee::

pairs el' 'bodies 02 revo.Lutiokj however_ it h,'_{ beezz fou:id more conve:_ient

to rei-de_" e::L,,._hp_ir of booties &imensionless with respect to the leafs%it

,,u_d :rL%>:immrL frontal are_ o±' only o_e of the boclies. Usually the largest

bo<l 2 is sei_ected. The cL%me_sioi_less quantities Y_to_ _I_ ;_:d D for

interi:'eren<'c <'uZcui:.tio:K', bebwee_ p&<irs of sheared bodies (see _ppendi>: ]3)

are obtained izJ tke :r.:umer described above for a single body. In addition_

quantities which <re '__ik_ction, of (_b/c, 8) are replaced by (_gd,/_, 9),

',d-ere d is the J__teral spacir_g of the bodies_ :ca sh,ot.a_ for ex&mple in

sketch (&_)_ _u_d _ is the length of that body upon which the ctLmensio_z-

less :£uantitie:_ _r.: 0_:_sed.

For the co_.,venience oi' those _{ho may use the present method the

in S _, 'i%ze l)&rameters _b.'e aad 0 have been otmitted from the notation_ °

in the a_ter .... of' simplicity.

L20 =: _'_0

L_o : k(c/_):%__

<_o -: I%o + z:(c/z)_Mo

nso : ;_:"bo - _(e/z) _,'Z_ +

Ere : :-'_(_/z)_%z - zOo(o/z)_-_,b:, + 192(e/Z)S_[o_

Lso : -_%o + z:;0(o/_')-;%_ - <._o(o/z)>%4 + _8(o/z)<_o_

) (A17)



3O

APPE_DIX B

CONCEPT OF SHEARED CONFXGURATIONS

With the supersonic area rule, one ca:.culates the zero-lift wave

drag of a configuration as the average of <hat of a series of equivalent

bodies of revolution. The norTaal cross-se( tional area distribution of

these equivalent bodies is obtained as the frontal projection of the area

distribution intercepted on the given conff g_ration by a set of parallel

oblique planes tangent to the Mach cones. In reference 8 a new concept

was first introduced which perT_ts the use of the no_al cross-sectional

area distributions of a series of sheared (_onfigurations which, _ithin

the slenderness requirements of the supersonic area rule, are considered

equal to those of the equivalent bodies obtained in the man_ler just

described. In reference 4 the concept of _heared configurations was

employed as a simplified technique for fin(ing the contribution of wings,

tails, and pairs of bodies of revolution t( the area distribution of the

equivalent bodies of revolution. The pres(nt method employs the concept

of sheared configurations as a simplified _ec!_ique for finding the

moments and lengths of the various compone_ ts of the equivalent bodies

of revolution. %_erefore, a brief review <f this concept is presented

below for wings, tails, and pairs of bodie_ of revolution.

_CINGS AND TAIL_

Wings

Complete wings.- A complete wing is s_ o_ in dimensionless coordinates

by the solid lines in figure 2(a). This _dng is made dimensionless with

respect to conditions at the vertical plan( of sym_aetry (see appendix A).

The traces in the {,_ plane (see fig. 2(_)) made by the intersection

of the oblique planes and the {,_ pl:_ne _re inclined to the _ axis

at an angle _ so that _ = tan-m[ (/_b/c)ccs 0]. Hence, the traces

through the 50-percent chord at the wing tip and the { axis (see

lines XX and YY in fig. 2(a)) define a icngitudi_al distance

I (_b/c)cos 01. In accordance with reference 4 the sheared configurations

are formed by shearing each element of the upper wing panel a distance

I(_b/c)cos Ol_ forward and shearing each clement of the lower _ing 10a_el

a distance I(_b/c)cos Olq rearward for ( < 0 < _/2 (see the dashed

lines in fig. D(a)). For 0 = _/2, the sheared and given configurations

are identical. For _/2 < 0 < _, the uppe_ and lower wing panels are

sheared rearward and forward, respectively. However, in view of symmetry

of a pair of wing pa_els only the values oJ 0 < 0 < _/2 are considered.
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Within the slenderness requirements of the supersonic area rule (see the
METHODsection), the normal cross-sectional area distribution of the
sheared configurations is identical to the frontal projection of the
area distribution intercepted on the given configuration by the oblique
planes. From figure 2(a) it is seen that the tangent of the sweepangle
of the 50-percent chord line of the upper and lower sheared wing panels
can be defined by

KU = Ko _ _ bc cos. i}KL Ko + _ b cos
c

(B1)

Addition of the two parts of equation (BI) yields the following relation

for the upper and lower wing panels.

KL + KU = (B2)

Thus, for a given _ and e the sheared wing panels are related to the

proper equivalent bodies of revolution by the single parameter K.

Exposed wings.- The exposed wing panels of a wing-body combination

are shown in dimensionless coordinates in figure 2(b). Since these wing

panels are made dimensionless with respect to conditions at the wing-

body juncture (see appendix A), it is convenient to consider a separate

coordinate system for the upper and lower exposed wing panels. The

axes of these separate coordinate systems are separated in the spanwise

direction by a distance 2_1 (see fig. 2(b)). The distance _l is the

ratio of the body radius at the averaged wing-body juncture to the semi-

span of the exposed wing panels. With respect to the coordinate system

of the complete wing, the semispan of the complete plan form is i + _l.

Hence, the trace XX in figure 2(b) through the 50-percent chord at the

wing tip and the _ axis defines a longitudinal distance

I (_bl/Cl)COS 81(I + _i). The sheared configurations of the exposed wing

panels are formed by shearing the plan form as before. As the exposed

wing panels are sheared with respect to origin of the complete wing

(0 in fig. 2(b)), the origins of the coordinate systems of the separate

exposed wing panels become longitudinally separated a distance

A = 21(_bl/cl)cos e1_l as shown by the dashed lines in figure 2(b).

The origin of each panel is translated, in opposite directions, a distance

i(_bl/Cl)COS 81_i. Since bl/c I = b/c for plan forms with straight

leading and trailing edges_ it can be determined with the aid of figure 2(b)

that equation (BI) also serves to identify the sheared exposed wing panels

with the proper equivalent bodies of revolutions when the equations are

applied relative to the individual coordinate system of each exposed
wing panel.
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The value of identifying the sheared wing panels with the parameter
K rather than with _ and 8 was first d_monstrated in reference 4. In
reference 4 it was found possible to calculate the area distribution of
the sheared wing panels as a function of _, K, and fixed geometric
properties of the given plan fo_n. As shownin appendix C of this report,
the moments_nd lengths of the sheared wing panels can also be calculated
as a ftmction of K and fixed geometric ])roperties of the given plan form.

Tails

_l_e shearing concept described above for exposed wings is also
applicable to the exposed portion of tail;_ whenthe tails are rendered
dimensionless with respect to conCuLtions_t the tail-body juncture.
The proper values of K for horizontal t_ils are determined from
equation (BI) with O]{T: eW. For vertic_tl tails either part of equa-
tion (Bl) is used with _v'r = 0w + _/2. _:e sheared configurations for

vertical tails are s_m_etrical in _ rat}ier than _/2.

PAIRS OF BODIES OF K{VOLUTION

A pair of bodies of revolution is sh)}m in dimensionless coordinates

by the solid lines in figure 3. The conf.guration is rendered dimension-

less _ith respect to the larger body, E, _nd the lateral distance between

the bodies, d. If the origin of the coor finate system is chosen at the

center of body E, traces in the {,_ plme made by the intersections

of the oblique planes and the {,_ plane are inclined to the _ axis

at an angle G so that _ = tan-l[ (_d/ZE)COS 8]. Similar to the case

of /heared wings, each element of body H is sheared a distance

I (i]d/ZE)COS 01. Sheared conficarations f)r a pair of bodies of revolu-

tion are symmetrical in _. Hence, for ) < 8 < _/2 body H is sheared

rearward. For O = _/2 the sheared and given configurations are identical.

For _/2 < 8 < _ body H is sheared for{ard as sho_,m by the dashed lines

in figure }. --For a given _ and 8 the s_eared configurations can be

related to the proper equivalent bodies o " revolution by the single

parameter _ which indicates the longituiinal separation of the centers

of the sheared bodies; that is

_ = 5o + _ _g

where :'o is the longitudinal distance, Ln dimensionless coordinatesj

between the centers of the given bodies _ee fig. 3).
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APPENDIXC

MOMENTSANDLENGTHSFORSHEAREDWINGS

ANDTAILS

Zero-lift wave-drag calculations by the present method require a
knowledge of the momentsand lengths of the various components_d pairs
of componentsof a series of equivalent bodies of revolution (or sheared
configurations). As mentioned in the ME_{ODsection, the momentsand
lengths of slender-body-of-revolution componentsalone are relatively
simple to determine because the area distribution of the sheared com-
ponents are independent of Machplane orientation. The lengths of pairs
of these corrlponentsare also relatively simple to determine, since, as
shownin appendix B, the effect of cha_ges in e on the sheared config-
urations of such componentsis merely one of tra_islation of one body
(see fig. 3). The area distribution of sheared _ng a_d tail components,
on the other hand_ is dependent upon 8. Consequently, the momentsand
lengths required are more difficult to determine. Therefore, this
appendix presents a technique for determining the momentsand lengths
of _rings and tails required by the present method to calculate the zero-
lift wave drag of each panel alone plus the interference between pa_lels.

In the following analysis, use of the term "wing(s)" _ill be construed
to include both wings and tails. Application of the results to tails is
mademerely by me_is of the proper value of K for the tails as previ-
ously described in appendix B.

The results of the follo_ng analyses _re applicable to a large yet
restricted group of wings. This group satisfies the following conditions:

i. The spanwise variation of the pO-percent chord line is linear,

ii. The boundaries of the pl_ form, the spanwise variation of the
local chord, and the span_se variation of the thickness along lines of
constant percent chord can be expressed analytically.

iii. The wing has the sameairfoil section at all spanwise stations;
that is, only spanv_se variations in thickness and/or thickness ratio are
allowed.

Condition (iii) can be relaxed to include wings with one airfoil section
out to a discontinuity in plan form_ for example, a fence or extended
leading edge_ and a different airfoil section from the discontinuity out
to the wing tip. In such cases, each portion of the plan form is treated
as a separate entity.
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This appendix presents the results only for trapezoidal plan forms

with taper ratios from 0 to i. Moments anl lengths for other plan forms,

such as an elliptic plan-form wing can be _btained by following the same

technique presented herein and inserting t_e proper analytical expressions

for the plan form and the spanwise variation of the local chord (or

half-chord).

MOMENTS AND LENGTHS FOR TH _,CALCULATION

OF THE DRAG OF ONE WING PANEL

Moments

The sheared plan form of one exposed _ing panel of a wing-body

combination is shown in dimensionless coorlinates in figure 4. As shown

in appendix A, the moments of one sheared wing panel can be expressed as

(cz)

It will be recalled that this definition requires that the moments be

calculated about the midpoint of the total length of the sheared wing

p_el. It has been found expedient to cal_ulate first the moments about

the axis through the origin of the coordinate system shown in figure 4

(_ : 0) a_id then transfer these moments, d_signated %k'(_b/c, 8), to

an axis through the midpoint of the total Length. Thus

"rl:o :_l(_b/c, _,_)
(c2)

where _z(_b/c, 8,_) and _2(_b/c, 8,G) are functions _mich define the

leading and trailing edges of the sheared plan form, respectively.

Equation (C2) can be simplified somewhat by replacing the combined

variables pb/c and 8 by the single parameter K (KU or KL) as described

in the METHOD section (see eq. (25)). Hence,

'(K) 2 f,,_
ok : _

d,
(c3)
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As shown in appendix C of reference 4, the pl_l-form dimensionless

thickness distribution for plan forms satisfying the above mentioned

restrictions can be written

(c4)

where _(_) is the spanwise variation of the dimensionless thickness along

lines of constant percent chord, T[_({,_,K)] is the local airfoil section

dimensionless thickness along lines of const_it percent chord_ and

_(_,9,K) defines lines of constant percent chord. In other words, the

function _(_,_,K) expresses any point _,_ in any sheared plan form

(for _2y value of K) as the chord station of the local dimensionless

airfoil section. The chord station is measured relative to the local

50-percent chord as indicated by

_(e,n,K) = ¢ - e-Kn ; -> < _ < 2 (C5)
_(q) -- _

In equation (C5) c(_) is the spanwise variation of the local dimensionless

half-chord, which, for the plan forms considered herein, is given by

¢(n) = l - Bn (c6)

In equation (C6)

B = l - xz (c7)

and },z is the taper ratio of the exposed wing panel. From equations
(C5) to (C7) equation (C4) can be written

• (_,n,K = ¢(n)_(_) (c8)

whe re

=_-Kn . -1<_<2 (C9)
I-B_ ' -- --

Substituting equations (C8) and (C9) and the equations for [z(K,q)

and _(K,n) (see fig. _) in equation (C3),m_i_g a ch_ge of variable
from [ to _, and first performing the integration with respect to

yields

r1:1 2 /:1. [ K rl+ (l_B rl)c_ ] k ( l_B.q )
_k'(K) : _(_) 7 T(_) & dn

:O O,-----'1

(ClO)
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No w

where

k

L__

k k:
Cy._ =

(k-m):m:

Hen{_e, equation (ClO) becomes

k

_--_ k Kk-m 2

i71:0

Let

f.i p!

Cu=-I T]=O

(oil)

im 2 < i

O.=-I
((]12

and since

_[1+1

(1-B_) m+_-- _ (-1)rc:_'+%_ _
r=o

equation (Cll) becomes

k _'ri+i

' : ,, C_ K Ir_ (-i) Cr s

m--o r=o _:o

k-m+ r$ (_ )d (ci3)

Let

gk_m+ r : F i Dk-m+r_ )(8) d8
O

T]:o

(C14

The_l

k m+l

%k (K) : Cm (-i) Cr B Ek.m+rl m

m=o r=o
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Finally, if

m+l

Fkm = _ (-l)r-m+l-rEUr m k-m+r

r=o

(c15)

the moments about the axis through the origin of the coordinate system

of the sheared wing panel (_ = O) are given by

k

, _. k Kk-mFkmlm%k (K): Cm
m:o

(C16)

_ze physical interpretation of equation (C16) is that the moments

are fm:ctions of the single parameter K, which identifies the sheared

<,_ng panel, and the geometric properties of the given wing panel. As

indicated by equation (C15), Fkm is a function of the taper ratio of

the given wing paael and the spanwise variation of the dimensionless

thickuess of the given wing panel along lines of constant percent chord;

that is, hi enters through B (see eq. (C7)) and @(_) enters through

Ek_m+ r (see eq. (C14)). It should be recalled (see restrictive condi-

tion (ii) above) that @(_) is a known analytical expression; therefore,

Ek_m+ r cml always be evaluated with little or no difficulty. Several

practical examples of @(_) are tabulated below for the plan forms
discussed herein.

Thick]less

characteristic @(_) Definition of constants

Constas.t
thickness ratio l-B_ B (see eq. (C7))

Linear variation

in thickness ratio

Linear variation

in thickness l-K_

thickness ratio at _=iG = i-
thickness ratio at _--0

H = l-
thickness at _=i

thickness at _--0

The quantities im are integral functions of the dimensionless airfoil-

section thickness distribution, T(_) (see eq. (C12)). When T(_) is

known analytically Im can also be evaluated with little or no

difficulty. Generally, however, an analytical expression for T(_) may

not be available. In these instances the evaluation of equation (C12)

requires special treatment. A simplified technique for finding Im for

airfoil sections _th a nonanalytic thickness distribution is presented
in appendix E.
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It remains to transfer the moments from the axis through _ = 0

an axis through the midpoint of the total l,mgth of the wing panel.

the aid of sketch (h) it is seen that such _n axis passes through

I
I

I

o_r flow

-, i K (K+X,)o A.(K)

Sketch (h)

= Aw(K ) where Aw(K ) indicates the moment transfer distance (and

direction relative to the axis through [ = 0) for a sheared wing panel

alone. The analytical expression for the mc,ments calculated about the

: mw(K ) axis is

to

With

Since

_k(K) = _ "r([,_,K)[_-Aw(K )]kd[ d_ (C17)

_q u_

k

[__aw(K)lk _ s k k s is= (-1) Cs_ "' [Aw(K)
s:o

equation (C17) can be written

k

~ _, s k s 2 /_ / T(_,q,K)_k_Sd_ dq
Mok(K ) = (-1) Cs[aw(K )]

s:o

(czs)

By definition from equation (C3)

244_(k_s)(K) : _ _(_,_:K)_k-Sd_dn

_lich defines moments about the _ = 0 axis. Therefore, moments about

the _ = Aw(K ) axis are given as a function of the moments about the

= 0 axis as
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k

_, sckr - s~ ,Mok(K) (-1) sLAw[K) (K- : ] Mo(k__) )
s=o

(cx9)

Values of Aw(K ) for various values of K cLknnot, of course, be

determined until the total length of the sheared v&ng panel, Zw(K), is

known. Therefore, Aw(K ) is evaluated in the following paragraph in

conjunction with the evaluation of /w(K).

Lengths and Moment Transfer Distances

The analytical expressions for the total length mid moment transfer

distance for each sheared _ng panel alone have different forms depending

upon the value of K relative to B. Sheared _,_ng panels for ranges of

K < -B, -B _ K _ B, mid K > B are sho_¢n in figure 5- Consider the

sheared wing panel for K > B sho_l in figure 5(c). Actually the length

ratio [c/Z(K)] W or [[/_(K)] W is of interest. From figure 5(c)

Yw(K) : 1 + (K+_) (C20)

and

i
Aw(K) = (K+>_) - g gw(K)

ffnich, from equations (C7) and (C20), becomes

Since

z (K-B)row(K) =

= 2, from equation (C20)

(C_Ol)

w i+(K+_z)

which, from equations (C7) and (C21), can be written

w I+Sw(K)
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of K defined by the _.2_eo_red wing panels in figures >(a) and '_(b). _l_e

results are tL_bulated below:

Mordent tr.:L_sfer dist-<_ce:; and length

ratios for speared wing )anels alone

CheL_red

wing panel,

K range

K <-B -B<tI<B K>B

) (l/2) (K+s) (l/2) (K-s)

1 l
:L

A-SW(K)

HOHEi_'L'S AND LENGTHS FOR %_ CALCULATION

OF INTERFERENCE DRAG BETV_]]N WING FA}_LS

Moments

Homents for the upper and Lower shea:ed vring panels used in the

iL_terfere_<e c_lculations are _ieterN_i_ed :.n the same get,era! earner as

i_l the ca_se of b_Le drL_g calculations for _)ne sheared _£ing panel alone.

%]_e moments used in tl_e drag calculatio,_s for one sheared w_z0g panel

:_lone ,:][ic]: xerc ,<L_]_cultted about tlle % : 0 axis by equation (C16)

_'<L_:_lso be used in %]_e interi%rence calc _lations to obtain the moments

:_bou:s the _ddpoint of the total length of the co_#0ined sheared _ring

j<_n<.tk_. ',A<lues of }%k'(K) are selected :;or the upper and lower }zing

p: :_e:_, in the ordered pairs indicated by ,_<{uation (31). _ese moments_

i_L :o_jtuzction with the respective upper _nd lower transl%r distaz_ces for

:_.o_±eren_e c%icul_ttions, £IKU(K) and SIs(K), are used in equa-

tion (ClC)) to obtain values of _k(K) fo:" interference. The actual

it:snarer distances are_ again, dependent ._pon the combined length of

l obh ske'_red vS_n 6 panels.

Lengths and Moment Trans:%r Distances

'Uke mnalytic::l expressions for the t:)tal length of both wing panels

and the separate moment transfer distance for each ,,_ing panel used in the

interference calculations for _ sheared pi_an form have different forms
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depending upon tke value of Ko rel:_2i/e to _3 _nd upon the v'_iue of

KL re'ati_e to Ko and to !_. Skeared plain forms defini_;g the ranges

of critica_l values of Ko, B, and K L are sho,,'nin fixture 6.

Rather than express .'A(K), AIu(K), all(K), _md [c/t(K)] I as a

function of KU and KL, it has been fom2d convenient to m_dce use of tke

relationship between KU and KL given by equation (bl) and express all

quantities as a ftmction of KL. For all the sheared plan forms of
fi g_re 6

A(K) : hz(KF,-Ku)

but from equation (31) one can_ write

Z_(K) : 2_h(KL-Ko) (C23)

Consider the plan forms sho;cn in figure 6(e) for K o > B _2d
K L >(B+2Ko). From the figure

TI(K) = (KL+hl) + A(K) - (Ku-hl) (C24)

l 7I(K ) + (Ku-_) (c_)AIM(K) : 7

1 _i(K ) (C;!6)AzT(K) = (KT,+_,!) - 7

From equation (32) equations (C24) to (C26) become

_Z(K) --_(_:T,-Ko+_,__)+ ,2(H) (C,W)

1 [ 2Ko+A(K) ] (C28)AZU(K) = 2

1 [ 2Ko_A(K) ] (C29)AIL(K ) :

Finally, since _ = 2

I KL-Ko+hl+
A(K)

(c3o)

In a similar manner AIu(K), Z2IL(K), and [c/Z(K)] I can be deter_ined for

the ranges of critical values of Ko, B, a11d K L defined by the other

sheared plan fomns in figure 6. The results are tabulated below:



Momenttr_nsfer distances and l_ngth ratios for the
interference between .,.,£_g pa_els )f sheared pl_n forms

Gi veil

pl_i form, 0 _ Ko < B 0 <_ Ko _ B 0 <_ K o < B

Ko range and Ko > 13 aad K o > B

She are d

oi_ fo_t, Ko <_ KT, i B B* i KT_ <_(B+ _Ko) KT, >(B+_o)

K L range

KAZu(K ) (lp)a(K) (1/2)[ L-B+A,K) ] (Z/2) [;_Ko+A(K) ]

]_ ,_ tA%(K) -(/_)A(K) (1/2) [KT,-B-A,K)] (lp) [2Ko-A(K) ]

1 1 1

l+(I/2)A(K) (I/2)[KL+Xm+I+A(K)] KL-Ko+_+(I/2)A(K)

Limiting values for the KU range for sheared plan forms can be

determined from the relation: KL + KU = 2K o

A(K) = _Iz(KT,-Ku) _ :-_(1%-Ko)

*For Ko > B the lower limit B is r_placed by Ko.
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APPEhrDIXD

Sf_4PLECALCUL\TIO_S

Sample calculations of the dLimensionless zero-lift wave drag for
several of the co_figmrations discussed in this report are presented in
order to demo_strate the computing procedure in detail. From equa-
tions (A3) to (A9) the general computing procedure can be stated as
follows.

To calculate the drag contribution of each componentor the inter-
ference bet_een _ pair of compoaentsof an equivalent body of
revoluzion

I. Determine the total length of each componentor of each pair of
compo_lentsand calculate the momentsabout the _midpoint of this length.

2. Calculate the le_Lgth r_tios for each componentor pair of
components.

L:ith the information of steps i aad 2 calculate the quantities.9 •

o)(see

4. '/ith the information of step _ it is a simple matter to ew_luate

equations (A:) and (AT), the latter of _._hich represents the dimensionles_:_

zero-lift wave-drag contributio_L of o_e equivalent body.

>. _A_e results of step 4 for <_I! equivalent bodies are then graph-

ically averaged according to equation (Ag) to obtain the dimensionless

zero-lift wave drag of each configuration component alone or the inter-

ference bet/eer_ components_ as the case may be.

If desired_ the results of step 4 for the drag of each component a_a

the izzterference between components may be su_mned before undertaking

step 9. Dimensional values are obtained_ of course_ by evaluating the

coefficients of equations (All) or (AI6) for airplane configurations or

systems of bodies of revolution; respectively.

SINGLE BODY OF REVOLUTIO!'{

From equation ('_4) the dimensionless area distribution of a Sears-

Haack body can be written
3

: 7 (Dl)



'i_i_e tot_l lemgth is that of the body. Using equation (DI) in equatio_i (Al>)

the mo!:_ents :_re c::_!culated to be

k _qok k [%k

o 3/_ ! o
2 -_' 0

4 p 0 ,.

6 ):,/l;:,.; 7 o [

For _< sinsle 0ody alor.e tkc lenjth ratio i;_,uuity. Kence_ from equa-

rio. (,'<17)

a,ud a,ll other _o _ 0 for n > f. i%ereroze_ from eKut_tions (_*) and

(:l)_ the <]imensio_lless zero-lift wave drag ',itMath mm_ber i is

[ = ,:(</1_) _ = 9/o = _.l_ (m_)

PAIR OF s_ODIEo OF REVOIUTIOH

The total. :,ero-lift _,_'_Lvedrag will be _alculated for the pair of

Semrs-Ka%ck boclies sRov<rJin sketch (g) for only M = l, since these

:ta]culu.tioas are typical of those for each _quiwslent body re,:scired for

M - i. The total zero-lift _;:_vedrag for }.i= i is given by (see

e,_. (:6))

(D_S)

ry-__ne fir_;t t._,'oterms of e_iuation (D3)_ reslJec tively; represent the drag

co_%ributio_!s of bo<_ies E and H alone and are pjiven by equation (D2).

In evaluating the interference term_ _;i{_ the dimensionless value

of the corr_bined le_ gth of both bodies is 4 The moments of each body

_bout :,_naxis throu_ the origin (see above table for single body of

revolution) must be transferree to an axis !,hrough the __£dpoint or the

total Length. It car be seen from sketch (I_) that such an axis passes

throu_: the tail of body E and the nose o:' body H. Hence_ in

dimen';ionless coordAnates_ the transfer dis ;ances are

(Dr)
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for bodies E _d H, renpectizely. From equ:_tioiL (D4) :_o__dfrom use of
the momel:Lts calculated _Poove for a single body of revolRt!oJ_ _s "¢,:_lue_

of _ok'; equatio1_ (CI_/) yields the following momewts -2pout tke rZdpoi_lt
of the tot_l length of both bodie;,.

k _k

0 %/I,
2

4 9_/6<
6

(-) for otd

k Hok

:_ _ 3/4
_ 9/°

f f

7 _ 603/l:'_

i:; ro_' boca/ E

u- _, r___e r_,tio of the length of et.c'hindividu_d body to oLe total lengd_ oil'

boQies -is !/ . Hence_ from equation (A17) the quantities Lrlo for both
%o Qi. c s :_r e

-33/64
39/128

Upper siG_ for odd i_

n _o

5 0
7 ± 3/32

9 ¥ 3/32

is for body E

tsm_;C the r_bove inform<_tior_ in equations (28) and (P7) yields

Fin_Zbr, r_'o,_ _ ol' e_.tio_s (D_) ._a (D:) i_, e_tio_ (D3), the d_::_en-
sionLest tot_]_ zero-lift ',.,.'_veQrag is

DT = 2. 454

CO},'_LETE WING

Calculations of the dimensionless zero-lift wave drag are presented

for a family of diamond plan-form wings (see sketch (b)) which have

biconvex airfoil sectio__s of constant thickness ratio. Calculations have

been made for :x Pk_ch n_ber r_nge corresponding to values of _b/c from

O to i.
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'_e import:_it dime1_sionless quantities describing the pl_uL form,

the _lirfoil sectio1_, a_'_d the sp_nwise varia_ion of the thickness along

lines of _onst_t perce_t _:hord are given_ _espectively, by

T(<_) = 1 - a2 (DT)

'l_e v-_lue of V(_) given by equation (D7) i_; actuul',_y for a ix_raboli<:-,:_r<_'

uirfoil section. Xowe,rer_ for v_lues of the,. thickness r_tio up to _kbout

o fc±'c'ent_ _xlc is _:%s<_tisi':_ctory approxima;ion.

C_iculatiolis for the W uve ]}r:_g of E_ch Wing Panel /ilonc

Initially one deterx_ines t2,e x':s_}_,/e of <slues of K for which tke

calcRl%tions are to be m_£de. Since K O : 0 and (15L//C)nl<_x := i_ %}!e r_sil_e

el' the vulues of K for v<],_ich the moments ()f one .i_'_ p'=ne] m-s,.:t l:,e

c:_l_::u!_:_t<<i:n'o detcrmi!_cLi from e:luktio__ (25 as = -k ::!_d Xi_,ii_:_x :

,N,e pt:_£e of s qlm:etry. <_v ....o: us_io_; (ON_:_)%ke O-i_ez',:_e_t ,:herd Line st _ _ , _ ......

V:ilues of

Fl

4 _ 2"

W{_j]_ m+3_ ; m

im :

0 ; m

0 _< m _< 7 arc re u_ired.

]
e ve El /

odd

(D9)

From equations (Clio) _tnd (DS)

1

Ek-m+r = _/Po (l-_)_k'm+rd_

I I

Ek-m+r - k-m+r+l k-_+r+2 (DIO)
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........_'_luesof 0 <(k-m+r) _<$ are required. From use of the results of
equation (DIO) in equation (CIg) valueb of Fkm are determined for
0 "<k _ 7 and 0 <_m <_k. With Fkm and I m determined, moments_NJout
the [ = 0 axis are determined for the sheared _,%ngpanels by use of

the desired values of -3 _< K < 3 in equation (C16). Because the

airfoil se_tion is spmnetrieal about the _0-percent c_hord, in this c:_se

Hok'(-K): _%k'(K)

_o_'(-K): -[%k'(K)
for k even]

for k odd]

Thus, only values of 0 _ K _ 3 are necessary.

(re_l)

Next, the moment of e_ich sheared wing panel alone must be transferred

to an axis through the rmidpoint of the total length of each s] eare_i _i_s

panel. From the table of appendix C for the sheared _rlng panels _lone,

the transfer distances and length ratios are

K < -i

-I<K<I

(1/2) @:+z)
o

(__/2)(K-l)

_/(1-K)
=

2/(I+K)

with the above _al_e_ of aW(K) an_ <he value_ o_" £%}_'(_), values of
_k(K) are deterrmi_led from equation (C19) for 0 _< k < 7. For this speci<_l

,case, the relationships of equation (Dll) also apply to the moments _bou%

the midpoint of the total length of each sheared win d p_nel. '_.Jith %]:.e

information now availc_ble the dimensionless zero-lift w&_ve drag of the

upper and lower sheared _£ing pastels alone can be calculated from equa-

tions (23), (22), _nd (21) for 2 < n < 9. N_e results are plotted in

figure 7 as a function of K. It--wil_ be noted that for this ease,

Dw(K) is symmetrical about K = O. This is again the result of the

s_nnmetrical airfoil section. In view of the relationships of equa-

tion (DII) it can be seen from equation (AI7) that

Since[_o (_)]_
s_mnetrieal about

Lno(-K) = tno(K) for n even 1

Lno(-K) :-Lno(K) for n odd]

(DI:__)

is required (see eq. (22)) rand the length ratios _re

K : O, DW(K) is necessarily s_m_etrical about K : O.
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C:_iculations for the Interference Wave Drag Between Wing Panels

To calculate the interference between _,_ng panels the ordered N_irs

of upper L_nd lower sheared ,,£ng panels :_re first deters.mined from equ'_-

tioll (31); thus

Ku -- -Kn (nl )

%_te moments, _7_k' (K), for the ordered pairs of sheared _ring panels must

be transferred to the mAdpoint of the total length of both sheared wing

panels. From the table in appendix C for interference between sheared

wing F_nels_ the transfer distances and length ratios are

KL r'._:tl_e AIu(K ) AIL(K ) [c/t(K)] I

O<KL<I 0 0 i

KL > I 0 0 I/K L

From equations (!9) and (50), values of Tno(K ) arc calculated for the

p_irs of upper and lower sheared wing panels for 2 <_ n _< 5_. Again, as

result of the s_mi_etry of the give_± configulration, use of equation (Dli)

ill equation (DI2) indicates that the detailed calculations of values of

Lno(K) for interference are necessary for only the lower sheared wing

pa!_els. The dime_sio_'.less interference zero-lift wave drag between sheared

._ing panels is given by e:luations (28) an# (27). The results are plotted

directly ',isa ±%auction of [3b/c cos 8 in figure b. Also sho_.anin

fig_ure _ -_re the <iime_'_sionless zero-lift v.ave-drag results for each of

the sheared ',ringpt_nels alone replotted as a function of _b/c cos 8

from the data of figmre 7. It is emphasized that all results shown in

figures 7 _md 6 were calculated using six significant figures.

Calculations for the Total _,ave Drag of the

Complete Win_

%_le total zero-lift ',wve drag for each complete sheared configuration

is calculated using the form of equation (26) for an equivalent body.

%_e results are included in figure 8. The variation of the dimensionless

total zero-lift wave drag of the complete _rings '_ith _b/c is obtained

by replotting the total wave-drag results of figure _ against _, for

constallt values of _b/c, and graphically averaging the results as

indicated by equation (20). It should be recalled, however, that complete

plan fo_s are s_nm_etrical in _/2. Values of DT(_b/c, @) obtained from

the data of figure 0 for several values oi _b/c are sho_u_ in figure 9

replotted against 0. The dimensionless total zero-lift wave-drag results,

DT(}b/c), are sho_u_ in figure i0.

The data of figure l(a) were obtained from use of the results of

figure 10 in equation ('<_). For this co.,_lete plan form bz/b = TZ/T = i.
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APPEI_IX E

EVALUATION OF THE INTEGRAL FUT[CTIONS FOR AIRFOIL SECTIONS

WITH NONA]_ALYTIC THICKNESS DISTRIBVrlONS

Determination of the moments used in the zero-lift wave-drag

calculations depends upon the evaluation of the integral fm_ctions of

the airfoil-section thickness distribution given in appendix C by

Im : _ T(_)_md_ (el2)

-i

where T(_) is the dimensionless airfoil-section thickness distribution

for -i <_ _ <_ 1. Equation (C12) can be evaluated _th little or no

difficulty for airfoil sections for which an analytical expression for

T(_) is available_ such as an NACA four-digit series airfoil section.

The thickness distribution is not available in analytical form for many

airfoil sections_ such as an NACA six-digit series mirfoil section. _l_e

thickness is generally specified_ however_ at &bout 20 airfoil chord

stations. It appears_ therefore_ that a graphical evaluation of equa-

tion (CI2) is possible. Unfortunately, experience has demonstrated that

the accuracy of such a technique

is insufficient to provide reli- _..... _ j
able wave-drag results. Conse-

[----

quently_ special techniques are
required to obtain an approximate V-

expression for the thickness dis-

tribution of an arbitrary airfoil _]--

section, and hence, evaluate equa- |

tion (C12) analytically. _J

r{a)

J I l ] i _Q

S -e

In appendix C of reference 4

it was found possible to approxi-

mate the thickness distribution of

an arbitrary airfoil section in

analytical form with a series of

adjacent parabolic-arc seg_ents of

continuous slope. This is possible

when the airfoil-section thickness

is specified at a sufficient number

of chord stations, say I; to define

adequately the thickness distribu-

tion, and the slope of the thick-

ness distribution is given for at

least one chord station (see the

lower part of sketch (i)). The

salient feature of this type of

approximation which is important

to the evaluation of equation (C12)

r'(a)=o

I I I I I I I

_liJ I_2 _+ c13 _t , CIL _ <2t+.l

I
-I

CIL42 (_i 2 (/r-i CII

i

Sketch (i)



p0

is the fact that the second derivative of the thicka_ess distribution is
constant over each se_.uent of parabolic ar_ (see the upper part of
sketch (i)). Hence, one may write for the second derivative of the
dimensio_kle_s thicki_ess distribution

T"(u%)_ T"(_i): constant for I_i < _ < _i+ll (El)

l <_
The det:_ib' for finding the _alytical expression for T(_)_ T'(_)_

and T"(<_) ca_ be fouled in appendix C of reference 4. With this information

it is possible to evaluate equation (C12) in a simple analytical fashion.

If one groups the integrand of equation (C12) as 7(_) and _md_,

a partial integration yields

2 _ i [T(1)+(-I)mT(-I)] ] 7_ I dm}
..... T' (_)_m+z

Im _ ijn+l m41 1
(E2)

Similarly, if one groups the integrand of the integral expression in

e.:_u'_tion (E2) as T'(_) and _m+zd_, a partial integration yields

i

(m+z) (r:'+2)
[_'(Z)+(-1)m+_'(-Z)-%,]}

(S3)

wke re

i

(m)

As u result of the parabolic-arc approxim_ tions of

constant over each se6_ent of arc as indi(ated by equation (El).

',,_ththe aid of equation (El), equation (_4) can be _<ritten

I-i

Pm _ _ T"(_i)
a_

i:l

which_ after integration, becomes

I-I

i

Pm ~ m+3

i_ :z _m+sd_

i=l

• (_), _"(_) i_
Hence,

(Es)
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(K-X,) K-I -8 aw(K) 0 I

1_
I- '_w(K) =j_

(a) K<-B

Direction of
air flow

1 / k, \ _

I / \ I

I \\\ I

_/_, I
-I -8 0 8 I

"Lw(K ) _-

(b)-B_ K_< B

_-K=B

,-q

J

-I 0 aw(K) B I K (K+X"_)

L _Lw(K) 4

(c) K>B

Figure 9.- Sketch, in dimensionless coordinates, sho_ing lengths and moment

transfer distances for sheared wing panels.



6o

j/

J
J

J

">

- _- ..... _-T-T-

1%

4

I

m

o ....._

_J

__ s,,.._

>1 ./

,_ ._;,,._...,_.£
Vl

vl

Os/'

y

4_

4_

4_

_)

_-f o
qq

o _

v_ _J

,,, ul
_ o

-o H

o N
o @

@ ©

©

®

;g

4_

!

,.c;

(I)



I
I

/

/

/

/
/

/

/
/

/

61



6o

/
I

I
I

I

I

/
/

/
/

/
/

/

/1
/ 1

/
/ 1

/il
!

/
/

!

/ .

C,l ©

o3 .r4

_ o
x_ r_

¢
w_
o

0



63

5_

+ (1/

.r-t
_41

o
o

Vl
I

2 ,.c;

0 .f_f

"0



64

_J

__ i_

,<.

i _le_

L_.... -__

L

,4

.< i I
÷ I

/i
-I_ i'

i J
, /I

/ !

I / /!
/

II I / ii

• !
i

+ /
._.1

/_ I ,"

d //<

..W

--r
I
o

_d

d

..,¢.

._I

Od
4-
U]

t'.

rn

f.,

v

QJ

0

!

-r-I



5_

59

F&

o

jJ

b

/

GO

_CD

O _"

m

I

OJ
I

O I

_c_

©

u}

©

4m

h
O
cH

_0

c_

Fh
4_ F_

._I

i O
O

_q O
_4

D]
¢]
r-4

O
._l
u]

;J

0

0

4_
_3

°H
%
_3

!

%



q

_J

f-

0

C

__ 0

0
D

l
l

I

t

l

_E

C_

E c
0 0

-- 0
0 q_

I

\

/
/

,

II
II

II
/ I

i I
/

7

/

/
0

0

o
_J

_ .olo

_0

I"

©

_Q

_g

o
rH

0

,4 X

ag_
P_

@ o
b_
c6 _a

_'_

t _
0 4 _
%

N ©

ca 4._

_-4 (I)

© ©

_ 0
(D O

O

o
°r-t
4 _

-r-t
%
_3

!

_d

_)
%

.r--I



67

\
\

\
\

\

\

cO.

\

\
\

\

\
\
\
\

O

d -

'!!I
I

I
I, I

I

/

q_

q_
I--

J

J

gO

J

/

/

/
I

/

I

/
/

/
/

I

/

I
/

/
/

/
/

o

I
I ,O

I
I
I ,OO4

o

O

o

O
ID

o

o

0

,d
(D

cJ

0

o
_H

(:b

63

'd

_D

.ml

i (u
o gh

© d
ba

_H
,H O

O b0
4_

m'_
U_

o d)

© _

m _
_ 0

0

0

4-_
c6

.H

_3

I

E

%

.M



rd

(M

/
f

o
_=."

X

CO c_

oJ
o

h9

oJ
0)

o

0
ai s_

4._

%
O

blli

4_

I

©
%

cd

o
4_

r_

o

G)

A

I

J
O _

t


